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Abstract— Microarrays are extensively used for high-
throughput gene expression analyses in molecular biology.
Microarray analysis is reliable if the probe binds specifically
to the intended target transcript. Cross-hybridizations of
microarray probes is one of the main systematic errors
which is influenced by microarray probe design. Newly
released genome annotations make it possible and necessary
to improve given probe designs in order to reduce this source
of error.

We present a new method which evaluates and optimizes
existing probe designs in a modular way. The workflow can
include existing software and it can be adapted to addi-
tionally required probe design criteria. A microarray probe
design optimization which focuses on the avoidance of cross-
hybridization was exemplarily done for Aspergillus nidulans.
We show the high impact of the underlying structural genome
annotation on the probe design process. The new design was
experimentally evaluated with the help of the mean variance
of internal technical replicates.

Keywords: microarray, probe design, cross-hybridization, As-
pergillus nidulans, optimization

1. Introduction
Microarray technique represents one of the most com-

mon methods to carry out genome-wide research based on
sequenced genomes. A microarray experiment consists of
many different steps which are all vulnerable to errors.
Signal intensities strongly depend on the probe sequence,
because different sequences generate varying physical prop-
erties, which are important for hybridization [1]. The prop-
erties of the probe sequences may be predicted and they are
used for the microarray probe design [2].

The main objective of the design process is to increase
the reliability of signal intensities by reducing systematic
errors caused by the probe sequences. Among other criteria,
the hybridization process itself is modeled with the help
of criteria, like melting temperature uniformity, GC-content,
prediction of secondary structures and Free Gibbs energy [3].

In order to guarantee a high discrimination between targets
and non-targets, the probe design is checked for cross-
hybridization. Cross-hybridization is a non-target binding
between a probe and a transcript fragment which is not

intended to match the probe. In fact, cross-hybridizations
are one of the main sources of systematic error that affect
tiling arrays [4] and even the well-established microarrays
from Affymetrix [5]. Several studies have shown that nu-
cleotide sequences are capable of hybridization, even when
the complementary region between probe and transcript has
only a 70% identity [1], [6]. Besides this identity threshold,
non-specific bindings additionally need a longest continuous
complementary substring of a certain minimum length [6],
[3]. Signal intensities in the data may result from unspecific
bindings and may lead to false-positively detected target
genes.

There are approaches to cope with cross-hybridizations
by creating new alternative Chip Definition Files (CDFs)
of existing custom microarray probe designs [7], [8]. These
methods correct and avoid the impact of cross-hybridizations
by disregarding a certain fraction of the probes during data
analysis. It is evident that the same level of information can
be obtained with less probes spotted onto the microarray.
The reannotation of oligonucleotide libraries is therefor the
first step in order to obtain up-to-date microarray probe
designs [9]. It is preferable to exclude existing cross-
hybridizing oligonucleotides during the process of optimiz-
ing microarray probe designs [10]. This removal leads to a
reduced production cost for each utilized data point. New
alternative probes can be spotted onto the microarray which
leads to a higher genome coverage rate or a higher number
of replicates per gene.

Many different algorithms have been proposed for design-
ing microarray probes [2]. Each algorithm has a different
scope of application and consequently utilizes different
probe design criteria and, as a consequence, perform differ-
ently. The different foci make it difficult to directly evaluate
and compare the quality of the proposed algorithms with a
theoretical optimization criterion. In fact, the limitations of
the applied experimental protocol determine suitable probe
design criteria and narrow down the set of available methods.
It is favorable to use an extendable und adjustable general
framework where different probe design criteria can be
integrated [11], [12]. This allows to adjust for application-
specific design criteria and enables the reuse of existing
modular software.

In this work, we present a workflow which evaluates and
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optimizes an already given reference probe design concern-
ing the avoidance of cross-hybridization. The optimization of
the probe design is exemplarily done for a microarray for As-
pergillus nidulans which is a model organism of filamentous
fungi [13]. The obtained probe design minimizes unspecific
bindings. We show that this design yields more reliable
results. In addition to the avoidance of cross-hybridizations,
it is possible to include different design criteria which are
applied due to experimental constraints.

2. Results
2.1 Evaluation of reference probe design

The mapping of a given full-genome probe design for
Aspergillus nidulans was examined by aligning the probe
sequences against three structural genome annotations: two
different versions available from the Broad institute and
one version from the Central Aspergillus Data REpository
(CADRE). (The annotations are referred to as BROAD
(2008), BROAD (2010) and CADRE (2009), respectively.)
For further information see methods and figure 1.

The given reference probe design contains 342 and
377 probes that cross-hybridize with BROAD (2008) and
CADRE (2009) annotation, respectively (see table 1). Re-
garding the newer BROAD (2010) annotation, only 148
probes are considered as cross-hybridizing.

Using the BROAD (2008) annotation and the CADRE
(2009) annotation respectively, 317 and 313 probes in the
reference probe design do not match any transcript with a
perfect sequence identity.

The reference probe design contains probes that do not
match any transcript in the given annotation: 74 probes using
BROAD (2008), 204 probes using CADRE (2009), and 993
probes using the newer BROAD (2010).

The reference probe design does not cover a number of
predicted transcripts in each annotation: 442 transcripts in
BROAD (2008), 478 transcripts in CADRE (2009), and as
much as 968 transcripts in BROAD (2010).

The evaluation also calculated the thermodynamic prop-
erties of the probe sequences. The result reveals that the
melting temperatures of the probes are in a narrow range
between 80◦C and 90◦C. This desirable property is achieved
with the help of a uniform GC content of 48%.

In summary, the reference probe design is not optimized
for any of the used annotations. Depending on the used
annotation version, 7. . . 11% of all probes do not match
a transcript unambiguously. The current annotation causes
a poorer performance which can be seen explicitly at the
decreased number of perfect probes (see table 1).

2.2 Probe design optimization
A large fraction of the reference probe design is not op-

timized for any genome annotation and needs improvement.
The objective of the optimization was to get 50 nucleotides

long optimized oligonucleotides which use the BROAD
(2008) annotation. The probes should be placed at the 5’-end
because cDNA is used in the hybridization protocol.

The workflow of the proposed probe design method can
be separated into three consecutive steps (see figure 2). In
the first step new probe candidates are generated with the
help of ArrayOligoSelector [14]. In the second step, probe
candidates are evaluated with the help of evaluation tool
to exclude cross-hybridizations (see above). The evaluation
also calculates thermodynamic properties that are used in a
following third step - a further selection. The selection step
is necessary because only one probe sequence per gene is
spotted.

The optimization showed that it was not possible to
find a valid unique probe sequence for every transcript.
In order to achieve a higher gene coverage, design criteria
have to be mitigated. New probe candidates are iteratively
generated from intervals of elongated transcript sequences.
1,303 probes were found in the smallest interval of 600
basepairs (see table 2). In the next two steps the interval is
extended to 1,200 and 2,000 basepairs which only led to 30
and 24 additional probes, respectively. In a last step, probes
that are capable of cross-hybridization are exceptionally
allowed. The relaxation of this last criterion increased gene
coverage with 53 additional probes. In total, the softening of
the design criteria leads to 107 additionally covered genes
in the presented study.

Finally, there are 188 genes without a valid probe se-
quence which leads to a transcript coverage rate of 98,2%.

The comparison of the resulting new probe design with
the given reference probe design shows that the new probe
design is optimized for the BROAD (2008) annotation
(see table 1). The new design consists of 10,512 probes
(99.5%) which match perfectly and do not show any cross-
hybridization. Notably, the comparison with the reference
probe design demonstrates that 254 genes are additionally
covered in the optimized design while avoiding systematic
errors.

Remarkably, there are also 214 extra covered genes if
the CADRE (2009) annotation is used as basis. This result
is achieved by a lower number of genes with systematic
errors. The number of potentially cross-hybridizing probes
is only 133 in comparison to 377 probes in the reference
probe design. Only three specific probes match a transcript
without a total sequence identity whereas this number is
much higher in the reference probe design with 313 probes.
Changes in the annotation lead to 143 probes that do not
match any given transcript in contrast to 204 probes in the
reference probe design. The number of uncovered genes is
264 which corresponds to a gene coverage rate of 97,5%.

For the current BROAD (2010) annotation the gene cover-
age of the probe design is reduced to 90,5% and the number
of covered genes (9,561 vs. 9,592) is comparable between
both versions of the probe design. Nevertheless, the new
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Table 1: Results of probe classification and gene coverage
Annotation BROAD (2008) CADRE (2009) BROAD (2010)
Probe design old new old new old new
Number of probes 10,676 10,566 10,676 10,566 10,676 10,566

Perfect probes 9,943 (93.1%) 10,513 (99.5%) 9,782 (91.6%) 10,287 (97,4%) 9,535 (89.3%) 9,535 (90.2%)
Cross-hybridizing 342 (3.2%) 53 (0.5%) 377 (3.5%) 133 (1.3%) 148 (1.4%) 63 (0.6%)
Not identical match 317 (3.0%) 0 (0.0%) 313 (2.9%) 3 (0.0%) 0 (0.0%) 0 (0.0%)
Not matching 74 (0.7%) 0 (0.0%) 204 (1.9%) 143 (1.4%) 993 (9.3%) 968 (9.2%)

Total number of genes 10,701 10,701 10,546 10,546 10,560 10,560
Covered genes 10,259 (95,9%) 10,513 (98.2%) 10,068 (95.5%) 10,282 (97.5%) 9,592 (90.8%) 9,561 (90.5%)
Uncovered genes 442 (4.1%) 188 (1.8%) 478 (4.5%) 264 (2.5%) 968 (9.2%) 999 (9.5%)

Probes from the reference probe design (old) and the optimized (new) probe design have been mapped to different genome annotations.
Probes either show no systematic error (perfect probes), hybridize with multiple genes (cross-hybridizing), match one gene without total
sequence identity (not identical match), or do not match any transcript at all (not matching). The lower part of the table shows how
many genes of the annotation are perfectly covered by the corresponding probe design.

Table 2: Composition of the gene coverage
Number of genes

Reference probe design (validated probes) 9,103
Probe design optimization:

Sequence range: 0. . . 600 bp 1,303
Sequence range: 0. . . 1,200 bp 30
Sequence range: 0. . . 2,000 bp 24

Ignoring cross-hybridizations 53
Uncovered genes 188
Total 10,701

The gene coverage of the probe design results from different steps. A
high number of genes are covered by validated probes from the reference
probe design. The probe design optimization leads to an additional
number of covered genes which are obtained by iteratively mitigating the
probe design criteria. First, the transcript sequences are extended and at
last the cross-hybridization criterion is relaxed. In the end, some genes
remain that are not covered by any valid probe.

probe design still minimizes systematic errors. 63 probes
are prone to cross-hybridizations in contrast to 148 probes
in the reference probe design. A high number of 968 probes
do not match any transcript at all which is again comparable
to the performance of the reference probe design.

In summary, the new probe design reduces systematic
errors regardless of the structural annotation used. Con-
cerning the cross-hybridizations, the improvements become
apparent. For BROAD (2008) and CADRE (2009) the gene
coverage of the optimized probe design is higher as com-
pared to the reference probe design.

2.3 Impact of genome annotation
The evaluation of different probe designs clearly high-

lights the big impact of the underlying structural genome
annotation on the results (see table 1).

The new probe design was optimized for the BROAD
(2008) annotation and the gene coverage could be increased
to 98.2%. The optimization also takes effect for the CADRE
(2009) annotation with a gene coverage rate of 97.5%. In
comparison to the current BROAD (2010) annotation, the
gene coverage rate is dramatically decreased to 90.5% which

is comparable with the coverage rate of the reference probe
design. The same trend for gene coverage can be seen for
the reference probe design where the gene coverage rate also
decreases to 90.8% if the BROAD (2010) annotation is used.

The differences in gene coverage result from probes which
are vulnerable to systematic errors. The new probe design
shows only a small fraction of probes that are prone to
cross-hybridization in the BROAD (2008) annotation. This
number doubles if the CADRE (2009) annotation is used. In
the BROAD (2010) annotation only a few cross-hybridizing
probes occur. This results from the increased number of
error prone probes that do not match any transcript at all.
The number of unmatched probes constitutes the largest
error source which is affected by the change in genome
annotation.

In the probe design optimized for BROAD (2008), the
number of probes that are not classified as perfect increases
from 54 (0.6%) over 279 (2,7%) to 1031 (9.8%) for the
BROAD (2008), CADRE (2009), and BROAD (2010) anno-
tation, respectively. The same trend holds for the non-perfect
probes from the reference probe design which increases
from 733 (6.9%) over 894 (8.4%) to 1141 (10.7%). It is
noteworthy that a change in the annotation basis can cause
almost 10% of all probes to be classified as invalid.

2.4 Experimental Validation
The new probe design is optimized for the minimization

of systematic errors in respect to the BROAD (2008) annota-
tion. Especially, the avoidance of cross-hybridization should
significantly increase the reliability of experimental data. An
indicator for improved reliability is a lower mean variance
of internal technical replicates over each array. For this
purpose, a highly reproducible experiment with the reference
and the new probe design was performed (see methods).
Microarray raw data was obtained from Aspergillus nidulans
- Streptomyces rapamycinicus interaction experiments. The
co-cultivation was performed because most of the secondary
metabolite gene clusters are silent under laboratory condi-
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tions and the fungal-bacterial interaction leads to specific
activations [15], [16]. (Microarray data is available at Gene
Expression Omnibus - GSE25266.)

First, a microarray experiment using the reference probe
design was performed. The following second experiment
used the same experimental setup except that the new opti-
mized probe design was used. It is not possible to compare
the variance of probes for each single gene individually
because an altered probe sequence has an essential impact
on the signal intensities. Probes with the same nucleotide
sequences have a high Pearson correlation coefficient of
0.928 whereas altered probe sequences result in a low
correlation coefficient of 0.554.

Overall, the internal technical replicates should however
show the desirable property of a lower mean variance over
each array. The first experiment with the reference probe
design used 4,148 internal technical replicates for 164 genes
whereas the second experiment with the new probe design
had 1,368 internal technical replicates for 157 genes. The
mean variance of the internal technical replicates for the
reference probe design range from 4.27. . . 4.7 for the biolog-
ical sample of the A. nidulans-S. rapamycinicus interaction
and A. nidulans wildtype, respectively (see table 3). The
new probe design shows a lower mean variance of internal
replicates, namely 3.55 for the wildtype and 3.69 for the
interaction sample. This change corresponds to an reduction
of the mean variance with a ratio of 0.76. . . 0.86. The appli-
cation of a Shapiro-Wilk test indicated a normal distribution
of signal intensities with a p-value < 0.05. An F-test with
a subsequent Holm-correction confirmed the significance of
the change in variance. All adjusted p-values are below 0.05.
The lower mean variance over each array of the new probe
design is significant. In summary, the statistical analysis
of experimental results obtained from technical replicates
supports the applied method and shows that the new probe
design yields more reliable results.

Table 3: Mean variance of technical replicates over each
array

Sample/Replicates Old design New design ratio
A. nidulans rep1 4.79 3.73 0.78
A. nidulans rep2 4.69 3.85 0.82
A. nidulans mean 4.70 3.55 0.76
A. nidulans+S. rapamycinicus rep1 4.00 3.76 0.94
A. nidulans+S. rapamycinicus rep2 4.51 4.12 0.91
A. nidulans+S. rapamycinicus mean 4.27 3.69 0.86

Mean variance of internal technical replicates which were included in the
first microarray experiment using the reference probe design and in the
second experiment using the optimized probe design. Two technical
replicates were used for each of the biological samples (A. nidulans and
A. nidulans + S. rapamycinicus). Mean variances and the ratio between
both experiments are given for each replicate and for the mean of each
biological sample.

3. Discussion
3.1 Probe Design Optimization

The reliability of used probe designs need to be checked
whenever new genome annotations are available [10], [9].
For A. nidulans the evaluation of the given reference probe
design showed this necessity as it contains many systematic
errors and the possibility to cover a higher number of
transcripts is not fully exploited. The approach combines
both steps - the evaluation of reference probe designs and
the design of new probes. Frequently, a probe design already
exists and probe sequences that satisfy the design criteria do
not need to be recalculated.

It is challenging to find the right software which applies
all probe design criteria described above. The usage of a
modular workflow which allows for the flexible integration
of different design criteria helps to adjust the oligonu-
cleotide design to the specific experimental requirements.
This approach allows the integration of own probe design
criteria and existing software. A similar workflow with
different steps has been proposed and implemented in the
tool Teolenn [11]. This framework was not considered due
to the missing integration of re-evaluation of existing probe
designs.

For the generation of probe candidates many different
software tools have been proposed. In the proposed workflow
we decided to use ArrayOligoSelector [14] which applies
a large fraction of required design criteria and was rec-
ommended in an evaluation of custom microarray applica-
tions [2]. The tool chosen is interchangable and should be
orientated at the specific probe design requirements.

In this working example, hybridization are only consid-
ered if the alignment has a minimum sequence identity of
90% (see methods). This way, cross-hybridization can not
be fully excluded because it was shown that it already
occurs at a identity of 70% [6]. If the evaluation tool
uses a more stringent cut-off, more probes are classified as
invalid and more genes are not covered by any probe. The
setting of this threshold is always a trade-off because the
aim is to cover as many genes as possible while excluding
cross-hybridizations. Hybridization with S. rapamycinicus
transcripts was not checked because poly-dT-priming ensures
that only eukaryotic RNA is amplified.

Due to the experimental objectives, the position of the
probe and the GC content range were used as design
criteria. The filtering for a narrow GC content range is
a fast calculabe filter criterion and effectively obtains a
close melting temperature uniformity. The computational
costly application of the Nearest-Neighbor Model [17] gives
a more precise estimation of the melting temperature. A
direct application of this methods for probe design is limited
because it assumes that both nucleotide strands interact
freely in a solution which is not the case for microarrays.

Generally, if more probe design criteria are applied more
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probe candidates are excluded leading to a lower number of
valid probe sequences. Overall, the used approach utilizes
only a small set of all possible probe design criteria. Despite
that, it was not possible to find a valid probe for 188 genes.
Several factors contribute to this number of uncovered genes:
If the gene annotation allows for transcripts which are shorter
than the desired probe length or consist of highly repetitive
sequence stretches, it is apparently not possible to find a
valid probe sequence for them. In addition, a few transcripts
share the same 3’-end, represent different splice variants, or
are positioned within the same locus but on different strands.
Finally, some sequences are at different loci, but have a high
sequence similarity which may result from gene homology.

3.2 Impact of annotation databases
It is crucial to decide what structural genome annotation

should be used as reference for the probe design. The reason
are new genome assemblies and differences in the formal
definition of the characteristics of a gene. Large fractions
of the annotation of Aspergillus nidulans are done automat-
ically with the help of bioinformatic tools. It is evident that
with ongoing research the annotation of transcripts is subject
to change. A large fraction of the oligonucleotide libraries
can not be unambiguously matched to existing structural
genome annotations [9]. The progress in laboratory research
and, consequently, the related manual curation of genome
annotations lead to more robust genome annotations.

3.3 Experimental Validation
The quality of the designed probes, and therefore the

quality of the proposed approach, is eventually assessed by
experimental validation. Probe sequences may be evaluated
with spike-in experiments [18], self-hybridization experi-
ments with the analysis of gene coverage [11], correlation
of experimental data with probe design criteria [11], [12],
experimental selection of probes [12], and the usage of
internal technical replicates [19]. Without a transcriptome
golden standard the impact of modifications can not be
directly linked to the overall improvement of the array
design. Spike-in experiments, Northern Blots, and qRT-
PCR can only focus on a selection of chosen transcripts
and are therefore not suited to assess a whole microarray
probe design. Furthermore, it is not distinguishable which
specific probe design criterion has an effect on the results
because the criteria are mutually dependent. An altered probe
sequence, for instance, does not only change the sequence
similarity but also the physical properties of the probe
and the hybridization. Nevertheless, it is necessary for an
improvement of the design process.

In this study we used internal replicates to assess the
quality of the new probes. Internal technical replicates allow
to check for the performance of probes regardless of the
experimental influences. A significant decrease of mean
variances of internal replicates over each array was observed.

This shows that the probes have a higher signal reproducibil-
ity. The optimized microarray probe design is more reliable
as it has been shown with the help of statistically significant
lower mean variance of the internal technical replicates.

4. Materials and Methods
4.1 Probe design evaluation

The probe design from febit biomed GmbH (Heidel-
berg, Germany) was as used as ’reference probe design’
(see GSE25266 and [15]). It was analyzed regarding the
structural genome annotations from BROAD institute [20]
(two different versions downloaded October, 10th 2008 and
February, 18th 2010) and from CADRE [21] (downloaded
February, 16th 2009). The annotation versions are referred
to as ’BROAD2008’, ’BROAD2010’, and ’CADRE2009’,
respectively.

Probe sequences were aligned locally to the known corre-
sponding transcripts with the help of FASTA (Parameters:
expectation value 1.0, alignment type 0) [22]. The ther-
modynamic properties of each probe and the hybridization
were calculated with the nearest-neighbor model [17], which
is implemented in the freely available software MELTING
(Parameters: ’-Hdnadna -N0.2 -P0.0001 -Ksan98a’) [23].
A probe is considered to match a transcript if there is
at least one 16 basepairs long common subsequence and
if both sequences share a sequence identity not less than
90%. Although literature suggests that hybridization already
occurs at 70% sequence identity [6], a less stringent cut-off
was applied. A stricter constraint dramatically decreases the
number of valid probe sequences and prevents a full-genome
probe design. All probes are finally classified into four
classes. Probes that i) match perfectly, ii) cross-hybridize,
iii) do not match any transcript, and iv) hybridize, but are
not fully identical with the target sequence.

4.2 Generation of new probe candidates
New probe candidates were generated for genes where

no perfect matching probe is given in the reference probe
design. Different available algorithms could be applied for
this step. In this study, we integrated the public available
tool ArrayOligoSelector (Parameters: target GC percentage
48.0, length of oligonucleotides 50), number of oligos per
gene 5) [14], which utilizes sequence similarity, a given
GC content range, tests for low-complexity regions, and
recognition of self-complementary sequences. The transcript
sequence was trimmed to the first 600 basepairs to reduce
computational time and to meet the probe design objective
of placing the probe near the 3’-end. The generated probe
candidates were checked with the help of the evaluation tool
described above. This guarantees that new probe candidates
meet the given cross-hybridization criterion and that system-
atic errors are avoided.
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Properties
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Fig. 1: Schematic overview of evaluation process. A
reference probe design is locally aligned to selected genome
annotation databases. Probes that cross-hybridize are filtered
and thermodynamic properties of the hybridization are cal-
culated for further assessment.

4.3 Selection of validated probes
The aim of covering the full genome of Aspergillus nidu-

lans allows only to spot one oligonucleotide for each gene
considering the given spotting density constraint. Validated
newly generated probe candidates are preferred if they are
positioned at the 3’-end of the transcript. If several probes
exist within an overlapping close interval of 50bp, the
following second design criterion is applied: Probes with a
GC content closest to the mean GC content of the reference
probe design are chosen if the difference to the mean is
below 8%. This ensures similar thermodynamic properties
of all probes. After the application of these criteria, at most
one single probe candidate per gene remains.

4.4 Iterative softening of design criteria
We start with a transcript sequence ranging from the 3’-

end to 600 basepairs. In order to get a better gene coverage,
the used transcript sequence range was iteratively extended
to 1,200 and 2,000 basepairs for the remaining uncovered
genes. Finally, the stringent cross-hybridization criterion was
relaxed for the remaining uncovered genes. Hence, probe
candidates are even considered if they are vulnerable to
cross-hybridization. Probe sequences were chosen manually
for genes of high biological interest and without a valid
probe candidate. The manually chosen sequences minimize
the number of cross-hybridizations and fall within the narrow
range of the desired mean GC content (± 8%).

Merging the valid probes from the reference probe design
with the selected new probe candidates resulted in the new
and optimized probe design (see GSE25266 and figure 2).

Uncovered Genes
Genome Annotation

BROAD (2008)

Generation of New

Probe Candidates

Evaluation

Selection

Validated Probes
Validated New

Probe Candidates

Optimized Probe Design

Fig. 2: Workflow of probe design optimization. New
probe candidates are generated for the genes where there
are no current valid probe sequences. Probe candidates are
evaluated with the evaluation tool. If more than one probe
candidate is valid, different selection criteria are applied to
select the best optimized probe. The final new optimized
probe design is obtained by the combination of these probe
candidates with the validated probes from the reference
probe design. (Dashed lines represent results from the eval-
uation of the reference probe design.)

In summary, in this study the following probe design
criteria have been applied: cross-hybridization, sequence
complexity, lack of self-binding, GC content, and position
on reverse strand.

4.5 Experimental validation
Microarray raw data was obtained from Aspergillus

nidulans - Streptomyces rapamycinicus interaction experi-
ments [15]. The fungus was incubated over night in liquid
Aspergillus minimal medium (AMM) and shifted into fresh
medium. Actinomycetes were cultivated in M79 medium
and 5 ml of the culture was added to 100ml AMM and
both organisms were further incubated at 37◦C. The refer-
ence culture is incubated without bacteria. After 3 h, each
sample was split into two identical technical replicates and
total-RNA was isolated using RiboPure-Yeast Kit (Applied
Biosystems) according to the manufacturers instructions.
cDNA synthesis, labeling and microarray measurements
were done by febit biomed GmbH. In the first experiment,
the reference probe design was used. The same samples
were used for the second experiment where the new probe

8 Int'l Conf. Bioinformatics and Computational Biology |  BIOCOMP'11  |



biological samples A. nidulans A. nidulans + S. rapamycinicus

technical replicates rep1 rep2 rep1 rep2

probe design
Reference Probe

Design

Optimized Probe

Design

Fig. 3: Schematic overview of Experimental Design. In
the first sample A. nidulans is cultivated without S. ra-
pamycinicus and in the second sample it is co-cultivated with
S. rapamycinicus. Each sample was split in two identical
technical replicates. For each replicate a microarray experi-
ment is performed with the reference and the new optimized
probe design. The microarrays contain internal technical
replicates that are used for the experimental validation.

design was utilized (see figure 3). All microarray data is
compliant to the MIAME standard and can be accessed at
GEO (http://www.ncbi.nlm.nih.gov/geo/) with the accession
number GSE25266.

Both microarrays contain several internal technical repli-
cates which can be used to assess the quality of microarray
design. The comparability of both experiments is shown
with the help of Pearson correlation coefficients of the
signal intensities. The mean variance of the internal technical
replicates were calculated over each array. The application
of a Shapiro-Wilk tests for a normal distribution of signal
intensities. The significance of the change in variances are
evaluated by an F-test and a subsequent Holm-correction.

5. Conclusion
We proposed a worflow for the evaluation and optimiza-

tion of existing microarray probe designs. This workflow
is capable of integrating existing software and adjusting
the probe design according to the experimental require-
ments. Exemplarily, this approach has been applied for
a full-genome microarray for Aspergillus nidulans with
the focus on avoiding systematic errors, especially cross-
hybridizations. The reduction of cross-hybridization im-
proves the reliability of the probe design which can be seen
in a reduced mean variance of internal technical replicates
over each array. We showed the high influence of different
structural genome annotations on the design process. It is
recommended to check for cross-hybridizations based on a
current version of genome annotation prior to microarray
data analysis.
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Abstract - Data with missing sample-values are quite 
common in many microarray expression profiles. The 
outcome of the analysis of these microarray data mostly 
depends on the quality of underlying data. In fact, without 
complete data, most computational approaches fail to deliver 
the expected performance. So, filling out missing values in the 
microarray, if any, is a prerequisite for successful data 
analysis. In this paper, we propose an Expectation-
Maximization (EM) inspired approach that handles a 
substantial amount of missing values with the objective of 
improving imputation accuracy. Here, each missing sample-
value is iteratively filled out using an updater (predictor) 
constructed from the known values and predicted values from 
the previous iteration. We demonstrate that our approach 
significantly outperforms some standard methods in terms of 
treating missing values, and shows robustness in increasing 
levels of missing rates. 

 
Keywords: Microarray, Biological Data Mining, Missing 
Sample Value Estimation, EM Algorithm. 

 

1 Introduction 
Since the last decade, microarray technology has 

been applied as one of the widely used tools for gene 
expression profiling across various experimental conditions 
[1]. It generates enormous amounts of data that can be 
visualized and analyzed by computational tools.  As a 
precondition for effective data analysis, microarray profiling 
data need to be preprocessed to ensure superior data quality. 
Due to intrinsic experimental settings and erroneous 
hybridization processes, very often microarray data contain 
missing values (probes), which deteriorate the subsequent 
analysis significantly. Studies found that on an average a 
microarray dataset contains ~5% missing values, and ~60% of 
the genes typically have at least one feature (sample) value 
missing [2]. Nevertheless, several data analysis algorithms, 
namely principal component analysis (PCA) [3], support 
vector machines (SVM) [4-6], singular value decomposition 

(SVD) [7], artificial neural network (ANN) [8] etc., require 
fairly complete datasets to perform stably. In addition, 
unsupervised clustering (e.g. hierarchical clustering[9]) 
suffers from missing values while constructing clusters using 
distance measures. Moreover, because of higher expenses, 
sometimes replications of experiments are not often feasible. 
In order to ensure better analysis, incomplete microarray data 
are required to be preprocessed and reasonably complete.  

In this paper, we propose an iterative technique to 
handle missing values in microarray data. Our method is 
inspired by the EM (Expectation Maximization) algorithm, 
which is widely used for missing value imputation in data 
preprocessing. In our algorithm, we try to implement an 
updater which will eventually estimate the most appropriate 
values replacing the imputed values in the preceding 
iterations. Unlike other methods, our technique can estimate 
the unknown values in the dataset and fill out the entries in 
the single dataset without incorporating “reference datasets”. 
Empirically, we tested our method on six publicly available 
Saccharomyces cerevisiae (Yeast) microarray datasets and 
evaluated the performance measures. Our findings outperform 
other existing techniques considerably and tend to be quite 
robust in higher missing rates.   
 
2    Related works 

As we know, microarray is a large matrix of 
expression levels of genes (rows) under differential 
experimental conditions/derived from various samples 
(columns). The general hypothesis behind estimating missing 
values for microarray is to capture the inherent association 
among the underlying rows and columns, and infer new 
values for the missing ones taking this relationship into 
account as a whole. To preserve better correlations among the 
data values, sometimes gene expressions with missing values 
are discarded from further considerations. But it might not be 
an option if the most of the gene expressions have some of 
their values missing. Another simple way to deal with missing 
values is to impute average gene expression over the row 
[10]. Besides these, Troyanskaya et al. [11] proposed a 
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estimation method based on singular value decomposition 
(SVDimpute) [11]. Another Bayesian principal component 
analysis (BPCA) [12] based imputation algorithm was 
presented by Oba et al. [12], which assumes higher 
covariance among the gene expressions to estimate unknown 
values. These global imputation approaches are suitable for 
datasets with considerably large number of samples (~30) 
having strong global associations among them (e.g. 
temporal/time series datasets). On the other hand, there are 
quite a number of techniques for local missing value 
estimation. For example, k-nearest neighbor based 
KNNimpute [11], least square (LSImpute) [13], local least 
square (LLS) [14], etc. can handle relatively smaller datasets. 
To start with, these methods select neighborhood genes by 
Euclidean distance measures or Pearson’s Correlations as 
required. The next step involves predicting the missing vales 
based on selected genes’ expression pattern. Still, these 
methods are error prone due to noise and insufficient samples. 
One of the shortcomings of all these methods is to integrate 
multiple datasets from diverse sources and consolidate those 
for analysis. Combination of datasets without proper 
relevance may critically degenerate the quality of 
neighborhood gene analysis, as pointed out for KNNimpute 
[12]. To this end, Tuikkala et al. [15] devised a gene ontology 
based technique GOImpute, which separates functionally 
related genes for further imputation. This method outperforms 
KNNimpute, but its performance is dependent on the 
availability of enough genes and accuracy of their 
annotations. Finally, we found another order statistics based 
approach called integrative Missing Value Estimation 
(iMISS) [16], which improves LSS algorithm and 
subsequently beats the GOImpute in terms of imputation 
accuracy. 

 
Table 1: Description of the test datasets                      

(Datasets denoted with (*) are time series) 
   

Dataset No of 
genes/ 

instance
s 

No. of 
samples/ 
attribute 

Description 

Diauxic* 5289 7 Metabolic transition 
from fermentation to 

respiration 
Adaptive 3685 4 Evolutionary 

adaptability 
Phosphate 5257 8 Polyphosphate 

metabolism 
Alpha-
factor* 

4053 18 

Elutriation
* 

5192 14 

CDC15* 4833 13 

 
Yeast Cell cycle-

regulation 

 
 
 
 
 

3  Methods and materials 
3.1   Description of datasets used 

To test our algorithms, we collected microarray 
profile data of Saccharomyces cerevisiae (Yeast) from the 
Princeton Saccharomyces Genome Database SGD Lite 
(http://sgdlite.princeton.edu/), a publicly accessible yeast 
microarray data repository. Our datasets are composed of both 
time series and non-time series data. The first dataset 
(Diauxic) we selected is a time series, spotted cDNA 
microarray gene expression profiles dealing with metabolic 
shift from fermentation to respiration in yeast [17]. The 
second dataset (Adaptive) is on the study of adaptability of 
yeast and their differential gene expressions under diverse 
stress conditions[18]. Another dataset (Phosphate) reports the 
resulting gene expressions for phosphate accumulation and 
polyphosphate metabolism [19]. The rest of the datasets 
(Alpha-factor, Elutriation, CDC15) were created from 
Spellman time series cell-cycle datasets [20] based on the 
methods used for yeast cultures. These three datasets are all 
temporal and comprise higher sample dimensions. The 
characteristics of the datasets used are furnished in Table 1. 

 
3.2   The Expectation-Maximization (EM) 
Algorithm 

A popular way of dealing with missing values is to 
use the Expectation-Maximization (EM) algorithm introduced 
by Dempster, Laird and Rubin [21]. Here, the data source is 
assumed to be from a certain (mixture of) parametric 
model(s). EM algorithm tends to perform very well in 
parameter estimation. EM iteratively performs the following 
two steps. 
 
Estimation (E) step: Estimate the parameters in the 
probabilistic model for the data source by using the known 
attribute-values and estimates of the missing attribute values 
obtained in the previous iteration of the M-step. 
 
Maximization (M) step: Fill in the missing values to 
maximize the likelihood function that is refined in the E-step. 

 
There are two drawbacks in using EM algorithm to 

fill up missing values. Firstly, it assumes that the data source 
comes from some parametric model (or a mixture of 
parametric models) with a finite mixture of Gaussian (k-
Gaussians) being the most commonly used. Due to this 
assumption, most EM applications are applicable to numerical 
attributes only. Secondly, while EM can be proved to 
converge (with the appropriate parametric model assumption), 
the convergence process tends to be extremely slow. In 
particular, EM algorithm is useful when maximum likelihood 
estimation of a complete data model is relatively easy. 
Ouyang et al. [22] showed the use of microarray data for 
Gaussian mixture clustering and imputation. This research 
originated when we tried to investigate whether imputation 
accuracy can be improved by using EM algorithm in filling up 
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missing numerical attribute-values, which is literally 
appropriate for microarray data. 

 
 

 
 
 

Figure 1: Pseudo code of our algorithm, EMMA. 
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Figure 1: Pseudo code of our algorithm, EMMA. 

 

3.3  Our iterative technique for handling 
missing values 
 Instead of using common parametric models, we assume 
that the value of each attribute is somehow dependent on the 
values of the other attributes, which can be captured to a 
certain extent by simple linear regressor. In fact, this 
assumption is quite rational for analyzing microarray data 
derived from particular stand-alone (not distributed) 
experiment, be it temporal or not. 

 Inspired by EM approach, we propose an iterative 
algorithm, which is EMMA (EM on MicroArray) by the 
name.  In the E-step, we build a linear regressor, which we 
call updater Hi, for each attribute xi using the other attributes 
as input. In the M-step, we update the predicted value of 
those attributes based on these models constructed in the E-
step as shown in Figure 1. The refined values are then used in 
the subsequent iterations to construct the updaters. Initially, if 
the sample value is missing, we use the mean values for first 
imputation. Because of the property of convergence at local 
maximum (saddle point) of EM algorithm, we need to start up 
with somewhat known (filled out) values. That is why we 
initiate with mean value imputation for the missing ones. 

 We continue this process iteratively until a certain 
number of iterations is reached or the attributes cease to 

change much. The rate of refinement of certain sample value 
is moderated by the parameter η (eta). Our experiment sets η 
to 1.0 (specified by ηmissing) for attributes (samples) with 
missing values, as they can be replaced with completely new 
values. On the other hand, η was valued at 0.0 (specified by 
ηknown) for attributes (samples) without missing values to 
restrict drastic changes of values over iterations. These values 
of η are not fully optimized in order to prevent overfitting. 
Besides, we obtained outperforming results using these non-
optimized parameters, and also values of η may be fine-tuned 
for better yields. 

EMMA (ηknown, ηmissing) 
 
//Here ηknown = 0.0, ηmissing = 1.0, Hi =Linear Regressor   
 
Initialize: 

Fill the missing values using its mean (for 
continuous values). 

 
Update: 

Repeat the following two steps until convergence 
(k iterations). 
E-step

 

3.4   Experimental settings 
: 

for each attribute xi do 
Construct an updater Hi for xi. 

M-step: 
for each attribute xi do 
      if xi’s value was missing then 
    η   ηmissing  
      else 

  η   ηknown  
 
xi   η Hi(x) + (1 − η) xi 

Output: 
The final updaters for filling in the missing 

values. 

To construct test datasets, we removed the gene with 
missing values from these datasets, so that we can calculate 
the accuracy of missing value imputations more precisely.  
The experiments use source code from the machine learning 
software WEKA[23]. Missing values are artificially added to 
the data sets to simulate randomized missing values. To 
introduce m% missing values per attribute xi in a data set of 
size n, we randomly selected mn instances and replaced its xi-
value with an “unknown” (In WEKA, missing values are 
denoted as ‘?’) label. Missing values were added in the 
original data sets from which both training data sets and test 
data sets were generated. In each set of experiment, we used 
increasing levels of ‘missingness’ - missing rate: m = 1%, 5%, 
10%, 20%, 25%, and 50%. We find that often at m≥10%, the 
majority of the instances (genes) have some missing values, 
while at m≥25%, all instances (genes) have some missing 
values. Moreover, as ours is an iterative approach, we 
recorded the performance metrics at increasing number of 
iterations, T = 1, 2, 5, 10, 15, 20, 25, 50 respectively. 

 
3.5    Performance Evaluation 

In order to validate the efficacy of our imputation 
method, we used Root Mean Squared Error (RMSE)[24, 25] 
(See Equation 1) performance metric, which estimates the 
relative closeness of the predicted and actual values. To 
minimize the variances in the RMSE measures, we created as 
many as ten datasets at same missing level (m%), and finally 
took average of all ten performance figures. There are other 
formulations of RMSE than that in Equation 1. The reason 
why we choose this expression because in the ideal case (null 
imputation algorithm), this RMSE measure will stand out as 
zero (null). This ensures that we can use this metric to 
compare same datasets using various algorithms. The closer 
the predicted (estimated) values to the actual values, the lesser 
the RMSE values are, resulting in the values of RMSE ~ 0.0 
for almost correct prediction.  

 
 

2

2

}{
}{

actual

actualpredicted

Ymean
YYmean

RMSE r

rr
−

=      (1) 
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Table 2: RMSE measures of six datasets at different iterations for different missing rates (m%) 

 
Missing rate (m) 1% 5% 10% 20% 25% 50% 
# of Iterations (T) Diauxic 

1 0.05617 0.12377 0.18004 0.26307 0.30318 0.45581 
2 0.05598 0.12312 0.17718 0.25392 0.29049 0.42738 
5 0.05591 0.12305 0.17669 0.25264 0.28854 0.43352 

10 0.05590 0.12307 0.17679 0.25288 0.28897 0.45119 
20 0.05590 0.12307 0.17681 0.25296 0.28914 0.45561 
50 0.05590 0.12307 0.17681 0.25296 0.28915 0.45695 

 Adaptive 
1 0.06932 0.15188 0.21863 0.31998 0.35122 0.50188 
2 0.06924 0.15117 0.21685 0.31247 0.34323 0.48526 
5 0.06922 0.15112 0.21699 0.31202 0.34435 0.49516 

10 0.06921 0.15112 0.21700 0.31203 0.34454 0.50235 
20 0.06921 0.15112 0.21700 0.31203 0.34454 0.50522 
50 0.06921 0.15112 0.21700 0.31203 0.34454 0.50554 

 Phosphate 
1 0.07581 0.16862 0.23738 0.33168 0.37086 0.51028 
2 0.07585 0.16858 0.23661 0.32842 0.36520 0.49984 
5 0.07588 0.16864 0.23704 0.32938 0.36700 0.52675 

10 0.07588 0.16864 0.23713 0.32951 0.36745 0.55547 
20 0.07588 0.16864 0.23714 0.32952 0.36748 0.56368 
50 0.07588 0.16864 0.23714 0.32952 0.36748 0.56678 

 CDC15 
1 0.06420 0.15783 0.22104 0.31270 0.35536 0.51542 
2 0.06374 0.15700 0.21827 0.30564 0.34639 0.49566 
5 0.06370 0.15689 0.21771 0.30640 0.34725 0.52152 

10 0.06370 0.15689 0.21767 0.30644 0.34780 0.55042 
20 0.06370 0.15689 0.21767 0.30638 0.34780 0.55335 
50 0.06370 0.15689 0.21767 0.30637 0.34779 0.56756 

 Alpha-Factor 
1 0.04435 0.11903 0.19110 0.29814 0.34277 0.50708 
2 0.04814 0.11370 0.18466 0.29244 0.33753 0.50076 
5 0.04720 0.11530 0.18688 0.29501 0.34183 0.50746 

10 0.04750 0.11553 0.18666 0.29532 0.33986 0.51684 
20 0.04718 0.11592 0.18554 0.29375 0.33845 0.52423 
50 0.04699 0.11596 0.18471 0.29380 0.33879 0.53709 

 Elutriation 
1 0.05573 0.11865 0.17985 0.27823 0.31824 0.48531 
2 0.05529 0.11899 0.17841 0.27091 0.30842 0.46726 
5 0.05528 0.12042 0.17588 0.27105 0.31368 0.47391 

10 0.05528 0.11941 0.17756 0.27294 0.31711 0.47882 
20 0.05528 0.11949 0.17623 0.27251 0.31790 0.47941 
50 0.05528 0.11923 0.17573 0.27300 0.31804 0.48761 

 

4   Results and Discussion 
 As we mentioned before, we took the performance 

measures (in RMSE) at different iteration counts for 
increasing missing value levels. The findings are reported in 
the Table 2. Because EMMA is based on an iterative 
approach, we observed the change of accuracy with the 
number of iterations the underlying updater Hi is called upon 

for imputation. For almost all cases, it seems that RMSE is 
higher at the very first turn, and lessens within a few iterations 
(T = ~2-5). These values remain fairly steady throughout 
higher iterations (T >10). This happens due to the property of 
the regressor we used. Basically, linear regressor here tends to 
fit the data points within first few runs, and adjusted regressor 
does not rectify too much in the following turns. Moreover, 
the RMSE values across different missing rates remain 
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relatively robust, and do not swing erratically with the 
proportion of missing values induced in the datasets. For 
example, the RMSE counts for Diauxic dataset (T = 10) are 
0.05590, 0.15112, 0.12307, 0.17679, 0.25288, 0.28897, 
0.45119 at the missing rate of 1%, 5%, 10%, 20%, 25%, 50% 
respectively. As expected, as the missing rate increases, the 
performance of our technique deteriorates (see Table 2), but 
the degree of imputation accuracy does not fall as much as the 
magnitude of missing rates. This suggests that our algorithm 
can handle higher number of missing values efficiently.  
To evaluate the performance of our method comparing to 
other extant methods, we obtained the RMSE numbers of 
those methods on the same datasets. As reported by Hu et 
al.[16], for Diauxic, Adaptive and Phosphate dataset, the 
RMSE measures (10% missing rate) of KNNimpute [11] and  
LLS based method [14] are ~0.6-0.8; while their integrative 
approach improved those numbers by decreasing almost 
~0.05. On the other hand, the error numbers for our algorithm 
at the same settings are in the range of ~0.17-0.24 (T = 10), 
which is an improvement over the aforementioned methods 
by a significant margin. Besides, we maintain a competitive 
edge against these methods at higher missing rates (See 
Figure 2~4). 

For a dataset with m rows (genes), n columns 
(samples) and k iterations, the computational complexity of 
our algorithm is approximately O(mn2k). So the running time 
scales up with the dimensions of the data matrix for the 
microarray. Instead of using linear regressor, we can also use 
any other hypothesis that can handle numeric class values 
(e.g. decision stump, multi-layer perceptrons, etc.). 
     All the datasets we used here were originated from 
same experiments using common microarray platform 
(spotted cDNA microarray). One of the advantages of our 
method is we do not need to integrate expression profiles 
from different experimental settings (cDNA vs. Affymetrix). 
Still, the performance of our algorithm depends on the 
variance of the datasets. Also, to infer linear regression, the 
dataset has to contain enough attributes (columns) to fit on the 
hypothesis. 

 

Figure 2: Comparison of performances for KNN, LSS, 
iLSS and EMMA for Diauxic dataset 

 
Figure 3: Comparison of performances for KNN, LSS, 

iLSS and EMMA for Adaptive dataset 
 
 
 

 
Figure 4: Comparison of performances for KNN, LSS, 

iLSS and EMMA for Phosphate dataset 
 
5  Conclusions  

To summarize, we present a novel method for 
treating missing sample values of genes in microarray data. 
Our technique is based on popular EM algorithm, and it far 
surpasses other existing state-of-the-art techniques in terms of 
imputation accuracy. In fact, being iterative in nature, our 
algorithm successfully grasps the innate relationships among 
the samples in subsequent runs, and stabilizes after the 
imputed and known values converge at some point.  We 
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validated the strength of our algorithm by applying it to 
estimate missing values in both temporal and non-temporal 
benchmark datasets. In future, we expect to extend this 
technique to handle noise in microarray data in the 
preprocessing step. 
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Abstract— Microarrays are broadly used for high-
throughput gene expression analyses in molecular biology
and medicine. Nevertheless, the quality of the technology
is still capable for further improvements. One of the
main problems is cross-hybridization of the transcripts
to non-corresponding probes on the array by unspecific
binding.

Four different Affymetrix GeneChip arrays are analyzed,
namely the Human Genome arrays HG-U133A, HG-U133B,
HG-U133 Plus 2.0 and the Mouse Genome 430 2.0 array. It
is shown that putative cross-hybridizations are common for
the examined arrays (e.g., 45 % of all probes for the U133A).
Furthermore, a considerable amount of probes does not
match the annotated transcript correctly. A new set of CDFs
is created avoiding putative cross-hybridization completely.
It is compared with three other CDFs (Affymetrix, Dai et al.,
Ferrari et al.) with the help of correlation between microar-
ray and qRT-PCR results for two datasets. The newly created
and the Ferrari CDFs perform significantly better than the
original Affymetrix CDFs. The new CDFs are available as R-
packages at http://www.sysbio.hki-jena.de/software and have
been submitted to BioConductor.

Keywords: microarrays, unspecific binding, cross-hybridization,
Chip Definition Files

1. Background
Microarrays are broadly used for high-throughput gene

expression analyses in molecular biology and medicine.
They are applied to measure changes in expression levels for
thousands of genes simultaneously. Until 2011, more than
20,000 measurement series based on microarray technology
have been published in public repositories like NCBI’s Gene
Expression Omnibus.

Nevertheless, the quality of the technology is still capable
for further improvements [1], [2]. Several studies tried to
compare data derived from different types of arrays and
showed a rather poor consistency [3], [4]. Although mi-
croarrays are commonly used, this is a daunting problem.
In addition, although there has been extended work on this
field [5], there is still a lack of standardized experimental
protocols among different laboratories [6].

The main problem of microarray analysis is unspecific
binding of transcripts by cross-hybridization. This means
that RNA fragments hybridize to a probe which is not
designed for this gene. It was shown that fragments longer
than 8 nucleotides are able to hybridize and that cross-
hybridization can emerge from alignments ranging from 10
to 16 nucleotides. Further, the 5’-ends were found to cross-
hybridize more likely than the 3’-ends [7].

Unspecific binding may lead to false-positive and false-
negative results following in incorrect hypotheses about
gene expression [8], [9]. Affymetrix, a technology widely
used [10], accounts for the influence of cross-hybridization
by introducing internal controls: each probepair comprises a
Perfect Match (PM) and a Mismatch (MM) probe which
are statistically evaluated [11]. Unfortunately, this proce-
dure cannot solve the problem of cross-hybridization com-
pletely [12] and further refinements are suggested [13]. For
example, Wu et al. [7] stated that the MM probes can also
cross-hybridize, even though by another mechanism as the
PM probes. Therefore, they recommended ignoring the MM
probes.

Generally, expressed transcripts are represented on the
array by a series of probepairs called probesets. The signal
intensities are summarized to a single value per probeset. A
large number of single transcripts are represented by multiple
probesets. Multiple probesets representing the same gene are
expected to show similar fold changes calculated from the
signal intensities of the hybridized samples. However, this
is in fact not the case [14], [15], [16]. This problem arises
from single probes in the probeset which are capable of
cross-hybridization. Ways to deal with this problem is either
a probe-based analysis, leaving out the probe-to-probeset
summarization step [17], [18], or the composition of the
probesets could be improved by setting up alternative Chip
Definition Files (CDFs) based on information contained in
different sequence databases. For example, the group of
Ferrari et al. [19] created a set of custom CDFs based on
the GeneAnnot database [20]. In these CDFs the probesets
that match the same gene were merged into one probeset.
Hence, the existence of more than one probeset per gene
was eliminated, avoiding discordant expression signals for
the same transcript.

Another set of custom CDFs relying on a broad repertoire
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of databases like RefSeq or Unigene has been created by
the group of Dai et al. [21]. Probesets matching the same
gene were merged, but remained divided if they were able
to discriminate different isoforms of a gene. Probes causing
cross-hybridizations were removed from the new probesets,
but the filter had been not very strict.

Several groups dealt with the question of the minimum
probeset size [19], [21]. For example, the group of Lu et
al. [22] sets the minimum probeset size to 4 probes because
smaller probesets result in high error rates. In this study the
minimum probeset size was set to 4 [19], [21]. From these
new probesets custom CDFs and the corresponding Biocon-
ductor libraries for Affymetrix GeneChips were created.

In the work presented here, a new set of CDFs is in-
troduced avoiding putative cross-hybridization completely.
These CDFs are compared with those from Affymetrix,
Ferrari, and Dai by validation of the respective microarray
results using qRT-PCR for two different datasets.

2. Results
Four different Affymetrix GeneChip arrays are analyzed,

namely the HG-U133A, HG-U133B, HG-U133 Plus 2.0
designed for human samples, and the Mouse Genome 430
2.0 array. For the detection of putative cross-hybridizations,
the sequences of all Affymetrix probes (only the PM probes,
the MM probes are discarded) are aligned against the RefSeq
database using blastn [23] as described in the methods
section.

The GeneChip HG-U133A consists of 22,283 probesets,
each of 11–20 probepairs and 247,937 probepairs in total.
Additional 1,155 probepairs are controls and are furthermore
ignored. About 44 % of the PM probes (109,245) match
exactly one single gene. 11 % of the probes (26,159) do not
match any annotated gene. 45 % of the probes (112,533)
match more than one gene and thus have cross-hybridization
potential.

Furthermore, the direction of the probes was analyzed.
Normally, sense strand RNA fragments are expected, al-
though there are some loci in the human genome [24], as
well as in the mouse genome [25], where both sense and
antisense strands are transcribed. However, mixing up probes
detecting sense or antisense strands in one single probeset
could cause wrong expression results. Here, only probes
matching the sense strand are considered as correct. For the
U133A microarray all probes match the sense strand.

The GeneChip HG-U133B consists of 22,645 probesets,
each of 11–20 probepairs and 249,491 probepairs in total.
Again, there are additional probesets containing more than
11 probes as controls and are ignored (1,100). About 35 %
of the probes (87,067) are found to match exactly one gene.
2 % of the probes (5,453) match more than one gene, so
they possibly cross-hybridize, 5 % of the probes (12,805)
match at least one gene but in the wrong direction (antisense

direction) and no gene in the sense direction, and 58 % of
the probes (144,166) do not match any annotated gene.

The GeneChip HG-U133 Plus 2.0 consists of 54,675
probesets and 604,247 probepairs. Like in the other arrays,
additional probesets containing more than 11 probes are
controls and are discarded. Here, 37 % of the remaining
probes (221,821) match exactly one gene, 23 % of the probes
(141,146) match more than one gene, 11 % of the probes
(65,327) match at least one gene but in the wrong direction
(antisense direction) and no gene in the sense direction, and
29 % of the probes (175,953) do not match any annotated
gene.

The Mouse Genome 430 2.0 array consists of 45,036
probesets and 496,457 probepairs. About 52 % of the
counted probes (257,331) match exactly one gene and 5 %
of the probes (27,112) match more than one gene. About
1 % of the probes (4,661) match genes only in the wrong
direction and 42 % of the probes (207,353) do not match
any annotated gene.

Nearly all Affymetrix probesets contain at least one probe
which has cross-hybridization potential. In fact, for the HG-
U133 Plus 2.0 Chip about 65 % of all probesets include
more cross-hybridizing probes than non-ambiguous ones.

All probes matching exactly one single gene are classified
as good and all probes matching more than one gene are
classified as problematic. Those probes, that match in the
wrong direction or do not match any RefSeq sequence are
also classified as problematic. Only the good probes are
used to create the new CDFs as described in the methods
chapter. Accordingly, for the HG-U133A microarray origi-
nally measuring 14,500 genes by 22,283 probesets the newly
created CDF contains 12,400 probesets representing 12,400
genes. For the HG-U133 Plus 2.0 the number of probesets is
reduced from 54,675 (representing 38,500 genes) to 18,800
(representing 18,800 genes). The HG-U133B comprises
22,645 probesets measuring the expression of 18,400 genes.
Here, the number of probesets is reduced to 6,500 matching
6,500 transcripts. The Mouse 430 2.0 microarray consists
of 45,036 probesets for 39,000 genes. With the new CDF
there are 16,400 probesets matching 16,400 genes. Hence,
the number of identifiable genes is reduced in order to
achieve a higher specificity of the probesets. The result for
the HG-U133 Plus 2.0 is in good agreement to the results
of Barnes et al. [26], who used BLAT and the Golden Path
database and achieved a number of 17,143 genes that can
be measured.

Small probesets lead to higher error rates and result in
lower statistical significance. In the Affymetrix CDFs the
size is 11 for nearly all probesets, but in the newly created
probesets the size is not fixed. Some probesets are smaller
than those from Affymetrix due to the removal of the
problematic probes. However, many probesets increase in
size due to useful probes on the array that have not been
used for the matching gene before and probesets measuring
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the same gene beeing merged. For example, for the HG-
U133 Plus 2.0 the mean probeset size increases from 11 to
17.

For the validation of all CDFs two test datasets are chosen:
(i) the Etanercept (ETC) and (ii) the MAQC dataset. The first
of the two datasets is derived from a study analyzing the ef-
fect of the TNF-α blocker Etanercept, a rheumatoid arthritis
drug, using data from 17 patients at three time points [27]. It
is a typical dataset that arises in medical studies and is rather
representative. One Affymetrix HG-U133A array experiment
was performed for each time point. The second dataset is the
Microarray Quality Control (MAQC) reference dataset [28].
It contains data from more than 1,300 microarrays and qRT-
PCR data for more than 1,000 genes. The subset of the 120
Affymetrix U133 Plus 2.0 expression results and all the qRT-
PCRs are selected for the analysis presented here.

qRT-PCR results are considered to reflect the real tran-
script concentrations with higher reliability than those de-
termined by microarrays. Therefore, qRT-PCR experiments
are regarded as a ’gold standard’ for chip analyses [29], [30].
The Pearson correlation coefficient (PCC) of the microarray
and the qRT-PCR data is computed for each gene using the
different CDFs.

For the Etanercept dataset we performed qRT-PCR ex-
periments for 16 genes. In total, this dataset now contains
results from 51 microarrays and 816 qRT-PCR experiments.
In addition, the genes with qRT-PCR data in both records
are analyzed in more detail.

The perfomance of these CDFs were compared: the orig-
inal Affymetrix CDFs (A), the two alternative CDFs of
Ferrari et al. (F) [19] and Dai et al. (D) [21], and the
new CDFs (H) presented here. The CDFs from Ferrari,
using the GeneAnnot database, contain merged probesests
(see background chapter), and cross-hybridization was not
considered. The group of Dai offers a broad spectrum of
different CDFs based on different databases. The one using
RefSeq is chosen for comparison because it corresponds best
to the new CDFs, using RefSeq as well. In the Dai CDFs
different probesets matching a single gene are combined,
although there are exceptions for genes comprising different
isoforms. A check for cross-hybridization is also included.
However, it applies a different algorithm than the new CDFs
and the filter is much less strict.

For the probe to probeset summarization step two algo-
rithms are used as described in the methods section: (i)
the Robust Multi-array Analysis Algorithm (RMA) [13],
[31] and (ii) the Affymetrix Microarray Suite MAS5 [32].
These were compared repeatedly, but it is difficult or even
impossible to decide which of the both algorithms performs
better in any case [33], [34], [35].

For the Etanercept dataset, the mean correlation coef-
ficient of all 16 genes for the Affymetrix CDF is 0.61
using the robust multi-array analysis algorithm (RMA) and
0.60 using the Affymetrix Microarray Suite MAS5. These

values include 31 probesets in total matching these 16 genes
according to the Affymetrix annotation file. If only the best
correlating probeset for each gene is considered, the average
correlation coefficient increases to 0.73 for RMA and 0.71
for MAS5. However, this value is more of theoretical interest
because the knowledge which probeset will perform best is
gained not until the qRT-PCR experiments and correlation
analysis is finished. On average, the incorporated probe-
sets contain 5.58 putative cross-hybridizations calculated by
BLAST (4.47 including only the best performing probesets).

The Dai CDF contains 23 probesets for the 16 genes of
the Etanercept dataset. Their mean correlation coefficient
increases to 0.67 for both RMA and MAS5 compared to
the 0.60 using the Affymetrix CDF. Considering the best
correlating Dai probesets only, the values further increase
to 0.73 for RMA and 0.69 using MAS5. The mean size of
the Dai probesets increases to 20.59 probes containing 8.82
putative cross-hybridizations. This number changes to 4.71
if normalized to a probeset size of 11. Here, normalization
means the number of putative cross-hybridizations calculated
for a hypothetical Dai probeset size of 11. Considering
only the best Dai probesets, the number of putative cross-
hybridizations decreases to 7.88 on average.

For the Ferrari CDF, the mean correlation coefficient
equals 0.73 for RMA and 0.69 using MAS5 on average.
The mean probeset size increases to 19.56, harboring 10.81
possible cross-hybridizations (6.07 if normalized).

Using the new CDF the mean correlation coefficient
amounts to 0.72 for RMA and 0.68 for MAS5. The mean
probeset size decreases to 10.25 with no cross-hybridizations
at all. The detailed results are shown in the table below:

PCC PCC PCC Number of Probeset-
Gene Probeset ETC ETC MAQC ambiguous size

(RMA) (MAS5) (RMA) probes

TNF A: 207113_s_at 0.88 0.85 N/A 8 11
D: NM_000594_at 0.88 0.85 N/A 8 11
F: GC06P031652_at 0.88 0.85 N/A 8 11
H: gi_25952110 0.86 0.81 N/A 0 3

IL1B A: 205067_at 0.95 0.90 0.37 6 11
A: 39402_at 0.95 0.87 0.82 6 16
D: NM_000576_at 0.96 0.89 0.74 12 27
F: GC02M113303_at 0.96 0.89 0.74 12 27
H: gi_27894305 0.95 0.88 0.86 0 15

IL6 A: 205207_at 0.69 0.71 0.81 3 11
D: NM_000600_at 0.69 0.71 0.81 3 11
F: GC07P022732_at 0.69 0.71 0.81 3 11
H: gi_10834983 0.65 0.72 0.71 0 8

IL8 A: 202859_x_at 0.88 0.81 0.90 6 11
A: 211506_s_at 0.86 0.73 0.98 6 11
D: NM_000584_at 0.88 0.73 0.96 12 22
F: GC04P074845_at 0.88 0.73 0.96 12 22
H: gi_28610153 0.89 0.73 0.95 0 10

IL1RN A: 212657_s_at 0.75 0.87 N/A 2 11
A: 212659_s_at 0.77 0.84 N/A 4 11
A: 216243_s_at 0.75 0.86 N/A 6 11
A: 216244_s_at 0.13 0.07 N/A 4 11
A: 216245_at 0.21 0.11 N/A 10 11
D: NM_173841_at 0.80 0.88 N/A 12 33
D: NM_000577_at 0.80 0.88 N/A 12 33
D: NM_173842_at 0.80 0.88 N/A 12 33
D: NM_173843_at 0.84 0.86 N/A 15 42
F: GC02P113591_at 0.83 0.86 N/A 16 44
H: gi_27894315 0.78 0.88 N/A 0 23

ICAM1 A: 202637_s_at 0.63 0.73 0.97 7 11
A: 202638_s_at 0.62 0.72 0.98 4 11
A: 215485_s_at 0.71 0.73 0.94 3 11
D: NM_000201_at 0.70 0.76 0.99 14 33
F: GC19P010247_at 0.70 0.77 0.99 14 33
H: gi_4557877 0.72 0.74 0.97 0 20

SOD2 A: 215078_at 0.25 0.35 N/A 10 11
Continued on next page
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PCC PCC PCC Number of Probeset-
Gene Probeset ETC ETC MAQC ambiguous size

(RMA) (MAS5) (RMA) probes

A: 215223_s_at 0.15 0.28 N/A 7 11
A: 216841_s_at 0.18 0.39 N/A 3 11
A: 221477_s_at 0.32 0.44 N/A 10 11
D: NM_001024466_at 0.16 0.33 N/A 6 12
D: NM_000636_at 0.19 0.37 N/A 10 22
D: NM_001024465_at 0.16 0.33 N/A 6 13
F: GC06M160020_at 0.20 0.36 N/A 20 33
H: gi_67782304 0.20 0.39 N/A 0 12

TRAF1 A: 205599_at 0.61 0.50 0.88 6 11
D: NM_005658_at 0.61 0.50 0.88 6 11
F: GC09M122704_at 0.61 0.50 0.88 6 11
H: gi_53759116 0.59 0.47 0.89 0 5

ZFP36 A: 201531_at 0.84 0.86 N/A 5 11
A: 213890_x_at -0.01 -0.46 N/A 8 11
D: NM_003407_at 0.84 0.86 N/A 5 11
F: GC19P044589_at 0.84 0.86 N/A 5 11
H: gi_141802261 0.85 0.82 N/A 0 6

PTGS2 A: 204748_at 0.91 0.71 0.97 4 11
D: NM_000963_at 0.91 0.71 0.97 4 11
F: GC01M184907_at 0.91 0.71 0.97 4 11
H: gi_4506264 0.89 0.72 0.95 0 9

TNFAIP3 A: 202643_s_at 0.78 0.82 0.97 4 11
A: 202644_s_at 0.87 0.85 0.93 6 11
D: NM_006290_at 0.82 0.83 0.96 10 22
F: GC06P138230_at 0.82 0.83 0.96 10 22
H: gi_26051241 0.80 0.82 0.98 0 13

DUSP2 A: 204794_at 0.75 0.66 N/A 5 11
D: NM_004418_at 0.75 0.66 N/A 5 11
F: GC02M096230_at 0.75 0.66 N/A 5 11
H: gi_12707563 0.74 0.60 N/A 0 6

ADM A: 202912_at 0.80 0.67 0.92 5 11
D: NM_001124_at 0.80 0.67 0.92 5 11
F: GC11P010283_at 0.80 0.67 0.92 5 11
H: gi_4501944 0.82 0.67 0.94 0 6

CROP A: 203804_s_at 0.44 0.56 N/A 5 11
A: 208835_s_at 0.43 0.36 N/A 5 11
A: 220044_x_at 0.43 0.44 N/A 4 11
D: NM_016424_at 0.49 0.50 N/A 13 32
D: NM_006107_at 0.49 0.45 N/A 13 30
F: GC17P046151_at 0.48 0.48 N/A 14 33
H: gi_52426741 0.46 0.47 N/A 0 17

NFκBIA A: 201502_s_at 0.81 0.73 N/A 4 11
D: NM_020529_at 0.81 0.73 N/A 4 11
F: GC14M034940_at 0.81 0.73 N/A 4 11
H: gi_10092618 0.82 0.77 N/A 0 7

JUNB A: 201473_at 0.44 0.44 0.94 7 11
D: NM_002229_at 0.44 0.44 0.94 7 11
F: GC19P012763_at 0.44 0.44 0.94 7 11
H: gi_44921611 0.54 0.44 0.73 0 4

Ø all Affymetrix 0.61 0.59 0.88 5.58 11.16
best Affymetrix 0.73 0.71 0.92 4.47 11.00
Dai 0.67 0.67 0.91 8.82 20.59
best Dai 0.73 0.69 0.91 7.88 18.69
Ferrari 0.73 0.69 0.91 10.81 19.56
Hummert 0.72 0.68 0.89 0.00 10.25

Evaluating the PM and MM probes statistically, the MAS5
software assigns ’present’, ’absent’ or ’marginal’ to each
expression value, and Affymetrix recommends to use only
the ’present’ detection call for further analysis. Following
this recommendation and using only those results for the
correlation analysis that are marked as ’present’ the mean
correlation coefficient increases from 0.59 to 0.66 (0.74
including only the best performing probesets). Hence, incor-
porating the Affymetrix detection call indeed improves the
correlation, but using alternative CDFs is still better than
using the Affymetrix probesets and the detection call.

Analyzing the MAQC reference dataset using the RMA
suite, the results are almost in accordance with those of
the Etanercept data described above. The mean correlation
coefficient for all 1,000 genes is 0.47 for the Affymetrix CDF
(0.71 incorporating only the best probeset for each gene).
Using the Dai CDF, the mean correlation increases to 0.63
(0.64 for the best probesets). With the Ferrari and the new
CDF the mean correlations are 0.63 and 0.58, respectively.
The detailed results for all MAQC genes can be downloaded.

Discussion
Results from microarray experiments contain considerably

high error rates [36]. Due to error propagation, it is of

particular importance to minimize errors in the beginning
of the analysis chain [37]. Therefore, especially the pre-
processing of the chip data has to be done as accurate
as possible. Many efforts were spent on these problems
before [38], such as the notable results of the ’Golden Spike
Project’ [6]. The question which statistical method should be
adequately chosen is even more complicated if experimental
data from different laboratories are incorporated in one
single analysis [39].

For microarray analyses algorithms are essential which
combine the 11-20 probepair intensities for a given gene and
define a measure of expression that represents the amount
of the corresponding mRNA species. In this study, two of
these algorithms are compared, the robust multi-array anal-
ysis algorithm (RMA) and the Affymetrix Microarray Suite
MAS5. Applying both algorithms to the Etanercept dataset
RMA outperforms MAS5 on average. Other studies revealed
similar results. However, their performance is assumed to be
dependent on the actual dataset [40]. In fact, normalisation
steps are applied after the probe to probeset summarization.
Some of these steps depend on global parameters (e.g. mean
of total gene expression) which depend on the total set
of probesets. Therefore, identical probesets within different
CDFs vary slightly in the final gene expression values.

Analyzing the probes of the Affymetrix microarrays dis-
closes many inaccuracies. A large number of problematic
probes are based on the fact that Affymetrix had to rely
on genome annotation available at the time the chips were
designed (U133A and U133B: 2001; U133 Plus 2.0 and
Mouse 430 2.0: 2003). Because genome annotation improves
permanently, the chip design does not properly match the
present annotations anymore. Due to compatibility reasons,
Affymetrix is not able to keep the design of their microarrays
up to date.

The problem of cross-hybridization is well known. The
first work on custom CDFs examining this error source was
published by the group of Dai in 2005 [21]. They created
a large amount of high quality custom CDFs related to
different reference databases. Some probes, causing cross-
hybridizations, are deleted from the probesets, but the filter is
quite loose, so the number of problematic probes decreased
but did not vanish. The use of the new CDFs can avoid full
length, i.e., 25 mer long, cross-hybridizations completely.
Cross-hybridization of shorter fragments are very difficult to
handle due to the fact that the number of putative bindings
grows exponentially the shorter the considered fragments
are. Hence, if all putatively cross-hybridizing probes are
excluded the amount of measurable genes will be reduced
extremely.

The underlying gene annotation which is used for se-
quence alignment has a big impact on the number of cross-
hybridizations. Manually curated mRNA sequences have a
high chance of missing transcripts. Therefore, the inclusion
of computational proposed gene annotations decreases the
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number of false negative predicted cross-hybridizations. The
drawback is that a number of false positive hybridizations in-
creases. A more strict approach should be preferred, because
it does not significantly decrease the number of covered
transcripts as there is a high amount of availabe probes. In
this study, the exclusion of XM-RefSeq-accessions results in
smaller differences between the different CDFs in the num-
ber of putative cross-hybridzing transcripts. Interestingly, the
correlation coeefficents of the newly created probesets do not
change significantly.

Evaluating the four different CDFs, we figured out that
the usage of the original Affymetrix CDFs leads to poorer
results than the usage of the custom CDFs, although the best
Affymetrix probesets give equally good or even better results
than the other CDFs. However, as already mentioned, this
cannot be taken into account, because it is not known which
probeset will perform best before the correlation analysis
is completed. The Dai probesets perform better, but the
problem of several probesets representing a single gene had
not been solved. Although multiple probesets representing
the same gene are expected to show similar signal intensities,
this is in fact not the case [14], [15]. Thus, it is difficult to
decide which of the probesets matching the same gene is
the most reliable. The Ferrari and the new CDFs comprise
only one probeset per gene, which is of great advantage.
The Ferrari CDFs perform slightly better on the Etanercept
dataset and both CDFs perform equally well on the MAQC
data.

The analysis of the genes for which qRT-PCR results are
available in the Etanercept dataset as well as in the MAQC
dataset clearly shows higher correlation coefficients in the
MAQC dataset. This is most likely due to the fact that the
U133 Plus 2.0 arrays which were used in the MAQC dataset
outperform the older U133A microarrays.

The results show that probesets consisting of more probes,
i.e., larger probesets, lead to better correlation results in gen-
eral, whereas smaller probesets perform poorer. This finding
correlates to the results of the study of Cui et al. [14] that
merges probesets matching the same transcript. Interestingly,
probesets containing many putative cross-hybridizations do
not considerably perform poorer than probesets containing
only a few. This result is very surprising, because it is obvi-
ous that cross-hybridization is one of the main error sources
in microarray experiments [8], [9]. The normalization step
in the two summarizing algorithms RMA and MAS5 may
explain for that because they possibly eliminate some cross-
hybridization effects. Another explanation is that leaving out
the problematic probes does not compensate the influence of
cross-hybridization. Unspecific binding leads to two types
of error: (i) false-positives because RNA fragments bind to
problematic probes of the probeset, and (ii) gene expression
events are missed or underestimated, leading to a false-
negative error if the RNA fragments are already bound to
problematic probes of other probesets (competitive binding).

Custom CDFs can only account for the first type of error by
leaving out the problematic probes, the second effect could
only be overcome by better array design.

The newly created CDFs perform slightly poorer than the
Ferrari probesets (0.72 vs. 0.73) on the Etanercept dataset
and equally well on the much larger MAQC dataset. On
the one hand, the Ferrari CDFs can obviously countervail
the negative effect by their much larger probesets in com-
parison to the new CDFs. On the other hand, using the
new CDFs, putative cross-hybridizations are systematically
excluded whereas using the Ferrari CDFs, the negative effect
vanishes for statistical reasons due to the larger probesets.
For exact studies, it is better to avoid a putative error source
instead of averaging the cross-hybridization effects out as
the Ferrari CDFs do. In addition, it has to be mentioned
that the new CDFs provide as good or better results as the
other CDFs using only about half the amount of probes (HG-
U133A: 44 %, HG-U133B: 35 %, HG-U133 Plus 2.0: 37 %,
Mouse Genome 430 2.0 Array: 52 %). Hence, designing new
microarrays without the problematic probes, the dimension
can be reduced by half without loosing any information
and minimize the costs of the technology tremendously.
Future microarray design using only the good probes and
incorporating probesets of large sizes like in the Ferrari
CDFs will certainly provide optimal solutions.

Methods
Probe Analysis

For the detection of putative cross-hybridizations by
sequence alignment, the sequences of all Affymetrix probes
(only the PM probes, the MM probes are discarded) are
aligned against the RefSeq database using blastn [23]. For
the U133A and the U133 Plus 2.0 the RefSeq release from
05/14/07 was used (download from ftp://ftp.ncbi.nih.gov/-
refseq/H_sapiens/mRNA_Prot/human.rna.fna.gz), for
the U133B the realease from 01/10/08, and for the
Mouse 430 2.0 microarray the release from 05/09/08
(∼M_musculus/mRNA_Prot/mouse.rna.fna.gz) was used.
These parameters were applied: ValW = 7, ValE = 1000,
ValHspmax = 1.

In this work all those RefSeq accession numbers be-
ginning with XM or NM are used. The XM-identifiers
indicate mRNA-RefSeq-accessions which are produced by
computationally annotated genome submissions. The NM-
identifier show that the RefSeq records are subsequently
curated. Using both accessions in our model leads to more
predicted cross-hybridizations which increases the reliability
of the specificity of the probes.

The strand direction of the probes is analyzed. For each
probe it is counted how many genes match and checked
whether the match has the correct direction, i.e., the sense
direction.
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All BLAST hits for different transcript isoforms are
merged, i.e., if the probe hybridizes to alternative splice
variants of one gene but not to another gene, it is considered
as unambiguous. Different gene isoforms of one gene are
identified by screening the gene descriptions of the RefSeq
database.

All probes matching only one single gene are classified
as good and all probes matching more than one gene are
classified as problematic. Those probes that match in the
wrong direction or do not match any RefSeq sequence
are also classified as problematic. For the creation of the
new CDFs only the good probes are used. The probe
sequences are annotated with GeneIDs derived from RefSeq.
The GeneID is a database cross-reference qualifier, which
supports access to the Entrez Gene database and provides
a distinct tracking identifier for a gene or locus. Probes
sharing the same GeneID are grouped together into a new
probeset. The intersection between two different probesets
is therefore always empty for all probesets. The size of the
newly created probesets is variable and not fixed to 11 like
in the Affymetrix CDFs.

Datasets
Two datasets were chosen for the validation of the differ-

ent CDFs. The first of the two datasets chosen is derived
from a study published by Koczan et al. [27] analyzing
the effect of the TNF-α blocker Etanercept, a rheumatoid
arthritis drug, using data from 17 patients at three time
points. One Affymetrix HG-U133A array was performed for
each time point. The data are available at the Array Express
archive [41] with the accession number E-MTAB-11.

Expression levels of 16 genes were measured by
quantitative real-time RT-PCR (qRT-PCR) performed with
TaqMan assay reagents according to the manufacturer’s
instructions on a 7900 High Throughput Sequence Detection
System (Applied Biosystems, Foster City, CA, USA) using
predesigned primers and probes (GAPDH Hs99999905_m1,
ICAM1 Hs00164932_m1, TNFAIP3 Hs00234713_m1,
IL1B Hs00174097_m1, NFκBIA Hs00153283_m1,
IL8 Hs00174103_m1, ADM Hs00181605_m1, TNF
Hs00174128_m1, IL6 Hs00174131_m1, IL1RN
Hs00277299_m1, SOD2 Hs00167309_m1, TRAF1
Hs00194638_m1, ZFP36 Hs00185658_m1, PTGS2
Hs00153133_m1, DUSP2 Hs00358879_m1, CROP
Hs00538879_s1, JUNB HS00357891_s1).

The threshold cycle values (CT ) for specific mRNA
expression in each sample were normalized to the CT values
of GAPDH mRNA in the same sample. This provides ∆CT

values that were used for the correlation analysis. In total,
816 qRT-PCR experiments were performed and complement
the 51 microarray experiments (17 patients, 3 time points)
described in [27]. The results of the qRT-PCR experiments
can be downloaded.

The second dataset is the Microarray Quality Control
(MAQC) reference dataset [28]. It contains data from more
than 1,300 microarrays and qRT-PCR data for more than
1,000 genes. All available 120 Affymetrix U133 Plus 2.0
expression results and all the qRT-PCRs are selected for
the analysis presented here. The MAQC data discussed in
this publication are available in NCBI’s Gene Expression
Omnibus with accession number GSE5350. In addition, the
nine genes for which qRT-PCR results are available in both
datasets, are analyzed in more detail.

Comparison of the CDFs
For the comparison of different CDFs, the correlation

between the microarray and the qRT-PCR experiments is
used [29], [30]. As a performance index the Pearson cor-
relation coefficient of the microarray results and the qRT-
PCR experiments is calculated. Calculation of the Spearman
correlation coefficient showed very similar results (data
available at http://sysbio.hki-jena.de/software).

The raw chip data (CEL Files) are analyzed using the Ro-
bust Multi-array Analysis Algorithm (RMA) [13], [31] and
the Affymetrix Microarray Suite MAS5 [32] in combination
with the different CDFs.

The MAS5 software assigns ’present’, ’absent’ or
’marginal’ to each expression value, and Affymetrix recom-
mends to use only the ’present’ detection call for further
analysis [32]. For an additional correlation analysis only
the ’present’ probesets are used to check if the calculated
detection call from MAS5 gives a good prediction for the
probeset quality.

Availability
The newly created CDFs as R-packages and additional

files are available for download at http://www.sysbio.hki-
jena.de/software. Using the CDFs does not interfere with
all further steps of microarray analysis.
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Abstract - Clustering is a key process in data mining for 
revealing structure and patterns in data. Fuzzy C-means 
(FCM) is a popular algorithm using a partitioning 
approach for clustering. One advantage of FCM is that it 
converges rapidly. In addition, using fuzzy sets to represent 
the degrees of cluster membership of each data point 
provides more information regarding relationships within 
the data than do alternative approaches that use crisp 
clustering. However, a limitation of FCM is that it requires 
initial specification of the number of clusters and 
subsequent validation of this number. Here, we propose a 
Bayesian method for fuzzy clustering validation using the 
fuzzy partition. We show that this method outperforms 
popular fuzzy cluster indices on both artificial and real 
biological datasets. 

Availability: The supplementary documents and the 
method software are at http://ouray.ucdenver.edu/~tnle/fzble. 

Keywords: fuzzy c-means; Bayesian; cluster index 

1 Introduction 
Cluster analysis groups data points based on their similar 

properties and can help to discover patterns and correlations 
in large datasets. Successful clustering maximizes both the 
compactness of data points within a cluster and the 
discrimination between clusters. Fuzzy C-Means (FCM, 
Bezdek 1981) is a popular algorithm that uses a partitioning 
approach with fuzzy cluster boundaries and fuzzy sets that 
associate each data point with one or more clusters. An 
advantage of FCM is that it converges rapidly, however, 
like most partitioning clustering algorithms, it depends 
strongly on the initial parameters and requires estimation of 
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the number of clusters. While for some initial values, FCM 
may converge to a global optimum, for others, it may get 
stuck in a local optimum. In addition, during the clustering 
process, the optimization of the compactness and separation 
of a fuzzy partition may be inconsistent with the optimal 
number of clusters in the dataset. For these reasons, final 
clustering results require validation to assess how good the 
fuzzy partition is, if better fuzzy partitions exist, and, when 
not known a priori, the optimal number of clusters in the 
dataset. 

Several cluster validity index functions have been 
proposed. Bezdek [1] measured performance using partition 
entropy and the overlap of adjacent clusters. Fukuyama and 
Sugeno [2] combined the FCM objective function with the 
separation factor, while Xie and Beni [3], integrated the 
Bezdek index [1] with the cluster separation factor. Rezaee 
et al. [4] combined the compactness and separation factors, 
and Pakhira et al. [5] combined the same two factors where 
the separation factor was normalized. Recently, Rezaee [6] 
proposed a new cluster index in which the two factors are 
normalized across the range of possible numbers of clusters. 

Here, we propose a fuzzy clustering cluster index that 
uses the fuzzy partition and the distance matrix between 
cluster centers and data points. Instead of compactness and 
separation, our cluster index is based on a Bayesian model 
and a log-likelihood estimator. With the use of both the 
possibility model and the probability model to represent the 
data distribution, our method is appropriate for artificial 
data where the distribution follows a standard model, as 
well as for real datasets, in particular, gene expression data, 
that lack a standard distribution. We show that our method 
outperforms popular cluster indices on both artificial and 
biological datasets. 

2 Fuzzy C-Means and popular cluster 
indices 

2.1 Fuzzy C-Means algorithm 

Fuzzy C-Means (FCM) is an unsupervised clustering 
algorithm that has been applied successfully to numerous 
problems involving feature analysis. Its applications include 
biological data analysis, in particular, gene expression data. 
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Given a dataset X = {xi  Rp, i=1..n}, where n>0 is the 
number of data points and p>0 is the dimension of the data 
space of X, let c, cN, 2 c n, be the number of clusters in 
X. Denote V={vkRp, k=1..c} as the set of center points of 
c clusters in the fuzzy partition; U={uki[0,1], i=1..n, 
k=1..c} as the partition matrix, where uki is the membership 
degree of the data point xi to the kth cluster, and 

 .n..1i,1u
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1k
ki



  (1) 

The clustering problem is to determine the values of c and 
V such that: 
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where ||x-y|| is the distance between the data points x and y 
in Rp, defined using Euclidean distance as: 
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By using fuzzy sets to assign data points to clusters, FCM 
allows adjacent clusters to overlap. It thus provides more 
information on the relationships of data points. In addition, 
by using a fuzzifier factor, m, 1≤m<, in its objective 
function (4), the clustering model from FCM is more 
flexible in changing the overlap regions among clusters. 
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The following is a solution of (4) with respect to (1): 
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FCM uses an iteration process to estimate the solution of 
(5) and (6). This process is iterated until convergent where 

u>0, T > 0: t>T, 

   .ε(t)u1)(tumaxUU ukiki
ik,

t1t 
 (7) 

Or, v>0, T > 0: t>T, 

   .ε(t)v1)(tvmaxVV vkk
k

t1t 
 (8) 

While FCM can converge quickly, it is unable to 
determine the optimal number of clusters in the dataset. 

2.2 Cluster validation indices 

(i) To determine if the fuzzy partition is valid, traditional 
cluster indices use two criteria, compactness, which 
measures the closeness of cluster elements typically 
using the variance. Because variance indicates how 
different the members are, a low value of variance is an 
indicator of closeness, and (ii) 

(ii) Separation, which computes the “distance” between 
two different clusters, e.g., the distance between 
representative objects of two clusters. This measure has 
been widely used due to its computational efficiency 
and its effectiveness for hyper sphere-shaped clusters. 

2.2.1 PC index 

The partition coefficient (PC) index was proposed by 
Bezdek [1] as in (9). It indicates the average relative 
amount of shared membership between pairs of fuzzy 
subsets in U, by combining into a single number, the 
average content of pairs of fuzzy algebraic products. The 
index values range from [1/c, 1].  
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An optimal cluster number c can be found by	solving,  
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2.2.2 PE index 

The partition entropy (PE) index was proposed by Bezdek 
[1] as  

 ,)u(logu
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where a is the base of the logarithm. According to [1], the 
limitation of the PE can be attributed to its apparent 
monotonicity and to an extent, to the heuristic nature of the 
rationale underlying its formulation. An optimal cluster 
number c can be found by solving VPEmin. 

2.2.3 FS index 

The Fukuyama-Sugeno cluster index (FS) was proposed 
by Fukuyama and Sugeno [2] as  
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where, cvv
c

1k k 
 . An optimal number of clusters can 

be found by solving VFSmin. 
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2.2.4 XB index 

The XB index was proposed by Xie and Beni as in (12). 
The numerator indicates the compactness of the fuzzy 
partition, while the denominator indicates the strength of 
the separation between clusters. A good partition produces a 
small value for the compactness, and well-separated {vi} 
will produce a high value for the separation. An optimal c 
therefore is found by solving VXBmin. 
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2.2.5 CWB index 

The Compose Within and Between scattering (CWB) 
index was proposed by Rezaee et al. [4]. 

 ),c(Dis)c(ScatVCWB   (13) 

where α is a weighting factor equal to Dis(cmax). The 
average scatter is defined as 
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where Dmin = mink,l||vk-vl|| and Dmax = maxk,l||vk-vl||. The 
Scat() function indicates the average of the scattering 
variation within the clusters. A small value for this term 
indicates a compact partition. The Dis() function indicates 
the total scattering separation between the clusters, it is 
influenced by the geometry of the cluster centroids and 
increases with the number of clusters. An optimal number 
of clusters c is found by solving VCWBmin. 

2.2.6 PBMF index 

The PBMF index is a fuzzy version of the PBM index 
proposed by Pakhira, Bandyopadhyay and Maulik [5] as 
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where Dc = maxk,l||vk – vl||. The value of VPBMF decreases as 
the number of clusters c increases. An optimal number of 
clusters can be found by solving VPBMFmax. 

2.2.7 BR index 

The cluster index of Rezaee B. (BR) [6] uses both the 
compactness and separation criteria normalized across 
clustering partitions using possible numbers of clusters in a 
given range. The index is defined as 
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The similarity Srel(.) of two fuzzy sets is defined as 
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where )u,umin()v,v:x(S likilki  ,  
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Because VBR is a sum of compactness and separation 
factors, the smaller it is, the better the fuzzy partition is. An 
optimal number of clusters c therefore can be found by 
solving VBR min. 

3 The proposed validation method 

3.1 The proposed validation method (fzBLE) 

Instead of compactness and separation factors, we 
propose a validation method (fzBLE) that is based on a log 
likelihood estimator with a fuzzy based Bayesian model. 
Each fuzzy clustering solution is modeled with  = {U, V}, 
where V represents the cluster centers and, U is the partition 
matrix representing the membership degrees of the data 
points to the clusters. The likelihood of the clustering model 
and the data is measured as 
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The log likelihood estimator is then computed as 
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An optimal number of clusters is obtained by solving (21). 
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3.2 Possibility to probability transformation 

Because our clustering model is possibility-based, before 
applying equations (20) and (21), a transformation of 
possibility to probability is needed. Given a fuzzy clustering 
model  = {U, V}, according to [7], uki is the possibility 
that vk = xi. If  is a proper fuzzy partition, then there exists 
some x* such that Uk(x

*) = 1, k=1..c, and Uk is a normal 
possibility distribution. Assume Pk is the probability 
distribution of vk on X where pk1 ≥  pk2 ≥ pk3 ≥… ≥ pkn. We 
associate with Pk a possibility distribution Uk on X [7] such 
that uki is the possibility of xi where  

  .1,...1ni,uppiu

pnu

1i,k1i,kkiki

knkn






 (22) 

Reversing (22), we obtain the transformation of a 
possibility distribution to a probability distribution. Assume 
that Uk is ordered the same way with Pk on X: uk1 ≥ uk2 ≥ 
uk3 ≥…≥ ukn. 
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Pk is an approximate probability distribution of vk on X, 
and pki = P(xi|vk). If Uk is a normal possibility distribution 
then pki = 1. 

3.3 Data distributions 

Using the value of Pk, we can estimate the variance k, 
the prior probability P(vk) and the normal distribution of vk.  

 ,vxp
n

1i

2

kikik 


  (24) 

 
,

)v|x(P

)v|x(P
)v(P c

1l

n

1i
li

n

1i
ki

k





 

  (25) 

 .e)2()v|x(P

1

2

vx

k
n/1

kin

2
k

2
ki




















  (26) 

In real datasets, for a cluster vk, the data points usually 
come from different random distributions. Because they 
cluster in vk, they tend to follow the normal distribution 
estimated as in (26). This idea is based on the Central Limit 
Theorem. We therefore integrate the probabilities computed 
in (23) and (26) for the probability of the data point xi given 
cluster vk as 

  .)v|x(P),v|x(Pmax)v|x(P kinkiki
*   (27) 

Equation (27) better represents the data distribution, 
particularly in real datasets. The fzBLE method is based on 
(21) with (25) and (27). 

3.4 fzBLE and FCM combination 

fzBLE can be used with the standard FCM algorithm to 
search for the optimal number of clusters for a dataset using 
a cluster range. 

 Input: 
 The data to cluster X={xi}, i=1..n 
 Cluster range [cmin, cmax] 

 Output: An optimal fuzzy partition solution, 
 copt: Optimal number of clusters 
 V = {vi }, i =1..c: Cluster centers 
 U={uki}, i=1..n, k=1..c: Partition matrix 

Steps 
1. Set copt = cmin 
2. For each value of c in [cmin, cmax] 

 Generate a fuzzy partition using FCM 
 Validate the partition using fzBLE 
 If the current partition is better than the 

optimal one then, set copt = c  
3. Return { copt, U, V} an optimal solution. 

 

4 Experimental results 
To evaluate fzBLE, we generated 84 artificial datasets 

using the method in [8]. Datasets are distinguished by the 
dimensions and cluster number, and we generated (3-
2+1)*(9-3+1)=14 dataset types. For each type, we 
generated 6 datasets, for a total of 6*14=84. For real 
datasets, we used the Iris, Wine and Glass datasets from the 
UC Irvine Machine Learning Repository [9], and the gene 
expression datasets, Yeast [13], Yeast-MIPS [14, 15] and 
RCNS [10]. These datasets contain classification 
information, useful for comparing cluster indices. We 
compared performance of fzBLE with the cluster indices 
from PC, PE, FS, XB, CWR, PBMF and BR [1-6]. The 
compactness factor (CF) of the FCM algorithm is also 
recorded in the results. 

4.1 Artificial datasets 

For each artificial dataset, we ran the standard FCM 
algorithm five times with m set to 2.0 and the partition 
matrix initialized randomly. In each case, the best fuzzy 
partition was then selected to run fzBLE and the other 
cluster indices to search for the optimal number of clusters 
between 2-12 and to compare this with the known number 
of clusters. We repeated the experiment 20 times and 
averaged the performance of each method. Table 1 shows 
the fraction of correct predictions. fzBLE and PBMF 
outperform other approaches, while CF is the least 
effective. 
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Table 1 

Fraction of correct cluster predictions on artificial datasets 

#c fzble PC PE FS XB CWB PBMF BR CF 
3 1.00 0.42 0.42 0.42 0.42 1.00 1.00 0.83 0.00 
4 1.00 0.92 0.92 0.92 0.83 1.00 1.00 1.00 0.00 
5 1.00 0.75 0.75 0.83 0.75 0.83 1.00 1.00 0.00 
6 1.00 0.92 0.83 0.92 0.58 0.58 1.00 0.92 0.00 
7 1.00 0.83 0.83 0.83 0.67 0.58 1.00 0.67 0.00 
8 1.00 1.00 0.92 1.00 0.92 0.67 1.00 0.83 0.00 
9 1.00 0.92 0.67 0.92 0.67 0.33 1.00 0.83 0.00 

Table 2 

Validation method performance on the Iris dataset 

#c fzble PC PE FS XB CWB PBMF BR CF 
2 -763.0965 0.9554 0.0977 -10.6467 0.0203 177.1838 12.3280 1.1910 0.9420 
3 -762.8034 0.8522 0.2732 -9.3369 0.1292 213.4392 17.7131 1.0382 0.3632 
4 -764.8687 0.7616 0.4381 -7.4821 0.2508 613.2656 14.4981 1.1344 0.2665 
5 -770.2670 0.6930 0.5703 -8.2331 0.3473 783.4697 13.6101 1.0465 0.1977 
6 -773.6223 0.6549 0.6702 -7.3202 0.2805 904.3365 12.3695 1.0612 0.1542 
7 -774.4740 0.6155 0.7530 -6.8508 0.2245 1029.7342 11.2850 0.9246 0.1262 
8 -774.8463 0.6000 0.8111 -6.9273 0.3546 1635.3593 10.5320 0.8692 0.1072 
9 -780.1901 0.5865 0.8556 -6.6474 0.3147 1831.5705 9.9357 0.7653 0.0905 

10 -781.7951 0.5765 0.8991 -6.0251 0.2829 2080.3339 9.3580 0.7076 0.0787 

Table 3 

Validation method performance on the Wine dataset 

#c fzble PC PE FS XB CWB PBMF BR CF 
2 -926.4540 0.9264 0.1235 -113.0951 0.1786 3.9100 1.3996 2.0000 61.1350 
3 -924.0916 0.8977 0.1764 -104.9060 0.2154 3.2981 0.9316 1.4199 39.3986 
4 -932.8377 0.8607 0.2525 -139.9144 0.5295 6.6108 0.6306 1.1983 33.7059 
5 -929.6146 0.8225 0.3281 -126.5746 0.5028 6.9001 0.4700 1.0401 28.4741 
6 -928.8121 0.8066 0.3669 -118.4715 0.6173 9.2558 0.3706 0.9111 25.3451 
7 -930.6451 0.7988 0.3874 -120.3128 0.6465 10.3803 0.2972 0.7629 23.1742 
8 -932.0462 0.7993 0.3917 -124.7999 0.6459 11.0836 0.2471 0.6392 21.4411 
9 -932.1902 0.7929 0.4120 -122.8396 0.6367 11.8373 0.2100 0.5801 19.9154 

10 -935.0478 0.7909 0.4217 -130.9089 0.6270 11.9941 0.1773 0.5252 18.9891 

Table 4 

Validation method performance on the Glass dataset  

#c fzble PC PE FS XB CWB PBMF BR CF 
2 -1135.6886 0.8884 0.1776 0.3700 0.7222 6538.9311 0.3732 1.9817 0.5782 
3 -1127.6854 0.8386 0.2747 0.1081 0.7817 4410.3006 0.4821 1.5004 0.4150 
4 -1119.2457 0.8625 0.2515 -0.0630 0.6917 3266.5876 0.4463 1.0455 0.3354 
5 -1123.2826 0.8577 0.2698 -0.1978 0.6450 2878.8912 0.4610 0.8380 0.2818 
6 -1113.8339 0.8004 0.3865 -0.2050 1.4944 5001.1752 0.3400 0.8371 0.2430 
7 -1116.5724 0.8183 0.3650 -0.2834 1.3802 5109.6082 0.3891 0.6914 0.2214 
8 -1127.2626 0.8190 0.3637 -0.3948 1.4904 7172.2250 0.6065 0.5916 0.2108 
9 -1117.7484 0.8119 0.3925 -0.3583 1.7503 8148.7667 0.3225 0.5634 0.1887 

10 -1122.1585 0.8161 0.3852 -0.4214 1.7821 9439.3785 0.3909 0.4926 0.1758 
11 -1121.9848 0.8259 0.3689 -0.4305 1.6260 9826.4211 0.3265 0.4470 0.1704 
12 -1135.0453 0.8325 0.3555 -0.5183 1.4213 11318.4879 0.5317 0.3949 0.1591 
13 -1138.9462 0.8317 0.3556 -0.5816 1.4918 14316.7592 0.6243 0.3544 0.1472 
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Table 5 

Validation method performance on the Yeast dataset 

#c fzble PC PE FS XB CWB PBMF BR CF 
2 -2289.8269 0.9275 0.1172 -85.1435 0.2060 8.3660 1.2138 2.0000 133.0734 
3 -2296.4502 0.9419 0.0983 -157.2825 0.2099 4.7637 0.6894 1.0470 94.6589 
4 -2305.3369 0.9437 0.1000 -191.7664 0.2175 4.0639 0.5575 0.7240 74.7629 
5 -2289.3070 0.9087 0.1648 -187.1073 1.0473 13.6838 0.4087 0.6722 65.9119 
6 -2296.3098 0.8945 0.1939 -196.6711 0.9932 13.8624 0.3050 0.6170 60.8480 
7 -2296.6017 0.8759 0.2299 -198.2858 1.0558 15.4911 0.2434 0.5686 56.1525 
8 -2299.4225 0.8634 0.2526 -201.7688 1.0994 16.9644 0.2050 0.5132 51.2865 
9 -2299.3653 0.8453 0.2871 -205.1489 1.2340 20.2532 0.1741 0.4819 48.0737 

10 -2302.7581 0.8413 0.2992 -208.5687 1.1947 20.7818 0.1512 0.4533 45.9442 
11 -2300.3294 0.8325 0.3186 -209.4023 1.1731 21.1525 0.1307 0.4272 43.6600 
12 -2307.5701 0.8290 0.3272 -213.4658 1.2245 23.0389 0.1157 0.4040 42.1594 
13 -2310.7819 0.8270 0.3354 -215.2463 1.3036 25.4062 0.1016 0.3847 40.8654 

Table 6 

Validation method performance on the YEAST-MIPS dataset 

#c fzble PC PE FS XB CWB PBMF BR CF 
2 -1316.4936 0.9000 0.1625 25.4302 0.3527 16.7630 0.7155 1.9978 81.0848 
3 -1317.3751 0.9092 0.1615 -32.8476 0.2981 10.1546 0.8032 1.2476 58.2557 
4 -1304.0374 0.8216 0.3252 -39.4858 2.5297 39.8434 0.5400 1.3218 48.6275 
5 -1308.6776 0.8279 0.3216 -54.4979 2.4245 34.9963 0.3620 0.9558 41.9671 
6 -1309.9191 0.8211 0.3460 -59.8918 2.3511 35.4533 0.2691 0.8291 38.5468 
7 -1315.3692 0.8139 0.3654 -65.4866 2.3562 38.8797 0.2423 0.7252 36.0906 
8 -1315.1479 0.8062 0.3918 -67.6774 2.4958 43.9502 0.1966 0.6712 34.1387 
9 -1321.2280 0.8109 0.3874 -72.3197 2.2854 41.2112 0.1664 0.6072 32.3289 

10 -1324.1578 0.8158 0.3847 -74.7867 2.0433 37.6154 0.1395 0.5588 30.9686 

Table 7 

Validation method performance on the RCNS dataset 

#c fzble PC PE FS XB CWB PBMF BR CF 
2 -580.0728 0.9942 0.0121 -568.7972 0.0594 5.5107 4.2087 1.1107 177.8094 
3 -564.1986 0.9430 0.0942 -487.6104 0.4877 4.1309 4.2839 1.6634 117.9632 
4 -561.0169 0.9142 0.1470 -430.4863 0.9245 6.1224 3.3723 1.3184 99.1409 
5 -561.7420 0.8900 0.1941 -397.0935 1.3006 9.4770 2.6071 1.1669 88.5963 
6 -552.9153 0.8695 0.2387 -300.6564 2.5231 20.6496 1.9499 1.1026 84.0905 
7 -556.2905 0.8707 0.2386 -468.3121 2.1422 21.0187 2.8692 0.7875 57.5159 
8 -555.3507 0.8925 0.2078 -462.0673 1.7245 20.0113 2.5323 0.5894 52.0348 
9 -558.8686 0.8863 0.2192 -512.4278 1.6208 22.4772 2.6041 0.5019 45.9214 

10 -565.8360 0.8847 0.2241 -644.1451 1.1897 21.9932 3.4949 0.3918 33.1378 

4.2 Real datasets 

The Iris, Wine and Glass datasets contain 3, 3 and 6 
clusters, respectively. For the Iris dataset, only fzBLE and 
PBMF detected the correct number of clusters (Table 2). For 
the Wine and Glass datasets, only fzBLE and CWB, and 
only fzBLE, respectively, detected the correct number of 
clusters (Tables 3 and 4). 

4.3 Biological datasets  

4.3.1 Yeast 

The Yeast dataset [13] reports expression levels of yeast 
genes throughout two cell cycles at 17 time points spaced at 
10-minute intervals. Each of the 384 differentially 
expressed genes was labeled with one of the five cell cycle 
phases where their expression changed. We ran the FCM 
algorithm with m set to 1.17 [12] and used the clustering 
partition to test all methods as in previous sections. Table 5 
shows that only fzBLE detected the correct number of 
clusters (5) in Yeast dataset. 
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4.3.2 Yeast-MIPS 

The Yeast-MIPS dataset [14] is a subset of the Yeast 
dataset [14]. It contains 237 genes belonging to four 
functional categories: DNA synthesis and replication, 
organization of centrosome, nitrogen and sulphur 
metabolism, and ribosomal proteins [15]. We ran the FCM 
algorithm using the same parameters as with Yeast dataset. 
The results in Table 6 show that only fzBLE detected the 
four clusters in the Yeast-MIPS dataset. 

4.3.3 RCNS 

The RCNS (Rat Central Nervous System) dataset 
contains expression levels of 112 genes measured at nine 
time points during rat central nervous system development 
[10]. Wen et al. [11] preprocessed the dataset using a 
normalization method and scaling across adjacent axises to 
generate a 112x17 dataset so that Euclidean distance can be 
applied. The FITCH software was used to detect 6 clusters 
with biological relevance. Dembélé and Kastner [12] used 
the FCM algorithm varying the number of clusters and 
reported that 6 is the optimal number. We ran fzBLE and 
the other cluster indices on the dataset clustering partition 
found by the standard FCM algorithm using the Euclidean 
metric for distance measurement. Table 7 shows that again 
only fzBLE detected the correct number of clusters. 

5 Conclusions 
We have presented a novel method, fzBLE to evaluate 

results of fuzzy partitioning by the standard FCM 
algorithm. fzBLE is novel in that it uses the log likelihood 
estimator with a Bayesian model and the possibility, rather 
than the probability, distribution model of the dataset from 
the fuzzy partition. By using the Central Limit Theorem, 
fzBLE effectively represents distributions in real datasets. 
Results have shown that fzBLE performs effectively on 
both artificial and real datasets. In future work, we will 
integrate this method with optimization algorithms, to 
develop new clustering algorithms that can effectively 
support clustering analysis on real datasets. 
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Robust SVD Method for Missing Value Estimation of DNA
Microarrays

Fen Qin, Joseph Collins, and Jeonghwa Lee
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Abstract— A majority of DNA microarray datasets contain
missing or corrupt values and it is critical to estimate
these values accurately. These missing values are most often
attributed to insufficient experimental resolution or the pres-
ence of foreign objects on the experimental slide’s surface.
To improve existing missing value estimation algorithms, this
paper introduces and investigates the scalable singular value
decomposition (SSVD) solver, which is an improvement upon
the Jacobi singular value decomposition (SVD) approach.
Experiments were conducted on a study comparing SSVD to
the Jacobi and QR SVD methods against several legitimate
microarray datasets. The robustness of SSVD is verified
by subjecting it to several test cases containing 1–20% of
missing values. For nearly all of the test cases across all
configurations of missing value percentages, SSVD provides
more accurate recovery results than Jacobi and SQ SVD.
These numerical results strongly suggest SSVD is a robust
and scalable solver.

Keywords: Microarrays, missing value estimation, singular value
decomposition

1. Introduction
Deoxyribonucleic acid (DNA) microarray analysis is the

study of large scale gene expression experiments, which
grants researchers insight into solving many pertinent bio-
logical questions [12] including cancer classification, identi-
fying the effects of specific gene therapies and exploring the
unknown gene function [11]. The microarray data generated
by gene expression experiments is presented as one large
matrix consisting of genes ordered by rows and experimental
conditions by columns [3]. Even though DNA microarray
analysis is an emerging and powerful tool for researchers
to utilize, the data produced by microarray experiments is
typically not complete. Missing or corrupt data is most com-
monly attributed to insufficient resolution, image corruption
or foreign objects such as dust or scratches on the surface
of the experimental slide [8]. Incomplete microarray data
is undesirable because complete datasets are a prerequisite
for existing gene expression data analysis algorithms. If a
microarray dataset contains missing values, then researchers
are unable to properly draw conclusions about the gene
expression experiments.

There are several gene expression data analysis algo-
rithms available for missing value recovery, including the

singular value decomposition imputation (SVDimpute) [7],
weighted k-nearest neighbors imputation (KNNimpute) [10],
least squares imputation (LSimpute) [2], local least squares
imputation (LLSimpute) [9] and dynamic local least squares
imputation (DLLSimpute) [6]. Among these methods, LL-
Simpute has been suggested to be an efficient recovery
method for microarray datasets. The solving force behind
LLSimpute is the orthogonal-triangular decomposition algo-
rithm powered by QR factorization, denoted the QR singular
value decomposition (SVD) method. When the SVD routine
of the aforementioned algorithms is changed, the overall
accuracy of missing value estimation may improve.

Based on its ease of implementation, QR SVD is typically
the solution of choice for software written in MATLAB.
Within the MATLAB package, there exists a number of
approaches that these gene expression data analysis algo-
rithms commonly utilize to calculate the inverse of a matrix.
The approaches for which we are concerned, referred to as
the standard MATLAB solvers, are inv(A) and pinv(A),
which form the explicit inverse and the Moore-Penrose
pseudoinverse of a square matrix, respectively. Algorithms
from articles [4], [5], denoted the Jacobi SVD method,
propose an improved SVD algorithm driven by an advanced
matrix inverse approach.

This paper introduces a new SVD algorithm, referred
to as the scalable singular value decomposition (SSVD)
solver, which is a further improvement upon the Jacobi
SVD implementation, designed to improve the accuracy of
missing value estimation methods. In order to compare these
solvers in a fair and unbiased manner, each solver was tested
with four complete microarray datasets. Completing these
microarray datasets was achieved by recovering the missing
values in each dataset using LLSimpute with the SSVD
solver. Test cases were then created by randomly inducing
missing values of various percentages into these artificially
completed datasets. The experimental results for each test
case were achieved by swapping out the SVD solver within
LLSimpute.

This paper is organized as follows: Section 2 gives a
concise introduction to the implementation of LLSimpute,
the implementation of an SVD solver and the improvements
introduced by SSVD. In Section 3, numerical experiments of
SSVD versus Jacobi and QR SVD are presented to highlight
the improved accuracy and scalability of SSVD. Concluding
remarks are made in Section 4.
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2. Local Least Squares Imputation
2.1 Selecting the Target Gene
G ∈ Rm×n denotes a gene expression data matrix with

m genes and associated n experiments. Assume m >> n.
In the matrix G, a row gi

T ∈ R1×n represents the i-th gene
of n experiments as

G =

 gT1
...
gTm

 (1)

and each missing value location at the i-th gene and j-th
experiment will be represented as

G(i, j) = gi(j) =


g1,1 · · · g1,j · · · g1,n

...
...

...
gi,1 · · · gi,j · · · gi,n

...
...

...
gm,1 · · · gm,j · · · gm,n

 ,

where i ∈ (1, 2, · · · ,m) and j ∈ (1, 2, · · · , n). For con-
sistency, we assume that all missing value estimation al-
gorithms discussed throughout this paper consider the first
position of the first gene to be a missing value, i.e.

G(1, 1) = g1(1) = β,

where this first gene is selected as the target gene.

2.2 Missing Value Recovery Using SVD
The k-nearest neighbor genes of the target gene are

selected where 1 < k < m and k > n. The matrix
A ∈ Rk×(n−1) and vector b ∈ Rk×1 are formed from
these k-nearest neighbor genes. The vector w ∈ R1×(n−1)

is formed from the target gene. Local least squares methods
solve the following equation:

min
x

∥∥ATx− w∥∥
2
, (2)

where solving Eq. (2) is equivalent to solving

min
x

∥∥ATx− w∥∥2
2
. (3)

By the definition of the inner product, we have

min
x

∥∥ATx− w∥∥2
2

= min
x

(ATx− w)T (ATx− w). (4)

Eq. (4) is equivalent to

∂

∂xj

n−1∑
i=1

(ATx− w)2i = 2
n−1∑
j=1

(ATx− w)Tj A
T
j = 0,

j = 1, 2, · · · , k, (5)

where (ATx− w)i is the i-th component of the column vec-
tor. Eq. (5) comes down to the critical point of

∥∥ATx− w∥∥2
2
,

where

n−1∑
j=1

Aj(A
Tx− w)j = 0, j = 1, 2, · · · , k, (6)

and a vector form
A1(ATx− w)1
A2(ATx− w)2

· · ·
An−1(ATx− w)n−1

 = A(ATx− w) = 0. (7)

The right hand side of Eq. (7) transforms into
gT1
gTs1

...
gTsk

 =


β w1 w2 · · · wn−1
b1 A1,1 A1,2 · · · A1,n−1
...

...
... · · ·

...
bk Ak,1 Ak,2 · · · Ak,n−1

 ,

gTsi =
(
bi Ai,1 Ai,2 · · · Ai,n−1

)
,

where

gT1 =
(
β w1 w2 · · · wn−1

)
,

 b1
...
bk

 =

 gs1(1)
...

gsk(1)

 ,

A =

 A1,1 A1,2 · · · A1,n−1
...

... · · ·
...

Ak,1 Ak,2 · · · Ak,n−1

 ,

and gT1 is a gene with a missing value (depicted as β in
the first location of gT1 ) and gTsi , i = 1, 2, · · · , k, are the k-
nearest neighbor gene vectors for gT1 . Solutions of Eq. (7)
involve the generalized inverse. If matrix A is invertible, we
have

AATx = Aw (8)

and the solution

x = (AAT )
−1
Aw = (AT )

†
w, (9)

where (AT )
†

= (AAT )
−1
A, and (AT )† is the pseudoinverse

of AT . The missing value (β) can then be solved as follows:

β =
n−1∑
i=1

xibi = bT (AT )
†
w. (10)
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Table 1: Error comparison of the standard MATLAB solvers vs. Jacobi SVD
Test Case α ||AA†A−A||∞ ||A†AA† −A†||∞ ||(AA†)T −AA†||∞ ||(A†A)

T −A†A||∞ ||Ax− b||∞
inv(A) n/a 5.8272E+00 4.1592E+20 1.2275E+02 3.1764E+13 5.9128E+04
pinv(A) n/a 7.1710E-06 7.5940E+08 4.7020E-04 9.3850E-04 1.6750E-04

Jacobi SVD 1.00 1.1430E-05 3.7480E+07 1.4290E-04 1.0210E-03 2.3480E-04

Table 2: Error comparison of Jacobi SVD vs. SSVD
Test Case α ||AA†A−A||∞ ||A†AA† −A†||∞ ||(AA†)T −AA†||∞ ||(A†A)

T −A†A||∞ ||Ax− b||∞
0.55 3.6440E-10 2.8770E-02 1.9820E-08 1.5680E-08 9.6300E-05
0.60 6.5320E-10 2.6639E+00 1.1930E-07 6.9380E-08 4.0300E-05

Jacobi SVD 0.65 6.6790E-09 2.7378E+02 4.5570E-07 5.0710E-07 1.4780E-05
0.70 2.3680E-08 1.7679E+03 2.1580E-06 3.4820E-06 5.8480E-06
0.75 4.1550E-07 1.6235E+04 3.1180E-05 2.6530E-05 1.0030E-05
0.55 2.9390E-10 1.9540E-02 3.4340E-09 2.3480E-08 9.6300E-05
0.60 1.3730E-09 3.9960E-01 4.9080E-09 3.9740E-08 4.0310E-05

SSVD 0.65 9.6320E-09 1.6243E+01 2.0710E-07 6.5240E-08 1.4770E-05
0.70 2.7090E-08 6.9364E+02 1.0470E-06 1.0320E-06 5.9650E-06
0.75 1.4630E-07 1.5730E+04 2.2050E-06 1.1560E-05 5.0670E-06

2.3 Improvement of the SVD Solver
The result obtained by the previous method to calculate

the pseudoinverse of the matrix A ∈ Rm×n,

A† = V

[
Σ−1rA 0

0 0

]
UT = VrAΣ−1rAU

T
rA , (11)

does not satisfy the 4 Moore-Penrose equations [1]:

AA†A = A,
A†AA† = A†,

(AA†)
T

= (AA†),

(A†A)
T

= (A†A).

As a result, if the size of the matrix is increased, the number
of computational errors is also increased—that is, the SVD
results become less accurate. There are five different ways
to test the accuracy of the pseudoinverse:

||AA†A−A||∞,
||A†AA† −A†||∞,
||(AA†)T −AA†||∞,
||(A†A)

T −A†A||∞,
||Ax− b||∞.

In this paper, the Hilbert matrix,

A = H200∗200 = (
1

i+ j + 1
)
200∗200

, (12)

is used to benchmark a solver’s robustness, scalability and
accuracy. As shown in Table 1, pinv(A) does not satisfy
A†AA† = A† and inv(A) does not satisfy any of the
4 Moore-Penrose equations, because—in both cases—their
respective errors are too large.

The Jacobi SVD method is an improvement upon the
commonly implemented QR SVD solver. The procedure for
the Jacobi SVD solver is as follows:

A = Q

[
Rm×n

0(m−n)×n

]
, (13)

where Rm×n is the upper triangular matrix. If rA < n,
RTm×n is further decomposed by QR SVD to get

RTm×n = P

[
R̃rA×rA

0

]
,

A = Q

[
R̃rA×rA 0

0 0

]
PT . (14)

Jacobi SVD is then used to solve Rm×n or R̃rA×rA . From
Eq. (13)-(14) we have

Rm×n = URΣrAV
T
R , A = QrAURΣrAV

T
R,rA

, (15)

or

R̃m×n = UR̃ΣrAV
T
R̃
, A = QrAUR̃ΣrAV

T
R̃,rA

PTrA ,

(16)
and the pseudoinverse (A†) is

A† = VRΣ−1rAU
T
RQ

T
rA or A† = PVR̃Σ−1rAU

T
R̃
QTrA .

(17)
As seen in Table 1, the error associated with the Jacobi SVD
solver for A†AA† = A† is smaller than the results produced
by the standard MATLAB solutions, yet this value is still
too large to be acceptable.

SSVD is a further improvement upon the Jacobi SVD
solver, aiming to reduce the overall size of these errors. Since
U and V from Eq. (11) are orthogonal matrices, they do not
lead to an error, which means the computational errors are

32 Int'l Conf. Bioinformatics and Computational Biology |  BIOCOMP'11  |



Fig. 1. NRMSE result for the YO microarray dataset Fig. 2. NRMSE result for the CU microarray dataset

Fig. 3. NRMSE result for the RO microarray dataset Fig. 4. NRMSE result for the SP microarray dataset

Table 3: NRMSE comparison of QR SVD, Jacobi SVD and SSVD
Test Case SVD Solver 1% 2% 5% 10% 20%

YO.Calcineurin/Crzlp
QR SVD 0.3292 0.3149 0.3174 0.3248 0.3610

Jacobi SVD 0.3282 0.3139 0.3167 0.3242 0.3696
SSVD 0.3254 0.3097 0.3145 0.3235 0.3624

CU.Growth-regulator
QR SVD 0.4349 0.4591 0.5526 0.5531 0.5938

Jacobi SVD 0.4214 0.4351 0.5318 0.5393 0.5779
SSVD 0.4134 0.4209 0.5208 0.5334 0.5727

RO.Cellline
QR SVD 0.0988 0.1907 0.3390 0.5021 0.7467

Jacobi SVD 0.0991 0.1901 0.3391 0.5017 0.7463
SSVD 0.0988 0.1882 0.3391 0.5010 0.7457

SP.Alpha
QR SVD 0.3186 0.4557 0.5481 0.6064 0.6753

Jacobi SVD 0.3183 0.4556 0.5398 0.6010 0.6702
SSVD 0.3175 0.4454 0.5387 0.5974 0.6657

produced by Σ−1rA . It is important to note that matrix ΣrA
is dependent on the accuracy of the system executing its
implementation; if the singular values σi < eps (eps is the
error bound), the system will set it to zero, then Eq. (11)
will contain computational errors.

Suppose the singular values of matrix A are σ1 ≥ σ2 ≥
· · · ≥ σrA , then

Σ−1rA = diag(
1

σ1
,

1

σ2
, · · · , 1

σrA
, 0, · · · , 0). (18)

Since the cumulative error is εi, i = 1, 2, · · · , rA, the singu-
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lar values of matrix A will become σi+εi, i = 1, 2, · · · , rA.
Therefore,

Σ−1rA = diag(
1

σ1 + ε1
,

1

σ2 + ε2
, · · · , 1

σrA + εrA
, 0, · · · , 0),

(19)
where the maximum computing error is

ε
(
Σ−1rA

)
= diag

( |ε1|
σ1|σ1+ε1| ,

|ε1|
σ2|σ2+ε2| ,

· · · , |ε1|
σrA
|σrA

+εrA |
, 0, · · · , 0

)
. (20)

If σi+εi is close to zero, the error is significantly magnified,
hence it should be set to zero. Eq. (19) becomes as follows:

Σ−1rA (α) = diag(
1

σ1 + ε1
,

1

σ2 + ε2
, · · · , 1

σk + εk
, 0, · · · , 0),

σi + εi ≤ epsα, i = k + 1, · · · , rA. (21)

Experimental results using Eq. (21) are shown in Table 2.
When α = 0.75, the errors associated with SSVD are much
smaller than those presented in Table 1. When α = 0.55,
the pseudoinverse of Hilbert matrix (A = H200∗200) does
satisfy the 4 Moore-Penrose equations, yet the solution of
||Ax− b||∞ for α = 0.55 is worse than α = 0.75, which is
due to the removal of more singular values that are close to
zero. Therefore, α cannot be too small, and the empirically
chosen value of α = 0.75 is used in this research.

3. Numerical Results
The normalized root mean squared error (NRMSE) was

used to measure the accuracy of the results from the test
cases.

NRMSE =

√
mean[(γestimated − γknown)]

2

std[γknown]
, (22)

where γestimated are the estimations for missing values, and
γknown are the known values. The mean and the standard
deviation are calculated over missing values in the whole
dataset.

The NRMSE test results of Eq. (22) for various percent-
ages (1%, 2%, 5%, 10% and 20%) of missing values for QR
SVD, Jacobi SVD and SSVD are presented in Table 3. For
an overwhelming majority of test cases, the SSVD method
generates more accurate recovery results than QR SVD, and,
for all test cases, SSVD consistently performed better than
Jacobi SVD. Only in the YO.Calcineurin/Crzlp test case for
20% of missing values and the RO.Cellline test case for 5%
of missing values did QR SVD outperform our proposed
SSVD solver; however, the difference in performance for
the latter test case is so insignificant that it may be regarded
as an equal level of performance between the two solvers.

The graphical representations of the results from Table 3
are located in Fig. 1 through Fig. 4. Note that Jacobi SVD
is referred to as J SVD within the legend of a figure. Each
figure is oriented with the experimental NRMSE results in

the y-axis and the various percentages of missing values
in the x-axis. A data trend favoring the lower end of the
NRMSE scale is favorable because this represents a series
of experimental results with smaller levels of erroneous
estimations. The scale of each figure is not consistent, thus
is insufficient to gauge the performance between datasets
based solely on the distance of the separation between their
respective data trend lines. These figures further illustrate the
improvement in accuracy associated with the SSVD solver
when tested with the YO.Calcineurin/Crzlp, CU.Growth-
regulator, RO.Cellline and SP.Alpha microarray datasets,
respectively.

Fig. 2 depicts the most exciting results of the four mi-
croarray datasets. The difference in accuracy between these
solvers for these specific test cases is quite substantial,
granting significant increases in the accuracy of missing
value estimation. Fig 1. and Fig 4. show SSVD’s typical
outcome, which is a marginal increase in accuracy with
respect to Jacobi and QR SVD. Fig. 3 illustrates the worst-
case scenario for SSVD—the level of accuracy is nearly
equal, yet slightly better, to that of the QR SVD solver.

4. Conclusion
We have successfully developed a scalable solver for

estimating the missing values of DNA microarray datasets.
For nearly all the test cases across all configurations of
missing value percentages, SSVD provides more accurate
recovery results than Jacobi and QR SVD. The numerical
results presented in this paper strongly suggests that SSVD
is a robust, scalable and accurate solver. One would be safe
to assume that the benefits from SSVD may be realized in
many other disciplines and not those limited to missing value
estimation.
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Finding Biomarkers for Non-Small Cell Lung
Cancer Diagnosis with Novel Data Mining

Techniques
Quoc-Nam Tran†, Lamar (Texas State) University, USA.

Abstract—Non-small cell lung carcinoma (NSCLC) is the
most common cause of worldwide cancer premature death
with a very low survival rate of 8%-15%. Patients with
an early stage diagnosis can have up to four times
the survival rate of 40%-55%. Hence, discovering cost-
effective biological markers that can be used to improve
the diagnosis and prognosis of the disease is an important
clinical challenge.

Significant progress has been made to address this chal-
lenge. Some sets of biomarkers were identified in the
last few years ranging from 5-gene signatures to 133-
gene signatures. Since datasets of gene-expression profiles
typically have tens of thousands of genes for just few
hundreds of patients, this type of datasets will create many
technical challenges impacting the accuracy of the diag-
nostic prediction. A typical molecular sub-classification
method for lung carcinomas would have a low predictive
accuracy of 68%-71%.

In this paper, we present a new data mining method that
finds genetic markers and uses the markers to predict with
up to 100% accuracy whether a patient has NSCLC and
the sub-type of cancer in case the patient has NSCLC. Our
method overcomes many challenges arose from datasets
of gene-expression profiles. The new method discovers
novel genetic changes that occur in lung tumors using
gene-expression profiles. We discovered that a small set of
nine gene-signatures (JAG1, MET, CDH5, ABCC3, DSP,
ABCD3, PECAM1, MAPRE2 and PDF5) from the dataset
of 12,600 gene-expression profiles of NSCLC acts like an
inference basis for NSCLC lung carcinoma and hence can
be used as genetic markers. This very small and previously
unknown set of biological markers gives an almost perfect
predictive accuracy for the diagnosis of the disease.

While proteins encoded by some of these gene-signatures
(e.g., JAG1 and MAPRE2) have been showed to involve in
the signal transduction of cells and proliferative control
of normal cells, specific functions of proteins encoded
by other gene-signatures have not yet been determined.
Therefore, this work opens new questions for structural
and molecular biologists about the role of these gene-
signatures for the disease.

† Supported in part by NSF award CCF-0917257.

Keywords-Mining gene-expression profiles in bioinformat-
ics, lung cancer, diagnosis.

I. INTRODUCTION

In the last several years, one in four deaths in the United
States is due to cancer, which makes cancer a major
public health problem in the United States as well as
many other parts of the world [1, 2]. Currently, cancer is
a leading cause of death in the United States, second only
to cardiovascular diseases. Last year, 1.48 million people
were diagnosed with cancer, and 562,340 people died
from cancer. The top five most common cancer-related
deaths were due to lung, breast, prostate, colorectal and
pancreatic cancer. Together, these five diseases accounted
for over 50% of all cancer deaths in the United States in
2009. Lung cancer alone, with NSCLC as the most com-
mon cause of worldwide cancer premature death, killed
over 160,000 people, more than the other four cancers
put together. The disease has a very low survival rate of
8%-15%. Meanwhile, the survival rate for patients with
early-stage disease increases to 40%-55% after surgery.
That said, discovering cost-effective biological markers
that can be used to improve the diagnosis and prognosis
of the disease is an important clinical challenge [3].

NSCLC is sub-categorized as adenocarcinomas, squa-
mous cell carcinomas, and large-cell carcinomas, of
which adenocarcinomas are the most common [4]. The
histopathological sub-classification of lung adenocarci-
noma is challenging. For example, in one study indepen-
dent lung pathologists agreed on lung adenocarcinoma
sub-classification in only 41% of cases [5]. In another
study, proportional hazard models identified an optimal
set of 50 prognostic mRNA transcripts using a 5-fold
cross-validation procedure. This signature was tested in
an independent set of 36 squamous cell lung carcinomas
(SCC) samples and achieved 84% specificity and 41%
sensitivity with an overall predictive accuracy of 68%
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[6]. Combining the SCC classifier with their adenocar-
cinoma prognostic signature gave a predictive accuracy
of 71% in 72 NSCLC samples.

Multiple techniques have evolved over the past few
years allow rapid measurement of gene expression and
simultaneous high-throughput measurement of thousands
of genes from several hundred samples. Different parts
of the gene-protein relationship can be measured such
as messenger RNA levels, protein expression and cel-
lular metabolic activity. Some of the available genomic
technologies include gene expression arrays, serial anal-
ysis of gene expression, single-nucleotide polymorphism
analysis, and high-throughput capillary sequencing [3].

Gene-expression array analysis methodologies developed
over the last few years have demonstrated that expression
data can be used in a variety of class discovery or class
prediction biomedical problems including those relevant
to tumor classification [7, 8, 9, 10]. Data mining and
statistical techniques applied to gene expression data
have been used to address the questions of distinguishing
tumor morphology, predicting post treatment outcome,
and finding molecular markers for disease [11, 12, 13,
14].

However, gene expression profiles present many chal-
lenges for data mining both in finding differentially
expressed genes, and in building predictive models be-
cause the datasets are highly multidimensional (12,600
dimensions in our study) and contain a small number
of records (197 records in our study). Although mi-
croarray analysis tool can be used as an initial step to
extract most relevant features, one has to avoid over-
fitting the data and deal with the very large number
of dimensions of the datasets. The current challenges
in analyzing gene-expression profiles, is illustrated in a
method recently published in the Journal of Experimental
& Clinical Cancer Research in July 2009 [15] where
it used prior knowledge with support vector machine-
based classification in diagnosis of lung cancer. The
authors of [15] reported an accuracy of 98.51%-99.06%
for their classification algorithm using 5 marker genes on
a dataset of 31 malignant pleural mesothelioma (MPM)
and 150 lung adenocarcinomas. Even though the method
in [15] can differentiate between MPM and lung ade-
nocarcinomas with high accuracy, it gives an accuracy
of 70% when we added other types of NSCLC lung
cancer including adenocarcinomas, squamous cell lung
carcinomas and pulmonary carcinoids into consideration.
Other researchers also limited themselves in differentiate
two sub-types of NSCLC lung cancer such as between
adenocarcinomas and squamous cell lung carcinomas.

This paper aims at a novel data mining method that finds
cost-effective genetic markers and uses the markers to
differentiate with very high accuracy all sub-types of
NSCLC lung cancer. Comparing with a recent publi-
cation [16] in that the author uses currently available
data mining techniques in Weka to find biomarkers for
NSCLC lung cancer, we found that our new method
finds significantly more cost-effective genetic markers
and provides more accurate sub-classification of NSCLC
lung cancer. Comparison with SAM [17], a popular
method for significance analysis of microarrays, is also
provided in Section III.

Among the nine gene-signatures found by our new
method (JAG1, MET, CDH5, ABCC3, DSP, ABCD3,
PECAM1, MAPRE2 and PDF5), proteins encoded by
some of these gene-signatures (e.g., JAG1 and MAPRE2)
have been showed to involve in the signal transduction
of cells and proliferative control of normal cells [18]. It
has also been found that MAPRE2 is highly expressed
in pancreatic cancer cells, and seems to be involved in
perineural invasion [19]. However, specific functions of
proteins encoded by other gene-signatures have not yet
been determined. Hence, this work opens new questions
for structural and molecular biologists about the role of
these gene-signatures for the disease.

II. A NEW DATA MINING METHOD FOR SIGNIFICANT

GENES SELECTION & SUB-CLASSIFICATION

Before presenting our new algorithm for finding genetic
markers and predicting NSCLC lung cancer, we will ad-
dress the challenges one has to overcome while working
with gene-expression profile datasets. Basic information
about Gini indexes and classification algorithms can be
found in many data mining books [20, 21, 22].

A. Solving the bias due to the order of classes

The first challenge that arose from the gene-expression
datasets is the bias due to the order of cancer types or
classes in data mining’s terminology. Let’s consider a

Range/Class C1 C2 C3

R1 4 6 30
R2 6 30 4
R3 0 4 16

Table I
BIAS DUE TO THE ORDER OF CLASSES

simple example of expression profiles for a gene A in
Table I where the gene dataset D has d = 100 elements
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and three classes. The gene expression values were
partitioned into three ranges. Clearly, the cancer types
or classes can be labeled in any order. When this gene
is ranked by current microarray analysis methodologies,
for example by calculating the Gini index giniA(D) =∑m

i=1
|Ri|
d ·gini(Ri), the first two rows contribute equally

to the Gini index because gini(Ri) = 1 −
∑n

j=1 p
2
i,j

where pi,j = |Ci,j |
|Ri| is the relative frequency of class

Cj in Ri, and | · | is the notation for cardinality [23].
We have the same problem when entropy is calculated
instead of the Gini index. That said, when one just
considers the probability distribution without taking into
account the order of the classes, the first two partitions
of expression profiles will contribute equally. Clearly,
the two partitions should contribute differently because
Partition R1 says that 75% of patients with gene expres-
sion values within this range are classified into Class
C3 while Partition R2 says that 75% of patients with
gene expression values within this range are classified
into Class C2. Hence, in order to have a robust gene
selection method, one has to differentiate the partitions
with different class orders because they have different
amount of information.

0 |C1| |C1..2| |C1..3|
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Figure 1. Lorenz curves

To solve this problem, we generalized the well known
Lorenz curves, a common measure in economics to
gauge the inequalities in income and wealth. In Figure 1,
we illustrate how modified Lorenz curves and modified
Gini coefficients are calculated. The Equality Polygon
(Eq) is defined based on the percentages of elements in
|C1|, |C1..2| = |C1| + |C2|, . . ., |C1..n| =

∑n
j=1 |Cj |

at x−coordinates 0, 1/n, 2/n, . . ., 1, where n is the
number of classes and |C1| ≤ |C2| ≤, . . ., ≤ |Cn|. The
Lorenz polygon of a partition, say Ri, is defined based
on the percentage of elements in |Ci,1|, |Ci,1| + |Ci,2|,
. . .,

∑n
j=1 |Ci,j | at x−coordinates 0, 1/n, 2/n, . . ., 1.

The Gini coefficient of a partition, say Ri, is defined as
(
∫ 1
0 L(Ri) · dx-

∫ 1
0 Eq · dx)/

∫ 1
0 Eq · dx. One can easily

see that the partitions with different class orders are now
differentiated.

B. Solving the bias due to the order of gene expression
values

Another technical challenge for microarray analysis
methodologies comes from the order of discretized gene
expression values. Let’s consider another simple example

Class/
Range

C1 C2 C3

R1 3 0 0
R2 0 100 0
R3 4 0 0
R4 0 0 5

Class/
Range

C1 C2 C3

R1 3 0 0
R2 4 0 0
R3 0 100 0
R4 0 0 5

Table II
BIAS DUE TO THE ORDER OF GENE EXPRESSION VALUES

of gene-expression profiles for two genes in Table II
with three classes. The gene expression values were
discretized into four ranges. In contrast to the pre-
vious challenge, the ranges of gene-expression values
do follow some order. When this genes are ranked by
current microarray analysis methodologies, for example
by calculating the Gini index of gene A using dataset
D giniA(D) =

∑m
i=1

|Ri|
d · gini(Ri) where d = |D|,

the two genes would have the same rank. Clearly, the
gene-expression profiles on the right hand side of Table
II have a more harmonic distribution with respect to the
rows in comparison with the gene on the left. That said,
these two genes should be ranked differently.

To solve this problem, we generalized the Gini coeffi-
cients by taking into account the splitting status and the
Gini ratio. The splitting status of D with respect to the
attribute A is calculated as

splitA(D) = 1−
m∑
i=1

(
|Ri|
d

)2.

The Gini ratio of D with respect to the attribute A
is defined as LorenzGini(A) = ∆gini(A)/splitA(D),
where ∆gini(A) = gini(D)−giniA(D) and gini(D) =

1−
∑n

j=1(
|Cj |
d )2.

Furthermore, to take into account the gene expression
profiles with different value orders, the Gini coefficient
is calculated as giniA(D) =

∑m
i=1

|Ri|
d · δ(i) · gini(Ri),

where δ(i) is the sum of the normalized distances
between the row i and rows i− 1, i+ 1. The coefficient
δ(i) is used as a weight to emphasize a row when it is
close to its neighbors.

38 Int'l Conf. Bioinformatics and Computational Biology |  BIOCOMP'11  |



C. New Algorithm

Input: A gene-expression profiles dataset D with up
to 34,000 dimensions.

Output:A small subset of genes as genetic markers and
a prediction model for NSCLC lung cancer

Step1: Discretize the gene-expression profile values.
Step2: Select genetic markers by using the genes with

highest ranking LorenzGini.
Step3: Build the prediction model to classify patients

using the genetic markers.

A threshold can be used for controlling the number of
significant genes for genetic markers. The splitting status
of dataset D with respect to a gene A can be calculated as
a by-product when the reduction in impurity of D with
respect to the attribute A is calculated. Therefore, the
time complexity and space complexity of the algorithm
are the same as the complexities of Gini index algorithm.

Our method has been implemented in Maple and Weka
[24, 25]. In the next section, we will present our ex-
periment with a dataset of gene-expression profiles of
NSCLC from the mRNA expression profiles.

Notice that our new method works for any dataset with
≥ 2 classes. For any number of classes, even when
the number of classes is equal to 2, the new method
is completely different with other microarray analysis
methodologies.

III. EXPERIMENTATION

A. mRNA Materials

To test and validate our algorithm, we extract the gene-
expression profiles of NSCLC from the mRNA ex-
pression profiles in [26] in that a total of 203 snap-
frozen lung tumors (n=186) and normal lung (n=17)
specimens were used to create the dataset. Of these, 125
adenocarcinoma samples were associated with clinical
data and with histological slides from adjacent sections.
The 203 specimens include histologically defined lung
adenocarcinomas (n=139), squamous cell lung carcino-
mas (n=21), pulmonary carcinoids (n=20), and normal
lung (n=17) specimens. Total RNA extracted from sam-
ples was used to generate cRNA target, subsequently
hybridized to human U95A oligonucleotide probe arrays
according to standard protocols. As the result, we ob-
tained a dataset of 12,600 gene-expression profiles for
197 patients.

B. Finding genetic markers

Using the algorithm described in the previous section, we
select 250 genes with the highest LorenzGini indexes.
To further reduce the size of the gene subsets and to
improve the prediction accuracy, we evaluate different
combinations of genes to identify an optimal subset in
terms of accuracy for the Bayesian Net classification.
The gene subsets to be evaluated are generated using
different subset search techniques. We use Best First and
Greedy search methods in the forward and backward
directions. Greedy search considers changes local to
the current subset through the addition or removal of
genes. For a given parent set, a greedy search examines
all possible child subsets through either the addition or
removal of genes. The child subset that shows the highest
goodness measure then replaces the parent subset, and
the process is repeated. The process terminates when no
more improvement can be made. Best First search is
similar to greedy search in that it creates new subsets
based on the addition or removal of genes to the current
subset with the ability to backtrack along the subset
selection path to explore different possibilities when the
current path no longer shows improvement. To prevent
the search from backtracking through all possibilities in
the gene space, a limit is placed on the number of non-
improving subsets that are considered. In our evaluation
we chose a limit of five.

The algorithm returns a set of nine genes (JAG1, MET,
CDH5, ABCC3, DSP, ABCD3, PECAM1, MAPRE2
and PDF5) from the dataset of 12,600 gene-expression
profiles of NSCLC. We exploit this small set of genes
to differentiate all sub-types of NSCLC lung cancer.
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Figure 2. Accuracy of sub-classifications with standard deviations

To build the classification model, we used Bayesian Net-
work (BayesNet), which is structured as a combination
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of a directed acyclic graph of nodes and links, and a
set of conditional probability tables. Nodes represent
features or classes, while links between nodes represent
the relationship between them. Conditional probability
tables determine the strength of the links. There is one
probability table for each node (feature) that defines
the probability distribution for the node given its parent
nodes. If a node has no parents the probability distribu-
tion is unconditional. If a node has one or more parents
the probability distribution is a conditional distribution,
where the probability of each feature value depends on
the values of the parents.

Figure 2 shows the averaged accuracies of the gene
expression profile classification using Bayesian Net clas-
sification together with their standard deviations. To test
the accuracy of classification models, we use k-fold cross
validation, which is a common method for estimating the
error of a model on benchmark medical data sets. The
reason for using this testing approach is that when a
model is built from training data, the error on the training
data is a rather optimistic estimate of the error rates the
model will achieve on unseen data. The aim of building a
model is usually to apply the model to new, unseen data–
we expect the model to generalize to data other than the
training data on which it was built. Another reason for
using this testing approach is that the available medical
data sets are small and no test data set is available. It
is well-known that k-fold cross-validation is very useful
for this type of data sets.

For a reliable evaluation of the accuracy, we test the
classification algorithm for many values of k. More
precisely, we test for k = 5..9. For each value of k, the
data set D is randomly divided into k subsets D1, D2 ,
. . ., Dk. We leave out one of the subsets Di, i = 1..k
each time for being used as a test data set for cross
validation. The remaining subset ∪j 6=iDj is used to build
the model. The cross validation accuracy computed for
each of the k test samples are then accumulated to give
the k-fold estimate of the cross validation accuracy. To
ease the effects of the random partitions on the data set,
this whole process is repeated 10 times with different
random seeds and the results are then averaged to give
the estimated accuracy of the comparing algorithms in
Figure 2.

During the validation process, all patients with lung
adenocarcinomas were correctly predicted, all patients
except one with squamous cell lung carcinomas were
correctly predicted, all patients with pulmonary carci-
noids were correctly predicted, and all patients with nor-
mal lung specimens were correctly predicted. The only
false prediction for random seed 1 was a patient with

squamous cell lung carcinomas but incorrectly predicted
as adenocarcinomas. As we can see, this very small set
of genes gives an almost perfect predictive accuracy for
the diagnosis of the disease. When the number of genes
is further reduced or increased, the accuracy starts to
declined. That said, this set of nine genes acts like an
inference basis for NSCLC lung carcinoma and hence
can be used as genetic markers.

C. Comparing with other gene selection methods

We now investigate the classifying accuracy of the sig-
nificant genes generated by LorenzGini with respect to
the size of the reduced microarray datasets. Comparing
with a recent publication [16] in that the author uses
currently available data mining techniques in Weka to
find biomarkers for NSCLC lung cancer, we found
that our new method finds significantly more cost-
effective genetic markers and provides more accurate
sub-classification of NSCLC lung cancer. We also com-
pare our method with SAM using the same dataset for
NSCLC lung cancer. SAM combines t-test and permu-
tations to calculate a False Discovery Rate to provide
a subset of genes that are considered significant [17].
Using SAM, we select four sets of 50, 100, 150, 200 and
250 most significant genes by using the parameter values
of 0.556. 0.458. 0.4188, 0.383 and 0.3568, respectively.

We then use the Bayesian Net classification in Weka
to check the accuracy of the most significant gene sets
generated by LorenzGini and SAM [25]. Besides our
fresh implementation of LorenzGini algorithms, simple
converters were written to connect SAM and Weka.
For a reliable evaluation of the accuracy, we test the
classification algorithm for many values of k as specified
in our validation plan.

Figure 3 shows the accuracy of the gene expression
profile classification using Bayesian Net algorithm on
SAM’s gene sets and on LorenzGini’s gene sets with 50
genes. As we can see, the classifying accuracy has been
improved with the LorenzGini’s gene selections. We also
observed that the accuracy of the gene expression profile
classification using Bayesian Net algorithm on SAM’s
gene sets declined when the number of genes is reduced
to 50 and below. In contrast, the accuracy of the gene
expression profile classification using LorenzGini’s gene
sets is stable even when the number of genes is reduced
to 9, which has the highest accuracy. This observation is
also true for other classification methods.
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Figure 3. SAM’s & LorenzGini’s gene sets classified by Bayesian
Net

IV. CONCLUSION

We presented a method that can find cost-effective
biological markers as quantifiable measurements for an
almost perfect predictive accuracy of NSCLC lung can-
cers. As cancers are complicated, one can only predict
the status using a combination of many genes. The genes
we discovered as genetic markers (JAG1, MET, CDH5,
ABCC3, DSP, ABCD3, PECAM1, MAPRE2 and PDF5)
are different with previously known results. Furthermore,
proteins encoded by some of these gene-signatures (e.g.,
JAG1 and MAPRE2) have been showed to involve in the
signal transduction of cells and proliferative control of
normal cells while specific functions of proteins encoded
by other gene-signatures have not yet been determined.
Therefore, this work opens new questions for structural
and molecular biologists about the role of these gene-
signatures for the disease.
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Abstract— Time-course gene expression profiles 
associated with periodic biological processes should 
appear periodic. However, because of inherit 
problems with the experimental protocols 
measured gene expression data are actually 
pseudo-periodic, not exactly periodic. Therefore, 
identifying pseudo-periodically expressed gene 
from their time-course data could help understand 
the molecular mechanism of periodic biological 
processes. This paper proposes a method for 
identifying pseudo-periodic gene expression 
profiles. In the proposed method, a pseudo-periodic 
gene expression profile is modeled by a linear 
combination of trigonometric and exponential 
functions in time plus a Gaussian noise term. A 
two-step parameter estimation method is employed 
for estimating parameters in the model. On the 
other hand, non-pseudo periodic gene expression 
profiles are model by a constant plus a Gaussian 
noise term. The statistic F-testing is used to make a 
decision if a gene is pseudo-periodically expressed 
or not. Three biological datasets were employed to 
evaluate the performance of the proposed method. 
The results show that the proposed method can 
effectively identify pseudo-periodically expressed 
genes.   
 
Keywords: time-course gene expression profiles, 
pseudo-periodically expressed gene, parameter 
estimation, F-testing 

I. INTRODUCTION 
DNA microarray experiments have been employed to 
produce gene expression profiles at a series of time 
points. Such time-course gene expression data provides 
a dynamic snapshot of most (if not all) of the genes 

related to the biological development process. The 
analysis of such time-course gene expression data is 
helpful in understanding the mechanism of their 
associated biological process. Many time-course gene 
expression datasets have been collected from periodic 
biological processes. For periodic biological process, 
Furthermore, identifying periodically expressed gene 
from their time-course expression data could help 
understand the molecular mechanism of those 
biological processes [1,2].  

In past decade, a number of methods have been 
proposed to identify periodically expressed genes. The 
discrete Fourier transform method is the earliest 
method for identifying periodically expressed genes [1, 
2]. However, microarray experiments typically 
generate short time-course data.  As pointed in [3], the 
frequency resolution by the discrete Fourier transform 
is often not adequate for resolving periodicities of 
interest. Recently periodic (trigonometric) functions 
are used to model periodic gene expression data.  

There are typically two ways to match the models 
with data. In one way, many models with known 
parameters are created, and searching datasets is 
performed to find the expression profiles which match 
well with some of created models.  For example, 
Authors in [4] proposed a method called CORRCOS 
which generates 101000 periodic synthetic models 
with different frequencies and phases. Each gene 
expression profile is compared to each of these 101000 
models. The cross-correlation is used to measure the 
similarity between the synthetic model and gene 
expression profiles. The frequency and phase of the 
model most similar to the expression profile is assigned 
to the corresponding gene. Although it can identify 
periodically expressed gene, CORRCOS is too time-
consuming and the cross-correlation is not real metric. 
Authors in [3] developed another algorithm named 
RAGE for detecting periodically expressed genes. Like 
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CORRCOS, RAGE is a synthetic model-based method. 
RAGE first estimates the frequency of expression 
profiles using autocorrelations of both the synthetic 
model and gene data. Then, RAGE generates a number 
of models with the estimated frequency over a variety 
of phases. The similarity between the synthetic model 
and gene expression profile is measured by a real 
metric called Hausdorff distance. Compared with 
CORRCOS, RAGE is less time-consuming [3]. 

These methods lack the statistical analysis. Wichert 
et al [5] proposed a statistical method to identify 
periodically expressed genes from their time-course 
gene expression profiles. The method models gene 
expression profiles also as sine functions. Instead of 
estimating nonlinear parameters (frequency) in the 
model, they used the Fisher g-test to find the best 
frequency. Based on Fisher g-test, several similar 
method were also developed for identifying [6,7,8]. 
However, a recent research [9] concludes that the 
Fisher g-test is poor if the time-course data is short 
and/or that data length is not an integer number of 
periods. In [9], the data length is said to be short if it is 
less than 40 data points. By this criterion, most gene 
expression profiles are too short to use Fisher g-test. In 
addition, it is hard in practice to obtain gene expression 
profiles with an integer number of periods as the period 
might be unknown before collecting the data. 

In another way, models with unknown parameters 
are employed and unknown parameters are estimated 
based on the data such that the models with estimated 
parameters match well with the data. However, it is 
challenging to estimate parameters which are nonlinear 
in a model such as trigonometric function. Recently we 
proposed a two-step parameter estimation method to 
estimate all parameters in trigonometric) function 
models from gene expression profiles [10, 11]   

     In principle, expression profiles associated with 
periodic processes should appear periodic. However, 
because of inherit problems with gene expression 
experimental protocols [1,12, 13], measured gene 
expression data are actually pseudo-periodic, not 
exactly periodic. In this paper, a method is proposed 
for identifying pseudo-periodic gene expression 
profiles. In the proposed method, a pseudo-periodic 
gene expression profile is modeled by a linear 
combination of trigonometric and exponential 
functions in time plus a Gaussian noise term. This 
model is more complex than the one in [10, 11]. A new 
two-step parameter estimation method is employed for 
estimating parameters in the model. On the other hand, 
non-pseudo periodic gene expression profiles are 
model by a constant plus a Gaussian noise term. The 
statistic F-testing is used to make a decision if a gene is 

pseudo-periodically expressed or not. Three biological 
datasets were employed to evaluate the performance of 
the proposed method. 

II. METHODS 

In this section, we first propose the model for pseudo-
periodic gene expression profiles and then describe a 
two-step parameter estimation method for the proposed 
model. Finally a hypothesis testing is described to 
make a decision whether a gene expression profile is 
pseudo-periodic or not.  

2.1 Model for pseudo periodic gene expression 
profiles  

Let )(tx  (t=1,2,…, m) be a time-course gene 
expression profile generated from a periodic biological 
process, where m is the number of time points at which 
gene expression is measured. In this study, we always 
shift the mean of gene expression profiles to 0. To 
model pseudo-periodic gene expression profile, we 
adopt the linear combination of trigonometric and 
exponential functions plus a Gaussian noise term as 
follows: 

)()]sin()cos([)( ttbtaetx t εωωα ++=                   (1) 
where a and b are the coefficients of sine and cosine 
function, respectively; α is the decrease (increase) rate; 
ω  is the frequency of periodic expression data; and 

)(tε  represent random errors. This study assumes that 
the errors have a normal distribution independent of 
time with the mean of 0 and the variance of 2σ . When 
α =0, model (1) becomes  
             )()sin()cos()( ttbtatx εωω ++=  
              or     )()sin()( ttAtx εω +Φ+=                   (2) 
which are widely used to generate the synthetic 
periodic gene expression profiles[1-9]. However, 
because of inherit problems with gene expression 
experimental protocols we believed that model (1) is 
more reasonable.  

Given a time-course gene expression profile )(tx  
(t=1, 2,…, m), estimating parameters a, b, α and ω in 
model (1) is a nonlinear estimation problem as α and ω 
is nonlinear in the model. Nonetheless, our observation 
is that noise-free model (1) 

  )]sin()cos([)( tbtaetx t ωωα +=          (3) 
can be viewed as the general solution of a following  
second order ordinary differential equation   

     0)()(2)( 2 =++ txtxtx γα&&&                 (4) 
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where 222 αωγ +=  and equation (4) is independent of 
a and b. Note that α and γ2 are linear in equation (4) 
while a and b are linear in model (1). Therefore, we 
propose the following two-step parameter estimation 
methods to estimate parameters a, b, α and ω in model 
(1): 

Step1: Based on equation (4), use linear least 
squares method to estimate parameters α and γ2, thus α 
and ω. In detail, let  
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then by the least squares method, α and γ2  are 
estimated as  

        21)11(
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and thus ω is estimated  
 22 ˆˆˆ αγω −=                                (6) 

   As time-course gene expression data are discrete, the 
first and second derivatives )(tx&  and )(tx&& are estimated 
by the central finite difference formula, respectively,  
as follows 

   
Δ

−−+
=

2
)1()1()( txtxtx&   for t =2,…, m-1               (7) 

2

)(2)1()1(
)(

Δ
−−++

=
txtxtx

tx&&   for t =2,…, m-1   (8) 

where Δ is time difference between two consecutive 
gene expression data points.  From equations (7) and 
(8), l=m-2. Note that equations (7) and (8) are for 
evenly spaced time-course data. For unevenly spaced 
time-course data, equation (7) and (8) should be 
replaced by a modified formula which can be found in 
any numerical method textbooks. If the value of  

22 ˆˆ αγ −  calculated by (5) for a gene is negative, this 
gene will be judged not to be periodically expressed. 

Step2: Substitute the estimated values of α and ω in 
Step 1 into equation (1). Apply the least squares 
method to model (1) to estimate parameters a and b.  In 
detail, let 
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by the linear least squares method,  a and b are 
estimated as 
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2.2 Hypothesis testing 

To determine if a gene is pseudo-periodically 
expressed, we test the null hypothesis of 

  H0:     )()( ttx ε=                                              (10) 
versus the alternative hypothesis of 

Ha:      )()]sin()cos([)( ttbtaetx t εωωα ++=         (1)  
In terms of the following F-statistic 
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where 2
0σ̂  is the estimated variance of white noise in 

model (10) and is calculated as   

       TXX
m 1

1ˆ 2
0 −

=σ                          (12) 

and 2
1σ̂  is the estimated  variance of white noise in 

model (1) and is calculated as   

  [ ] [ ]ββσ TTTT AXAX
m

−−
−

=
1

1ˆ 2
1                  (13) 

     As noise terms in both model (1) and (10) are 
normal white noise, F-statistic (11) follows the F-
distribution with the degrees of freedom (2, m-2), 
according to statistics theory. When the value of F -
statistic is large enough (greater than a threshold), 
model (10) is rejected, i.e., the gene expression profile 
exhibits periodic behaviour, and otherwise the gene 
expression profile appears white noises. According to 
degrees of freedom (i.e., the length of time-course data 
m) and a significance level (typically, 0.01, 0.05, 0.1, 
0.2, or the like) specified by a user, the threshold value 
can be determined from F-distribution table or by using 
a standard MatLab function icdf(‘f’, 1-α, 2,m-2), where 
α is the significance level. If a significance level 
associated with a gene is smaller than the preset 
significant level, the genes are judged to be pseudo-
periodic, and otherwise it is not.  

III. EXPERIMENTAL RESULTS AND 
DISCUSSION 

This study employs the following three biological 
datasets to investigate the performance of the proposed 
method. 

Eluration-synchronized gene expression data of 
the yeast (ELU): Spellman et al. [1] studied the 
mitotic cell division cycle of yeast and monitored more 
than 6000 genes of yeast (Saccharomyces cerevisiae) 
at 14 equally-spacing time points in the eluration-
synchronized experiment. Genes with missing data 
were excluded in this study. The resultant dataset 
contains the expression profiles of 5766 genes. 
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Alpha-synchronized gene expression data of the 
yeast (ALPHA): Spellman et al. [1] studied the mitotic 
cell division cycle of yeast and monitored more than 
6000 genes of yeast (Saccharomyces cerevisiae) at 18 
equally-spacing time points in the alpha-synchronized 
experiment Genes with missing data were excluded in 
this study. The resultant dataset contains 4489 
expression profile of 4489 genes. 

Bacterial cell cycle (BAC): This dataset contains 
gene expression measurements during the bacterial cell 
cycle division process for about 3000 predicted open 
reading frames, representing about 90% of all 
bacterium Caulobacter crescentus genes [2]. The 
measurements were taken at 11 equally-space time 
points over 150 minutes. Genes with missing data were 
excluded in this study. The resultant dataset contains 
the expression profile of 1593 genes.  
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Figure 1.  8 gene profiles identified to be pseudo-

periodically expressed in ELU dataset 
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Figure 2.  8 gene profiles identified to be pseudo-

periodically expressed in ALPHA dataset 
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Figure 3.  8 gene profiles identified to be pseudo-

periodically expressed in BAC dataset  
 

The proposed method is applied to these three datasets. 
Figures 1-3 show the 8 gene profiles identified to be 
pseudo-periodically expressed from these datasets, 
respectively. From these figures, we can see these gene 
expression profiles appear pseudo-periodic. Most of 
gene expression profiles look more periodic, in whose 
models the values of the decrease (increase) rate α is 
small. Others look less, in whose models the values of 
the decrease (increase) rate α is dominant.  
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Figure 4. 8 gene profiles identified not to be 

periodically expressed in ELU dataset 
 
Figures 4-5 shows show the 8 gene profiles 

identified to be non-pseudo-periodically expressed 
from ELU and ALPHA datasets (Figure for BAC is 
omitted because of space limitation), respectively. 
These gene expression profiles really look random 
noises.  
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Figure 5. 8 gene profiles identified not to be 
periodically expressed in ALPHA dataset 

IV. CONCLUSION AND FUTURE WORK 
The linear combination of trigonometric and 

exponential functions has proposed to model pseudo-
periodic gene expression profiles. A two step linear 
least squares method is proposed to estimate all model 
parameters. In addition, the proposed method uses F-
test to determine if a gene expression profile appears 
pseudo-periodic or not. Computational experiments on 
three biological datasets have showed that the proposed 
method can effectively identify periodically expressed 
genes from their time-course expression profiles. 

In this paper, the performance of the propose 
method is evaluated by manually checking some of 
results, for example, showing the profiles identified to 
be pseudo-periodic or those identified not to be 
pseudo-periodic. In the future, more objective criteria 
should be used to evaluate from both bioinformatic and 
biological view of points. In addition, this paper does 
not evaluate the proposed method on gene expression 
profiles. Another direction of feature work is to 
perform cluster analysis of gene expression data based 
proposed models.   
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Abstract - This paper proposes our algorithm for gene 

selection in microarray data analysis comparing conditions 

with replicates. Based on background noise computation in 

replicate array, this algorithm uses the global False Discovery 

Rate based on ‘Between’ group and ‘Within’ group 

comparisons of replicates to select the set of differential 

expressed genes. This method uses two types of statistics that 

lead to improve the selection procedure when confronted to 

very high background noise. Using simulated datasets and the 

well knows Latin square data, the behavior of the proposed 

method is compared to results of some algorithms.  

Keywords: Gene Selection; Replicates; False Discovery 

Rate; Local and global FDR. 

 

1 Introduction 

  The most basic question one can ask in a transcriptional 

profiling experiment is which genes‟ expression levels 

changed significantly [1]. Answering this question involves 

many considerations. There may be two experimental 

conditions or many, the conditions may be independent or 

related to each other in some way, or there may be many 

different combinations of experimental variables. In each of 

these situations, the main goal is to identify genes expressed 

above background levels (absolute analysis), and/or that are 

differentially expressed (DE) between conditions of interest. 

In this work we are interested to genes that are DE between 

replicated conditions. 

A standard statistical test to detect significant changes 

between repeated measurements of a variable in two groups is 

the t-test; It can be generalized to multiple groups via the 

ANOVA F-statistic [2]. Variations on the t-test statistic for 

microarray analysis are abundant [3, 4, and 5]. 

For microarray studies focusing on finding sets of 

predictive genes, a simple method proposed by [6] computes 

the probability that a given gene identified as differentially 

expressed is a false positive by means of „false discovery rate‟ 

(FDR). A permutation-based approximation of this method, 

assuming that each gene is an independent test, is 

implemented in the Significant Analysis of Microarray (SAM) 

program [3]. 

The variation present in microarray data poses the 

challenge of determining whether differences between 

expression measurements are caused by biological difference, 

or by technical variations. The best way to address this 

question is to use replicates for each condition studied. There 

are two primary types of replicates: technical and biological. 

Technical replicates involve taking one sample from the same 

source tube and analyzing it across multiple conditions 

(multiple microarrays). Biological replicates are different 

samples measured across multiple conditions (multiple 

samples). The use of replicates offers three major advantages: 

- Replicates can be used to measure variations in the 

experiment so that statistical tests can be applied to 

evaluate differences. This property will be more explored 

in this paper. 

- Averaging across replicates increases the precision of 

gene expression measurements and allows the detection of 

smaller changes to be detected. As the number of 

replicates increases, both the detectable difference from 

background and the detectable fold change decrease [7]. 

- Replicates can be compared to detect outlier results (that 

may occur) due to aberrations within the arrays, the 

samples, or the experimental procedures. The presence of 

outlier sample can have a severe impact on the 

interpretation of data. Most array platforms have internal 

controls to detect various problems in an experiment. 

However, internal controls can not identify all issues. 

Multiple studies have shown that fold change on its own is 

an unreliable indicator [7]. If multiple measurements (i.e. 

replicates) exist for each gene within each condition, the 

measurement of variations can be estimated [8].  

2 Local and Global FDR 

 Noting V the random variable representing the number of false 

discoveries and R the number of significant results obtained from a 

particular multiple testing procedure, [6] defined the FDR by : 

otherwise 0 and 0,R if )R/V(EFDR   (1) 

The positive FDR (pFDR) defined by [9] (for R>0), is: 
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where H is the variable such as H = 0 if the null hypothesis 

H0 is true, H = 1 if the alternative hypothesis H1 is true, π0= 

Pr(H = 0) is the probability of not being modified and T is the 

test statistic used for all tested hypotheses. pFDR and FDR are 

asymptotically equivalent and, in the following, we will note 

FDR for both of them.  

 Data provided from microarray in gene expression 

analysis can be considered as composed of two subpopulations 

of genes, those for which the null hypothesis is true 

(unmodified genes or non DE genes), and those for which the 

alternative hypothesis is true (modified genes or DE genes). 

Let m,...,i,pi 1  be the P-values calculated for the m tested 

hypotheses. Let P be the random variable for which the P-

values are the observations and let f be the marginal 

probability density function (pdf) of P. Denote f0 the 

conditional pdf of P under the null hypothesis and f1 the 

conditional pdf of P under the alternative hypothesis. Then: 

)p(f)()p(ff(p) 00 10 1   (3) 

In this setting, the local false discovery rate is: 

)p(f

)p(f
)p(fdr 0

0  (4) 

The local fdr can be interpreted as the expected proportion 

of false positives if genes with observed statistic are declared 

DE. Alternatively, it can be seen as the posterior probability of 

a gene being non-DE. 

The main problem is the 0  estimation. One solution 

assumes that the marginal distribution of the P-values arises 

from a beta-uniform mixture distribution. The model 

parameters are estimated using the maximum-likelihood 

method [10]. However, the widely estimator for 0  is the one 

proposed by [11]. Using a tuning parameter ],[ 10 , π0 is 

estimated by: 

 
)1(
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m
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In [12], the local fdr is generalized to multidimensional fdr 

for more one P statistic.  For example in the two dimensional 

case, we can use two different statistics 21 P and P that capture 

different aspect of the information contained in the data. The 

obtained fdr-2D can be expressed as: 

 
)p,p(f

)p,p(f
)p,p(Dfdr

21

210
0212   (6) 

An already established graphical display for studying the 

trade-off between effect size and significance is the volcano 

plot of log10-P-values versus fold changes [13], 

corresponding to: 

)x(mean)x(meanp iii 211  and ii valuePlogp  102  (7) 

 

where )x(mean i1 is gene-wise group mean. 

In multidimensional case, the global FDR is the average of 

the local fdr for all used statistics. This FDR is a useful 

relationship for characterizing a collection of genes declared 

DE by local methods. Suppose R is a rejection region such 

that all genes with multidimensional statistics Rp  are 

called DE. The global FDR associated with genes in R is [12]: 

)E(fdr(p)/R(R)FDR   (8) 

This means that the global FDR of gene lists found by 

fdr2D can be computed by simple averaging of the reported 

local fdr values, and consequently, fdr2D can be compared 

easily with other procedures in terms of its implied global 

FDR. 

Please use the styles contained in this document for: Title, 

Abstract, Keywords, Heading 1, Heading 2, Body Text, 

Equations, References, Figures, and Captions.  

Do not add any page numbers and do not use footers and 

headers (it is ok to have footnotes). 

3 Method Description 

3.1 Between and Within Group Comparisons 

 Consider the example where we have to compare two 

experiments (Traited # Control) with three replicates. For the 

available microarrays, we can process in term of statistics, to 

two types of comparisons: „Between‟ group comparisons that 

concern chips providing from the two samples “Fig.1”. And 

„Within‟ group comparison that concern chips inside 

biological or technical replicates “Fig.3”. 

For each set of comparison, a multidimensional fdr2D, 

based on statistics of equation 7 may be computed. These 

statistics can be summarized in two volcano plots where the 

first one represents results of „Between‟ group comparison 

“Fig.3”: in this plot the significance correspond to the average 

(-log10 P-value) across all the „Between‟ groups comparison 

and the average Signal Log-Ratio (SLR) obtained from 

average fold change across all the „Between‟ group 

comparison. And the second one show the same statistics 

related to the „Within‟ group comparison “Fig.4”. This latter 

informs about the experiments background noise [14]. In fact, 

gene stimulated in „within‟ group comparisons inform about 

amplitude and act of experimental background noise. When 

this noise is very low, all genes SLR are falling around 0 in 

this plot. 
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Figure 1:  „Between‟ group comparisons 

 

 
Figure 2: „Within‟ group comparisons 

 
Figure 3: volcano plot of „between‟ group comparison 

            

 
Figure 4: volcano plot of „within‟ group comparison 

 

3.2 Local fdr and Replicates 

 To illustrate our procedure, we use first the local fdr as 

described in section I. For the two sets of comparison we use 

the same statistics and the same null hypothesis H = 0. In this 

context the local fdr for „Between‟ group comparison and 

„within‟ group comparison are : 
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Without loss of generality the expression: 
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   (9) 

interpreted as the expected proportion of false positives if 

genes with observed statistic are declared DE, is the common 

local FDR with the same null hypothesis[15]. 

 
Figure 5 : volcano plot for „between‟ and „within‟ group comparison with the 

same null hypothesis. 

The FDR of equation 9 changes from 0 to 1 according to 

the cutoff fixed by the analyst. Each FDR-cutoff value 

correspond to one value of significativity (-log10 (P-value-

cutoff)). But in certain case, especially when the „Within‟ 

group comparison presents a high degree of noise, this curve 

may not be straight monotonous and two FDR-cutoff values  

can corresponds to the same significativity “Fig.6”. This not 

advisable behavior is corrected by a curve smoothing (FDR 

versus Significativity) with a monotonic quadratic function, 

where the smoothed curve guarantees the FDR uniqueness 

versus significance correspondence “Fig.6”. 

The proposed method works well when the noise observed 

in „within groups‟ comparison is moderate. But when the 

background noise is high, the FDR is not well informative, and 

it is very difficult to find the appropriate function to 

extrapolate the curve FDR versus Significance. Thus, to 

improve the method we used two statistics (-log10 Pvalue and 

SLR) to generalyze this concept to the global FDR. 

 
Figure 6 : smoothing the FDR vs Significativity plot 

3.3 Global fdr-2D and Replicates 

 This solution introduces the SLR information in the 

selection method [16].As explained in the last section we use 

the local FDR for both the significance and fold change 

statistics. The use of two different statistics that test the same 

null hypothesis, but have different power against t-statistics 

and  fold changes, comparable with the proposal made by 

[16], is another possibility. Thus, this method takes into 

account the information provided by both signals and 

replicates and gives a best estimate of background noise in 

microarray. 
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Figure 7 : FDR corresponding to the null hypothsis applied to SLR 

In the selection step, the method uses conjointly FDR for 

significativity and FDR for SLR. This Global FDR, which 

uses replicates as a background adjustment is called in the 

next “global FDR-2D”, and is expressed exactly by the 

equation 8.  

The gene selection procedure proposed here run as 

follows:  

1- Establish a curve, as in “Fig.6” for the studied example 

using a global FDR-2D values set.  

2- Curve “FDR-2D versus significance” smoothing 

3- Assignment of the cutoff value and search a 

corresponding FDR-2D in the curve (FDR-2D) cutoff 

Selection of  DE Genes with FDR-2D < FDR-2D cutoff 

4 Results and Discussions 

4.1 Simulated Dataset 

 We assume 10 000 genes per array with a proportion of 

truly non-DE genes 9500 . throughout, and compare two 

independent groups with n=4 arrays per group. We further 

assume that the log expression values are also normally 

distributed in each group. 

 

Figure 8 : smoothing the FDR vs Significativity for the simultaed dataset 

We have compared results of this gene selection method to 

:Significance Analysis of Microarray (SAM)[3], Controlling 

the fdr (Benjamini method) [6], and Multidimensional local 

fdr [12] 

In the comparison, we use three values of FDR-2D
cutoff

  e.g. 

1%, 5% and 8% “Table I”. 

 

Figure 9 : Gene selected by the global FDR-2Dcutoff=5%       

 

Figure 10 : FDR-2Dcutoff=8%  

TABLE I.  RESULT OF SIMULATED DATASET 

 TDR Percentage of spike detected 

FDR 

Value 

1% 5% 8% 1% 5% 8% 

Method

1 
58.20 52.30 44.50 72.36 76.45 66.33 

Method

2 
68.56 45.50 35.56 66.15 70.83 67.98 

Method

3 
96.17 95.26 97.11 88.32 80.64 73.37 

Proposed 

Method 
95.23 93.45 91.48 89.21 81.70 75.77 

 

4.2 Real Dataset 

The proposed method was used to analyze spiked-in genes 

arrayed in a Latin square. In this publicly available set, 112 

yeast genes and 14 human genes are cloned. Each of the 

labeled genes were pooled into groups and diluted to 

concentrations of 0, 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64, 128, 256, 

512 and 1024 pM. In every microarray experiment, 14 groups 

of genes in 14 different concentrations were hybridized to the 

microarray in the presence of a complex background of 

expressed human genome (30 Mb) and several control genes. 

For this Latin square design, 14 groups of experiments with 3 

replicates for each experiment, giving a total of 42 

experiments. The concentrations of the 14 in vitro transcript 

(IVT) groups in the first experiments are 0, 0.25, 0.5, . . . , 

1024 pM, their concentrations in the second experiments are 

0.25, 0.5, . . . , 1024, 0 pM, and so on [17]. 

The selection method proposed in this work has been 

applied to the Latin Square dataset. The main objective is to 

select a set of genes according to pre-defined P-value and 

compare the result with the 42 spiked-in genes. Result 
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summarized in “Table I” compare the results of this new 

selection gene method to those used in the last section for 

evaluating the performance of this algorithm thought 

simulated dataset. 

TABLE II.  RESULT OF REAL DATASET 

 TDR Percentage of spike detected 

FDR 

Value 

1% 5% 8% 1% 5% 8% 

Method

1 
50.39 45.36 29.87 58.26 66.45 67.35 

Method

2 
65.44 66.21 69.52 67.6 68.84 75.38 

Method

3 
58.59 60.49 68.11 74.32 78.26 80.36 

Proposed 

Method 
60.58 62.47 67.21 75.65 80.25 85.46  

 

Table 1 regroup results of four gene selection methods 

applied on statistical parameter of simulated dataset. The best 

percentage of spike detected was found by the global fdr-2D 

algorithm. Method3 and FDR-2D have the best percentage of 

spike detected. These results confirm the good behavior of the 

two methods in the case of simulated data. This conclusion is 

confirmed where the proposed algorithm have been confronted 

to complex data like Latin Square. In fact, in table II, the 

proposed method and the method 3 gives a good result of 

detected spike. 

All of these results confirm on the one hand the good 

behavior of the proposed algorithm in the gene selection 

problem. on the other hand, it proof that when taking into 

account replicates of arrays by mean of the „within‟ group 

comparison, the method allows good detection of modulations 

for weakly expressed genes and eliminates false positives.   
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Abstract - MicroRNAs (miRNAs) are short non-coding RNA 

molecules.  MicroRNAs regulate mRNA transcript levels and 

translation.  miRNA expression is measured by microarray or 

real-time polymerase chain reaction (RT-PCR). The findings 

of RT-PCR data are limited by the normalization techniques. 

Some commonly used endogenous controls are differentially 

expressed in cancer, making them inappropriate internal 

controls. 

We show that RT-PCR data contains a systematic bias 

resulting in large variations in the Cycle Threshold (CT) 

values of the low-abundant miRNA samples. This observation 

is illustrated on a microRNA dataset obtained from primary 

cutaneous melanocytic neoplasms. We propose a new data 

normalization method that considers all available microRNAs 

as endogenous controls. A weighted normalization approach 

is utilized to allow contribution from all microRNAs, weighted 

by their empirical stability. We show that through a single 

control parameter, this method is able to emulate other 

commonly used normalization methods and thus provides a 

more general approach. 

Keywords: microRNA, PCR, normalization  

 

1 Introduction 

  MicroRNAs (miRNAs) are short non-coding RNA 

sequences that average 22 nucleotides in length [1-3].  These 

class of RNAs are distinct from other short sequence RNA 

types such as siRNA and snRNA, The first RNA of this class 

was identified in C. Elegans in 1993 [4].  However, miRNAs 

were not recognized as a special class of RNAs until a decade 

ago [5]. To date, all animal and plant species have been found 

to express miRNAs [6]. At this time approximately 1000 

miRNA sequences have been identified in the human 

microribonucleome [7].  miRNA sequences are highly 

evolutionarily conserved among mammals [4,8-12]. 

Approximately 80% of miRNA genes occur in intronic 

regions of the genome [13-14].  miRNAs are involved in 

many biological processes by influencing the regulation of 

their target genes, generally resulting in down-regulation. 

There are two postulated methods by which miRNAs act on 

their target genes.  If the miRNA binds with an mRNA 

transcript and they exhibit high complementarity, it will cause 

the degradation of the mRNA.  If the miRNA binds with 

incomplete complementarity then it causes translational 

repression of the mRNA. In plants the primary mechanism of 

action of miRNAs mRNA transcript degradation, while in 

animals, translational repression is more common [6].  An 

estimated 60% of mammalian mRNAs are targeted by one or 

more miRNAs [10, 12].  

 miRNAs have been discovered to play a role in many 

diseases and pathologies [2,10,13,15-16]. The role of 

miRNAs in cancer has been examined and several miRNAs 

have been found to regulate tumor-related genes [1-

3,10,13,17-19].  In fact, more than half of all miRNA genes 

are located in cancer-associated regions of the genome or in 

fragile sites [3,13].  As a result, therapeutic applications of 

miRNAs are being investigated.  Furthermore, due to the link 

between many miRNAs and cancer, these RNA molecules are 

being investigated as potential cancer biomarkers.  The fact 

that some miRNAs can be found extracellularly and maintain 

their stability in the extracellular environment facilitates their 

usage as biomarkers [10].  

 There are two main tools used to quantify the expression 

of miRNAs: microarrays and real-time polymerase chain 

reaction (RT-PCR).  RT-PCR returns the number of cycles 

that the samples underwent before they were detected, 

reported as a value known as the Cycle Threshold (CT).  The 

CT values vary logarithmically with expression levels.  There 

are several methods of normalizing the data and calculating 

the fold-change of each gene between samples.  For 

convenience, in this presentation miRNA and gene are used 

interchangeably in the context of RT-PCR.  ΔCT values are 

calculated by subtracting the CT value of the endogenous 

control for a given sample (or the mean of the CT values of 

the endogenous controls if more than one exist) from the CT 

value of the gene for the given sample.  In the calculation of 

ΔCT values we refer to the number subtracted from the raw 

CT values of each gene as the CT0.  The ΔΔCT is calculated 

by subtracting the ΔCT of an experimental sample from a 

control sample.  Fold change is calculated by raising 2 to the 

power of the negative ΔΔCT value, since CT values are 

related to the amount of miRNA or gene logarithmically [20].  

The relationship between CT, ΔCT, ΔΔCT, and Fold Change 

(FC) are given by the equations below. 

                                                                             (1) 

                                                                      (2) 

                                                                                  (3) 
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 Theoretically, endogenous controls are selected because 

they have low variance in their expression levels across 

samples.  In the case of miRNAs, the endogenous controls are 

typically recommended by the manufacturer of the miRNA 

kit used in the PCR.  Some of the most commonly used 

endogenous controls are RNU44, RNU48, and U6 [17].  

However, the usage of these endogenous controls is 

problematic, because even though these endogenous controls 

have stable expression levels in normal tissue samples, they 

have been found to be differentially expressed in cancerous 

tissue compared with normal tissue [17]. 

 Directly applying this method can lead to misleading 

results if the CT values in the data are not normalized.  There 

are several commonly used methods for miRNA 

normalization, including: quantile normalization, median 

normalization, and cyclic loess.  Quantile normalization 

involves sorting the expression values of each gene in a given 

sample in order from least to greatest.  This is done for each 

sample in the study.  The vectors of the sorted CT values for 

each sample are combined into a matrix.  The mean of each 

row of the matrix is calculated.  The CT value in each 

element in each row is replaced with the mean of the entire 

row.  In the case of median quantile normalization the median 

of the row is used instead of the mean.  The CT values in each 

sample are then rearranged back into their original order.  

This causes the distribution of CT values across all samples to 

assume the same shape, which will minimize the variance 

except for that resulting from the experimental condition 

beings studied [21-22]. 

 Median normalization shifts the CT values in each 

sample such that the median CT value of each sample is the 

same.  The median of each plate should be determined, and 

the medians of all plates should be arranged in a vector and 

sorted to determine the median of the medians.  In each plate 

the difference between the median of the sample and the 

overall median should be subtracted from the CT value of 

each gene [9]. 

 In cyclic loess normalization, pairs of plates are 

considered.  For all pairs of plates the difference of the log of 

the CT for each gene is represented by M, and the average of 

each gene of the log of the expression values is represented 

by A.  Then a loess curve is fit by regression of M on A 

which results in a fitting vector F. The genes in the first 

sample are adjusted by adding half the F value corresponding 

to the log of the CT for each gene.  In the second sample half 

the F value is subtracted from the log CT of the gene [9, 21]. 

 One of the main problems with RT-PCR that remains as 

yet unaddressed by current normalization methods is the 

systematic bias present within the data.  We observe that 

standard deviation increases as CT values increase. We 

believe that the most likely cause of this observation is the 

assumption that the PCR magnification at each cycle is an 

exact doubling of the expression levels is inaccurate. There 

seems to be an accumulation of expression-level specific rate-

limiting effect. As a result, a small difference in the size of 

the initial sample being amplified causes larger variations in 

the CT values of the less abundant microRNA molecules. 

Consequently, using endogenous controls, which are usually 

chosen from highly expressed microRNAs, for normalization 

becomes inappropriate for the less-abundant microRNAs. 

One potential solution is to use the mean expression values of 

all genes in a sample as the endogenous control and calculate 

ΔCT by subtracting this mean CT value from the CT value of 

all genes on the plate.  However, this approach is not ideal 

because the mean of the entire plate is sensitive to fluctuating 

genes as well as undetected genes which have high CT 

values.  As a result, the mean-value normalization method is 

dominated by the large fluctuations of the less-abundant 

microRNAs and may cause spurious differential expression 

levels for otherwise stable microRNAs. In this study, we 

propose a method of using a weighted mean as an artificial 

endogenous control to calculate ΔCT values. The standard 

deviation of a microRNA across all samples is considered as 

a stability measure and each microRNA is weighted by its 

stability to generate the artificial endogenous control levels. 

2 Methods 

 The dataset used in this study was obtained from a 

recently deposited microRNA RT-PCR dataset in the Gene 

Expression Omnibus (GEO) [23].  The data was from a study 

by Jukic et al. that examined the difference in miRNA 

expression profiles in melanocytic neoplasms between young 

and older adults [1].  Their study examined 10 young adults 

and 10 older adults and measured the expression of 666 

microRNAs. We used the raw CT values measured in their 

data to compare different approaches to normalizing the data. 

 We have investigated several normalization methods, 

including quantile, mean, and median normalization methods, 

and endogenous controls identified using various stability 

criteria. In mean and median normalization, the mean and 

median of all of the genes in a given sample are used as the 

value for CT0. For identification of endogenous controls, we 

calculate the standard deviation of each microRNA across all 

samples, and rank them in the order of increasing standard 

deviation. The CT values of the top-k microRNAs are 

averaged in each sample to provide the CT0 values.  

 A new weighted mean metric is proposed using the 

standard deviations of the microRNAs as weights. For a given 

gene, the weighted average is calculated using the following 

equation: 

                         ∑    
(

 

      )
)
   

∑          ) 
   

)               (4) 

where wmp is the weighted mean power, which can be 

adjusted to shift the dominance between stable and unstable 

microRNAs, n is the number of genes or microRNAs, and 

STD is the standard deviation.  The weighted mean 

Int'l Conf. Bioinformatics and Computational Biology |  BIOCOMP'11  | 53



calculation involves raising the inverse of the standard 

deviation of a given gene across all samples to the weighted 

mean power, which is usually specified as 1, and dividing by 

the sum of the inverses of the standard deviations for all 

genes.  CT0 is calculated for each sample by taking the sum of 

the product of all the raw CT values in the sample and the 

previous number. When the ΔCT is calculated the CT of each 

gene is subtracted by the above value.  This method gives a 

higher weight to genes with a lower standard deviation. 

 

3 Experiments and Results 

 In order to test the hypothesis that increasing CT values 

magnifies the natural variation between the initial amounts of 

samples loaded in each well during RT-PCR, we examined 

the standard deviation of the genes against their mean CT 

values (Fig. 1).  A linear regression fitted to this data clearly 

shows a trend of increasing standard deviation values for 

higher CT values. Note that the higher the CT value, the more 

cycles were required to observe that microRNA, hence the 

less abundant that microRNA was in the initial loaded 

sample. 

 
Fig. 1: A plot of the standard deviation vs. expression level 

fitted to a line. 

 

  As expected, the CT values of most genes are well 

correlated with the mean expression of all the genes.  This is 

illustrated Fig. 2, where we show the expression of the 20 

miRNAs that are most correlated with the mean expression. 

Each tick on the x-axis represents a unique experimental 

sample. 

Fig. 2: The 20 miRNAs most correlated with fluctuations in 

the mean expression value. 

  The correlation with the mean expression level extends 

to low-abundant miRNAs.  We demonstrate this in Fig. 3, 

wherein the Pearson correlation coefficient of the fluctuations 

in each gene with respect to its own average is shown against 

the fluctuations of the mean expression levels of all genes. 

The plot shows that a high correlation is observed whether the 

mean CT values are low or high.   

 

Fig. 3: A plot of the correlations of miRNAs with fluctuations 

in the mean miRNA CT value. 

 

Fig. 4: An example of line fitting. 
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Fig. 5: A plot of the fluctuation ability versus the expression 

level. 

 

Fig. 6: A plot of the difference ratio versus the expression 

level. 

 

 In order to quantify the "response" of the microRNA 

levels to the initial loaded sample size, a regression line is 

fitted to the fluctuation of each gene against the fluctuation of 

mean expression. In Fig. 4 we demonstrated this for a single 

miRNA.  The slope of the line indicates how sensitive the 

miRNA is to initial sample size, with larger slope values 

corresponding to larger variations in response to a small 

change in sample size.  Fig 5 shows the response of each gene 

against the mean expression level of that gene. We observe 

that the response is expression level dependent. Highly 

expressed genes (those with small CT values) are less 

responsive to changes in the overall mean of the genes, 

whereas the low-abundant genes are more sensitive to the 

changes in the overall mean of the genes. Note that, this is not 

simply a random effect due to low abundant microRNAs 

being more variable, since the variation is still correlated and 

is in the same direction of the change in mean expression 

level. The same observation is made by examining the ratio of 

the fluctuations in individual genes and in the mean 

expression level (Fig. 6). 

 In conclusion, the fluctuations of the low-abundant 

miRNAs are not random. The changes in their expression 

levels are correlated well with the overall changes in all 

miRNAs, which is assumed to be due to different starting 

sample sizes for the PCR reactions. We see that there is a 

systematic bias in the CT values that causes the expression 

levels of the low-abundant miRNAs to be more sensitive to 

the initial sample sizes. 

 We then investigated the suitability of our weighted 

mean metric.  In Fig. 7 we display the values for CT0 for 
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Fig. 7: A comparison of different methods of calculating CT0. 
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several different methods including using the mean of all raw 

CT values in the uppermost line (top-k = 0), the means of the 

top-k miRNAs for different values of k, and the weighted 

mean for different values for the weighted mean power.  The 

plot demonstrates that varying the weighted mean power 

enables the shifting of the curve upwards or downwards.  In 

Table 1 and Table 2, we compare the resulting means, 

standard deviations, and geNorm stability values [24] for 

mean and weighted mean normalizations, respectively.  We 

repeat analysis this for the top 10 genes, with the lowest 

standard deviation in Table 3.  We see slightly higher 

standard deviations in the weighted mean normalization 

method compared to the top-k calculations, but the weighted 

means’ CT0 are determined to be more stable by geNorm (the 

lower the value the more stable).  In Table 3, we see that the 

best individual miRNAs have a much higher standard 

deviation and are much less stable than any of the CT0 

calculations using either the top-k miRNAs or the weighted 

mean.  This indicates that it is better to use these values in the 

ΔΔCT calculation than any endogenous control. 

Table 1: Mean normalization results. 

mean normalization 

topk AVG CT STD CT geNorm 

0 25.59 0.71 0.23 

1 20.92 0.69 0.35 

2 23.2 0.64 0.21 

3 23.8 0.64 0.19 

4 22.13 0.63 0.2 

5 22.11 0.61 0.17 

6 22.79 0.6 0.18 

7 22.91 0.61 0.16 

8 23.66 0.59 0.15 

9 23.67 0.6 0.16 

10 23.61 0.61 0.16 

 

Table 2: Weighted mean normalization results. 

weighted mean normalization 

power AVG CT STD CT geNorm 

1 25.34 0.69 0.21 

3 24.82 0.67 0.18 

5 24.35 0.65 0.15 

7 23.96 0.64 0.14 

9 23.65 0.63 0.13 

11 23.41 0.62 0.12 

13 23.21 0.62 0.12 

15 23.04 0.62 0.12 

17 22.89 0.61 0.12 

19 22.76 0.61 0.13 

 

Table 3: Results for top 10 endogenous control candidates. 

miRNA AVG CT STD CT geNorm 

191 20.92 0.69 1.14 

744 25.49 0.72 1.17 

152 25 0.73 1.12 

MammU6 17.12 0.75 1.22 

92a 22.03 0.75 1.24 

29c 26.15 0.78 1.26 

186 23.69 0.78 1.17 

671-3p 28.89 0.8 1.29 

26b 23.75 0.8 1.19 

let-7d 23.07 0.8 1.16 

 

4 Conclusion 

 We explored the phenomenon whereby differences in 

the initial sample size of miRNA in an RT-PCR experiment 

were magnified with increasing CT levels.  This was 

illustrated by the strong correlation of the CT values of the 

individual miRNAs with the average CT values of all 

miRNAs and by the increased sensitivity in the CT values of 

the low-abundant miRNAs to the average CT values. We 

conclude that the systematic bias in RT-PCR exists in which 

the fluctuations in the CT are dependent on the expression 

levels of the particular miRNAs. We further proposed a 

method of addressing this bias by using the weighted mean 

instead of an endogenous control in the calculation of ΔCT.  

We demonstrated that the new normalization method 

produces lower standard deviations and is more stable than 

other methods. 

 Note that, while the power parameter in the weighted 

mean normalization method provides a convenient way of 

adjusting how much one wishes to let the less stable 

microRNAs influence the normalization of other microRNAs, 

its optimization currently requires enumeration of different 

values and using the one with the best overall stability. Other 

criteria, such as significance of the differentially expressed 

microRNAs can be utilized in this optimization. Furthermore, 

a separate custom CT0 value for each microRNAs may be 

used, such that each microRNA is normalized differently, 

dependent on its average expression level. 

 While we have observed a similar bias in other miRNA 

datasets and have found the new normalization method to 

give superior results, a large scale comparison of different 

normalization methods on multiple data sources is currently 

under way. The utility of the new normalization method in 

better correlating with microarray quantification methods and 

in better identifying significantly differentially expressed 

genes will be demonstrated elsewhere. 
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Abstract - Molecular predictor is a new tool for disease 
diagnosis, which uses gene expression to classify the 
diagnostic category of a patient. The statistical challenge 
for constructing such a predictor is that there are 
thousands of genes to predict disease category, but only a 
small number of samples are available. We explored a 
correlation-sharing based method to integrate ‘essential’ 
correlation structure among genes into the predictor in 
order that the cluster structure of genes, which is related 
to diagnostic classes we look for, can have potential 
biological interpretation. We evaluated performance of the 
method with other methods using three real examples. Our 
results show that the approach has the advantage of 
computational simplicity and efficiency with lower 
classification error rates than the compared methods. 
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1 Introduction 
 
With the development of microarrays technology, more 
and more statistical methods have been applied to the 
disease classification using microarray gene expression 
data. Microarray data sets often have a large number of 
features (genes), but only a very limited number of samples 
are available, which presents unique challenges to feature 
selection and predictive modeling. In general, these 
statistical methods can be divided into two categories: one 
is the supervised classification methods. For example, 
Golub et al. developed a “weighted voting method” to 
classify two types of human acute leukemias [1]. 
Radmacher et al. constructed a ‘compound covariate 
prediction’ to predict the BRCA1 and BRCA2 mutation 
status of breast cancer [2]. Studies have shown that given 
the same set of selected features, different classification 
methods often perform quite similarly and simple methods 
like diagonal linear discriminant analysis (DLDA) and k 
nearest neighbor (kNN) normally work remarkably well 
[3]. Thus, finding the most informative features is a crucial 

task in predictive modeling from microarray data [4-5]. 
Another is the unsupervised clustering approaches, which 
are usually used to determine gene clusters that are mostly 
correlated with clinical outcomes [6].  However, the 
clustering approach is purely exploratory and methods that 
can be used to assess the significance of the clustering 
results are required. It has been widely known that most 
diseases (such as cancer) are ‘caused’ or influenced by 
multiple gene variations more often than only a single 
gene. Traditional microarray-based disease classification 
approaches use only individual differentially expressed 
genes as biomarkers to discriminate classes of cancer and 
normal samples. However, a large proportion of such genes 
are irrelevant and functional correlations among those 
genes are ignored. Since the genes with the best 
discriminative power are likely to correspond to a limited 
set of biological functions or pathways, it is rational to 
focus on these key functional expression patterns for 
disease prediction. This approach may then provide clues 
as for the types of biological processes that underlie the 
expression patterns of sets of genes. 
        Some attempts have been made to integrate the 
unsupervised gene clustering and the supervised disease 
classification approaches into a unified classification 
process. Li et al. developed cluster-Rasch models, in which 
a model-based clustering approach was first used to cluster 
genes and then the discretized gene expression values were 
input into a Rasch model to estimate a latent factor 
associated with disease classes for each gene cluster [7]. 
The estimated latent factors were finally used in a 
regression analysis for disease classification. They 
demonstrated that their results were comparable to those 
previously obtained, but the discretization of continuous 
gene expression levels usually results in a loss of 
information. Hastie et al. proposed a tree harvest procedure 
for finding additive and interaction structure among gene 
clusters, in their relation to an outcome measure [8]. They 
found that the advantage of the method could not be 
demonstrated due to the lack of rich samples. Dettling et 
al. presented a new algorithm to search for gene clusters in 
a supervised way. The average expression profile of each 
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cluster was considered as a predictor for traditional 
supervised classification methods. However, using simple 
averages will discard information about the relative 
prediction strength of different genes in the same gene 
cluster [9]. Yu also compared different approaches to form 
gene clusters. The resulting information was used for 
providing sets of genes as predictors in regression [10]. 
       Recently, gene co-expression networks have become a 
more and more active research area [11-14]. A gene co-
expression network is essentially a graph where nodes in 
the graph correspond to genes, and edges between genes 
represent their co-expression relationship. The gene 
neighbor relations (such as topology) in the networks are 
usually neglected in traditional cluster analysis [13]. One 
of the major applications of gene co-expression network 
has been centered in identifying functional modules in an 
unsupervised way [11-12], which may be hard to 
distinguish members of different sample classes. Recent 
studies have shown that prognostic signatures that could be 
used to classify the gene expression profiles from 
individual patients can be identified from network modules 
in a supervised way [14].  
      In this paper we explored a clustering-based approach 
for classification of high-throughput gene expression data. 
Specifically, we first used a seed based approach to identify 
correlation-shared gene clusters from gene network. Each 
of these clusters included a differentially expressed gene 
between sample classes, which was treated as a seed, and a 
set of other genes highly co-expressed with the seed gene; 
then we performed principal component analysis (PCA) to 
extract meta-gene expression profiles; finally a supervised 
PCA-based logistic regression (LR) model was built to 
predict disease outcomes. We call the method as CPCLR. 
The method returned signature components of tight co-
expression with good predictive performance. The 
performance of this method was compared with other state-
of-the-art classification methods. We demonstrated that the 
approach has the advantage of computational simplicity 
and efficiency with lower classification error rates than the 
compared classification methods.  
      The remainder of this paper is organized as follows: 
Section 2 gives a detailed description of our classification 
method and briefly discusses other methods to be compared 
as well as the evaluation strategy; Section 3 presents the 
results based on six classification methods and three case 
studies; Section 4 summarizes our findings in the study. 
 

2 Methods 
 

2.1 CPCLR algorithm 
 
CPCLR classification algorithm includes three stages: 1) 
construct correlation-sharing based gene clusters; 2) 

extract meta-gene expression profiles from the constructed 
clusters using PCA; 3) classify samples using PCA-based 
LR model. Here we briefly described each of the three 
stages:  
        Stage 1: construct correlation-sharing based gene 
clusters. We modified the correlation-sharing method 
developed by Tibshirani and Wasserman [15], which was 
originally proposed to detect differential gene expression. 
The approach works in the following steps: 

       A: Compute test statistic ),...,2,1( piTi  for each 

gene i using the standard t-statistic or a modified t-
statistic, such as significance of microarrays (SAM) [16]. 
      B: Select seed genes having larger absolute test 
statistic values, say top m genes. 
      C: Find the cluster membership s for each selected 

seed gene
*i . The cluster assignments can be characterized 

by a many to one mapping. That is, one seeks a particular 

encoder )( *iCr that maximizes 

||max
)(}10{

*
* iiCirs Tavei

r                                  (1) 

where })),((:{)( *

* rxxcorrabssiC sir  . The set of 

genes s for each seed gene 
*i is an adaptively chosen 

cluster, which maximizes the average (ave) differential 

expression signal around gene 
*i . The set of identified 

genes s should have absolute (abs) correlation (corr) with 
*i larger than r. The advantage of the correlation-sharing 

based clustering method is that the membership in 
different clusters can be overlapped rather than mutually 
disjoint. 
        Stage 2: Principal component analysis of correlation-
shared expression profiles: To do this, for each of the 
seed-based gene cluster, we performed principal 
component analysis. Specifically, for a given gene cluster 

with C genes, assume 
t

Cjjj
j xxxx ),...,,( 21
)(   be 

expression indices of C genes in the j-th sample and t 

denotes transpose of a vector. Let be covariance matrix 

of x with dimension C x C. All positive eigenvalue of 

 are denoted by C  ...21 . The first PC score 

of the j-th sample is given by
)(

1
* jt
j xex  , where 1e is the 

eigenvector associated with 1 . Therefore, we can define 

the super-gene expression profile for N samples in a seed–

based gene cluster as
t

Nxxxx ),...,,{ **
2

*
1

*  . The estimated 

values for the coefficient 
te1  (eigenvector) of the first PC 

can be computed using singular value decomposition 
(SVD) [17]. Briefly, assume X be an NxC matrix with 
normalized gene expression values of C genes in a given 
cluster, so we can express the SVD of X as TULAX  , 

Int'l Conf. Bioinformatics and Computational Biology |  BIOCOMP'11  | 59



where },...,,{ 21 duuuU   is a N x d matrix 

( )(Xrankd  ), },...,,{ 2/12/1
2

2/1
1 dllldiagL  is a d x d diagonal 

matrix where 
kl is k-th eigenvalue of XX t , 

},...,,{ 21 deeeA  is a C x d matrix where 
ke is eigenvector 

of associated with k and coefficients for defining PC 

scores. Magnitude of loadings for the first principal 
component score can be viewed as an estimate of the 
amount of contribution from the clustered genes. 
       Stage 3: Classification using PCA-based logistic 
regression model: Assume Y is a categorical variable 
indicating the disease status (such as cancer or no cancer). 
Here we only focus on binary classification and suppose 
that Y=1 denotes the presence and Y=0 indicates the 
absence of the disease.  Therefore, we can have following 
supervised PCA-based logistic regression model: 

log(
pj

1 pj
)  0  

i* PC1
i* j

i*

m

   j                            (2) 

where ),...,2,1,1|1Pr( *
* miPCYp jijj  . 

ji
PC *1 is the first principal component score estimated 

from the seed gene cluster 
*i  for sample j and represents 

the latent variable for the underlying biological process 
associated with this group of genes. The model was fitted 
using GLM function in stats R package.  
 

2.2 Method Comparisons  
 
       We compared the prediction performance of CPCLR 
with other established classification methods, which 
include, diagonal linear discriminant analysis (DLDA), 
logistic regression (LR) model, one nearest neighbor 
method (1NN), support vector machines (SVM) with linear 
kernel and recursive partitioning and regression trees 
(Trees). We used the implementation of these methods in 
different R packages (http://cran.r-project.org/), which are 
sma for DLDA, stats for LR, class for 1NN, e1071 for 
SVM and rpart for Trees. Default parameters were used. In 
the comparison, we selected seed genes using t-test and 
SAM and evaluated the performance of DLDA, LR, 1NN, 
SVM and Trees using different number of top seed genes 
and that of CPCLR using the gene clusters built on the 
selected seed genes.  

 

2.3 Cross-validation 
 
      We performed ten-fold cross-validation to evaluate the 
performance of these classification methods. The basic 
principle is that we split all samples in a study into 10 
subsets of (approximately) equal size, set aside one of the 

subsets from training and carried out seed gene selection, 
gene cluster construction, extracted super-gene expression 
profiles and classifier fitting using the remaining 9 subsets. 
We then predicted the class label of the samples in the 
omitted subset based on the constructed classification rule. 
We repeated this process 10 times so that each sample is 
predicted exactly once. We determined the classification 
error rate as the proportion of the number of incorrectly 
predicted samples to the total number of samples in a given 
study. This 10-fold cross-validation procedure was 
repeated 10 times and the averaged error rate was reported. 
 

3 Experimental Results 
 

3.1 Real datasets 
 
We applied the CPCLR algorithm and the established 
classification methods mentioned in Section 2.2 to three 
microarray data sets. The detailed description of these data 
sets is shown in Table 1. We got the preprocessed Colon 
cancer microarray expression data from http://genomics-
pubs.princeton.edu/oncology/. For prostate cancer and lung 
cancer microarray data, we downloaded the raw data from 
gene expression omnibus 
(http://www.ncbi.nlm.nih.gov/geo/) and preprocessed them 
using robust multi-array average (RMA) algorithm [18]. 
 

Table 1: Descriptive characteristics of data sets used for 
classification 

Disease Groups 
No. 

Samples 
No. 

Genes Studies 
Colon 
Cancer 

Tumor/ 
Normal 40 / 22 2000 [6] 

Prostate 
Cancer 

Tumor/ 
Normal 50 / 38 12635 [19] 

Lung 
Cancer 

Tumor/ 
Normal 60 / 69 22215 [20] 

 
      Tables 2, 3 and 4 listed the prediction performance of 
different classification methods applied to colon cancer, 
prostate cancer and lung cancer microarray gene 
expression data using different number of top seed genes. 
As we can see, for the colon and lung cancer data sets, 
CPCLR algorithm has better or comparable classification 
performance than other well-established classification 
methods based on different number of top seed genes or 
significantly differentially expressed genes (Tables 2, 4 
and 5). However, for the prostate cancer data, the best 
performance was observed by using SVM predictors (Table 
3). In order to save the time to search for genes which were 
correlated with a given seed gene and maximized their 
averaged test statistic value (formula 1), we tested 10 
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cutoffs of correlation r from 0.5 to 0.95 with interval 
0.05. We observed that the averaged correlation of 
genes in the constructed gene cluster is usually between 
0.65 and 0.85 with the number of genes in the clusters 
from 2 to 60, suggesting the genes in the constructed gene 
clusters are highly co-expressed.  
 

Table 2: Error rates (%) of six classification methods 
applied to colon cancer data set 

No. 
Genes 

DLDA 1NN Tree SVM LR CPCLR 

5 11.3 21.0 22.6 11.3 11.3 9.7 

10 17.7 16.1 29.0 12.9 14.5 9.7 

15 12.9 12.9 24.2 14.5 12.9 11.3 

20 12.9 16.1 25.8 12.9 14.5 11.3 

30 12.9 16.1 19.4 14.5 19.4 12.9 

 
Table 3: Error rates (%) of six classification methods 

applied to prostate cancer data set 
No. 
Genes 

DLDA 1NN Tree SVM LR CPCLR 

5 23.9 26.1 22.7 21.6 22.7 21.6 

10 19.3 28.4 31.8 17.0 26.1 19.3 

15 22.7 26.1 29.5 26.1 26.1 23.9 

20 22.7 25.0 27.3 19.3 21.6 20.5 

30 21.6 23.9 29.5 21.6 22.7 21.6 

 
Table 4: Error rates (%) of six classification methods 

applied to lung cancer data set 
No. 
Genes 

DLDA 1NN Tree SVM LR CPCLR 

5 17.0 18.6 20.1 16.2 19.3 17.0 

10 14.7 18.6 19.3 17.0 20.1 14.7 

15 16.2 20.1 17.8 13.2 17.8 15.5 

20 16.2 17.0 19.3 17.8 19.3 15.5 

30 12.5 13.2 19.3 14.7 20.1 12.5 

 
      We also used SAM [16] to select top seed genes and 
evaluated the prediction performance following the same 
procedure as described above. Similar prediction results 
were also observed as shown in Table 5 for lung cancer 
data. Overall, the CPCLR method has lower error rate than 
other being compared classification methods.  
      In all cases, we found that the simple method, DLDA, 
works well. Its performance is comparable with the 
advanced method, such as SVM.  We also observed that 
the performance of the predictors with more genes is not 
necessary better than that of the predictors with fewer 
genes. For example, the best performance was obtained 
with only 5 genes for CPCLR predictors in colon cancer 
data set (Table 2), 10 genes for SVM predictors in prostate 

Table 5: Error rates of six classification methods applied to 
lung cancer data set (seed genes selected by SAM) 

No. 
Genes 

DLDA 1NN Tree SVM LR CPCLR 

5 17.0 19.3 22.5 16.2 18.6 17.8 

10 17.0 20.9 19.3 17.8 17.8 15.5 

15 14.7 20.1 22.5 14.6 20.1 13.2 

20 16.2 18.6 17.8 18.6 17.0 15.5 

30 17.8 13.2 19.3 10.1 14.7 10.1 

 
cancer data set (Table 3). For lung cancer data set, the best 
performance was observed using 30 genes for DLDA and 
CPCLR predictors (Table 4). 
 

4 Discussions and Conclusions 
 
In this study we investigated a correlation-sharing based 
method for classification of high-throughput gene 
expression data. The core idea of the method is to identify 
‘essential’ correlation structure among genes and extract 
representative features from the correlated gene clusters in 
a supervised classification procedure. The method takes 
into account the fact that genes act in networks and the 
gene clusters identified from the networks act as the 
features in constructing a classifier. The rationale is that 
we usually expect tightly co-expressed genes to have a 
meaningful biological explanation. For example, if gene A 
and gene B has high correlation, it sometimes hints that 
the two genes belong to the same pathway or are co-
expressed.  Instead of using individual genes as predictors 
in our classification models, we constructed meta-gene 
expression profiles representing information from each co-
expressed gene cluster as predictors to classify disease 
outcomes. The advantage of this method over other 
methods has been demonstrated by three real data sets. Our 
results show that this algorithm is working well for 
improving class prediction.  
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Abstract - Our goal is to develop an algorithm for the 
automated study of the dynamics of Probabilistic Boolean 
Network (PBN) representation of genes. Model checking is 
an automated method for the verification of properties on 
systems. Continuous Stochastic Logic (CSL), an extension of 
Computation Tree Logic (CTL), is a model-checking tool 
that can be used to specify measures for Continuous-time 
Markov Chains (CTMC). Thus, as PBNs can be analyzed in 
the context of Markov theory, the use of CSL as a method for 
model checking PBNs could be a powerful tool for the 
simulation of gene network dynamics. Particularly, we are 
interested in the subject of intervention. This refers to the 
deliberate perturbation of the network with the purpose of 
achieving a specific behavior. This is attained by selectively 
changing the parameters in a node or set of nodes so that 
the network behavior can be controlled. 

Keywords: Gene Regulatory Network, Probabilistic 
Boolean Networks, Markov-chain, intervention, model-
checking algorithms. 
 

 

1 Introduction 
  The genome encodes thousands of genes whose 
products enable cell survival and numerous cellular 
functions. The amounts and the temporal pattern in which 
these products appear in the cell are crucial to the processes 
of life. A gene regulatory network is the collection of 
molecular species and their interactions, which together 
modulate the levels of these gene products. The dynamics 
due to both internal and external interactions constitute the 
state of a system. With the aid of Computer Science and 
Statistics, the study of gene regulatory network dynamics 
has become more feasible, and several models have been 
developed to simulate such dynamics. The knowledge of 
the intrinsic mechanisms that govern the network could 
provide the means to control its behavior. It is because of 
this that the development of an automated system capable 
of effectively simulating the behavior of a gene regulatory 
network may also provide the knowledge to alter such 
behavior in order to achieve a particular state of the system 

or, on contrary, to prevent or to stop an undesirable 
behavior. This “guiding” of the network dynamics is 
referred to as intervention. The power to intervene with the 
network dynamics has a significant impact in diagnostics 
and drug design.  
 Biological phenomena manifest in the continuous-time 
domain. But, in describing such phenomena we usually 
employ a binary language, for instance, expressed or not 
expressed; on or off; up or down regulated. Studies 
conducted restricting genes expression to only two levels (0 
or 1) suggested that information retained by these when 
binarized is meaningful to the extent that it is remains in a 
continuous domain [2]. This allows gene regulatory 
networks to be modeled using a Boolean paradigm. The 
drawback of using this formalism is that the interactions 
among genes are hard-wired rules. This unrealistic 
assumption precludes the self-organizing nature of 
biological systems and, therefore, mischaracterizes their 
dynamics. Self-organization gives the system robustness in 
presence of perturbations, showing spontaneous ordered 
collective behavior. PBNs and Boolean networks share this 
quality through the existence of attractors and absorbing 
states, which act as a form of memory for the system. 
 PBNs, like Boolean networks, are rule-based. But, 
unlike the latter, they are not inherently deterministic using 
multiple rules, or “predictors”. This makes PBNs robust in 
the face of the environmental and biological uncertainty. 
Markov theory allows us to study the dynamic behavior of 
PBNs in the context of Markov Chains. They explicitly 
represent probabilistic relationships between genes, 
allowing quantification of influence between genes. 
Because of this, PBNs are better suited than Boolean 
networks for modeling such systems. Nevertheless, given 
the exponentially growth in the number of states a gene can 
be in(2n states for n genes), answering questions on the best 
way to reach or avoid particular state(s) may be 
cumbersome if performed through exhaustion. Model-
checking algorithms have the ability of automatically check 
if a certain condition is met under given specifications. 
Thus, it could answer questions as the one previously stated 
efficiently. This would greatly facilitate the intervention or 
deliberate perturbation of a network to achieve a desired 
response. This research studies the union between PBNs in 
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the context of Markov theory and model checking 
techniques for Continuous-time Markov chains. 

2 Model Selection 
2.1 Boolean Network Model 
 A Boolean network is a set of Boolean variables 
whose state is determined by other variables in the network. 
Formally: 
 A Boolean network G(V,F) is defined by a set of nodes 
V ={x1,...,xn}, and a list of Boolean functions F = (f1, ..., fn). 
Each xi ∈ V, i=1,..., n, is a binary variable representing a 
gene which takes value from {0, 1} . There are ki genes 
assigned to gene xi, whose value at time t determine the 
value at time t +1 of xi by means of a Boolean function fi ∈ 
F. That is, the mapping jk: {1,…,n} → {1,...,n}, k = 1, ..., ki 
determines the “wiring” of gene xi and we can write [2]: 
 

 (1) 

 A network with n genes has 2n states. Each of these 
states represents the pattern of expression of the individual 
genes. Pattern expressions are sometimes called gene 
activity profiles (GAPs). Some of these GAPs are attractors 
in the sense that the network flow eventually gets trapped in 
them. They represent the memory of the system. Attractors 
may be composed by cycles of states. Figure 1 gives an 
example of a Boolean network. 

 

 

 

 

 

 

 

 

 The relationships between genes are determined from 
experimental data. A coefficient of determination (COD) is 
used in this endeavor to discover such associations. The 
COD measures the quality of a predictor in using an 
observed gene set to infer a target gene set, in the absence of 
observations. In order to further illustrate this, let xi be a 
target gene, which we wish to predict by observing the set 
of genes xi1, xi2,..., xik. Suppose that f (xi1, xi2,..., xik) is an 
optimal predictor of xi relative to some error measure ε. Let 

εopt be the optimal error achieved by f. Then, the COD for xi 
relative to the set xi1, xi2, ..., xik is defined as: 
 

(2) 
 

where ε i is the error of the best (constant) estimate of xi in 
the absence of any conditional variables [2]. 

2.2 PBN Model 
 The open nature of biological systems brings about a 
significant uncertainty into the model. One way of coping 
with this difficulty is to pass the uncertainty to the 
predictor, by synthesizing a number of good performance 
predictors. Each one of them contributes its own prediction 
proportionally to its determinative potential, which is given 
by the COD. More formally, given genes V = {x1, ..., xn}, 
we assign to each xi a set Fi = {f1

(i), ..., fl(i)
(i)} of Boolean 

functions representing the “top” predictors for the target 
gene xi. Thus, the PBN acquires the form of a graph G(V, F) 
where F = (F1, ..., Fn) [4], and each Fi in F is as previously 
described. At each point in time or step of the network, a 
function fj

(i) is chosen with probability cj
(i) to predict gene xi. 

Using a normalized COD [2]:  
 
 

(3) 
 
 
where θj

i is the COD for gene xi relative to the genes used as 
inputs to predictor fj

(i). Figure 2 provides an example of a 
PBN. 

 
 At a given instant in time, the predictors selected for 
each gene determine the state of the PBN. These predictors 
are contained on a vector of Boolean functions, where the ith 
element of that vector contains the predictor selected at that 
time instant for gene xi. This is known as a realization of 
the PBN. If there are N possible realizations, then there are 
N possible vector functions, f1, f2, ..., fN, each of the form                            
fk = (fk1

(1), fk2
(2)..., fkn

(n)), for k = 1, 2, ..., N, 1 ≤  ki ≤ l(i) and 
where fki

(i) ∈ Fi (i= 1, ..., n). In other words, the vector 
function fk:{0, 1}n  → {0, 1}n acts as a transition function 

a            b 

x1(t+1) = x1(t) ∧ x2(t) 
x2(t+1) = ¬x1(t) ∧ x2(t) 
x3(t+1) = x1(t) ∧ x2(t) ∧ x3(t) 

Figure 1. Example of Boolean network 
a) Boolean network with three nodes 

b) State transition diagram 
Figure 2. PBN of three nodes and its predictors 
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(mapping) representing a possible realization of the entire 
PBN. (See Figure 3). Thus, we have the matrix K of 
realizations: 

 

 

(4) 

  

Assuming independence of the predictors,                    . 

Each realization k can be selected with                     .        

The probability of transitioning from state (x1,...,xn) to 

(x’1,...,x’n) is given by [3]:  

 

 

 

(5) 

 

3 Perturbation And Intervention 
 As an open system, the genome receives inputs from 
the outside. Such stimuli can either activate or inhibit gene 
expression; therefore it is necessary for the model of such a 
system to reproduce this behavior. This is achieved by the 
inclusion of a realization in the form of a random 
perturbation vector γ ∈ {0, 1}n. Lets assume that a gene can 
get independently perturbed with probability p. Then if γi =1 
the ith gene is flipped, otherwise it is not. For simplicity, we 
will assume that Pr{γi = 1} = E[γi] = p for all i = 1, ..., n 
(i.e., independent and identically distributed). Let x(t) ∈{0, 
1}n be the state of the network at time t. Then, the next state 
x’ is given by:  
 

(6) 
 
 
where ⊕ is component-wise addition modulo 2, and fk is the 
transition function representing a possible realization of the 

entire PBN, k = 1, 2, ..., N [2]. In presence of perturbation 
with probability p, the entrances in the state transition 
matrix are computed by [4]: 

 
 

(7) 
 
 
 
 

 Most relevant to our research is the fact that, when 
performed in a deliberately way, a perturbation constitutes 
an intervention. We may introduce a perturbation vector for 
a set of selected genes for the purpose of achieving a desired 
state, or moving from an undesirable one, on the network. 
This can be done by perturbing those genes with greater 
impact on the global behavior, by perturbing a fewer 
number of genes, or by reaching the desired state as early as 
possible. In gene interactions, some genes used in the 
prediction of a target gene have more impact than others, 
making them more important, or of higher influence, thus, 
identifying these genes is highly relevant. Similarly, we can 
determine the sensitivity of a particular gene, defining it as 
the sum of all influences acting upon it. The sensitivity, in 
turn, defines the particular gene stability and independence. 
In [2, 4] a method to compute influences and sensitivities is 
given. One of the main benefits of determining influences 
and sensitivities of genes is that these allow the 
identification of vulnerable points in the network, or the 
ones most likely to affect its entire network if perturbed. 
Highly influential genes can control the dynamics of the 
network, making it possible to move to a different basin of 
attraction when perturbed. This kind of information may 
provide potential targets when an intervention is needed to 
obtain a desired state of the system. 

4 Model-Checking Algorithms 
 Given a PBN model of a gene regulatory network, we 
are interested in knowing (in an automated way) if certain 
state(s) are reachable under particular conditions, or 
specifications. This is the verification problem, to which 
model checking is an instance of. Because these are 
mathematical problems, we formulate our specifications 

Figure 3. PBN state transition diagram 
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using mathematical logic. Temporal logics have been 
crucial in the development of model checking, because of its 
compact way of expressing correctness properties, and the 
fact that the Small Finite Model Theorem makes it decidable 
[5]. Its branching time logic, Computation Tree Logic 
(CTL) allows us to build compound formulas from the 
nesting of subformulas. The semantics of temporal logic 
formulas are defined over a finite transition system (Kripke 
structure).  
 The specification of measures of interest over systems 
is usually done using state-based properties (steady and 
transient state), due to the difficulty of specifying path-
based measures. Continuous Stochastic Logic (CSL) is a 
probabilistic timed extension of CTL that provides means 
for specifying measures both state and path-based for 
Continuous-time Markov chains (CTMC). Numerical 
methods to model-check CSL over finite-state CTMC are 
explored in [1].  
 
4.1 Continuous-time Markov chains 
 The Kripke structure to consider for CSL model 
checking is a CTMC, where the edges are equipped with 
probabilistic timing information. Let AP be a fixed, finite 
set of atomic propositions [1]: 
 A CTMC M is a tuple (S, R, L) with S as a finite set of 
states, R: S x S → ¡≥0 as the transition matrix, and L : S → 
2AP as the labeling function. 
 Each state s ∈ S corresponds to a GAP of the PBN. R 
is the transition probability matrix of the state-transition 
network. Function L assigns to each state s ∈ S the set L(s) 
of atomic propositions a ∈ AP that are valid in s. We allow 
self-loops by having R(s,s) > 0. The probability that the 
transition s → s’ can be triggered within t time units is 1 - e -
R(s,s’)· t. The probability to move from a state s to state s’ 
within t time units is given by [1]: 
 

(8) 
 
 The probability of moving from a nonabsorbing (with 
at least one transition out of it) state s to s’ by a single 
transition is P(s,s’) = R(s,s’). For an absorbing state s, 
P(s,s’) = 0 for any state s’ [1]. 
 For our PBN example (Fig. 2 and 3) the Markov 
model would have the set of states 
S = {(000), (001), (010), (011), (100), (101), (110), (111)}. 
R is an 8 x 8 matrix containing the transition probabilities 
between states. AP ={xi ∈ {0,1}, i = 1,…, n}. L(x1… xn) = { 
x1…xn: x1…xn  ∈ {0,1}n}, for instance, L(011) =(x1x2x3=011). 
An initial distribution α, which can be a state or set of states, 
is imposed over the PBN. For this particular case, we 
assume an initial uniform joint distribution. This means 
each state has the same chance of being the initial state. 
Taking s0=(111), a possible sequence of transitions, or 
computation, is {(111), (001), (100), (101), (100)}. 

 There are two major types of state probabilities for 
CTMC:  
1. Transient-state probabilities, where the system is 

observed at a given time instant t: 
 πM (α,s’,t) = Prα{ σ ∈ PathM | σ@t = s’} 
2.  Steady-state probabilities, where the system is observed 

when equilibrium has been reached: 
 πM (α,s’) = limt → ∞ πM (α,s’,t) 
 The two types of measures shown above are state-
based. However, we are also interested in the probability on 
paths through the CTMC obeying particular properties. To 
the best of our knowledge, suitable mechanisms to measure 
such properties have not been considered in the literature. 
 It is worth noting that Binary Decision Diagrams 
(BDDs), a powerful tool for model checking, are not all that 
useful in the contexts of PBNs models. What precludes its 
use is the fact that each state of the PBN, or GAP, contains a 
string of variables representing genes. As BDDs represents 
possible transitions for one variable, we would need a BDD 
for each variable contained in the string. The output would 
be ramifications of several BDD. As BDDs represents 
Boolean functions, their values can be directly obtained 
from the truth table of the predictors. 
 
4.2 Continuous Stochastic Logic 
 Continuous Stochastic Logic (CSL) provides means 
to specify state as well as path-based performance and 
dependability measures for CTMCs in a compact and 
unambiguous way. This logic is basically a probabilistic 
timed extension of CTL [1]. 
 Besides the standard steady-state and transient 
measures, the logic allows for the specification of 
constraints over probabilistic measures over paths through 
CTMCs. For instance, we may check the probability of 
going from state s to state s’ within t time units, avoiding or 
visiting some particular intermediate states. Four types of 
measures can be identified:  
1. Steady-state measures: The formula S⊴p(Φ) imposes a 

constraint on the probability to be in some Φ state on the 
long run. For the PBN in the example above, S≥0.4 

(x1∧¬x2) states that there is at least a 40% probability 
that gene x1 is expressed and gene x2 is not expressed 
when the network reach equilibrium.   

2. Transient measures: The combination of the probabilistic 
operator with the temporal operator ◊ [t,t] can be used to 
reason about transient probabilities. More specifically, 
P⊴p (◊[t,t]ats’) is valid in state s if the transient probability 
at time t to be in state s’ satisfies the bound ⊴p.  

3. Path-based measures: By the fact that P-operator allows 
an arbitrary path formula as the argument; much more 
general measures can be described. An example is the 
probability of reaching a certain set of states provided 
that all paths to these states obey certain properties. 
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4. Nested measures By nesting the P and S operators, more 
complex properties can be specified. These are useful to 
obtain a more detailed insight into the system’s behavior 
and allow it to express probabilistic reachability that is 
conditioned on the system being in equilibrium. 

 The main benefits in using CSL for specifying 
constraints on measures of interest over CTMCs are[1]: 
1. Since the specification is entirely formal, the 

interpretation is unambiguous. An important aspect of 
CSL is the possibility of stating performance and 
dependability requirements over a selective set of paths 
through a model, which was not possible before. 

2. The possibility of nesting steady-state and transient 
measures provides a means to specify complex, though 
important measures in a compact and flexible way. 

 Once we have obtained the model (CTMC M) of the 
system under consideration, and specified the constraint on 
the measure of interest in CSL by a formula Φ, the next step 
is to model check the formula. The model-checking 
algorithm for CTL that supports the automated validation of 
Φ over a given state s in M, is adapted to these purposes. 
The basic procedure is as for model checking CTL: in order 
to check whether state s satisfies the formula Φ, we 
recursively compute the set Sat(Φ) of states that satisfy Φ 
and, finally, check whether s is a member of that set. For the 
non-probabilistic state operators, this procedure is the same 
as for CTL [1]. 
 For the purpose of intervention, it would be necessary 
to know how likely are certain states to reach a steady-state 
on the network of genes. This information, and with the use 
of the influences and sensitivities previously explained, 
would aid in determining the genes that represent the best 
candidates for reaching a desired condition. For instance, if 
we want to verify if a particular state reach a steady-state 
condition with a certain probability, a very high-level 
algorithm would look as follows: 
 
 Input: PBN, state s, measure m, constraint c 
 Do: 

1. Determine Bottom Strongly Connected Components 
BSCC of PBN. 

2. If s isn’t in some BSCC 
Output “State specified doesn’t reach steady state”.  

  Stop. 
3. Else continue. 
4. Compute transition probabilities to state s. 
5. Use constraint c to compare computed probabilities 

with m. 
6. If constraint is met with some probability p 

 Output “The condition is met with probability p”.  
 Stop. 

7. Else 
 Output “The system doesn’t meet the desired 
condition”.  

 Stop. 

 Given the state-explosion problem that characterizes 
this kind of model, abstraction is crucial. Bisimulation, the 
technique that guarantees exact abstraction, has a slight 
variation called lumping. It has been observed that lumping 
preserves all CSL formulas [1]. 
 
5 Future Work 
 At the moment, we are using CSL for describing some 
measurements on PBNs constructed with fictitious data. So 
far, steady-state measurements have been checked. Next, we 
have to develop algorithms for the particular cases of steady 
and transient states, as well as for path-based measurements. 
Then, we will test them with PBNs built from real data. 
This, of course, belongs to a feedback loop where results 
will be used to improve the algorithms. Once we are able to 
verify with certainty particular conditions against real data, 
we will work on the process of intervention. For this, we 
need to check the changes on the dynamics due to particular 
alterations of the parameters using a vector of perturbation. 
 
6 Conclusions 
 PBNs make an ideal model representation for genetic 
networks because the robustness that multiple predictors 
give them. As Kripke structures representing state 
transitions of a system, CSL can be used as a model-
checking algorithm for CTMC, expanding the traditional 
state-based measures with the use of path-based 
probabilistic measures. PBNs can be studied in the context 
of Markov theory, and Markov chains have been widely 
used to specify system performance and dependability. 
Because of this, it is our belief that a model-checking 
algorithm for CSL can be used to study the dynamics of 
CTMC representations of PBN used to model genetic 
regulatory networks in an effective way. Avoiding the 
matrix-based model, such algorithm would mitigate the 
impact of the analysis of an exponential size network. 
Intervention on the network would be attainable, due the 
information gathered thanks to the algorithm’s ability of 
answering questions about the transition system of the PBN.  
 The breadth of logic topics that this research evolves 
through is worth remarking. In its most primitive 
formulation, relationships between genes can be described 
with the use of logic connectives from propositional logic. 
Predicate logic is then used for formulating questions on the 
state and dynamics of the system.  Finally, temporal logic is 
the basis of the model checking algorithms that answers 
these questions.  
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Abstract 
Gene expression data usually contains a large 
number of genes, but a small number of samples. 
Feature selection for gene expression data aims at 
finding a set of genes that best discriminate 
biological samples of different types. Classification 
of tissue samples into tumor or normal is one of the 
applications of microarray technology. When 
classifying tissue samples, gene selection plays an 
important role. In this paper, we propose a two-
stage selection algorithm for genomic data by 
combining some existing statistical gene selection 
techniques and ROC score of SVM and k-nn 
classifiers. The motivation for the use of a Support 
Vector Machine is that DNA microarray problems 
can be very high dimensional and have very few 
training data. This type of situation is particularly 
well suited for an SVM approach.  The proposed 
approach is carried out by first grouping genes 
with similar expression profiles into distinct 
clusters, calculating the cluster quality, calculating 
the discriminative score for each gene by using 
statistical techniques, and then selecting 
informative genes from these clusters based on the 
cluster quality and discriminative score .In the 
second stage, the effectiveness  of this technique is 
investigated by comparing ROC score of SVM that 
uses different kernel functions and k-nn classifiers. 
Then Leave One Out Cross Validation (LOOCV)is 
used to validate the techniques.    
 
Key Words : Fisher Criterion, Golub Signal-to-
Noise, Mann-Whitney Rank Sum Statistic, Leave 
One Out Cross Validation (LOOCV), Support 
Vector Machine(SVM) 
 
1. Introduction 

 
The problem of cancer classification has clear 
implications on cancer treatment. Additionally, the 
advent of DNA microarrays introduces a wealth of 
genetic expression information for many diseases 
including cancer. An automated or generic 
approach for classification of cancer or other 

diseases based upon the microarray expression is 
an important problem. A generic approach to 
classifying two types of acute leukemia was 
introduced in Golub et. al.[7]. They achieved good 
results on the problem of classifying acute myeloid 
leukemia (AML) versus acute lymphoblastic 
leukemia (ALL) using 50 gene expressions. Their 
approach to classification consisted of summing 
votes for each gene on the test data, and looking at 
the sign of the sum. In this paper, four statistical 
techniques include Fisher Criterion, Golub Signal-
to-Noise, traditional t-test, and Mann-Whitney 
Rank Sum Statistic are studied. The objective  is to 
investigate the impact and importance of the gene 
selection techniques to the tissue classification 
performance. The effectiveness of this technique is 
investigated by comparing ROC score of SVM that 
uses different kernel functions: the dot product, 
quadratic dot product, cubic dot product and the 
radial basis function and the k-nn classifiers. The 
LOOCV is applied to validate the techniques. 
Results show that a better classification 
performance can be achieved by the classifiers if 
genes are first selected prior to the classification 
task.  
 
2. Background on cDNA 
Microarrays 

 
A gene consists of a segment of DNA which codes 
for a particular protein, the ultimate expression of 
the genetic information. A deoxyribonucleic acid 
or DNA molecule is a double-stranded polymer 
composed of four basic molecular units called 
nucleotides. Each nucleotide comprises a 
phosphate group, a deoxyribose sugar, and one of 
four nitrogen bases. The four different bases found 
in DNA are adenine (A), guanine (G), cytosine (C), 
and thymine (T).The two chains are held together 
by hydrogen bonds between nitrogen bases, with 
base-pairing occurring according to the following 
rule: G pairs with C, and A pairs with T. While a 
DNA molecule is built from a four-letter alphabet, 
proteins are sequences of twenty different types of 
amino acids. The expression of the genetic 
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information stored in the DNA molecule occurs in 
two stages: (i) transcription, during which DNA is 
transcribed into messenger ribonucleic acid or 
mRNA, a single-stranded complementary copy of 
the base sequence in the DNA molecule, with the 
base uracil (U) replacing thymine; (ii) translation, 
during which mRNA is translated to produce a 
protein. The correspondence between DNA's four-
letter alphabet and a protein's twenty-letter 
alphabet is specified by the genetic code, which 
relates nucleotide triplets to amino acids. cDNA 
microarrays consist of thousands of individual 
DNA sequences printed in a high density array on a 
glass microscope slide. The relative abundance of 
these DNA sequences in two DNA or cDNA 
samples may be assessed by monitoring the 
differential hybridization of the two samples to the 
sequences on the array. To this end, the two DNA 
samples or targets are labeled using di_erent 
fluorescent dyes (e.g. a red-fluorescent dye Cy5 
and a green-fluorescent dye Cy3), then mixed and 
hybridized with the arrayed DNA sequences or 
probes.After this competitive hybridization, 
fluorescence measurements are made separately for 
each dye at each spot on the array. The ratio of the 
fluorescence intensity for each spot is indicative of 
the relative abundance of the corresponding DNA 
sequence in the two samples (see 
http://rana.Stanford.EDU/software/ for more 
information on the measurement of fluorescence 
intensities). Microarrays are being applied 
increasingly in cancer research to study the 
molecular variations among tumors . This should 
lead to an improved classification of tumors, which 
in turn should result in progresses in the prevention 
and treatment of cancer. An important aspect of 
this endeavor is the ability to predict tumor types 
on the basis of gene expression data. We review 
below a number of prediction methods and assess 
their performance on the cancer datasets described 
in Section 3. 
 
3. Gene Selection Technique 
 
3.1 The Fisher Criterion[9], fisher, is a 
measure that indicates how much the class 
distributions are separated. The coefficient has the 
following formula: 

(1) 
where μi is the mean and vi is the variance of the 
given gene in class i (there are two classes in this 
study, the positive class i.e. the normal tissue 

sample and the negative class, i.e. the tumor tissue 
sample). It gives higher values to genes whose 
means differ greatly between the two classes, 
relative to their variances. 
 
3.2 Golub Signal-to-Noise [7] used a 
measure of correlation that emphasizes the “Signal-
to-Noise” ratio, signaltonoise, to rank the genes.  

(2) 
Where μi is the mean and σi is the standard 
deviation of the gene in class i. 
 
3.3  Traditional t-test [2], t-test assumes that 
the values of the two tissues variances are equal. 
The formula is as  

(3) 
where μi is the mean and vp is the pooled 
variance,

 
                                                        (4) 
 
3.4  The Mann-Whitney Rank Sum 
Statistic[2], mann, has the following formula: 

(5) 
Where ni is the sizes of sample i, and r1 is the sum 
of the ranks in sample1. 
These techniques are used because they look into 
the expression profiles of the genes in tumor and 
normal class [7]. In these techniques, each gene is 
measured for correlation with the class according 
to some measuring criteria in the formulas. The 
genes are ranked according to the score, S, and the 
top T numbers of genes are selected. 
 
 
 

70 Int'l Conf. Bioinformatics and Computational Biology |  BIOCOMP'11  |



4. The Procedure for Gene 
Selection and Classification of 
Gene Expression Data 
 
The procedure for this experiment is shown:  
i. Getting the data. 
ii. Setting the number of genes to be selected, T, 
the gene selection technique and the classifier. In 
this experiment, the number of genes to be selected 
is set to be from 1 to 100. 
iii. Applying LOOCV technique for validation and 
evaluation purpose, include leaving one sample out 
in S3.1, selecting genes in S3.2 and S3.3 and 
training and testing the classifiers from S3.4 to 
S3.6. 
iv. Calculating the ROC score based on the 
predicted class. 
v. The process is repeated for another number of 
genes to be selected, another gene selection 
technique and another classifier until all 
combinations are done. 
 
INPUT: Gene expression data matrix, X= 
{x11,…….,xnp}and the class label for each column,  
y C {−1,1}where n is the number of genes and p is 
the number of tissue samples. 
S1. Get the data with p tissues (samples). 
S2. Pre-set the combination: the gene selection 
technique, the classifier and number of genes to be 
selected, T, (the experiment run from 1 to 100 
genes). 
 
LEAVE ONE OUT CROSS VALIDATION: 
S3. For i = 1 to p 
S3.1 Leave ith sample out. 
 
GENE SELECTION: 
S3.2 Calculate the discriminative score, S, for each 
gene for the remaining p-1samples, and rank the 
genes based on the score. 
S3.3 Select top T genes based on the ranked score, 
S. 
 
CLASSIFICATION: 
S3.4 Train the classifier on the remaining p-1 
samples by using the selected genes. 
S3.5 Test the trained classifier by using the left out 
ith sample. 
S3.6 Record the predicted class from S3.5, put 
back the ith sample. 
 
 

ROC CALCULATION: 
S4. Calculate the ROC score based on the predicted 
class and save the ROC score. 
S5. Go to S2 for another number of genes to be 
selected, another gene selection technique and 
another classifier, stop if all combinations are done. 
 
OUTPUT:  ROC scores for each number of 
genes to be selected, T and gene selection 
technique. 
 
5.  Tissue Classification 
 
Two classifiers are proposed to evaluate the 
validity of the selected genes. They are the SVM 
[1] with different kernels and the k- nn [6]. 
 
5.1  Support Vector Machines for Tissue 
Classification 
Different kernel functions, the dot product and 
radial basis function are used for this experiment 
[4][5][8][1].  
The dot product has the following formula: 

K(x , y) = (x ⋅ y + 1)d      (6) 
 
where x and y are the vectors of the gene 
expression data. The parameter d is an integer 
which decides a rough shape of a separator. In the 
case where d equals to 1, a linear classifier is 
generated, and in the case where d is equal to or 
more than 2, a nonlinear classifier is generated. In 
this experiment, when d is equals to 1, it is called 
the SVM dot product, when d is equals to 2, it is 
called the SVM quadratic dot product and when d 
is equals to 3, it is called the SVM cubic dot 
product.  
The radial basis kernel has the following formula: 

 (7) 
where σ is the median of the Euclidean distances 
between the members and nonmembers of the 
class. 
The main advantages of SVMs are that they are 
robust to outliers, converge quickly, and find the 
optimal decision boundary if the data is separable. 
Another advantage is that the input space can be 
mapped into an arbitrary high dimensional working 
space where the linear decision boundary can be 
drawn. This mapping allows for higher order 
interactions between the examples and can also 
find correlations between examples.  
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SVMs are also very flexible as they allow for a big 
variety of kernel functions. 
 
5.2  k-nearest neighbor for Tissue 
Classification 
The k-nn classifier is a simple classifier based on a 
distance metric between the testing samples and the 
training samples [6]. The main idea of the method 
is, given a testing sample s, and a set of training 
tuples T containing pairs of the form (ti, ci) where 
ti’s are the expression values of genes and ci is the 
class label of the tuple. Find k training sample with 
most similar expression value between t and s, 
according to a distance measure. The class label 
with the top voting among the k training sample is 
assigned to s. The main advantage of k-nn is it has 
the ability to model very complex target functions 
by a collection of less complex approximations. It 
is easy to program and understand. No training or 
optimization is required for this classifier. It is 
robust to noisy training data. 
 
6.   Result Evaluation Method 
 
ROC score is used to analyze the results for the 
experiment. ROC score is also the area under the 
curve (AUC). ROC score is a common way for 
evaluating classification performance because it 
takes into account both false negative and false 
positive errors and it reflects the robustness of the 
classification. A random classification has a ROC 
score approaching 0.5 while a perfect classification 
with no error has a ROC score at 1. In this 
experiment, for each possible combination of 
number of genes to be selected, gene selection 
technique and classifier, the performance varying 
the number of genes from 1 to 100are evaluated. 
 
6.1   Results and Discussion 
 
In this section, the impact and importance of gene 
selection to the classification performance is first 
studied. This is carried out by comparing the 
classification performance by using all genes and 
gene selected by statistical techniques which are 
mentioned above. After that, the classification 
performance for each classifier is compared. 
Finally, based on the classifier with the best 
classification performance, the effectiveness of 
each statistical technique to this classifier is 
discussed. 

6.2   Importance of Gene Selection 
Technique Prior to Tissue Classification 
Figure-1 shows the classification performance by 
using all genes and gene selected by using 
statistical techniques. The ROC scores recorded for 
the gene selection techniques in the figure are the 
average ROC scores for number of genes selected 
from 1 to 100. From the figure, by using all genes, 
the best performance is obtained by using SVMs 
with radial basis function while 1-nn, 2-nn and 5-
nn have worst performance. 3-nn and 4-nn are 
comparable to each other when all genes are used. 
The performances of the classifiers are improved 
after genes are selected by gene selection 
techniques especially for k-nn classifier. This 
shows the importance of applying gene selection 
techniques to select informative genes prior to the 
classification task. Applying gene selection 
techniques in selecting genes helps in removing a 
large number of irrelevant genes which improves 
the classification performance. Since one of the 
advantages of SVMs is, it is robust to outliers and 
allows nonlinear classification to be done, gene 
selection techniques does not give big impact to its 
performance, but, a better performance still can be 
obtained after applying gene selection techniques, 
which can be seen from the figure. One might ask 
why there is still a need to do gene selection if the 
classification performance using SVM has little 
difference while using all the genes in the dataset 
compare to the selected subset of genes. One 
reason for this is that selecting subset of genes not 
only can help biologists to identify the potential 
genes rather than swimming in the huge dataset, it 
helps the classifier to build a better and simple rule 
for classifying future unknown data. 
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Figure 1: Classification performance by using all 
genes and genes selected by statistical techniques 
. 
This figure shows that a better classification 
performance can be achieved if genes are first 
selected by the gene selection techniques. 
However, which combination of statistical 
techniques and classifier and how many genes are 
needed for the best performance? Next section 
answers this question. 
 
6.3   Classification Performance 
between Different Classifiers 
 
Table-1 summarizes the performance for each 
SVM classifier. The ROC scores recorded in the 
table are the average ROC score over all trials with 
the number of selected genes from 1 to 100. 
 
 
 
 

 
 

SVMs Fish
er 

Golu
b 

Man
n 

t-
tes
t 

SVM_dot 0.88 0.88 0.88 0.8
8 

SVM_quadr
atic 

0.88 0.88 0.88 0.8
8 

SVM_cubic 0.86 0.86 0.87 0.8
6 

SVM_RBF 0.89 0.89 0.89 0.8
9 

 
Table-1: Summary for classification performance 
by using SVMs with different kernels after gene 
selection by using statistical techniques 
 
Table-1 show that, SVM radial basis function 
performs the best. Of the three, product kernels, 
dot-product and quadratic product have better ROC 
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score than cubic-product. These results indicate 
that over-fitting causes the misclassification for the 
cubic-product kernel. If more samples are obtained 
and they are not separable linearly, nonlinear 
classification may perform well [3].  
Table-2 summarizes the performance for each k-nn 
classifier. The ROC scores recorded in the table are 
the average ROC score over all trials with the 
number of selected genes from 1 to 100. 
 
k-nn Fisher Golub Mann t-test 
1-nn 0.79 0.79 0.79 0.79 
2-nn 0.79 0.79 0.79 0.79 
3-nn 0.86 0.85 0.86 0.85 
4-nn 0.86 0.86 0.85 0.85 
5-nn 0.86 0.86 0.85 0.85 
 

Table-2: Summary for classification performance 
by using different k-nn after gene selection using 
statistical techniques 
 
Table-2 show that k-nn with k more than 2 
outperform k which is equals to 1 and 2. One of the 
reasons for this to happen is that in the case of 
mislabeled training samples, it will have much 
greater effect on the classification result of 1-nn 
since one mislabel will result in misclassifying the 
test sample. 3-nn and 4-nn is less prone to bias in 
the data and more tolerable to noise since it makes 
use of several training samples to determine the 
class of a test sample. 
 
 
 
 
 

 

 
Figure-2: Classification performance between 
different classifiers after gene selection using 
statistical techniques (the best classifier is selected 
from SVM and knn) 

Figure-2 shows that SVM with radial basis 
function as the kernel function always produced 
higher ROC score than 3-nn. Generally, the results 
have lower ROC score with fewer genes for both 
classifiers. Lowest scores always drop between the 
numbers of genes from 1 to 15 except for Mann-
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Whitney Rank Sum Statistic. One reason for the 
lower scores might due to the characteristic of 
genes itself where genes do not act alone, but they 
interact with other genes for certain functions. For 
example, if Gene A and Gene B are in the same 
function it could be that they have similar 
regulation and therefore similar expression 
profiles. If Gene A has a good discriminative score 
it is highly likely that Gene B will, as well. 
 
 
Hence the statistical techniques are likely to 
include both genes in a classifier, yet the pair of 
genes provides little additional information 
compared to either gene alone. If there are 5 
functions in the dataset, 10 genes for each function, 
and if the genes in first function have the highest 
scores, so these 10 genes might be selected for the 
classification task. In this case, the genes being 
selected are highly redundant and thus provide 
little additional information. The peak performance 
for SVMs and k-nn always drop from the number 
of genes between 15 and 30. When the number of 
genes increase from 30 to 80 generally, the ROC 
score for SVMs and k-nn becomes more stable, 
because the possibility to select meaningful genes 
increase. 
 
 
7.   Summary 
 
This paper reports the application of different 
statistical techniques to the colon dataset. These 
techniques include Fisher Criterion, Golub Signal-
to-Noise, traditional t-test, and Mann-Whitney 
Rank Sum Statistic. By using these techniques, the 
data is rank based on the discriminative score and 
top T numbers of genes are selected. In conjunction 
with these gene selection techniques, several SVMs 
and k-nn classifiers are applied. Based on the genes 
selected by the gene selection techniques, ROC 
score of different combination of gene selection 
techniques and classifiers are obtained for analysis. 
The main objective of this experiment is to study 
the impact and importance of applying gene 
selection techniques prior to the classification task. 
Results show that a better classification 
performance is achieved by the classifiers if 
informative genes are first selected. However, 
finding a way to reduce redundant genes being 
selected in order to obtain a better classification 
performance is important.  
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Abstract— The role of protein sequence motifs is in predicting 

functional or structural portion of other proteins including prosthetic 
attachment sites, enzyme-binding sites and DNA /RNA binding sites, and 
so on.   A fixed window size is usually predefined to discover protein 
sequence motifs for many algorithms and techniques.  However, the 
predefined window size may deliver a number of similar motifs simply 
shifted by some bases or including mismatches.  In this paper, we use 
the positional association rules algorithm to form motifs network and adapt 
a Structural Clustering Algorithm for Networks named SCAN to recognize 
similar motifs.  Although association rule based algorithms have been 
widely adapted in association analysis and classification, few of those 
are designed as clustering methods.  With the SCAN analysis, the 
qualities of the clusters are further improved.  
 
Index Terms— Positional Association Rules, SCAN, Protein 

Sequence Motifs 

I. INTRODUCTION 

ioinformatics is the science of interpreting data from 
observations of biological process whose data is 
managed and mined [2]. Unlike data generated in 

various fields to support a hypothesis, the biological data is 
generated assuming that it contains vital information, and this 
information might answer several important questions. [3]. 

One of the most important applications of data mining is in 
the field of bioinformatics, because of its huge mass of data 
and hidden patterns particularly in proteomics data. The 
proteomic data consisting of sequence motifs in recurring 
patterns has the capability to predict a protein’s structure and 
functionalities [8]. In order to identify sequence motifs, most 
algorithms need to specify a fixed size for the motif in 
advance. These algorithms deliver a similar number of motifs 
since they have a fixed size (1), include mismatches, or (2) are 
shifted by one base [5].  The problem of mismatches is 
addressed by showing that some groups of protein motifs 
occur in recurring patterns. The first problem implies that 
some group motifs may be similar to one another; the second 
problem probably can be more easily seen in this way: If there 
exists a biological sequence motif with length of 12 and we set 
the window size to 9, it is highly possible that we discovered 
two similar sequence motifs where one motif covers the front 
part of the biological sequence motif and the other one covers 
the rear part [8]. 

 
 

The Association Rule [1, 6, 7] is used to extract important 
information from large repositories of data. For example, 
association rules can discover the support and confidence of 
“if A occurs then B will occur.” This can be expanded to any 
number of item sets whether it is three, four, or more.  To put 
forth this kind of DNA/Protein bioinformatics data into 
Association Rules, each protein is regarded as a transaction 
and the sequence motifs as items in the transaction. Some of 
the papers that were referenced apply the Association Rule in 
this manner [1, 8]. Although Association Rule plays an 
important role in extracting recurring patterns from protein 
sequences, there is still one more criteria to be considered. The 
motifs in a protein occur in specific distance intervals, so it is 
vital to discover the distance between the occurrence of motifs 
A and B. Therefore, a new Positional Association Rule 
Algorithm is proposed in [8]. The Positional Association rule 
is simple extension of the Basic Association rule with a new 
parameter named “Distance Assurance”.  

It is proved that the fixed window size problem can be 
solved by generating clusters with the help of the Positional 
Association Rules Algorithm in [8]. In this paper, Structural 
Clustering Algorithm for Networks (SCAN) [10], a new 
clustering algorithm for networks, is applied to generate 
clusters from the Positional Association Rules. SCAN is a 
popular tool for analyzing graphs. SCAN’s ultimate goal is to 
divide the nodes in the graph into three categories: clusters, 
hubs, and outliers. It creates clusters from structurally similar 
nodes [10]. For example, social networks may suggest a friend 
to you because you share similar friends with that person (i.e. 
you both belong to the same cluster). Nodes that belong to 
more than one cluster may bridge the two clusters together. 
SCAN identifies nodes of this pattern as hubs. Finally, SCAN 
marks structurally dissimilar nodes as outliers, which may be 
discarded as noise data [10].   

In this paper, we propose that one can use SCAN to refine 
positional association rule results in order to increase the 
quality of the resulting clusters. We apply proposed approach 
to alleviate the first problem “include mismatches” caused by 
the fixed window size approach. The set of rules produced 
using the positional association rule are fed into SCAN, to 
generate clusters, outliers, and hubs. The outliers and hubs 
were discarded while the clusters were retained since the 
primary goal is to increase the quality of the clusters that 
SCAN revealed. Higher-quality SCAN clusters are verified 
with the quality of the positional association rule clusters. 

The rest of the paper is organized into four more sections. 
Section II provides a detailed explanation of the algorithm. 
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Section III follows with details about the Experiment. Section 
IV shows the results of this work. Finally, the paper is 
concluded with Section V. 

II. ALGORITHM 

2.1 Positional Association Rules Algorithm 
 

 
Figure 1 The Pseudocode of Positional Association Rule with the 

Apriori concept 
 
The Association Rule in Data Mining generates item sets 

which occur frequently with certain rules occurring in a 
particular format, say (X=>Y) i.e. “if X occurs then Y occurs” 
with the condition that all of these item sets must pass a 
minimum support and confidence. A new Positional 
Association Rule, proposed in [8], has another parameter 
called “distance assurance.” The Positional Association Rule 
identifies a frequent item set with a certain frequent distance 
(d) and applies this distance once it obtains strong Association 
rules with a minimum confidence and minimum support. 
Where support and confidence is defined as: 

( )YXSupport ⇒  = 
T

YX ∪  

)( YXConfidence ⇒ = 
X

YX ∪  

Where |T| is the total number of transactions, |X| is the 
number of transactions in T that contains at least one X, 
|X∪ Y| is the number of the transactions in T that contain both 
X and Y. The newly proposed “distance assurance” is defined 
as: 

=⇒ )(. YXAssuranceDis
d

X

YX
d

∪  

Where ||X|| is the total number of times that X appears in T, d 

indicates the distance, -∞ < d < ∞. Where X 
d

⇒ Y denotes “if 

X appears, then after the distance of d, Y appears,” ||X
d

∪ Y|| is 
the total number of times in T that when X occurs and after the 
distance of d, Y occurs. Figure 1 shows pseudo code for the 
Positional Association Rule Algorithm and a detailed 
description is available in [8]. 
 
2.2 SCAN Algorithm 

SCAN is short for Structural Clustering Algorithm for 
Networks. While many algorithms find just the clusters in a 
network, SCAN finds the hubs and outliers. The identification 
of hubs is the real strength of SCAN, as hubs bridge clusters, 
and spread its influence from cluster to cluster. The usefulness 
on identifying outliers on the other hand, is simply in knowing 
that the outliers can be ignored. Outliers have little influence 
on their connected cluster, or on the cluster’s network. 

SCAN works by looking at the neighborhood of vertices 
instead of only their direct connections. This allows the 
detection of hubs and outliers. Not only is the algorithm 
useful, but it is also efficient with a running time of O(n). 

When running SCAN, the algorithm labels a newly found 
vertex as unclassified. From here it checks to see if this vertex 
has a minimum amount of connections in a cluster. If so, it 
uses this new found core as a springboard to search for more 
vertices. Finally, once SCAN visits all vertices, it identifies 
the vertices that connect to two or more clusters as hubs, and 
vertices that connect to only one cluster as outliers. The more 
connections a vertex has to a cluster, the more influence that 
vertex has on the cluster. 

 
2.3The combination of Positional Association Rules 

algorithm and SCAN Algorithm 
In this paper, in order to alleviate the first problem “include 

mismatches” caused by the fixed window size approach, we 
combine the positional association rules algorithm with SCAN 
to identify protein sequence motifs that similar to each other. 
First of all, positional association rule algorithm with distance 
equals to zero is implemented to identify protein sequence 
motifs that occur on the same position. The rationale behind 
this is that if two (or more) motifs occur on the same position 
frequently enough (pass the minimum distance assurance), 
they should be similar to one another. As the result, the 
network-like graph such as Figure 2 is generated. Next, the 
associations were converted into two columns of data for input 
into SCAN (as showed in Results). The data was used to run 
SCAN multiple times for each distance assurance with 
different values of µ and ε. Finally, clusters are generated by 
the proposed approach, which combines the positional 
association rules algorithm and SCAN. Secondary structure 
information is taken and analyzed the quality of each SCAN-
generated cluster. Detail results with different parameters are 
available in Results.  
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Figure 2: Directed graph generated from positional association rules based on minimum support, confidence, and 
distance assurance equal to 20%, 70% and 50% respectively. 

 

III. EXPERIMENT AND PARAMETERS SETUP 

3.1 Dataset 
  The original dataset used in this work includes 2710 protein 
sequences obtained from Protein Sequence Culling Server 
(PISCES) [11]. It is the dataset that was used in [8,12] to 
generate protein sequence motifs. No sequence in this 
database shares more than 25% sequence identity. The 
frequency profile from the HSSP [13] is constructed based on 

the alignment of each protein sequence from the protein data 
bank (PDB) where all the sequences are considered 
homologous in the sequence database. For the frequency 
profiles (HSSP) representation for sequence segments, each 
position of the matrix represents the frequency for a specified 
amino acid residue in a sequence position for the multiple 
sequence alignment. Twenty rows represent 20 amino acids 
and 9 columns represent each position of the sliding window. 
Secondary structure was also obtained from DSSP [14], which 
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is a database of secondary structure assignments for all protein 
entries in the Protein Data Bank, for evaluation purposes. 
DSSP originally assigns the secondary structure to eight 
different classes. According to previous related research [12, 
15], those eight classes were converted into three based on the 
following method: H, G and I to H (Helices); B and E to E 
(Sheets); all others to C (Coils). 343 different sequence motifs 
with window size of nine generated from previous work [12] 
are included in this paper. The dataset actually used in this 
work comes from [8] and contains more than 2000 protein 
sequence as transactions vary in amount of motifs (items). 
Each transaction sequence is sorted and organized by distance 
value, the items on the same line having a distance of zero 
from one another. The secondary structure data contained nine 
values for each 343 motifs, each value corresponding to its H, 
E, or C secondary structure percentage. 
 
3.2 Positional Association Rule 

The protein sequences are treated as transactions and the 
sequence motifs are treated as items of the transaction. Firstly, 
the association rules are generated from the data. As we 
mentioned in section 2.1, only tradition association rules are 
not sufficient due to the protein motifs occurring at positions.  
“Distance assurance” measure is incorporated. In this paper 
only a distance measure of zero is taken into account which 
means the protein sequence motifs which occur at same 
positions are considered. 
 
3.3 Running SCAN for refining clusters 
 The SCAN proposed in [10] is used to generate clusters 
from the rules generated as described in section 3.2. When a 
member of the generated clusters is identical to a neighboring 
cluster, their combined structure will add up to a bigger 
cluster. So, the number of common neighbors is normalized by 
the geometric mean of the two neighborhood sizes. 
 

)()(

)()(
),(

wv

wv
wv

ΓΓ

Γ∩Γ
=σ  

 

where, )(vΓ and )(wΓ  denotes the neighborhood of v and w  
respectively. When assigning a member to a cluster a 
threshold ε is applied to the computed structural similarity. 
Also µ number of neighbors with a structural similarity and 
exceeding the neighborhood threshold ε is required to decide 
whether a vertex is a core.  
 The values of ε and µ are varied to generate various 
clustered files. The ε is varied from 0 to 0.5 and µ is varied 
between 1 and 2 only although various values of µ has been 
used they, all proved to be ineffective. 
 
3.4 Dissimilarity Measure 
The following formula is used to calculate the dissimilarity 
between two sequence segments: 

Dissimilarity= ( ) ( )∑∑
= =

−
L

i

N

j
ck jiFjiF

1 1

,,  

Where L is the window size and N is 20 which represent 20 
different amino acids. Fk(i,j) is the value of the matrix at row i 
and column j used to represent the sequence segment. Fc(i,j) is 

the value of the matrix at row i and column j used to represent 
the centroid of a give sequence cluster. The lower dissimilarity 
value is, the higher similarity two segments have. 
 
3.5 Structural Similarity Measure 

Cluster’s average structure is calculated using the following 
formula: 

 
ws

ppp
ws

i
CiEiHi∑

=1
,,, ),,max(

                    

Where ws is the window size and Pi,H shows the frequency 
of occurrence of helix among the segments for the cluster in 
position i. Pi,E and Pi,C are defined in a similar way. If the 
structural homology for a cluster exceeds 70%, the cluster can 
be considered structurally identical [13]. If the structural 
homology for the cluster exceeds 60% and lower than 70%, 
the cluster can be considered weakly structurally homologous 
[15]. 

IV. RESULTS 

The positional association rule runs six times with distance 
assurance values of 10%, 20%, 30%, 40%, 50%, and 60%; 
while the minimum support and confidence is set as 20% and 
70% based on the optimal parameter setup of previous work 
[1]. Once complete, the file was translated into a two-column 
format representing the associations. For example, A

0

→ B 
would become line “A B.” The two column files were then fed 
into SCAN. An example is given in Figure 3 with minimum 
distance assurance equals to zero.  

 

 
Figure 3: Conversion of the Positional Association Rules 
output to SCAN input 
 

However, besides the data, SCAN requires two other 
parameters: ε and µ. µ is varied between 0 and 3 with step-size 
of 1. ε is between 0 and 1 to generate various clustering files 
and optimum clustered data is chosen. In the first run of 
SCAN, some limitations on the parameters were determined. 
First, Mu seems to only be effective at values 1 or 2. A value 
of zero results in all clusters and no outliers, a value higher 
than two results in all outliers and no clusters. SCAN produces 
hubs with values of ε greater than 0.5, so ε was restricted to 
lower values.  

Hubs were determined to be an undesirable component in 
this research because they were not included with the clusters. 
This caused isolation of major cluster components. For 
example, Figure 4 shows four motifs that should belong to the 
same cluster. If ε was set too high, Motif #6 would be 

82 Int'l Conf. Bioinformatics and Computational Biology |  BIOCOMP'11  |



 

classified as a hub, removing it from the cluster. Since 282, 
337, and 277 are not associated with any other motifs, they are 
removed as outliers. 

 

 
Figure 4: A Cluster with a Potential Hub 

 
In the end, SCAN was run with distance assurance between 

10% and 60%, Μ between 1 and 2, and Ε between 0.1 and 0.5. 
To ease the process of running SCAN on all of these 
parameter combinations, a script was created to run them in 
batch. The SCAN algorithm is a pre-packaged Java 
application. the algorithm was called with the appropriate 
combination of parameters and it gave the output files 
containing the clusters, hubs, and outliers obtained from the 
association rule data.  

Next, a second script was ran, which fed each SCAN output 
file into the quality algorithm. The quality algorithm 
implements the Structural Similarity Measure discussed in 
section 3.5. The algorithm takes the SCAN output file and file 
containing motif structure information as parameters. Once 
complete, the algorithm produced an output file containing a 
percentage on each line representing a cluster’s quality. 
Finally, a third, simple script was run to summarize the quality 
results and place them into range groups including >80, 70-80, 
60-70, and <60. An example summary is shown in Figure 5. 
 

 
Figure 5: Sample Quality Summary 
 

Initially, all of the summary files were combined to 
determine which parameters gave the best results. The most 
favorable combination was a distance assurance of 50%, Μ of 
1, and Ε of 0.3. Distance assurance had the most significant 
impact on cluster quality. ε, as shown in Figure 6, has little or 
no effect on quality. 

 
Figure 6: Dist. Assurance & ε Quality, Μ = 1 
  
Μ has a slight effect on quality, but still does not compare to 
distance assurance. Figure 7 shows Μ’s effect.  
 

 
Figure 7: Dist. Assurance & µ's Quality, EPS = 0.3 
 

With these new findings, it can be concluded that the SCAN 
parameters ε and µ have little effect on cluster quality as long 
as they stay within the range tested above. Distance 
assurance’s effect on the result demonstrates the impact of the 
positional association rule analysis method. Running SCAN 
on the data provided two important pieces of information: 
clusters and outliers. Each cluster provides a graph structure 
containing the original associations. This allows observations 
to be made on groups of associations rather than one at a time. 
The outliers remove noise, or associations of little 
significance. The positional association rule does a good job 
of eliminating outliers based on occurrence statistics, but 
SCAN takes it a step further and analyzes relationship 
structures.  

 

Mu 

EPS 
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V. CONCLUSION 

  For data mining in the field of bioinformatics, the ability to 
find recurring patterns in proteomics data enables the 
discovery of a protein’s structure and functionality. Most 
enumerative algorithms require the size of the motif to be set 
in advance. This can cause errors such as mismatches and 
bases that are off by one. However, the Positional Association 
Rule can be used as a remedy to these problems through the 
use of a distance assurance. 
  It is known that Association Rules can already be well used 
in Classification techniques, and Chen et al. [1] proved that it 
can also be used for Clustering purposes. In this paper, we 
further combine the positional association rules algorithm with 
the SCAN algorithm. With the SCAN data sorted, 
concentration solely on the clusters further increased the 
cluster quality. 
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 Abstract— 
Searching for protein sequence and structural motifs is one of the most 

important topics in Bioinformatics, because the motifs are able to determine 
the role of the proteins.  A fixed window size is usually defined in advance for 
the most of motif searching algorithms. The fixed window size may result in 
generating a number of similar motifs shifted by one to several bases or 
including mismatches.  In this study, to confront the mismatched motifs 
problem, we use the super-rule concept to construct a Super-Rule-Tree (SRT) 
which is generated by the DBSCAN clustering algorithm. This SRT 
recognizes the similar motifs. Analysis of the hierarchical DBSCAN 
generated Super-Rule-Tree shows a better quality in secondary structure 
similarity evaluation than the previous studies’. We believe that the 
combination of DBSCAN and SRT concept may provide a new point of view 
to similar researches which require predefined fixed window size. 
 
Keywords: Super-Rule-Tree (SRT), DBSCAN, protein sequence motif. 

1. INTRODUCTION 

LL living organisms require proteins to maintain  chemical 
and physical activities. Proteins are made of 20 types of 

amino acids [1]. Each protein has its own unique structure and 
function depending on the sequence and the type of its amino 
acids. From the point of view of biology and bioinformatics, 
to reveal the functionality of a protein, it is necessary to obtain 
the structure of the protein. Hence, an understanding of the 
formation of amino acids that synthesize the protein is crucial. 
Analyzing the sequence of amino acids yields some sequence 
patterns called motifs which have biological significance and 
repeat frequently. One of the most important Bioinformatics 
research fields in sequence analysis is searching for motifs, 
since these recurring patterns have the potential to determine a 
protein’s conformation, function and activities [2]. 
    Proteins are usually grouped based on their structural 
similarities in order to determine their functional properties. 
Therefore, to group the proteins, clustering of motif sequences 
is important. Just like proteins, discovered protein sequence 
motifs are usually categorized into protein families; PROSITE 
[3], PRINTS [4], and BLOCKS [5] are three most popular 
motifs databases that follows this trend. Since sequence motifs 
from PROSITE, PRINTS, and BLOCKS are developed from 
multiple alignments, these sequence motifs only search for 
conserved elements of sequence alignment from the same 
protein family and carry little information about conserved 
sequence regions, which transcend protein families [6]. 
    In order to obtain protein sequence motifs which transcend 
protein family boundaries, we applied our Super GSVM-FE 
model on all of our information granules so that we obtained 

 
 

541 extracted high-quality protein sequence motifs in our 
previous work [7]. However, the most challenging factors of 
identifying the motifs by clustering them appropriately emerge 
from the ambiguity and the variability of their sizes. 
Therefore, a pre-determined size is mostly used in the motif 
researches. However, two major problems stem from this 
fixed size namely; mismatches and shifted by one base [8].  
The first problem can be simply expressed as the probable 
similarity of two or more motif groups. The second problem 
‘shifted by one base’ causes to identify one motif more than 
once as if they are two or more different motifs. For example, 
if a biological sequence is longer than the fixed size, it is 
possible to identify the front part and the rear part as two 
different motifs. In this paper, we try to solve ‘grouping 
similar motifs including mismatches’ problem by using super- 
rules concept [9]. This problem previously was dealt in [2]. In 
their study, they made an improvement of the HHK Clustering 
Algorithm [2] and by using the super-rules concept they 
clustered the motifs and found the similarities among them in 
the form of a Super-Rule-Tree (SRT).  

In this paper; however, we worked out the first problem by 
using famous clustering algorithm so called Density Based 
Spatial Clustering of Applications with Noise (DBSCAN) [10] 
in order to acquire more accurate results. We worked on 541 
high-quality protein sequence motifs extracted by Super 
GSVM-FE model [7]. Then we applied the DBSCAN 
algorithm on these motifs at different levels of hierarchy to 
obtain the ideal SRT. DBSCAN algorithm requires two 
parameters called ‘Eps (epsilon)’ [10] and ‘MinPts (minimum 
points)’ [10]. Eps is the maximum radius of the neighborhood 
which is to be examined to form a cluster and MinPts is the 
minimum number of elements required to form a cluster. We 
applied DBSCAN for all possible values of epsilon and minPts 
and plotted different graphs taking into consideration minPts, 
epsilon, number of outliers, number of clusters, and 
comparatively size of clusters to choose the best pair of 
parameters.  A comprehensive quality comparison of our new 
Super-Rule-Tree (SRT) with the one in the previous study [2] 
is also presented.   

 The remainder of the paper is organized as follows. Section 
2 describes the DBSCAN and Super Rule Tree (SRT).  
Section 3 discusses how we setup the experiment with the 
DBSCAN and an explanation for determination of parameters. 
The SRT with comparisons and conclusions are given in 
section 4 and section 5. 
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2. METHODOLOGY 

2.1 DBSCAN 
 

Density Based Spatial Clustering of Applications 
(DBSCAN) with Noise is a notable clustering algorithm. It 
requires two parameters namely Eps and MinPts.   Important 
terms and their definitions are listed below. 
 

a) Eps: Maximum radius of the neighborhood to be 
considered while forming clusters. 

b) MinPts: Minimum number of points required to form a 
cluster. 

c)  Eps-neighborhood [10]: A point q is said to be in the 
Eps-neighborhood of the point p, if the distance 
between p and q is less than or equal to Eps. 

d) Core points and Border points [10]: Points inside the 
cluster are called core points and points on the border 
of the cluster are called border points. 

e) Directly density-reachable [10]: A point q is directly 
density-reachable from a point p w.r.t Eps and MinPts, 
if q belongs to the Eps-neighborhood of p and the 
number of points in the Eps-neighborhood of p is 
greater than or equal to MinPts (see Figure 2.1). If p 
and q are core points, then directly density-reachable is 
symmetric i.e., p is directly density-reachable from q 
and vice versa. However, this condition fails if either p 
or q is a border point. 

f) Density-reachable [10]:  A point p is density-reachable 
from a point q w.r.t Eps and MinPts, if there exists a set 
of points between q and p such that every point in this 
set is directly density-reachable from its precede.  

g) Density-connected [10]: If there exists a point x such that 
the points, p and q are both density-reachable from x, 
then p is said to be density-connected to q w.r.t Eps and 
MinPts. 

h) Noise: Noise is a set of points in a database that does not 
belong to any cluster. These points are also called as 
outliers. 

 

 
Figure 2.1: DBSCAN application on a 2D data set [10] 

 
This clustering algorithm follows the procedure of finding 

all points density-reachable from an arbitrary starting point, 
depending on the Eps and MinPts.  If the starting point is a 
core point then the procedure begins building a cluster. On the 
other hand, if it is a border point the algorithm cannot go 
further, i.e., it cannot find any point density-reachable from 
the starting point. This procedure is followed until all of the 
points in the Eps-neighborhood are touched or visited at least 

once. After all of the points in a cluster are visited, the 
algorithm chooses a new arbitrary starting point to generate 
other clusters.  
    For the given example in Figure 2.1, it is not complicated to 
find the range of parameters and it is not difficult to visualize 
the data so that the parameters can be determined by starting 
from 0 to the extreme value, i.e. the distance between the 
farthest elements.  However, in our case, the elements (points) 
have 180 dimensions or attributes; so, it is difficult to visualize 
a data in 180 dimensions and challenging to determine the 
ideal parameters as well as determining a range for 
parameters.  Thus, for Eps, we started from 0 in which every 
element was found as an outlier.  Then we use brute-force 
approach to reach a point where all the elements form just a 
single cluster. This approach helped us to find the extreme 
values for parameters. We further investigated to find the best 
parameters.  Parameters are considered the best possible when 
the cluster to outlier ratio becomes maximum.  This is 
explained in section 4 with details. ‘Manhattan Distance’ was 
used as a distance measure which is the sum of absolute 
differences between attributes of two elements.  
 

2.2 Super Rule Tree (SRT): 
 
The data set contains 541 motifs, in which each motif has 

some rules.  DBSCAN was used to cluster these motifs based 
on similarity and then assemble the rules in each motif to 
generate super rules. Once the rules are generated, it is 
possible to form another layer of super rules (super-super 
rules).  By this manner, a tree like structure (Super-Rules-Tree 
structure) is formed using these super rules. These super rules 
represent a harmonic rule pattern and the essential underlying 
relationship of classification [9]. Because the super-rules are 
generated from each of the motifs, it is easy to understand the 
general trend and ignore the noise and also interactively focus 
on the important aspects of the domain by using super-rules 
and selectively view the original detail rules in the 
corresponding motif [9].  

3. EXPERIMENTAL SETUP 

3.1 Data set:  
 

The original data set including 2710 protein sequences had 
been obtained from Protein Sequence Culling Server 
(PISCES) by Wang and Dunbrack [11].  This data set was 
used in [2] and [7] to generate protein sequence motifs.  No 
sequence in this database shares more than a 25 per cent 
sequence identity.   We also obtained the secondary structure 
from DSSP [12] which is a database of secondary structure 
assignments for all protein entries in PDB.  In this database 
there are 8 different classes of for secondary structures.  Chen 
et al. replaced those 8 classes with 3 classes by assigning H, G 
and I to H (Helices); B and E to E (Sheets); and all others to C 
(Coils). 

541 different sequence motifs were generated in [7] with a 
window size of nine from the original data set. Each window 
is represented by a 9x20 matrix plus additional nine 
corresponding representative secondary structure information 
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and it corresponds to a sequence segment. Twenty amino acids 
are represented by 20 columns and each position of the sliding 
window is represented by 9 rows.  Chen et al. has obtained 
541 high quality clusters extracted by super GVSM-SE model 
and each cluster is represented in 180 dimensions in the first 
data set.  In this study, the 541 clusters obtained from [7] have 
been used as the data set.  In addition to these clusters, the data 
set which includes the secondary structure of these clusters 
have also been used. 

 
 
3.2 Dissimilarity Measure 
 

In this paper Manhattan distance has been used as the 
dissimilarity measure.  Manhattan distance indicates a grid-
like path while traveling from one point to another. It is also 
known as the city block metric. According to Zhong et al. [6], 
this dissimilarity measure is more suitable for this field of 
study since all positions of the frequency profile are 
considered equal.  
 
The Manhattan Distance for the data set is calculated by the 
following formula: 
 

Dissimilarity= ( ) ( )∑∑
= =

−
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    Where L is the window size and N is 20 representing 20 
different amino acids. Fk(i,j) is the value of the matrix at row i 
and column j and represents the sequence segment. Fc(i,j) is 
the value of the matrix at row i and column j and represents 
the centroids of a give sequence cluster. The lower the 
dissimilarity value, the higher similarity the two segments 
have. 
 
3.3 Structure Similarity Measure 
 
In order to get the secondary structure and measure the quality 
of each cluster the following formula has been used.  

Secondary structural similarity=       ws
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Where ws is the window size , Ci, Ei and Hi correspond to the 
frequency of Coils, Sheets and Helices respectively and Pi,H  
shows the frequency of occurrence of helix among the 
segments for the cluster in position i. Pi,E and Pi,C are defined 
in a similar way.  

If the structural homology for a cluster exceeds 70%, the 
cluster can be considered structurally identical. If the 
structural homology for the cluster exceeds 60% and is lower 
than 70%, the cluster can be considered weakly structurally 
homologous [6]. 
 
 
3.4 Cluster-Outlier Ratio  

A ratio has been used as a criterion to find the ideal 
parameters Eps and MinPts for DBSCAN. The ratio is 
calculated by using the following formula: 
 
Cluster_Outlier_ratio = num_cluster / num_outliers 
 
As the ratio increases, the optimum parameters are obtained.   
However, this ratio is considered in an interval where number 
of outliers does not equal to zero or the number of elements.   
 

4. EXPERIMENTAL RESULTS 

 
4.1 Determination of Eps and MinPts for Super-Rule-Tree 
(SRT) construction 
 

Clusters are formed by applying the DBSCAN algorithm on 
the original data set. But, before that, the most important issue 
is to determine the values of Eps and MinPts.  To determine a 
logical Eps and MinPts value, the DBSCAN is applied on the 
original data with Eps ranging from 100 to 500 and MinPts 
ranging from 2 to 7.  These possible parameter pairs were 
chosen in this range because beyond these boundaries the 
algorithm accumulates all elements into one cluster or it 
determines all the elements as outliers.  Graphs were plotted 
for all the values of Eps and MinPts based on the number of 
clusters formed and the number of outliers.  Since the logical 
Eps and MinPts cannot be determined based on the mentioned 
criteria, the Cluster-Outlier ratio has been used.  This ratio was 
compared for each Eps and MinPts value within the range and 
determined its maximum values so that the number of clusters 
is higher and the number of outliers is less.  After graphs were 
plotted based on different parameters it was determined that 
the appropriate MinPts value is 2, otherwise the number of 
clusters declines significantly as shown in the figures below.  
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Figure 4.1: Graph for 541 clusters with MinPts=2 
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Figure 4.2: Graph for 541 elements with MinPts=3 

 
The x-axis represents Eps. In Figure 4.1, it is revealed that at 
Eps =406, the clusters to outliers ratio is maximum and at the 
same time the number of clusters is reasonably high (greater 
than 1). In Figure 4.2, the ratio of cluster to outlier decreases 
significantly. A similar trend is observed for MinPts greater 
than 3, so the parameters are Eps =406 and MinPts =2 for 541 
clusters.  
 
 
4.2 Applying DBSCAN on the sub clusters 
 

As the DBSCAN is applied with Eps=406 and MinPts=2, 
12 sub clusters have been found, where the first sub clusters 
holds 463 elements i.e. 85 percent of the total elements 
accumulated in one sub cluster.  Therefore, we believe it is 
necessary to cluster these 463 elements and form SRT 
structure.   
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Figure 4.3: Graph for 463 clusters with MinPts=2 

 
In order to apply DBSCAN on this sub cluster we followed 

the same procedure to determine the Eps and MinPts. From 

Figure 4.3, the optimum Eps value was empirically found to 
be 396 and MinPts 2. DBSCAN was applied with these 
parameters and found 4 sub clusters, where the first sub cluster 
holds 438 elements, which is majority of the data. Needless to 
say, we cluster these elements via DBSCAN again.   
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Figure 4.4: graph for 438 elements with MinPts = 2 

 
After the determination procedure was followed for Eps and 

MinPts and their values are found to be 327 and 2 respectively 
(as shown in Figure 4.4). The DBSCAN was applied with 
these parameters and found 29 sub clusters with the first sub 
cluster holding 126 elements.  We stopped further clustering 
after level 4 (the parameters are determined through figure 4.5 
with Eps=319 and MinPts=2) because there is no sub-clusters 
with more than 100 elements after that. Figure 4.6 shows the 
multi-layered DBSCAN generated SRT structure, with all the 
super rules in each motif at each level of DBSCAN 
application.  

 
 

100 150 200 250 300 350
0

20

40

60

80

100

120

140
126 minpoint 2.txt

 

 
outlier
cluster
(clstr/outlr)*100

Figure 4.5: Graph for 126 elements with MinPts=2 
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Figure 4.6: A Super Rule Tree with 4 levels of hierarchy 
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4.2 Super-Rule-Tree comparison 
   The Super-Rule-Tree generated in this paper is based on the 
top-down approach; while the Super-Rule-Tree made in [2] is 
based on the bottom-up method. The major reason causes the 
difference is according to the number of clusters generated 
from the clustering algorithms. In [2], the HHK clustering 
requires no parameters and generates high number of clusters.  
For example, the HHK clustering algorithm generates 108 
clusters when it is applied on 541 protein sequence motifs.  
Due to the fact that the number of clusters is too large to 
handle, another level of clustering is applied; thus, a Super-
Rule-Tree is formed to have a more generalized view. On the 
contrary, DBSCAN generates 12 clusters when it is applied on 
541 protein sequence motifs with first cluster contain over 
85% protein sequence motifs. Clearly, it is necessary to apply 
DBSCAN on the first cluster. Therefore, a Super-Rule-Tree is 
formed to have a more specialized view.     
    “Which SRT is better?”  In order to answer this question, 
we evaluate the SRT level by level using secondary structural 
similarity. Table 4.1 demonstrates the average cluster quality 
for each level.  Level 1 indicates the first clustering results 
applied on original 541 protein sequence patterns. Level 2 
demonstrates the clustering results on the next level.  Since the 
SRT in [2] contains only 2 levels, we can not compare both 
Super-Rule-Trees directly. However, it is clear to see that the 
SRT constructed in this paper is better than the previous works 
in secondary structure point of view. This mainly because the 
DBSCAN has the ability to filter out several outliers by setting 
up Eps and MinPts; while the HHK clustering algorithm can 
not sieve out outliers because it is a non-parameter approach.   
 

Table 4.1 Secondary structure similarity evaluations on SRT level by level 

Average Cluster Quality LEVEL 1 LEVEL 2 LEVEL 3 LEVEL 4 

SRT in this paper 75.98% 76.69% 75.64% 73.50% 

SRT in [2] 69.02% 63.48% NA NA 

 

5. CONCLUSION 

    In this paper, we propose that DBSCAN can be utilized 
to form the Super-Rule-Tree structure. We demonstrate a 
detailed process and a high quality Super-Rule-Tree, which 
gives a clear big picture of relations between protein sequence 
motifs. The improved secondary structure similarity on the 
SRT provides a better insight of the discovered protein 
sequence motifs that transcend protein family boundaries. We 
believe many further researches can be derived from this 
work. 
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Abstract - A new software tool (Gene2diseaseMapper) is 
presented that takes the HUGO symbol of a gene as input and 
delivers a ranked list of diseases, considering microarray 
experiments. Gene name synonym expansion was used to 
generate a query for MEDLINE. Retrieved article records 
were filtered by a disease stoplist which was created from 
Medical Subject Headings (MeSH). From the ArrayExpress 
microarray database, all experiments were retrieved in which 
the gene was differentially expressed. The experiments were 
searched for disease terms extracted from the MEDLINE 
articles. A similarity function was developed to compare the 
MeSH terms and the terms in ArrayExpress. A scoring 
function was implemented which ranked the disease MeSH 
terms according similarity and frequency. The method was 
explored with 12 genes for whose corresponding protein a 
drug was approved or is under development. 
Gene2diseaseMapper was able to find the diseases of the 
approved drugs in 11 out of 12 cases.

Keywords: Bioinformatics, Translational medicine, Data 
mining, Microarray, Medline, Medical subject headings

1 Introduction
Many diseases are related to a change in the expression 

of proteins. The largest changes in protein expression can be 
found in cancer related diseases. Inflammation-related 
diseases also cause large changes in the protein expression 
pattern. A prominent example is rheumatoid arthritis, which 
affects millions of people worldwide. Neurodegenerative 
diseases such as Alzheimer, Parkinson and Huntington also 
show different protein expression patterns when compared to 
healthy control groups. Changes in protein expression can 
also be used to detect endogenous biomarkers; i.e. molecules 
which indicate a disease state [1]. For several years, 
microarrays have enabled expression profile analysis of the 
whole genome. The expression profiles of tens of thousands 
of genes can be explored in one experiment. In combination 
with information about experimental conditions, control 
groups, test groups and treatment these profiles are a valuable 
source for data mining. Because many journals require 
submission of the microarray data to one of the public 
repositories such as Gene Expression Omnibus [2] (GEO) or 
ArrayExpress [3] together with a publication, an enormous 

and quickly growing resource of medical information is 
available. The Gene Expression Atlas of the ArrayExpress 
database contains curated data from more than 5600 
experiments. The differential expression of the genes is 
already calculated and the database is programmatically 
accessible. A p-value is given for every calculated differential 
expression value, indicating its reliability. The experiments 
are described and annotated with the Experimental Factor 
Ontology (EFO) [4].

A central point in a drug discovery program is the 
determination of the protein that will be targeted by the drug. 
This is often done at the beginning of a project, when a gene 
is chosen for cloning and expression to establish a biological 
screening assay. It is also possible to start a drug discovery 
program with a phenotype-based approach, but a drug will 
hardly be approved without a defined target protein. This 
target protein has to fulfill manifold requirements. It has to be 
related to a disease with a certain chance to cure it or, if not 
possible, to palliate symptoms. The gene encoding the target 
protein has to be known in order to develop biological 
screening assays. 

Searching the medical literature for the relation between target
and disease is the starting point in drug discovery. The huge 
expenditures for pharmaceutical research during the last 
decades resulted in a plethora of publications. Most of the 
medical information is not published in open access journals 
and is therefore not freely accessible. But almost all relevant 
biomedical literature is indexed in MEDLINE [5]. With more 
than 17 million bibliographic records MEDLINE is the largest 
repository for biomedical literature. Interfaces like PubMed 
enable human and programmatic access. What makes 
MEDLINE interesting for drug discovery is not only the 
specialization in life science-related subjects, but the 
hierarchical indexing system used to categorize the collected 
publications. The medical subject headings (MeSH) thesaurus 
consists of a controlled vocabulary, the MeSH descriptors, 
supplementary concepts and entry points [6]. The hierarchical 
structure of the MeSH thesaurus can be mapped onto a tree 
with general concepts close to the root and specific concepts
in the leaves. Each node in the tree contains a unique node 
name, a MeSH descriptor, related concepts and entry points. 
There is no MeSH descriptor for the root node. Articles in 
MEDLINE are indexed with MeSH descriptor terms by 
searching the articles for entry points.
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As a working hypothesis for this examination, it was assumed 
that the vocabulary from ArrayExpress and the standardized 
vocabulary from the medical subject headings can be used to 
detect overlapping information. Starting with the approved 
symbol for a gene it should be possible to detect information 
about related diseases in MEDLINE. Searching a microarray 
database with a gene symbol and related disease information 
should retrieve evidence on differential expression of that 
gene in a disease.

2 Methods

2.1 Stoplists

Stoplists are lists of node names that are used to activate 
or inactivate branches in the MeSH tree [7]. Only active 
MeSH terms are used for searching corresponding expressions
in the microarray data. A simple stoplist for diseases activates 
the whole branch ‘C’ in the MeSH tree. Without sub-branch 
C22, which contains MeSH terms related to animal diseases, 
branch C contains 10782 nodes with 4466 unique MeSH 
headings (stoplist disease). Branch C04 in the MeSH tree was 
deactivated while searching microarray datasets for diseases 
which are not related to any form of cancer (neoplasms). 
Branch C04 contains only cancer-related MeSH terms. In 
addition, nodes in other branches were deactivated if their 
heading was equal to one of the headings in the C04 branch. 
After applying the disease stoplist omitting cancer, 8905 
MeSH nodes with 3807 unique descriptor headings remained 
(stoplist disease, no cancer). Separating between neoplasm 
and other diseases is necessary, because neoplasia causes so 
many changes in gene expression that the relations between 
gene expression and other diseases would not be recognized. 
Of course this kind of restriction can also be applied to other 
diseases; e.g., inflammation-related diseases causes manifold 
changes in gene expression.

2.2 Programmatic access to PubMed

The MEDLINE databases can be accessed 
programmatically via the Entrez tools [8]. A query, containing 
a search term, submitted to MEDLINE via the PubMed 
interface returns a list of identifiers (PMID) which is used to 
obtain the publication records R. These records contain 
bibliographic information, often an abstract and the MeSH 
term headings which were used to index these articles.

2.3 Gene names and synonyms

A table with Human Genome Organization (HUGO) ids, 
gene names, approved symbols and synonyms was retrieved 
from HGNC (HUGO Gene Nomenclature Committee) [9]. 
The HUGO Gene Nomenclature Committee is located at the 
European Bioinformatics Institute and works under suspicion 
of the Human Genome Organization. From HGNC a table 
with gene names and their synonyms was retrieved. The 

MEDLINE database Gene also delivered HUGO ids, gene 
names and synonyms. [10] There is not a complete overlap 
between the synonyms in the two databases.

2.4 Searching PubMed records with gene 
names

To generate the query for searching the PubMed 
database, the approved symbol from the HUGO Gene 
Nomenclature Committee (HGNC) was used to find the 
synonyms from PubMed Gene and genenames.org. The 
synonyms were combined in a string by using ‘OR’ and sent 
as a query to PubMed. Without any further specification all 
fields in the PubMed database were searched. Depending on 
the gene symbol, a few records to the extent of several ten 
thousand were retrieved. All records which did not contain at 
least one active MeSH descriptor of the disease branch were 
skipped (stoplist disease, no cancer). The result was a dataset 
RGene for each gene. For the genes TNFSF11 and TPPP the 
branch C04, containing cancer-related diseases, was also 
activated (stoplist disease).

2.5 Searching ArrayExpress database

The Gene Expression Atlas of the ArrayExpress 
database contains curated and re-annotated microarray 
datasets [3]. This database was queried with the HUGO 
symbol for the gene under consideration. All experiments 
MAGene in which this gene was differentially expressed were 
retrieved. A gene experiment record contains the identifier of 
a microarray experiment in which the gene is up or down-
regulated. Connected with the microarray experiment 
identifier is a record containing the experiment title, a 
description, the sample attribute values and the experimental 
factor values.

2.6 Searching microarray experiments with 
disease MeSH terms

The microarray experiments MAGene were searched 
for matching disease MeSH terms from RGene. Each disease 
term was compared with the title, the description, the sample 
attribute values and the experimental factor values. Each of 
the resulting similarities sTitle, sDescription, sSample and sExpFac was 
multiplied by sDisease, the frequency of occurrence of the 
disease term in the retrieved publication records. The highest 
scores from all microarray experiments MAGene,i were 
summed up. Because the terms which are used to annotate the 
experiments in ArrayExpress differ from the medical subject 
headings, a similarity function was needed to find similar 
terms. Each term, medical subject header tMeSH or from a 
microarray experiment tMA, was decomposed into a list of 
unique words uMeSH and uMA. A complete similarity matrix 
between these two lists was calculated by single word 
comparison using the Levenshtein similarity function [11]. 
From this matrix the optimum list of similarity pairs was 
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derived and their median taken as total similarity score for 
sim(uMeSH, uMA). If at least one word from uMeSH did not fit 
with a similarity >= 0.8 to any word in uMA the similarity 
sim(uMeSH, uMA) was set to 0. The score for a disease term 
sMA,MeSH was computed as the sum of all products of the 
frequency of occurrence of this term in the publication records 
multiplied by the maximum similarity of this term with a 
corresponding term in the microarray annotation.

3 Experiments

3.1 Targets with approved drugs

Seven targets for which a recently approved drug was 
available were chosen from the literature (GeneSetMature) 
(Table 1) [12]. With the HUGO approved gene symbol and 
the found synonyms a query string was generated and the 
PubMed records were retrieved as described in the paragraph 
“Searching PubMed records with gene names“. The retrieved 
records were filtered with the disease filters and the remaining 
records underwent a first evaluation. From the MeSH 
headings a simple histogram was generated with the most 
frequent MeSH terms at the top. An example is given for gene 
HTR1A in Table 2. The rank of the indication equal to the 
indication of the approved drug was taken as a figure of merit 
for the applied algorithm. One rank score was obtained for the 
PubMed record derived MeSH term histogram and one for the 
sorted scores sMA,MeSH of the microarray experiment to MeSH 
term comparison.

3.2 Targets with drugs in development

Another set of five genes (GeneSetNew) was selected for 
which a drug was in development for the encoded protein
[12]. The genes in GeneSetNew are much less well explored 
than the genes in GeneSetMature, as can be seen from the 
number of retrieved PubMed records (Table 3). 
“Neuroinflammatory disease” is the indication of the 
corresponding drug for gene ALCAM. Because there is no 
MeSH term “Neuroinflammation” the indication was set to 

inflammation.

4 Results and conclusions
For dataset GeneSetMature all approved drug indications 

were found by the MeSH term histograms (Table 4, index 1-
7) and all found indications had a histogram rank below five, 
except for TPPP which was at rank 42. In dataset GeneSetNew, 
containing less explored genes (Table 4, index 8-12) also all 
drug indications were found. Two outliers were observed with 
the gene ALCAM and SLC6A7 on rank 27 and 29 
respectively. In 11 of 12 cases the indications were confirmed 
by microarray experiments. For F13A1 (Factor XIII 
deficiency) no matching sample or condition was found in 
Gene Expression Atlas. Table 5 shows that the number of 
gene name synonyms ranges from 7-22. Comparing the 
retrieved number of articles for the HUGO symbol only and 
the query containing the gene name synonyms demonstrates a 
huge increase in retrieved articles by using synonyms (Table 1 
and 5).

Table 1. Seven drug targets with at least one approved drug on the market (GeneSetMature). “HUGO” is the 
approved symbol for the target protein encoding gene. “Articles” is the number of articles retrieved from PubMed for the 
expanded gene query. “Articles, no expansion” is the number of filtered articles querying PubMed with the HUGO 
symbol only.

Index HUGO Drug Indication Articles Articles, no expansion 
1 HTR1A Vilazodone Depression 17617 103
2 TNFSF11 Xgeva Bone metastases 5956 1
3 TPPP Eribulin Breast neoplasm 8796 42
4 GHRH Tesamorelin Obesity HIV patients 

(Obesity)
9705 2891

5 GLP1R Victoza Diabetes mellitus 866 36
6 PDE4 Roflumilast Chronic obstructive 

pulmonary disease
2835 158

7 F13A1 Corifact Factor XIII deficiency 3179 68

Table 2. MeSH term histogram for HTR1A with expanded 
query. Applied stoplist: disease, no cancer. “Frequency” is 
the frequency of occurrence of the MeSH headings in the 
17617 PubMed records.

Rank Disease MeSH heading Frequency
1 Depression 206
2 Schizophrenia 178
3 Pain 162
4 Body Weight 152
5 Inflammation 133

6
Genetic Predisposition to 

Disease
123

7 Hypertension 118
8 Hypothermia 112
9 Heart Failure 100

10 Catalepsy 95
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The ratio between unique MeSH terms and the number of 
retrieved article records shows a roughly tenfold reduction 
taking the median of all values. CXCL16 is an interesting 
outlier, because with 238 retrieved records 114 MeSH terms 
were found. Remember that these are MeSH terms from the 
diseases stoplist that excluded cancer-related terms. This 
indicates that this target is active in a multitude of disease 
processes. The microarray experiments gave additional 
information. The number of experiments in which the gene 
under consideration was differentially expressed ranged from 
233 for APOC3 to 741 for ALCAM. Interestingly, ALCAM is 
the gene with the second lowest number of matches between 
MeSH terms and microarray experiments. This means that 
many sample values and conditions from the microarray 
experiments did not match any one of the 77 disease MeSH 
terms which were used to index the literature containing one 
of the ALCAM gene name synonyms. 

In conclusion, the proposed method summarizes up to 
thousands of MEDLINE publication records and relates the 
indexing MeSH terms to hundreds of microarray experiments 
in the Gene Expression Atlas. After sorting disease related 

MeSH term lists according to their score sMA,MeSH, indications 
for approved drugs and drugs under development were at the 
top of the lists. Disease stoplists as filters for the indexing 
MeSH terms together with publicly available microarray data 
were successfully applied to targets of approved drugs and 
drugs under development. This demonstrates that 
Gene2diseaseMapper implements a new data mining method 
which prioritizes indications for targets in drug discovery 
programs.

Table 4. Result table for GeneSetMature (index 1-7) and GeneSetNew (index 8-12).  “Indication” is the indication given 
for the drug targeting the protein encoded by “Gene”. “Rank PubMed histogram” is the rank of the indication in the histogram 
of the MeSH terms which were derived from the PubMed query with the corresponding gene names. In “Rank PubMed-
microarray” the rank of the indication according to the scored microarray experiments “MA score” is given. “MA score” is the 
resulting score from the evaluation of the microarray experiments with the disease MeSH terms. a No experiment with Factor 
XIII deficiency was found in the Atlas DB.

Index Gene Indication
Rank PubMed 

histogram Frequency
Rank PubMed-

microarray
MA 

score
1 HTR1A Depression 1 189 1 2057
2 TNFSF11 Bone metastases 3 259 6 798
3 TPPP Breast neoplasm 42 27 6 504
4 GHRH Obesity HIV patients 

(Obesity) 4 190 1 784
5 GLP1R Diabetes mellitus 1 195 1 14
6 PDE4 Chronic obstructive 

pulmonary disease 3 51 3 104
7 F13A1 Factor XIII deficiency 1 139 a 0
8 ALCAM Neuroinflammatory disease 

(Inflammation) 27 3 13 48
9 APOC3 Cardiovascular disease 8 46 10 50

10 SLC6A7 Alzheimer 29 4 34 4
11 MAPKAPK5 Rheumatoid arthritis 6 2 10 4
12 CXCL16 Inflammation 1 14 1 240

Table 3. Five drug targets with a drug in development (GeneSetNew). For explanations see Table 1.

Index HUGO Drug Indication Articles
8 ALCAM AT-002 (CD166) Neuroinflammatory 

disease (Inflammation) 507
9 APOC3 (Isis pharmaceuticals) Cardiovascular disease 1544

10 SLC6A7 Alzheimer 1896
11 MAPKAPK5 GLPG-0259 Rheumatoid arthritis 247
12 CXCL16 Inflammation 241
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Table 5. Details of the search for the genes in GeneSetMature (index 1-7) and GeneSetNew (index 8-12). “Synonyms” is 
the number of gene name synonyms that were used to query MEDLINE. “Articles” contains the number of unique MEDLINE 
article records that were retrieved by the query. “Unique MeSH terms” is the number of unique MeSH terms found in the 
indexing section of the articles. Column six gives the ratio between unique MeSH terms and the number of unique articles. 
Column seven contains the number of microarray experiments where the gene was found to be differentially expressed. 
Column eight indicates how many disease MeSH terms matched on at least one microarray experiment.

Index Gene Synonyms Articles

Unique 
MeSH 
terms

Ratio 
MeSH/Articles

MA 
Experiments with 

differentially 
expressed genes

Matching MeSH 
on MA 

Experiments
1 HTR1A 16 17617 5044 0.29 258 279
2 TNFSF11 22 5956 5438 0.91 326 212
3 TPPP 16 8796 9070 1.03 313 315
4 GHRH 14 9705 4933 0.51 250 288
5 GLP1R 7 866 597 0.69 293 52
6 PDE4 11 2835 859 0.30 474 171
7 F13A1 16 3179 2068 0.65 429 282
8 ALCAM 12 507 298 0.59 741 75
9 APOC3 9 1544 1549 1.00 233 87

10 SLC6A7 7 1896 582 0.31 243 140
11 MAPKAPK5 9 247 69 0.28 451 33
12 CXCL16 13 247 69 0.28 404 77
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Abstract— As one of the more prominent areas of 

bioinformatics research, protein sequence analysis has gathered 
considerable interest. The structure, function, and activities of 
the protein are strongly linked to structural motifs found in its 
sequence data. Building off of past research, we propose a new 
granule model that combines the strength of fuzzy logic and 
granule computing, with the speed and robustness of a decision 
tree for the purpose of identifying and extracting protein motif 
data that transcends protein families. We propose parameters for 
the model and test their effectiveness using several measures of 
accuracy and quality. The end result, a decision tree example, is 
explored for its usefulness in this endeavor. 
 
Index Terms—FGK Model; Decision Forest; Entropy 

Threshold; Protein Sequence Motif; 

I. INTRODUCTION 

As one of the basic components of an organic body, 
proteins have been of prominent interest for many years now 
in various fields of study. As such, their shape, their functions, 
and the analysis thereof have become increasingly important. 
In the past, the process by which one would link both protein 
structure and shape to its function was through arduous and 
time consuming methods[1] that included well known 
processes such as crystallography[2], spectroscopy, and 
various others. However, in recent years, the promising field 
of bioinformatics and its accompanying data mining 
techniques has broken into novel ground by looking not 
directly at the shape of the protein, but rather at its base 
composition. Doing so allows the prediction of the three 
dimensional shape of the protein within an acceptable 
threshold of accuracy.  

To understand this, one must understand that a protein can 
be described by three basic categories: primary, secondary, 
and tertiary structure. A protein’s primary structure, or “base 
composition,” is its amino acid sequence. These are the 
building blocks of proteins and the repeating patterns therein 
are known as motifs. Each of these amino acids can have non-
covalent, intermolecular reactions with other amino acids 
within the protein, causing repeating patterns of folds and 
sheets within the protein’s structure. This localized 
substructure describes the protein’s secondary structure. 
Finally, the tertiary structure of the protein is the overall three 
dimensional shape. This is important because not only does 
the tertiary structure of a protein denote its function, but 

biochemical research and data would suggest a protein’s shape 
is heavily determined by its primary structure (assuming the 
absence of any denaturing agents, such as heat or acid)[3]. 
This supports the idea of using data mining and bioinformatics 
as a tool for analyzing the primary structure in order to predict 
the tertiary structure of a protein.  

Naturally, in order for analysis of protein data to occur, the 
data has to be both available and numerous, which suggests 
that databases are good repository of protein information. 
Three of the most popular protein databases would include 
PROSITE[4], PRINTS[5], and BLOCKS[6]. Each describes, 
in some detail, the various structures of the protein, and, to 
some degree, also supports the idea that reoccurring primary 
and secondary structural patterns suggest common tertiary 
structure.  

Various researchers have tried using such databases and 
numerous techniques[7] to glean some meaningful correlation 
between protein structure and its three dimensional shape. One 
such study by Han and Baker utilized their K-means clustering 
algorithm [8, 9]. Using said algorithm, the protein motifs 
discovered by it, and an additional algorithm, Hidden Markov 
Model [10], they were able to predict with some level of 
success the local tertiary structure of various proteins. In the 
previous works related to this paper, a Fuzzy C-means 
algorithm was used to initially break the data into ten subsets. 
A K-Means algorithm was then utilized to refine each subset. 
This combination (noted as the FGK Model), was used to not 
only analyze similarities among protein structures, but also to 
eliminate low quality data [11]. Support Vector Machines 
were then proposed to be used for the purpose of predicting 
the shape of the protein using the above analysis [12].  

Granted such, the methodologies proposed within this paper 
suggest the use of decision trees in the stead of SVM. This 
method would be used to adequately analyze a protein’s 
primary and secondary structure, as well as offer the ability to 
use such trees for the prediction of the protein’s tertiary 
structure.  

Decision tree algorithms offer output in an easy to 
understand format, showing precisely how the algorithm made 
its decisions [13, 14]. Unfortunately, the algorithm requires 
the calibration of several parameters, including entropy 
threshold, data classifiers, and labelers. This paper discusses 
how each parameter has been chosen for further research on 
the matter.  
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Therefore, the ID3 (Itemized Dichotomizer 3) decision 
tree[14] is being proposed to extend the before mentioned 
previous works related to this paper (the FGK Model)[11]. 
With its ability to define whether proteins belong to a given 
cluster, it will be instrumental in eliminating noisy or 
meaningless data. As the purpose is to discover small, 
sequential patterns within the amino acid sequence in order to 
relate to common tertiary structures, it is only natural that not 
all data will be important. Thus, in this paper, the use of the 
ID3 decision tree algorithm in order to relate patterns of 
primary and secondary protein structure to its tertiary structure 
will be discussed. Just as well, the processes by which its 
parameters are decided for this particular solution will be 
heavily discussed primarily through the use of statistical charts 
describing the output of the decision trees. The following 
sections of the paper will be arranged as such: methods 
(describing both present and past approaches used to solve this 
problem), experimental setup (describing the input in more 
detail, all utilized equations, etc.), results, future works, and 
conclusion.  

II. METHODS 

2.1 Data Set Challenges-Large and Random 
As one might suspect, to adequately analyze protein 

primary sequences, one must overcome the challenges the data 
presents. The sheer size of the dataset can make even fairly 
robust data mining techniques seem rather inadequate. 
Coupled with the inherent random and noisy nature of pulling 
data from various, somewhat disparate databases [4, 5, 6], the 
task becomes even more difficult. This is particularly 
despairing in the case of using a decision tree as it is fairly 
susceptible to outliers and random data. However, previous 
works suggest that a preliminary analysis of the data with the 
“FGK Model”[11], tackles both of the before mentioned 
problems with a promising level of success. The data can then 
be further and efficiency processed by the proposed ID3 
algorithm. 

Granted such, our previous works refers to the experiments 
of Wei et al [15], which handles, specifically, the randomness 
aspect of the protein data set. Using the basic idea of the K-
Mean clustering algorithm, one will note that all initial 
centroids are randomly chosen. This potentially renders the 
algorithm worthless in data that is fairly random in the first 
place. Instead, they proposed that one run the K-Means 
algorithm five times. In each round, the randomly generated 
initial points that had the potential to form clusters with high 
structural similarity were chosen for the improved K-Means 
clustering algorithm. These were checked against other 
potential points, and if its minimum distance fell within a 
given threshold, it was included as an initial centroid.  

The method used in the “FGK Model” was similar, but used 
a method more akin to averaging the results of the five K-
Means runs to produce centroids for a sixth iteration. The 
resulting clusters from this additional run of the “Greedy K-
Means”[11] algorithm used these centroids to produce clusters 
of various qualities. These qualities are determined by 
analyzing secondary structural similarity of the proteins in 
each cluster (the equation for such is given in section 3). Each 
cluster and its respective centroids are ranked by these 

structural similarity values, under the safe assumption that 
centroids that produce higher quality clusters are more 
desirable.  

2.2 Fuzzy Greedy K-Means (FGK) Model 
The problem of an overly large and complex dataset is still 

a prominent issue. Although the five iterations of the 
traditional K-Means algorithm and then a sixth application of 
the so-called “Greedy K-Means” algorithm sufficiently handle 
a great deal of the noise in the data, it is still undesirably 
inefficient when dealing with the entire data set at one time. 
However, the proposed FGK Model presents a solution via a 
simple concept of granular computing. The concept proposes 
that a divide-and-conquer idea be used to break the original 
problem into various subsets that can be more easily processed 
by any given algorithm. In other words, it breaks the original 
data set into “information granules.” [16, 17] Although one 
might argue that this is simply spreading the running time 
across various subsets, this isn’t true. This is especially 
important in the case of the K-Means algorithm, which has a 
running time that increases significantly with a larger dataset.  

Therefore, the combination of the “Greedy K-Means” 
algorithm, and the concept of granular computing produces the 
FGK Model. The FGK model essentially breaks the protein 
data set into ten information granules using Fuzzy C-Means. 
Then performing the five iterations of the traditional K-Means 
algorithm and the sixth Greedy K-Means run solves both 
issues with data complexity and size. The resulting output 
groups the data into ten information granules containing any 
number of clusters containing any number of proteins.  

2.3 Decision Tree Forest Model 
Now, we know the FGK Model adequately processes the 

data, clustering it according to its primary structure into both 
granules and further into clusters. Even stating so, this model 
still needs further tools to produce any novel or interesting 
findings. Thus, the ID3 decision tree algorithm[14] is 
proposed to further the model. This produces a mechanism 
that, once trained in the typical fashion, can tell if any given 
random protein belongs to a cluster with decent prediction 
accuracy. This is to say that this paper suggests that a “forest” 
of decision trees is to be created for each cluster in each 
granule (producing, with the given dataset, a total of 799 
decision trees). Each decision tree in the so called forest is 
trained on the individual clusters’ proteins. This would imply 
that each decision tree will have a basic idea of the inherent 
sequential patterns (i.e. motifs) within each protein set, such 
that it can be used to then analyze a given protein’s primary 
sequence. If the decision tree produces a “yes” (the meaning 
of which, in this particular context, will be explained in the 
experimental setup section) for that given protein, then this 
would suggest that the protein has similar characteristics to the 
homologous proteins within the cluster, including tertiary 
structural characteristics.  A model of such can be seen in 
Figure 1, combining the elements of the FGK Model and the 
new Decision Tree Forest Model, to produce a novel approach 
that takes the analysis power of decision trees and combines it 
with the data sorting and cleaning power of the FGK-Model. 

Thus, the basic concept of the ID3 algorithm will be 
followed heavily to produce each of the 799 decision trees. 
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The algorithm, while simple, is fairly robust with large data 
sets and adequately accurate for this particular task. Granted 
such, it seems obligatory to note that any future works related 
to this would make use of much more appropriate decision 
tree algorithms, as the ID3 algorithm is largely a proof of 
concept. This is not to say that any results produced by this 
algorithm are not applicable, but rather that this research team 
realizes there are more appropriate, albeit more complex, 
decision tree algorithms to apply. 

 

 
Figure 1. The FGK-Decision Tree Forest Model 

III. EXPERIMENTAL SETUP 

3.1 Dataset 
The incoming dataset that is first analyzed by the overlying 

FGK-Model is composed of 2710 protein sequences obtained 
from the Protein Sequence Culling Server (PISCES)[18]. 
None of the protein sequences within this database share more 
than a 25% sequence identity. Sliding windows with nine 
successive residues are generated from each protein sequence, 
such that each window represents one sequence segment of 
nine continuous positions. Granted such, more than 560,000 
segments are generated by this method. Also added to this 
dataset is the protein’s frequency profile, generated from the 
HSSP[19]. This frequency is based on the alignment of each 
protein sequence from the Protein Data Bank (PDB), where all 
the protein sequences are considered homologous in the 
sequence database. The secondary structure of each protein is 
also generated from DSSP[20], which is simply a database 
containing secondary structural assignments for all protein 
entries in the Protein Data Bank.  

The FGK-Model will take this dataset and produce 799 
clusters divided among ten information granules. Each granule 
will have a varying number of clusters within it (this number 
is determined by a function explained in section 3.4). Each 
cluster, itself, will have a varying number of protein sequence 
information in it as well. They will also be of a varying 
secondary structural similarity (explained in section 3.7). Each 
of these clusters will then used as the dataset for the induction 
of each individual decision tree for reasons described in the 
Methods section. 

3.2 Representation of Sequence Segment 
As mentioned, the sliding windows of nine successive 

residues are generated from all of the 2710 protein sequences. 
Each window corresponds to a sequence segment, which is 
represented by a nine by twenty matrix, plus an additional nine 
places corresponding to the secondary structure data obtained 
from DSSP. Twenty rows represent twenty amino acids and 
nine columns represent each position of the sliding window. 
For the frequency profile (HSSP) representations of the 
protein sequence segments, each position of the matrix 
represents the frequency for a specified amino acid residue in 
a sequence position for the multiple sequence alignment. The 
secondary structure generated from DSSP is simplified from 
its original eight different classes, down to three. In this paper, 
structures denoted by H, G, and I are converted to H (Helices), 
B and E are converted to E (Sheets), and all other structures 
are converted to C (Coils).  

3.3 Distance Measure 
As the FGK-Model contains K-Means at its core, a distance 

formula is imperative. According to various sources[9,15], the 
most appropriate distance formula to use is the city block 
metric, as each position in the generated frequency profile will 
be considered equally. Thus, the following formula is used to 
calculate the distance between two sequence segments when 
clustering [9]:  
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Where L is the window size (in this case nine) and N is 
twenty, representing the twenty different amino acids. Fk(i, j) 
is the value of the matrix at row i and column j, which 
represents, in this case, the sequence segment. Fc(i, j) is the 
value of the matrix at row i and column j, which represents the 
centroid of a given sequence cluster.  

3.4 FGK-Model Parameter Setup 
For the Fuzzy C-Means Clustering that is included in the 

FGK-Model, the fuzzification factor is set to 1.05 and the 
number of clusters is set to ten. These settings yielded the best 
results for this particular dataset. The reason for this being, if 
the fuzzification factor was to remain constant, but the number 
of clusters was set to twenty, the membership function would 
produce nearly equal membership to all clusters for each 
segment. If one was to decrease the fuzzification factor 
instead, overflow becomes probable.  

In order to separate the information granules generated by 
the above Fuzzy C-Means results, the membership threshold is 
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set to twelve percent. Using this value, fifteen percent of the 
dataset is filtered out and the remaining eighty-five percent is 
assigned to one or more of the clusters. The formula that 
dictates how many clusters should be included in each 
information granule is given below:  

C k = ×

∑
=
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k

n

n

1

 total number of cluster 

Where Ck denotes the number of clusters assigned to an 
information granule k. The number of members belong to 
information k is denoted as nk. The number of clusters in FCM 
is denoted as m. Although using this methodology causes the 
total data size to increase from 413 MB to 529 MB, as well as 
an increase in total number of members from 562745 to 
721390, it allows for one to deal with one information granule 
at a time. For example, the largest information granule 
generated contains 136112 members. From that granule, 151 
clusters should be computed from those members, generating 
a data with the size of 99.9 MB. Compared with the original 
dataset, the largest granule is only twenty-five percent the size. 
Therefore, the computation time for all information granules 
(231720 seconds) is a mere twenty percent of the running time 
of other leading research [15] (1285928 seconds). These 
results support the idea that the FGK-Model is a viable one for 
reducing space and time complexities.  

3.5 Decision Tree Induction 
The ID3 decision tree algorithm [14], as most classifying 

algorithms, requires a period of training to produce any level 
of output. For each cluster generated by the overlying FGK-
Model, a decision tree will be trained and generated by 
considering the frequency profile of each segment in a given 
cluster. This training produces a resulting decision tree that 
will now represent the sequential motifs in said cluster. This 
particular implementation of the ID3 algorithm uses the 
general formulas for producing both entropy and information 
gain, both given below: 

 
Entropy(S) = - (SY/SC)log2(SY/SC) – (SN/SC)log2(SN/SC) 

 
Where S is a collection of total size SC, SY is all items 
belonging to a given cluster, and SN is all items not belonging 
to a given cluster. How these items are labeled is described in 
section 3.6. 

 
Gain(S, A) = Entropy(S) – (SV/SC)Entropy(SV) 

 
Where S is a set of each value v of all possible values of 
attribute A, SV is the subset of S in which attribute A has the 
value v, and SC denotes all items in set S. 

3.6 Class Labeling 
To generate each label that will determine whether or not a 

given protein is to be classified as a “yes” protein (that is, it 
belongs to its cluster generated by the FGK-Model) or a “no” 
protein, one must consider the secondary structure. For each 
cluster, a representative secondary structure is generated by 
determining the secondary structural motif (H, E, or C in this 

paper) that is most characteristic (that is, the motif with the 
highest count in that particular column). This is done in each 
of the nine secondary structural positions for that particular 
cluster. Once the representative secondary structure for that 
cluster is generated, each of the proteins are then analyzed for 
their similarity to this representative structure by both position 
and the motif at that position and then given an appropriate 
score. For example, if the representative structure for the 
cluster (assuming only three structural positions) is HHH, and 
an individual protein sequence has a secondary structure HEH, 
then this protein would be given a score of two out of three. 
For this research, the scores range from 0 (that is, the protein 
has no similarity to the given representative structure of the 
cluster) to 9 (which denotes a protein that is fully 
representative of the cluster). Labeling can then be performed 
based on this score, such that any values over a certain 
number, what we will call our label pivot (a parameter 
discussed in section 3.10), are then considered a “yes” protein. 
All others would be considered a “no” protein. 

3.7 Secondary Structural Similarity Measure 
Used in the FGK-Model, the formula to calculate a cluster’s 

secondary structure similarity is given by the following 
formula:  

Secondary structural similarity=       
ws

ppp
ws

i
CiEiHi∑

=1
,,, ),,max(

 

 
Where ‘ws’ is the window size and Pi, H shows the percentage 
of helix (H) occurrences among the segments for the cluster in 
position ‘i.’ Pi, E and Pi, C are defined in a similar way in 
respect to sheets and coils. 

Granted such, if the generated structural homology for a 
given cluster is seventy percent or greater, the cluster can be 
considered structurally identical [19]. If it falls between sixty 
percent and seventy percent, it can be said to be weakly 
structurally homologous [15].  

3.8 Average Node Secondary Structural Similarity Measure 
Decision trees are defined, primarily, by their nodes, not by 

clusters. Given such, it is necessary to also include an average 
node secondary structural similarity measure, given by the 
following formula: 

n

SimilarityStructuralSecondary
n

t
∑
=1

__
 

Where the “Secondary_Structural_Similarity” is the equation 
defined in section 3.7 and number of decision nodes is denoted 
as ‘n.’  

3.9 Ideal Prediction Accuracy Measure 
To aid in choosing appropriate parameters, another measure 

that is made for each decision tree is its ideal prediction 
accuracy. A twenty-fold cross validation, or similar measure, 
isn’t used in this particular case due to the sheer size of the 
data as well as the fact that each decision tree is tested on 
twenty-one different entropy threshold values (described in 
section 3.10). Instead, the ideal prediction accuracy measure is 
generated by simply running the training data (that is, the 
frequency profile of each protein in a given cluster) through 
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the same tree it produced. This is done by comparing the 
labels given to the test data by methods explained in section 
3.6, against the decisions made by the decision tree for each 
protein. This summation of all correctly made decisions 
(regardless of whether or not it is a “yes” decision or a “no” 
decision) is divided by the number of decisions made. This 
gives a percentage that shows directly how changing entropy 
thresholds affects the predicting power of a given decision 
tree.  

3.10  Decision Forest Parameter Setup  
The ID3 decision tree, in this particular implementation and 

application, has three primary parameters, some of which have 
already been defined: label pivot, attribute range set, and 
entropy threshold[14]. The label pivot determines what range 
of labels, as described in section 3.6, are considered “yes” 
labels, and, alternatively, the range that denotes “no” labels. 
Naturally, the magnitude of this number has a large effect on 
the outcome of the decision trees. The attribute range set is 
composed of a short list of amino acid frequency ranges that 
serve as the classifying attributes. The length of this list and 
the distance between each of the bounds of the ranges also has 
a prominent effect on the decision tree, and its respective 
measures. The most sensitive parameter, however, is the 
entropy threshold, or, rather, the allowed level of randomness 
before the decision tree can make a decision. As one might 
expect, the closer the threshold is to 1.0, which is the 
maximum entropy a dataset can have, the shorter and less 
effective the decision tree becomes. Yet, an entropy threshold 
that is too restrictive (i.e. close to 0.0) would be detrimental to 
the purposes of this research for reasons explained more in 
depth in the Experimental Results section.  

The parameters tested in this experiment include two label 
pivots (six and seven), two attribute range sets ({0-4, 5-7, 8-
14, 15-29, 30-100}, {0-7, 8-14, 15- 29, 30-100}), and twenty-
one different entropy thresholds, ranging from 0.0 to a 
maximum of 1.0 while incrementing by 0.05 units. All of 
these parameters were tested on all 799 protein clusters, such 
that 268,464 unique tuples were generated, giving various 
measures described in each of the sections above. The results 
of these tests are described in the Experimental Results 
section. 

IV. EXPERIMENTAL RESULTS 

4.1 Parametric Criteria 
For each of the 799 protein clusters generated by the FGK-

Model, and for each of the parameter choices as described in 
section 3.10, an array of measures were recorded. This data 
was used for the purpose of deciding upon the most 
appropriate values for the three parameters for the decision 
tree implementation. These measures included ideal prediction 
accuracy, average node secondary structure similarity, average 
yes node secondary structural similarity, decision node count, 
yes decision node count, and number of proteins classified 
within those yes nodes. Also included was a range of values 
that counted the percentage of decision nodes that had a 
secondary structure similarity measure of over 90%, 90-80%, 

80-70%, 70-60%, and less than 60% structural homology. 
These values were used to determine what combination of 
entropy threshold, attribute range set, and label pivot would 
produce the optimal output for this research, based on various 
criteria. Obviously, one vies for high ideal prediction 
accuracy, because it implies high actual prediction accuracy 
such that parametric combinations that yielded these were 
kept. Likewise, a secondary structural similarity measure that 
is greater is more desirable than one that is not, with more 
emphasis placed on those combinations that yielded high 
average yes node secondary structural similarity measures. 
This is because the nodes that belong to the cluster (i.e. “yes” 
nodes) are statistically more important. 

Inverse to the other measures, it was decided that a lower 
node count (that is, the count of decisions made) would be 
more favorable. This is due to the fact that this research aims 
to find protein sequence motifs that transcend protein families. 
If the node count is too high, and approaches the number of 
proteins, this implies that each node represents approximately 
one protein. As each decision node, ideally, should represent a 
given motif among the proteins it represents, it makes no sense 
to have a system in which each node only represents one 
protein. This, in itself, implies higher entropy and fewer items 
in the attribute range list.  

Finally, it was decided that those parameters that gave 
higher percentages of nodes that have 70% structural 
homology or above (see section 3.7), were ideal.  

4.2 Parametric Results 
Given the parameters, four distinct data sets were created 

from analyzing and averaging the appropriately weighted 
values from the 268,464 generated tuples. The graphs 
denoting these four data sets can be seen in the following 
figures. Ideal prediction accuracy, given by a red line refers to 
the measure described in section 3.9. Its value refers to the 
right y-axis. “Yes” node secondary structural similarity, given 
by a purple line, is exactly that, again referring to the right y-
axis. Total secondary structural similarity, given by a green 
line, is the measure of all nodes’ secondary structure. It, too, 
refers to the right y-axis. Total node count, a light blue line, is 
simply the number of all decision nodes, and it refers to the 
left y-axis. Since high quality nodes are important, we also 
show the percentage of nodes with greater than 90% structural 
similarity, given by a gray-blue line. This, again, is given by 
the right y-axis. Finally, the “yes” node count, denoted by an 
orange line, just refers to the number of yes decision nodes.  
    As one can see in each of the four figures, an entropy 
threshold of 0.75 is marked by a vertical red on the graph, 
noting the various measures at that entropy. One might note 
that the percentage of nodes with a 90% structural similarity 
line falls sharply on all four graphs after an entropy of 0.75. 
One might also note that ideal prediction accuracy follows a 
similar trend, but to a much less severe degree, just as average 
yes node secondary structure similarity measure. An entropy 
threshold of 0.75 also falls in the mid-range of the average 
node count, implying that it would not yield data too far 
dichotomized, nor would it yield completely random output. 
Keeping in mind all criteria spelled out in section 4.1, it would 
appear that an entropy threshold of 0.75 is, indeed, the most 
appropriate for this research.  
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Figure 2 Seven Label Pivot, Large Attribute Range set  

 

 
Figure 3 Six Label Pivot, Large Attribute Range Set 

 

 
Figure 4 Seven Label Pivot, Reduced Attribute Range Set 

 

 
Figure 5 Six Label Pivot, Reduced Attribute Range Set 

 

Table 1. Comparison of Decision Node Protein Secondary Structural 
Similarity Percentages. 

 
To determine which label pivot and attribute range set is 

optimal, one can refer to the measures of nodal structural 
similarity percentages given in Table 1, which assumes our 
given entropy threshold of 0.75.  In this table, P7 refers to a 
label pivot of seven, P6 refers to a label pivot of six, R5 refers 
to the large ({0-4, 5-7, 8-14, 15-29, 30-100}) attribute set, and 
alternatively, R4 refers to the small attribute range set. As one 
can see, taking only those percentages that refer to greater than 
70% structural similarity (as, again, they can be considered 
structurally identical [15]), P6-R5 produces the best results, 
with P7-R4 producing the worst results. Note that while P6-R5 
doesn’t produce the optimal percentage of nodes with greater 
than 90% structural similarity, it does produce both the most 
over 70% and has the least percentage of nodes with less than 
60% structural similarity. Taking in consideration other 
measures, such as node count and average yes node secondary 
structural similarity, P6-R5 consistently produces the most 
optimal output.  

4.3 Example Decision Tree Result  
Thus, given the parameters of a 0.75 entropy threshold, and 

the parametric combination denoted as P6-R5 (refer to section 
4.2) one can produce a relatively simple decision tree to 
examine the effectiveness of the FGK-Decision Forest Model. 
The following figure examines a random file whose number of 
decisions was in the lower range, such that it could be easily 
displayed on paper. Note that this tree is not typical in that the 
average range for the node count with the given parameters is 
150:  

 
Figure 6 Granule 6-Cluster 93 Decision Tree 

 
The method by which one would read Figure 6 is very simple. 
One starts at the top node, denoted here as ’69,’ and would 
work their way down to a given decision. The decision states 
whether or not a protein belongs to their FGK-Model 
generated clusters. The ’69,’ ’169,’ ’78,’ ‘1,’ etc. are all 
dimensions for each protein generated by the sliding window 
technique. Each branch from each node denotes the attribute 
range that is used to further classify the data set. For instance, 
starting from the root node, ‘69,’ if the frequency value of this 
dimension is between zero and four, then a “no” decision is 
made. In most cases, however, the decision tree must refer to 

Parameters >90% 90-80% 80-70% 70-60% <60% 
P7-R5 

55.83% 15.56% 7.19% 9.18% 12.24% 
P6-R5 50.27% 15.92% 13.05% 8.97% 11.80% 
P7-R4 50.80% 17.38% 7.92% 10.00% 13.90% 
P6-R4 44.39% 17.45% 14.57% 9.94% 13.65% 
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other dimensions and check their respective value before a 
decision can be made. The yes decision nodes are denoted as 
percentages, which detail the structural similarity of the 
proteins it describes. The black decision nodes denote a case 
in which no proteins in the training data could be represented 
by that particular path. These are interpreted as “no” decision 
nodes.  

V. CONCLUSION 

A newly proposed model, the FGK-Decision Forest Model, 
utilizes the data organizing prowess and robustness of granule 
computing granted by Fuzzy C-Means and Greedy K-Means 
clustering, and the clear and easily comprehendible analysis of 
the ID3 decision tree. Using this model, one splits the original 
protein data, generated by a sliding window technique, into 
various information granules of protein clusters via various 
iterations of Fuzzy C-Means and Greedy K-Means. Granted 
these clusters, a decision tree is generated for each. These 
decision trees each contain decisions that denote whether or 
not certain proteins belong to a given cluster. They also denote 
structural motifs, presented in the “yes” nodes of each tree. All 
of these decision trees come together to produce a “decision 
forest” in which one could potentially use to predict local 
tertiary structure by finding the decision tree and the motif 
contained therein that best fits the unknown protein, assuming 
paired tertiary structure data.  

This paper focuses heavily on the parametric setup and 
analysis of the results of each. The three primary parameters 
tested were entropy, label pivot, and attribute range set. The 
entropy described the allowed randomness of the tree. It was 
set to 0.75, as it had the greatest tradeoff between all 
parametric criteria. The label was based on secondary 
structural similarity and the idea that 70% and greater 
secondary structural similarity was roughly identical. Two 
label pivots were tested, and a value of 6 was decided based 
on the quality analysis. The attribute range set was based on 
the frequency values produced by the sliding window 
technique. Two sets were tested, and the larger range set was 
used for its increased quality in regards to the parametric 
criteria. 

A decision tree example is also shown, in which its 
usefulness for portraying clear and easily comprehendible 
analysis is examined. As each “yes” node denotes a structural 
motif, each “no” node denotes a set of proteins that need to be 
removed from the training data, and each black (that is, each 
node in which a decision was not generated) node denotes 
sections in which there are no structural motifs, it is clear that 
the decision tree is a promising method, at least graphically, 
for portraying protein data. Also, each decision tree can be 
used, without modification, to decide whether or not a protein 
belongs to the cluster represented by the protein, and with an 
associated prediction accuracy. This implies that the decision 
forest, as stated previously, can be used to generate local 
tertiary structural predictions with measurably accurate 
decisions. 

While further development and research is needed to 
expand the flexibility and applicability of this model, it should 
be clear that it has potential to be adapted due to its promising 
robustness and efficiency, as well as the relative ease of 

comprehending its output, such that its analysis is not 
constrained to one field. With our proposed expansions on the 
original implementation, we believe this model will be used 
widely for the above mentioned reasons.  
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UMR 8506 CNRS-SUPELEC-UNIV PARIS SUD

plateau de Moulon, 3 rue Joliot-Curie, 91192 GIF-SUR-YVETTE Cedex, France

ABSTRACT

In this paper, first we present A Matlab toolbox which gives the
possibility to simulate the data for testing the algorithms such as:
Principal Component Analysis (PCA), Factor Analysis(FA), Inde-
pendent Component Analysis (ICA), Linear Discriminant Analysis
(LDA) and many other classification methods which can be used
in Data Reduction (DR), Data Visualization (DV), supervised and
unsupervised classification of multivariate great dimensional bio-
logical data. Then, we describe some biological experiments related
to studying the circadian cell cycles and cancer treatment where
the biologists observe different kind of data such as the variations
of temperature, activity, hormones, genes and proteins expressions.
These data are often complex: multivariate, great dimensionality,
heterogeneous, with missing data, and observed at different sam-
pling rates. The classical methods of PCA, FA, ICA and LDA can
not directly handle these data. In this paper, we show how this tool-
box can help them to visualize, to analyse and to do classifications
on these data and finally to extract some knowledge from them.

Keywords: Data visualization, Dimensionality reduction, Princi-
pal Component Analysis, Factor Analysis, Independent Compo-
nent Analysis, Linear Discriminant Analysis, Bayesian inference,
Sources separation, Inverse problems.

1. INTRODUCTION

In many biological experiments, we are always face to data sets
which are heterogeneous, of great dimensionality with missing and
outliers data. To understand these data, first we need to visualize
them, but the great dimensionality of these data needs a Data Re-
duction (DR) step. Principal Component Analysis (PCA), Factor
Analysis (FA), Independent Component Analysis (ICA) and Linear
Discriminant Analysis (LDA) methods are the main classical meth-
ods for analyzing high dimensional data [1, 2, 3, 4, 5, 6, 7, 8, 9, 10].
PCA, FA and ICA are mainly used for dimensionality reduction and
LDA for supervised classification. Even if these methods are well
defined, still there exist different algorithms for their practical us-
age: PCA and FA are the most stable ones because they use quadratic
criteria and L2 norms (second order statistics in statistical interpreta-
tion and Gaussian hypothesis in probabilistic interpretation) and so
they are very simple to implement. The characteristics of the results

Senior Researcher at Laboratoire des signaux et systmes (L2S)
PhD candidate at Laboratoire des signaux et systmes (L2S)
Post-doc at Laboratoire des signaux et systmes (L2S)
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project ”Circadian and cell cycle clock systems in cancer”:
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obtained by PCA and FA are well known. For example, we know
that the factors are obtained up to a rotation indetermination. ICA is
more complex because the criteria used to be optimized are often non
quadratic (Kullback-Leibler divergence) and use higher order statis-
tics (HOS) and non Gaussian probability laws. The corresponding
algorithms are then more sophisticated. However the common prop-
erties of independent components are that they are obtained up to a
permutation and scale factor indetermination. LDA can be consid-
ered as a particular supervised classification method where we know
the number of classes.

In this paper, in a first step, we present, very shortly, but in a
unifying way of forward and inverse problem, different multivariate
data analysis tools. Then, we present a Matlab toolbox: to generate
different factors with different properties; to generate different data
sets with linear or non linear dependencies; to add different kind of
errors; to apply different algorithms of PCA, FA, ICA, LDA, ... and
to compare the obtained results. In a second step, we show some
preliminary results for real data set obtained by biologists working
on circadian and cell cycle influence on cancer. This work is done in
collaboration within the European project EraSysBio.

2. A UNIFYING PRESENTATION OF MULTIVARIATE
DATA ANALYSIS METHODS THROUGH FORWARD AND

INVERSE MODELING

PCA, FA, ICA and LDA are classical methods of dimensionality
reduction and data analysis. Due to the origin of these methods,
there have been many different presentations and interpretations.
Here, we present them in an unifying context of forward modeling
and inversion. To do this, we start by defining the factorsf(t) =
[f1(t), · · · , fN (t)] which is anN -dimensional vector of time series.
Here, we choosed time series due to our final application. However,
the time index can be anything else, for example, just the index of
experiments of a position on a line, in a plane or in space.

In a first step, we assume that the observed datag(t) =
[g1(t), · · · , gM (t)] are obtained via a mixing (or loading) matrixA
of dimensions[M ×N ] through the forward model

f(t) −→
Forward
modelA

−→
↓ ǫ

©+−→ g(t) = Af(t)+ǫ(t), t = 1, · · · , T

(1)
whereǫ represents the errors of modeling andT is the total number
of observed samples.

Using this forward model, the objective of many data analysis
methods such as PCA, FA, ICA and LDA is to obtain the factorf

and the loading matrixA. Described as such, we see that this esti-
mation problem is very ill-posed in the sense that we can find many
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combinations of factors and loading matrix which can satisfy this
model. In the following, we use this model to explain the differences
between PCA, FA, ICA and LDA.

PCA and FA methods try to find uncorrelated factorsf̂ . Because
correlation describes a linear dependence, the main assumption is
then thatf̂ has to be obtained through a linear combination of the
data: f̂(t) = Bg(t), where the matrixB is called separating (or
demixing or deloading) matrix.

g(t) −→
Inference

PCA, FA, ICA
LDA, Bayes

−→ Â or B̂

−→ f̂(t) = B̂ g(t)

(2)

Here, we are not going to describe these algorithms which are
described elsewhere in details [11, 12, 13, 14, 15], but we present a
Matlab toolbox in which we implemented all these methods.

3. PRESENTATION OF THE MATLAB SIMULATION
TOOLBOX

We have developed a menu driven simulation tool, which has, as the
main menu, the following steps:
– Generation of different sources (factors) with different properties
(Uniform, Gaussian, Mixture of Gaussian, ... ,
– Generation of different data sets with linear or nonlinear depen-
dencies,
– Addition of different kind of errors,
– Application of different algorithms of PCA, FA, ICA, LDA, ... and
– Visualization and evaluation tools which give possibility to eval-
uate the performances of a given method or to compare the results
obtained by two different methods.

As tools to measure the performances of these methods, we pro-
pose the following scheme:

f −→
Forward
modelA

−→
↓ ǫ

©+−→ g

g −→
Inference

PCA, FA, ICA
LDA, Bayes

−→ Â

−→ f̂ −→
Estimated

Â
−→ ĝ

and then comparêg with g, f̂ with f , Â with A, ...
As an example of using this simulation tool, we show here a

complete set of figures detailing the different steps of simulation and
inversion. Figure 1 shows an example of two sourcesf (generated
via a mixture of two Gaussian model) and five data setg obtained via
a mixing matrixA and addition of some noiseǫ using the forward
modelg = Af + ǫ and then the results obtained by FA and ICA.

As a second example, we show in Figure 2 two sources gener-
ated via a mixture of two Gaussian model. We then again used these
sources to generate the data and applied different methods of PCA,
FA, ICA (without using the class information) and LDA with using
the class information.

As a third example, we show in Figure 3 two sources generated
via a mixture of two uniforms model. We then again used these
sources to generate the data and applied different methods of PCA,
FA, ICA (without using the class information) and LDA with using
the class information.
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Fig. 3. Simulation of 2 sources (mixture of two uniform distribu-
tions) f and 3 observationsg with T = 400 samples: a) sources
f , b) observationsg, c) representation of the mixing matrixA, d)
scatter-plots of the sources, e) scatter-plots of the observations, f)
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same with FA, m,n,o) the same with ICA.
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4. APPLICATION ON REAL DATA

As we mentioned, we developed these tools for analyzing some bi-
ological data in relation with circadian cell cycle and evolution of
cancer tumors in the context of the European project ERASYSBIO.
A great number of experimentations have been done on mice. As
an example, different quantities such as Temperature, Activity, dif-
ferent Hormones, different Genes expressions and different Proteins
are measured during one or a few days and one of the problems ad-
dressed is finding the principal components or factors of some of
these data.

In Figure 4, we show an example of such analysis on Gene ex-
pressions time series.

Metabolism gene expressions time series analysis
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Fig. 4. A comparison of FA and ICA on three sets of gene expression
data. These results are obtained with two factors.

For now, we just applied these methods directly on the time se-
ries data without accounting for time structure which is very impor-
tant. However, the results obtained seem to have some significant
importance for biologists. Here, we assumed only two factors. As
we can see it seems that there is a need to increase the number of
factors.
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Fig. 5. A comparison of FA and ICA on three sets of gene expression
data. These results are obtained with three factors. Here, we used a
different presentation of the loading matrix which is more appropri-
ate for the cases where the number of factors are greater than two.
This presentation is called Hinton where the values of the matrix are
coded by color and by size of the patches.

In Figure 5, we show the same results with three factors. How-
ever, when the number of factors is greater than two, it is no more
easy to represent them as bi-plot graphs of Figure 4. Here, we use a
different presentation of the loading matrix which is more appropri-
ate for the cases where the number of factors are greater than two.
This presentation is called Hinton [16, 17] where the values of the

106 Int'l Conf. Bioinformatics and Computational Biology |  BIOCOMP'11  |



matrix are coded by color and by size of the patches.
In Figure 6, we show two results of Linear Discriminant Anal-

ysis on 14 genes expressions in Colon and 13 genes expressions in
liver. As we can see, here two factors are enough to discriminate the
three classes of mice. On this figure, at left, we see this discrimina-
tion and at right the weights of these genes in these two factors.
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Fig. 6. Discriminant Analysis on real mice data: 13 genes expres-
sions in liver have been used. Two factors have been enough to dis-
criminate the three classes of mice (left). The weights of these genes
in these two factors are shown on the right.

The main difficulties in these data are: great dimensionality
(more than fifty), non-homogeneity (Temperature, Activity, Hor-
mones, Genes, Proteins), presence of outliers data, missing data and
lack of synchronization (for example, temperature is measured every
15 minutes but Genes expressions every 3 hours). We need to adapt
these methods to account for all these difficulties. We are working
on these difficulties and will report soon in details on them.

5. CONCLUSIONS

In this paper, first we introduced a unifying presentation of many
classical data analysis methods such as PCA, FA and ICA based on
forward modeling and inversion. This unifying presentation facili-
tates the comprehension of these different methods. We then pre-
sented a simulation Matlab toolbox which has the possibilities of
generating sources and observations, doing FA, PCA and ICA and
evaluating the performances of the proposed methods. Finally, we

used these tools for analyzing some biological data which seems
giving important information, or at least confirm their intuition on
the role of different quantities. We are still exploring these tools for
the real application of biological data where we have to adapt more
particularly these tools for the situations where:
- we have fewer number of data compared to the number of vari-
ables;
- the estimated covariance matrix of the data is not positive definite;
- the data are inhomogeneous;
- the data have different sampling rate;
- there are some non-observed values (missing data);
- there are outliers in the observed data (for example, measured tem-
perature greater than 44 or less then 35, etc.).

6. PERSPECTIVES

When analyzing these biological data, the main questions we need
to answer can be summarized as follows:

Variable section: One of the main questions asked very often is:
If we had to redo other experiences, which ones of these quantities
are the most importances to observe again. This is a very difficult
question. The answer depends on the type of information we need to
extract. Very often the quantities we have observed are linked (corre-
lated or dependent). So, any selection of subset of variables causes,
in some sense, loss of information. So, this question, very often,
cannot be answered directly. We need modeling, the link between
variables directly or in a transformed space, dimension reduction,
clustering and classification, etc. Here are a few references concern-
ing this subject [18, 19, 20, 21, 22]

Dimension reduction and Factor analysis: The second question
is: Can we express the information content of all these data in a
fewer set of factors or components? The main classical tools here
are PCA, FA and ICA. One of the difficulties in these tools is the
determination of the number of factors which is still an open problem
[23, 9, 7]. When the number of factors is fixed, then these tools can
be used easily. However, one of the drawbacks of these tools is the
interpretation of the factors or components. Modeling the problem as
an inverse problem of sources separation and using the the Bayesian
approach are the promising tools to push farther these limitations
[24, 25, 23, 26, 27, 28, 9, 29].

Discriminant Analysis:
Very often the observed data comes from different classes of subjects
(male/female, healthy/Tumor,...) and we know the classes. In these
cases, another question which arises is: Which of these variables or
factors are the most discriminant between classes? Here are a few
references concerning this subject [18, 30, 31, 32, 33, 34, 35, 36, 37,
38, 39].

Clustering and classification:
Some times, in opposite of the previous case, we have only the data
and we are asked to group or cluster them. This is also calledtotally
unsupervised classification. In some other cases, we may know the
number of classes and even the characteristics of each one of classes.
The question is then to classify a given new observation. This is
calledtotally supervised classification. When the number of classes
is known, but the characteristics of each classe has to belearned
from atraining setof observations, then the problem is calledsemi-
supervised classification. The estimation of number of classes is

Int'l Conf. Bioinformatics and Computational Biology |  BIOCOMP'11  | 107



related tomodel selection. Here are a few references concerning this
subject [40, 33, 41, 8]

Graph of links and dependencies between variables:
One of the main steps of Knowledge extraction in studying biologi-
cal data is producing a graph of dependencies between variables. To
obtain such a graph we need to decide if two variables are dependent
or not. We need then measures of dependencies to discover these de-
pendencies [42, 43, 44, 45, 46, 47, 48]. One of the classical and most
used is the Pearson’s correlationρ. When|ρ| is near to one, we say
that the two variables are dependent. However, when|ρ| is near to
zero or even zero, this does not mean that the two variables are inde-
pendent. Indeed,|ρ| measures only the linear dependence between
those two variables. There are many other measures of dependencies
that we can use which are more appropriate. For example, we use the
Spearman’sρs and the Kendallτ jointly with Pearson’s correlation
ρ.

Graph of oriented dependencies between variables and causal-
ity: One of the last steps of Knowledge extraction in studying bio-
logical data is studying the oriented graph or causality [49, 50, 51]

7. REFERENCES

[1] J. Karhunen and J. Joutsensalo, “Representation and separa-
tion of signals using nonlinear PCA type learning,”Neural
Networks, vol. 7, no. 1, pp. 113–127, 1994.

[2] Pierre Comon, “Independent Component Analysis, a new con-
cept ?,” Signal processing, Special issue on Higher-Order
Statistics, Elsevier, vol. 36 (3), pp. 287–314, Apr. 1994.

[3] D. J. C. MacKay, “Maximum likelihood and covariant algo-
rithms for independent component analysis,” Tech. Rep., Uni-
versity of Cambridge, Cavindish Laboratory, Cambridge, UK,
1996.

[4] K. Knuth, “Bayesian source separation and localization,” in
SPIE’98 Proceedings: Bayesian Inference for Inverse Prob-
lems, San Diego, CA, A. Mohammad-Djafari, Ed., July 1998,
pp. 147–158.

[5] S. J. Roberts, “Independent component analysis: Source as-
sessment, and separation, a Bayesian approach,”IEE Proceed-
ings - Vision, Image, and Signal Processing, vol. 145, no. 3,
1998.

[6] A. Hyvarinen and E. Oja, “Independent component analysis:
Algorithms and applications,”Neural Networks, vol. 13, pp.
411–430, 2000.

[7] Ma Yi, P. Niyogi, G. Sapiro, and R. Vidal, “Dimensionality re-
duction via subspace and submanifold learning [from the guest
editors],” Signal Processing Magazine, IEEE, vol. 28, no. 2,
pp. 14 –126, march 2011.

[8] R. Vidal, “Subspace clustering,”Signal Processing Magazine,
IEEE, vol. 28, no. 2, pp. 52 –68, march 2011.

[9] K.M. Carter, R. Raich, W.G. Finn, and A.O. Hero,
“Information-geometric dimensionality reduction,” Signal
Processing Magazine, IEEE, vol. 28, no. 2, pp. 89 –99, march
2011.

[10] L. Carin, R.G. Baraniuk, V. Cevher, D. Dunson, M.I. Jordan,
G. Sapiro, and M.B. Wakin, “Learning low-dimensional signal
models,” Signal Processing Magazine, IEEE, vol. 28, no. 2,
pp. 39 –51, march 2011.

[11] Y. Koren and L. Carmel, “Robust linear dimensionality reduc-
tion,” Visualization and Computer Graphics, IEEE Transac-
tions on, vol. 10, no. 4, pp. 459 –470, 2004.

[12] A. Sharma and K.K. Paliwal, “Rotational linear discriminant
analysis technique for dimensionality reduction,”Knowledge
and Data Engineering, IEEE Transactions on, vol. 20, no. 10,
pp. 1336 –1347, 2008.

[13] Jing Peng, Peng Zhang, and N. Riedel, “Discriminant learning
analysis,”Systems, Man, and Cybernetics, Part B: Cybernetics,
IEEE Transactions on, vol. 38, no. 6, pp. 1614 –1625, 2008.

[14] P. Chaudhuri, A.K. Ghosh, and H. Oja, “Classification based
on hybridization of parametric and nonparametric classifiers,”
Pattern Analysis and Machine Intelligence, IEEE Transactions
on, vol. 31, no. 7, pp. 1153 –1164, 2009.

[15] Taiping Zhang, Bin Fang, Yuan Yan Tang, Zhaowei Shang, and
Bin Xu, “Generalized discriminant analysis: A matrix expo-
nential approach,”Systems, Man, and Cybernetics, Part B: Cy-
bernetics, IEEE Transactions on, vol. 40, no. 1, pp. 186 –197,
2010.

[16] G.E. Hinton and R.R. Salakhutdinov, “Reducing the dimen-
sionality of data with neural networks,”Science, vol. 313, no.
5786, pp. 504 – 507, July 2006.

[17] G.E. Hinton and R.R. Salakhutdinov, “Learning multiple lay-
ers of representation,”Trends in Cognitive Sciences, vol. 11,
pp. 428–434, 2007.

[18] J. Brezmes, P. Cabre, S. Rojo, E. Llobet, X. Vilanova, and
X. Correig, “Discrimination between different samples of
olive oil using variable selection techniques and modified fuzzy
artmap neural networks,”Sensors Journal, IEEE, vol. 5, no. 3,
pp. 463 – 470, june 2005.

[19] C. Fevotte and S.J. Godsill, “Sparse linear regression in unions
of bases via bayesian variable selection,”Signal Processing
Letters, IEEE, vol. 13, no. 7, pp. 441 –444, july 2006.

[20] T. Trappenberg, J. Ouyang, and A. Back, “Input variable selec-
tion: mutual information and linear mixing measures,”Knowl-
edge and Data Engineering, IEEE Transactions on, vol. 18, no.
1, pp. 37 – 46, jan. 2006.

[21] J.-J. Fuchs and S. Maria, “A new approach to variable selection
using the tls approach,”Signal Processing, IEEE Transactions
on, vol. 55, no. 1, pp. 10 –19, jan. 2007.

[22] Lu Chuan, A. Devos, J.A.K. Suykens, C. Arus, and S. Van Huf-
fel, “Bagging linear sparse bayesian learning models for vari-
able selection in cancer diagnosis,”Information Technology
in Biomedicine, IEEE Transactions on, vol. 11, no. 3, pp. 338
–347, may 2007.

[23] Farahmand A., M., Szepesvári C., and Audibert J.-Y.,
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Abstract - Conventional clinical scales used for the 
evaluation of the spasticity have some limitations, and their 
reliability remains controversial. The aim of this study is to 
develop a portable spasticity measurement system for 
quantifying the grade of spasticity based on the K-means 
clustering algorithm of the tonic stretch reflex threshold 
(TSRT). Fifteen stroke patients (age: 63.5±15.6) participated 
in the study. As a result, there was a strong negative 
correlation (r=-0.95, r2=0.90, p<0.05) between the spasticity 
level and TSRTs. This result showed that our system could be 
made clinically available for the more reliable discrimination 
of the spasticity level, compared to conventional scales.. 

Keywords: spasticity, tonic stretch reflex threshold 

 

1 Introduction 
 Spasticity is a major source of disability caused by 
central nerve injuries such as stroke. It is most commonly 
defined as a motor disorder characterized by a velocity-
dependent increase in the muscle tone with exaggerated 
tendon jerks, resulting from hyper-excitability of the stretch 
reflex (SR), as one component of the upper motor neuron 
syndrome [1,2]. Spasticity is the manifestation of a lesion of 
the supraspinal motor pathways and is caused by adaptive 
changes in transmission in the spinal networks distal to a 
lesion of the descending motor pathways. Clinically, this 
implies increased muscle tone, enhanced tendon reflexes, 
involuntary reflex zones and clonus. The measurement of the 
spasticity is a difficult and unresolved problem, partly due to 
its complex and multi-factional nature. The previous methods 
of quantifying or qualifying the spasticity are based on 
clinical scales or the biomechanical and neurophysiological 
analysis of the limb resistance to passive or voluntary 
movements.  

The clinical scales employed are the Ashworth scale (AS), 
modified Ashworth scale (MAS), Tardieu scale, composite 
spasticity index (CSI) and spasm frequency scale [3-7]. 
Among these scales, the MAS has been widely used in the 
clinical field since they are simple, easy to use and require no 
instrumentation. It rates the subjective impression of the 
evaluator of the amount of resistance felt during stretch of the 

relaxed muscle. However, the amount of resistance felt results 
from the net EMG activity in the muscle without 
consideration of the velocity-dependence of the response, thus, 
the MAS measurement is a disagreement with Lance’s 
definition [1]. Therefore, their inter- and intra-rater reliability 
remains controversial, because the scores are obtained based 
on the subjective feeling of the rater, such as the observation 
of the catch and spasm of the muscle, and largely rely on the 
experience of the examiner. Several researchers had reported 
the poor inter-rater reliability of AS [8,9], MAS [10,11] and 
Penn spasm frequency scale [8]. 

Neurophysiologic analysis is the measurement of the 
electrical activity, such as EMG signals in order to evaluate 
the spasticity. Several studies have accordingly used EMG to 
measure the responses evoked by either the stretching of the 
muscle (M-reflex), tendon tap (T-reflex) or electrical 
stimulation of the peripheral nerve supplying the muscle (H-
reflex), in order to evaluate whether these responses are 
exaggerated in spastic individuals and related to the degree of 
spasticity [12]. However, several researchers reported that the 
ratio of the H-reflex to SR of the muscle (H/M ratio) was not 
correlated with the MAS, although it was increased in patients 
with spinal cord injury (SCI) [13,14] or stroke [15,16] 
compared to that in healthy subjects. The pendulum test, 
introduced by Wartenberg in 1951 [17], is a biomechanical 
method of evaluating muscle tone by using gravity to provoke 
muscle SRs during the passive swinging of the lower limb. 
Some researchers have reported that the ratio of the amplitude 
of the first swing to that of the final position is significantly 
correlated with clinical scales such as the AS and MAS scores 
in spastic patients [18-20]. However, this correlation depends 
decisively on the sitting posture and the ability of the person 
to fully relax. Also, it could only be applied to evaluate the 
spasticity in the knee flexor and extensor muscles and is 
limited to separate the increased resistance of the spastic 
muscles, due to the changes of the viscoelastic resistance from 
the velocity-dependent resistance [12]. 

The isokinetic dynamometer has been widely used for the 
quantitative assessment and evaluation of the spasticity. It 
allows the velocity and amplitude applied to evoke muscle 
stretches to be standardized; consequently it is able to 
quantify the velocity-dependent resistance according to the 
passive movement of the muscle. Firoozbakhsh et al. [21] 
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found a significantly greater sum torque and slope of the 
torque-velocity regression lines in the spastic group compared 
to the normal group. Pisano et al. [22] demonstrated that the 
total stiffness indices (TSI), stretch reflex threshold speed 
(SRTS) and SR area were highly correlated with the AS. 
Pandyan et al. [23,24] showed that there was a high 
correlation coefficient between the MAS and resistance to 
passive movement (RTPM) and that the RTPM in the 
impaired arm was relatively larger than that in the non-
impaired arm. Chen at al. [25] and Lee et al. [26] showed that 
there was a decrease of the biomechanical viscosity and 
reflexive EMG threshold (RET) of the biceps brachii after the 
injection of Botulinum toxin type-A. 

The theoretical concept for tonic stretch reflex threshold 
(TSRT) measurement, based on motor control theory, was 
first published by Levin and Feldman [27]. The TSRT is 
based on the evaluation of the excitability of the motor 
neurons caused by both descending and segmental effects, 
and the measurement of these effects is the SR threshold, the 
integral part of the λ model of motor control. The SR 
threshold depends on the stretch velocity. In the λ model, the 
dynamic stretch reflex threshold (DSRT) is expressed in 
velocity and angular coordinates, i.e. the velocity and joint 
angle at which the muscle activity first appears. When 
calculated in such coordinates, the DSRTs and TSRT are 
expressed in relation to the actual configuration of the joint 
within the body frame of reference. In particular, when the 
threshold lies within the biomechanical range of the joint and 
the patient has no ability to shift this threshold angle, it 
separates the joint configurations in which the muscles are 
spastic from those in which they are not, thus quantifying an 
important, spatial aspect of the motor control [28]. Some 
researchers have reported the validation of the TSRT. Levin 
et al. [27,29] showed a negative correlation between the CSI 
and TSRT and positive correlation with the Fugl-Meyer scale 
in elbow flexors and extensors of the spastic patients with 
stroke. Jobin et al. [30] showed the good test-retesr reliability 
of TSRT measurement for the children with cerebral palsy. 
Recently, Calota et al. [31,32] described a portable device for 
TSRT measurement and demonstrated the moderately high 
reliability of TSRT measurement for patients with moderate 
to high spasticity. These results indicate the TSRT could be a 
more representative measure since it satisfies Lance's criteria 
for the velocity-dependent increase of the spasticity. 

The objectives of this study are to develop a hand-driven 
portable system for quantifying the grade of spasticity, which 
can calculate the bio-mechanical as well as neurophysiologic 
parameters, and to determine the relationship between the 
TSRT measured by the developed device and the level of the 
spasticity. The TSRT of each spastic patient was measured 
during both the extension and flexion of the forearm in order 
to take into account threshold of both agonist and antagonist 
muscles, and TSRTs obtained from all of the patients were 
grouped by means of K-means clustering method for the 
objective discrimination of the severity of the spasticity. We 
hypothesized that there would be a negative correlation 

between them (i.e., the larger the severity of the spasticity, the 
smaller the TSRT) through the literature reviews of the 
previous papers [29-32]. We implemented this approach in a 
portable device and applied it to the evaluation of the 
spasticity 

2 Portable spasticity measurement system 
 The developed spasticity measurement system is 
designed to measure the angle by means of a twin-axis 
flexible electro-goniometer (SG150, Biometrics Ltd., U.K.) 
and EMG signals by means of surface electrodes (Meditrace 
200, Kendall, U.S.). Also, the angular velocity is calculated 
by the differentiation of the angle signals. This device is 
composed of a sensor module for signal conditioning and 
control module to monitor the measured data and the 
physiological parameters. All signals are pre-processed by the 
signal conditioning circuit in the sensor module. Fig. 1 shows 
a block diagram of the developed system.  

In order to store and analyze the data obtained during the 

study, data acquisition and analysis software were developed 
using the LabVIEW language (ver. 8.6, National 
Instruments™, U.S.). It can show the trace of the angle, 
angular velocity and two EMG signals continuously on a 
monitor using figures and numbers and simultaneously store 
the data on a hard-disk drive. Also, the system is equipped 
with a beep sound generator like a metronome, in order to 
announce the velocity of the flexion and extension of the 
upper limbs (stretch velocity) in a simple manner to both the 
subject and rater during the movements. The period between 
beep sounds can be selected manually in the range of 30 and 

 
Fig. 2. Graphic user interface for data acquisition and 

parameter analysis 

 
Fig. 1. Block diagram of the sensor module 

Int'l Conf. Bioinformatics and Computational Biology |  BIOCOMP'11  | 111



360 °/sec by the rater. Fig. 2 shows the graphic user interface 
for data acquisition and parameter analysis.  

 

3 Materials and methods 

3.1 Participants 

 Fifteen patients (7 males and 8 females) with stroke 
participated in the study (mean age 63.5 ± 15.6, range 38-84 
years) after giving their informed consent. Eleven patients 
had a cerebral infarction and four had a cerebral hemorrhage. 
The affected sides were 9 in the right arm and 6 in the left. 
The mean period since stroke was 6.7 months (range 1-36 
months). The clinical grading by MAS was ‘1’ in 6 patients, 
‘1+’ in 5 and ‘2’ in 4. The MAS scores were considered as an 
auxiliary tool for the assessment of the trend of the TSRTs 
according to the level of the spasticity. All tests were 
performed on the more affected upper limb. Subjects were 
included if they had (a) sustained a stroke; (b) spasticity in 
the elbow flexors or extensors and (c) at least a 120° passive 
range of motion in the elbow joint. To calculate the clinical 
parameters, the presence or absence of spasticity in the elbow 
flexors and extensors was confirmed by manually stretching 
the elbow from full flexion to full extension at an arbitrary 
stretch velocity. Subjects were excluded if they (a) could not 
understand simple commands due to the decrease of their 
cognitive functions; (b) had subluxation or sprain of the 
shoulder or (c) elbow contracture.  

3.2 Experimental protocol 

 Number Two clinicians (two males) evaluated each 
subject. The raters had different amounts of clinical 
experience (3.5 and 5.5 years). To ensure a standardized level 
of training, both evaluators received written documentation 
and participated in two one-hour training sessions with the 
developed device. 

For the measurement of the angular displacement of the 
upper limb, a flexible electro-goniometer was placed on the 
lateral aspect of the elbow with the axis of rotation at the joint 
line and its two wings were fixed on the forearm and upper 
arm, respectively, by an elastic band. To monitor the activity 
of the elbow flexors and extensors, five surface electrodes 
(Meditrace 200, Kendall, U.S.) with a diameter of 10 mm 
were attached to the upper arm. The electrode sites were 
lightly shaved and cleaned with a 95 % ethanol mixture to 
reduce the skin impedance. For the elbow flexors, the active 
and reference electrodes were located on the biceps, while 
those used for the extensors were located on the triceps. A 
ground electrode was placed on the medial side of the elbow. 

A motion from full flexion to full extension is defined as 
'elbow extension', whereas 'elbow flexion' is defined as a 
motion from full extension to full flexion. 'Full extension' 
means an angle of 0° between the forearm and upper arm, 
while ‘full flexion’ means an angle of about 120°. One cycle 

consisted of one elbow extension and one flexion over an 
approximate angle range of 120°→0°→120° in an 
approximate period of one cycle. The velocity of the 
extensors was determined as its total angular displacement 
per a period of one extension, while the velocity of the 
flexors was as the total displacement per a period of one 
flexion. If the periods of one extension and one flexion were 
1 and 2 seconds, the stretch velocity were 120 °/sec in the 
extensors and 60 °/sec in the flexors, respectively.  

The subjects lay on a bed in a relaxed position. The starting 
position involved the slight abduction of the shoulder, neutral 
position of the wrist and full extension of the elbow. In order 
to reduce the muscle tension, the subjects maintained this 
position for at least 2 minutes. The tests were performed after 
the rater checked whether all flexors and extensors were 
stabilized by monitoring their EMG signals. The subject's 
forearm was passively flexed and extended by the rater at a 
randomly selected stretch velocity among 60, 90, 120, 150 
and 180°/sec, in order to avoid adaptation of the stretch 
response [33]. Measurements were performed repeatedly ten 
times at the selected stretch velocity with at least 10 seconds 
rest between sessions, because the motor unit recruitment 
threshold was 6 seconds during repeated contractions [34]. 
The total number of measurement sessions per subject was 
about 50. None of the sensors, including the electro-
goniometer and surface electrodes, were displaced or 

 
 

 
Fig. 3. Comparison of the TSRTs among the groups (a) 

classified by the MAS and (b) by the K-mean 
clustering of the TSRT (*: p<0.05) 
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reattached during the test. 

The DSRTs is defined as the joint angle and angular 
velocity value corresponding to the point at which the EMG 
signal increased by 2 times of standard deviations above the 
mean baseline EMG [31]. The baseline EMG was the EMG 
activity while the subject was at rest before beginning the 
evaluation session. At the end of each evaluation, the joint 
angle and angular velocity values at the time, when the first 
incident of the EMG activity of either the extensor or flexor 
was detected, were automatically obtained in the analysis 
software. Next, using these values the DSRT was calculated. 
Finally, the TSRT was computed by drawing the linear 
regression line through the DSRTs to zero velocity. The 
TSRT value was taken as the intercept of the regression line 
with the angle axis (dependent variable: angle, independent 
variable: angular velocity). 

4 Results 
 Fig. 3 shows the comparison of the TSRTs among the 
groups classified by the MAS and K-mean clustering of the 
TSRTs. through the K-means clustering algorithm, the 
patients were classified into three groups (G1, G2 and G3) 
according to the criteria of the TSRTs. The centroids of each 
group were 127.9 in group G1, 121.8 in group G2 and 117.9 
in group G3 and the Euclidean distances were 6.099 between 
groups G1 and G2, 10.052 between groups G1 and G3 and 
3.952 between groups G2 and G3. 

When grouping the patients according to the level of the 
MAS, the mean and standard deviation (S.D.) values of the 
TSRTs were 127.2±2.5 in the MAS1, 122.9±4.7 in the 
MAS1+ and 119.1±2.6 in the MAS2 groups, respectively. In 
order to compare the differences of the TSRTs between the 
MAS groups, the one-way ANOVA test was performed. 
Consequently, the average TSRT in the MAS1 group were 
the largest, while that in the MAS2 group were the smallest 
(p<0.05). Also, there was a negative correlation (r=-0.74, 
r2=0.54, p<0.05) between the TSRT and MAS. However, 
through the post hoc analysis, the differences between the 
average TSRT of the MAS1 group and that of the MAS1+ 
group (p=0.16) and between the average TSRT of the 
MAS1+ group and that of the MAS2 group (p=0.37) were not 
significant, as shown in Fig. 3(a). 

On the other hand, when grouping by means of the K-
means clustering of the TSRTs, the mean and S.D. values of 
the TSRTs of groups G1, G2 and G3 were 127.9±1.6, 
121.8±1.5 and 117.9±1.3, respectively. There was a strong 
negative correlation between the TSRTs and groups (r=-0.95, 
r2=0.90, p<0.05). Also, there were significant differences 
between the TSRTs of each group (p<0.05), as shown in Fig. 
3(b). 

5 Conclusions 
 We developed a portable spasticity measurement system 
and classification algorithm for the objective and reliable 
discrimination of the level of spasticity based on the K-means 
clustering of the TSRTs. Our results showed the existence of 
a strong negative relationship between the TSRTs and 
classified groups (r=-0.95, r2=0.90, p<0.05). This 
demonstrates that our method could be made clinically 
available for the more objective and reliable discrimination of 
the spasticity, instead of the conventional MAS grade. In a 
future work, we will apply our system to a larger number of 
spastic patients with various upper motor-neuron disorders 
and verify its feasibility. 
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Abstract - In this paper, a novel GPU accelerated scheme for 
the PK-means gene clustering algorithm is proposed. 
According to the native particle-pair structure of the PK-
means algorithm, a fragment shader program is tailor-made 
to process a pair of particles in one pass for the computation-
intensive portion. As the output channel of a fragment 
consisting of 4 floating-point values is fully utilized, overhead 
for each data points in searching for its nearest centroid 
throughout the particle-pair is reduced. Experimental 
evaluations on three popular gene expression datasets show 
that the proposed GPU accelerated scheme can attain an 
order of magnitude speedup as compared with the original 
PK-means algorithm. 

Keywords: Gene clustering, K-Means, PK-means, GPU  

 

1 Introduction 
  Nowadays, gene clustering has attracted more and more 
attentions as the advancement of the technologies both in 
microarray [1] and computing. Microarray technology allows 
producing gene expression data in lower cost and monitoring 
large amount of data simultaneously for whole genome 
though a single chip only [2]. There is a huge of gene 
expression data produced in laboratory. To study the 
interactions among thousands of genes in the massive data 
sets, cluster analysis is the first and important step. An 
efficient cluster analysis is required to rapidly extract useful 
information from the raw data. Later advanced processing can 
be done further, such as protein structure prediction, 
biological network modeling, by using some natural 
computing [3].  

 There are numerous methods developed for clustering in 
the past [4-7], and among them K-means, with its simplicity 
and effectiveness, is perhaps the most popular one. However, 
due to its sensitivity to the initial condition, it is easy to get 
trapped in local optimal. To overcome this problem, recently 
a new clustering algorithm, known as PK-means, is proposed 
[8], which merges K-Means with the particle swarm 
optimization (PSO) [9, 10] algorithm. Experimental 
evaluation shows that it can reach better clustering results. 
However, its computation time is rather long, especially for 
large dimensional dataset. The bottleneck lies in the operation 
of K-means, which is a basic part of PK-means.  

 To overcome this problem, we propose to introduce the 
graphics process units (GPU), with its powerful stream 
processing units, to perform the tedious K-means operation. 
As the PK-means is working on particle-pairs, each particle-
pair is packed together and fit to the programmable graphics 
pipeline [11] in GPU, where the two particles are together 
evaluated within a single fragment program. With the output 
channel of each fragment fully utilized, overhead for each 
data point in searching for its nearest centroid throughout the 
particle-pair is reduced. Organization of this paper is listed as 
follows. Section 2 gives a brief review of the PK-means 
algorithm. In section 3, we describe GPU accelerated scheme 
for PK-means. This is followed by the experimental 
evaluation on the proposed method in Section 4. Finally, a 
conclusion summarizing the essential findings is drawn in 
Section 5. 

2 The PK-means clustering algorithm 
 The PK-means clustering method is the integration of 
the particle-pair optimizer (PPO) [12] and the well-known K-
means. The former is a variation of the traditional particle 
swarm optimization (PSO) algorithm, while introducing a 
smaller swarm size based on particle pairs. For the clustering 
problem, a particle’s position is a set of K cluster centroids, 
each of which is a D-dimensional vector, i.e., 

 ( )Knininini xxxX ,,2,,1,,, ,,,= ,      (1) 

where n is the iteration number. The velocity vector of this 
particle towards its next position is denoted by 

( ) ( )ninininni XGbestrCXprCwVV ,22,,111, −+−+=+ ,  (2) 

where w  is the inertia weight; nip ,  is the best position for 

the particle ‘i’ recorded so far; Gbest  represents the 
globally best position for the whole swarm throughout history; 

1C  and 2C are called acceleration factors; 1r  and 2r are two 
random numbers within [0,1) . With the velocity vector 
available, the particle updates its position by 

1,,1, ++ += ninini VXX .        (3) 
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 To begin with, an initial swarm of four randomly 
generated particles is created and partitioned into two 
particle-pairs: {P1, P2} and {P3, P4}, as shown in Fig 1. 
Each particle pair evolves independently. Particles in each 
pair update their positions and velocity according to Eqs. (2) 
and (3), and perform K-means to update and evaluate its 
fitness. After a certain number of iterations, two particles 
(denoted as EP1 and EP2) with the better fitness values in 
their respective particle-pair are selected and combined 
together to form an elitist particle-pair {EP1, EP2}. The latter 
will continue to evolve and finally the particle EP3 with a 
better fitness value as the winner of {EP1, EP2} will 
represent the final solution. 

P1 P2 P3 P4

EP1 EP2

EP3

two initial particle pairs

elitist particle pairs

:  particle

 
Fig 1. The evolution model of the Particle-Pair 
Optimizer. 

 

3 The proposed GPU scheme for PK-
means clustering 

3.1 Overview of the GPU accelerated PK- 
means 

 The majority of computational cost in the PK-means 
algorithm lies in the operations of K-means for each particle-
pair, and hence becomes the bottleneck of the algorithm. In 
view of this, we propose to convert this tedious step into a 
programmable graphics pipeline, where the Cg fragment 
shader program is tailor-made to perform the K-means 
operations for each particle-pair. An overview of the 
integration of GPU and PK-means algorithm is depicted in 
Fig. 2, where the building block “GPU accelerated K-means 
for particle-pair”, performing K-means for two particles, will 
be explained in detail in next subsection. 

Swarm{P1, P2}

PSO Operation

GPU accelerated K-means 
for particle-pair

GPU accelerated K-means 
for particle-pair

PSO Operation

GPU accelerated K-means 
for particle-pair

Swarm{P2, P3}

PSO Operation

P1 P2 P3 P4

P1 P2 P4P3

EP1 EP2

EP3

EP2EP1

Fig 2. Overview of GPU accelerated PK-means 

 

3.2 Fragment shader program based GPU 
Implementation of K-means for particle-
pair 

 In the proposed GPU accelerated scheme, membership 
assignment for the particle-pair is conducted in the GPU 
while particle-pair updates (centroids updates) and the Mean 
Squared Error (MSE) calculation are carried out in the CPU. 
Fig. 3 gives the architecture of the GPU accelerated scheme. 

 Due to the large dimensionality of datasets we are 
dealing with (e.g. 77 for the Yeast cell-cycle data), both the 
data vectors and the particle-pair (each particle containing a 
set of K centriods) are stored in GPU textures, serving as 
look-up tables in the fragment shader program. Since a 
texture can store four single precision floating-point values 
(RGBA) per texel, a D-dimensional vector occupies ⎡ ⎤D/4  
texels.  

 In the fragment shader program, each data vector is 
addressed by each fragment, and a pair of its nearest centroids 
is found in the two particles, respectively. Consequently, a 
pair of clustering memberships (each consisting of the ID of 
the nearest centroid and the nearest distance) is formed and 
rendered to the render texture. The latter is then downloaded 
to the CPU side where the particle-pair is updated and the 
MSEs are computed. Next round of iteration will be triggered 
from the CPU and the shader program repeats until a certain 
number of iterations has elapsed. Table 1 gives the Cg codes 
and Table 2 lists the notations for the fragment shader 
program. 
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each data vector 

Render 
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Holding a pair 
of clustering 
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GPUCPU

Fig 3. Overview of GPU accelerated K-means for 
particle-pair 

 

Table 2 Notations for the fragment shader program in 
Table 1 

Variable Description 

w Equal to ⎡ ⎤D/4 . 
srctex Texture holding the data vectors. 

booktex Texture holding the centroids. 

index.y The index of a vector in the data set. 

codebook_size Number of clusters/centroids. 

minIndex1, 

minIndex2 
The two IDs of the nearest centroid in 
the particle-pair, respectively. 

mindist1, 

mindist2 

Distances of a vector to its nearest 
centroids in the particle-pair, 
respectively. 

memberships 

A pair of clustering memberships, 
each consisting of the ID of the 
nearest centroid and the nearest 
distance. 

 

 

Table 1 Fragment shader program - forming a pair of 
clustering memberships of the particle-pair for each data 
vector 
#define num_of_centroids 256 
#define FLT_MAX 3.402823466e+38F  
 
void cgKMeans( 

float2 index: TEXCOORD0, 
uniform samplerRECT srctex, 
uniform samplerRECT booktex, 
out float4 memberships: COLOR0  

){ 
  float mindist1, distance1, mindist2, distance2; 
  float4 dn, dt; 
  int i, k, minIndex1, minIndex2;  
  minIndex1=minIndex2=-1; 
  mindist2=mindist1=FLT_MAX; 
 
  for ( k=0; k<num_of_centroids; k++)  
{    

      distance2=distance1=0;     
for ( i=0; i<w; i++ ) // for all dimensions in a vector  
{  
    // position of the data vector 

dn=texRECT(srctex,  
float2(i+(index.x-0.5)*w+0.5, index.y ) );  
 

// distance to the k-th centroid in particle 1 
dt= dn - texRECT( booktex, float2(i+0.5, k+0.5) ); 
distance1 += dot(dt, dt);  
 
// distance to the k-th centroid in particle 2 
dt= dn - texRECT( booktex, 

float2(i+0.5, k+num_of_centroids+0.5) ); 
distance2 +=dot(dt, dt);  

      } 
 
      if ( distance1<mindist1 ) // for particle 1 

{ 
          mindist1=distance1;  //minimum distance 

minIndex1=k;  // ID of the nearest centroid 
      } 
      if ( distance2<mindist2 ) // for particle 2 

{  
          mindist2=distance2;  
          minIndex2=k;  
      }  
} 

 
// output the pair of clustering memberships 
memberships=float4 (minIndex1, mindist1, 

minIndex2, mindist2); 
} 
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4 Experimental evaluation 
 The proposed scheme is evaluated with three popular 
gene expression datasets: Yeast cell-cycle [13] with 77 
dimensions, Lymphoma [14] with 96 dimensions and 
Sporulation [15] with 7 dimensions. They have over 5 
thousands, 4 thousands and 6 thousands of genes, 
respectively. 

 Performance of the GPU accelerated PK-means method 
is compared against the same PK-means algorithm 
implemented without GPU (referred to as the parent scheme). 
Both methods are applied to cluster each of the dataset into 
256 clusters. To obtain reliable statistics, a total of 10 
repeated trials for the three datasets are conducted. All the 
evaluations are based on the CPU (Intel Core2 Duo E6550 
2.33GHz) and GPU (NVIDIA GTX260). The results of 
average computation time (in second) taken to reach 
convergence for both methods, are listed in Table 3. It can be 
seen that the GPU accelerated PK-means is at least 11 times 
faster than the parent scheme, and for the lower-dimensional 
dataset (i.e. Sporulation), over 20 times’ speedup can be 
noted.  

Table 3. Average computation time for the parent 
scheme and proposed scheme (Speed-up ratio: time of 
parent scheme / time of proposed GPU scheme) 

Gene dataset Scheme Time 
(Sec) 

Speed-up 
ratio  

Parent scheme 78.6 Yeast cell-
cycle GPU scheme 7.0 

11.2 

Parent scheme 68.4 
Lymphoma GPU scheme 6.0 

11.4 

Parent scheme 16.7 
Sporulation GPU scheme 0.8 

20.5 

 

5 Conclusions 
 Gene cluster analysis plays an important role in 
discovering the function of gene. K-means is one of the well-
known clustering methods for its simplicity and effectiveness. 
However, due to its sensitivity to the initial clustering, it is 
prone to be trapped in a local minimum. Recently, an 
enhanced clustering method, known as PK-means, which 
incorporates K-means with the particle swam optimization is 
developed. Despites its success in finding better clustering 
results, the process is usually too time-consuming. The 
bottleneck lies in the K-means operation which is a basic 
portion of PK-means. To address the shortcoming, this paper 
proposes a novel GPU accelerated scheme for the PK-means 
algorithm. Based on the particle-pair structure of PK-means, 

each particle-pair is packed together and fit to a tailor-made 
fragment shader program, where a pair of clustering 
membership is formed for the particle-pair and then sent to 
the entire output channel of each fragment. As the latter is 
fully utilized, overhead is reduced. Experimental evaluation 
on three gene expression datasets reveals that the proposed 
GPU accelerated scheme can attain an order of magnitude 
speedup as compared with the parent scheme. 
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Abstract - Pressure controlled intermittent coronary 
sinus occlusion (PICSO) has been found to 
substantially salvage ischemic myocardium. To 
indentify optimum occlusion and release points within 
PICSO cycles, two mechanisms are involved, however 
neither method is ideal.  In this paper, a third method 
utilizing pattern recognition technology combined with 
ECG is introduced.  This results in more efficient 
calculation of CSP parameters.  Results of the new 
technique are shown from studying 3 groups of animals, 
namely sheep, pigs and dogs.  The group size was 5, 5 
and 3 respectively.  All animals were drugged and 
anesthetized for the duration of the study. 
 
Keywords: coronary sinus pressure (CSP), pressure 
controlled intermittent coronary sinus occlusion 
(PICSO). 

 

1. Introduction 
 Pressure Controlled Intermittent Coronary Sinus 
Occlusion (PICSO) is implemented by means of a block 
which is applied via a catheter that intermittently 
obstructs the outflow from the cardiac veins in the right 
atrium, Figure 1 shows a single PICSO cycle of approx 
16-seconds.  The technique leads to an increase of 
Coronary Sinus Pressure CSP (systolic as well as 
diastolic) in the course of a few heart beats; controlled 
pressure increase can result in better distribution of the 
blood flow through the ischemic area.  In order to 
maximize the effect of the PICSO procedure, it is 

imperative that accurate Occlusion (Inflation) and 
Release (Deflation) points are identified within the 
PICSO cycle. 
 

 
 

Figure 1 One PICSO with Inflation and Deflation time of 10/6 
seconds respectively 

 
Two techniques have been devised by the researchers to 
compute the Coronary Sinus Pressure (CSP) parameters 
(Systolic plateau, Diastolic plateau & the rise/release 
time) using a mathematical model which describes the 
increment and decrement of CSP in one PICSO cycle.  
The model consists of two parts that use 3-parameter 
double-exponential functions.  This was fitted using the 
non-linear least square algorithms, as shown in Eq. 1 
below: 
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Where Pcsp

The first part of the equation (1a) describes the rise of 
the CSP during the inflation (occlusion) period. 

 (t) = Coronary sinus pressure, and A, D, B, 
E, C, F are fitting parameters. 

 
a)(}C*t)]({B*[A* (t) cspP 11exp1exp −−−=  

 
The second part (1b) describes the release of the CSP 
during the deflation (release) period. 
 

b)(})]
t
F({E*[D* (t) cspP 11exp1exp −−−=  

 
The systolic peaks increase with the time during the 
inflation period. These peaks were fitted with the 
nonlinear least-square algorithms. 
 
 
a) T90 Method 
The T90 method, developed by Schriner and Alzubaidi 
[2], is the first technique for calculating the CSP 
parameters during a PISCO cycle; this method yielded 
an approximate calculation by taking 90% of the 
predicted height of the systolic plateau.  PCSP

)(BA* )csp(tP 2)1exp( −=∞→

(t) reaches 
the maximum value when t ∞ in (Eq. 1a) as shown 
below 

 

Because, in mathematical terms, a plateau is never 
actually reached, it is meaningful to consider the time 
taken to reach 90% of the predicted height of the 
plateau. Figure 2 shows the systolic plateau and its rise 
time (RT). 

 
Figure 2 Systolic Plateau of CSP during the inflation period using T90 

method 
 
 
 

b) Time-Derivative Method 
A new technique to describe the change of CSP 
parameters using the time-derivative method (dp/dt) 
was introduced by Alzubaidi L [1]. The new method is 
a more accurate means of calculating the systolic and 
diastolic plateau and the rise time of the PICSO cycle 
by determining the slope of CSP. The derived quantities 
serve as diagnostic parameters for a quantitative 
assessment of physiological condition and as predictors 
for an optimal adjustment of coronary sinus cycles.  
 
The results of this technique were shown to bear a close 
resemblance to the clinical effect of coronary sinus 
occlusion.  Fig. 3 illustrates comparison of the systolic 
plateaus of T90 and time-derivative methods 
 

 
Figure 3 Systolic plateaus of CSP using the T90 and 

dp/dt methods 
 
c) Weaknesses 
There is room for improvement in both techniques 
above, as follows: 
 
The T90 technique is fairly straight-forward, but the 
results are ultimately not as accurate as can be, this is 
due to the fact that the calculations are approximate. 
 
Although the second (dp/dt) method is more accurate, it 
is also more complex and time-consuming.  This is due 
to the extra overhead required for computing the slop of 
the CSP parameters using this approach.   
 
What is needed, therefore, is an improvement in both 
accuracy and efficiency of the two algorithms above. 
 
 
ECG Determines CSP Parameters 
In this paper, we introduce a new technique to compute 
the rise and release of the CSP during the PICSO cycle. 
This technique can potentially yield more accurate 
figures using an ECG based calculation algorithm.  The 
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new technique is a pattern recognition technique that 
recognizes the heart beat with lowest differential 
between the QRST interval and PQ interval during 
PICSO cycle. 
  
Electrocardiogram (ECG) 
The Electrocardiogram (ECG) is a biological signal.  It 
is a quasi-periodical, rhythmically repeating signal, 
synchronized by the function of the heart, which acts as 
the generator of bioelectrical events.   ECG is recorded 
by attaching a set of electrodes on the body surface such 
as chest, neck, arms, and legs. 
 
ECG is an accurate, electrical manifestation of the 
contractile activity of the heart. By graphically tracing 
the direction and magnitude of the electrical activity 
that is generated by depolarization and repolarization of 
the atria and ventricles, the ECG chart provides 
information about the heart rate, rhythm, and 
morphology.  
 
Each heartbeat can be observed as a series of 
deflections away from the baseline on the ECG. These 
deflections represent the time evolution of electrical 
activity in the heart which initiates muscle contraction. 
A single sinus (normal) cycle of the ECG, 
corresponding to one heart beat, is labelled with the 
letters P, Q, R, S and T on each of its switching/turning 
points as in Figure 4. 
 

 
Figure 4 Morphology of PQRST for a single heartbeat 

 
The ECG may be divided into the following sections:  

• P-wave: a small low-voltage deflection away from 
the baseline caused by the depolarization of the atria 
prior to atrial contraction as the activation 
(depolarization) wave-front propagates through the 
atria. 
  

• PQ-interval: the time between the start of atria 
depolarization and the start of ventricular 
depolarization.  
 
• QRS-complex: the largest-amplitude portion of the 
ECG, caused by currents generated when the ventricles 
depolarize prior to their contraction. Although atria 
repolarization occurs before ventricular depolarization, 
the latter waveform (i.e. the QRS-complex) is of much 
greater amplitude and atria re-polarization is therefore 
not seen on the ECG.  
 
• QRST-interval: the time between the onset of 
ventricular depolarization and the end of ventricular 
repolarization.  
 
• ST-interval: the time between the end of S-wave and 
the beginning of T-wave. Significantly elevated or 
depressed amplitudes away from the baseline are often 
associated with cardiac illness.  
 
• T-wave: ventricular repolarization, whereby the 
cardiac muscle is prepared for the next cycle of the ECG.  
 

2. Methodology 

 The technique, which is based on pattern 
recognition concepts, was used to calculate the systolic 
plateau and the rise time (RT) of CSP by identifying a 
significant heartbeat (the heartbeat with lowest QRST 
& PQ interval variation). The rise time (RT) is the time 
between the start of the PICSO cycle and our significant 
heartbeat; now that RT is identified, it can be used in 
Eq1 (above) as a parameter to calculate the systolic 
plateau.  

The physiological implication of this relationship is 
illustrated in Figure 5 and Table 1 below. All values, 
apart from the RT time, are in milliseconds. 
 
PQ + QRST = Heart Beat Interval 

The minimum difference between QRST & PQ is 76.66 
ms 

RT = 10.48 - 4.04 = 6.44 sec 
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Hence, the systolic plateau can be calculated by 
substituting this RT value for the (t) parameter in Eq1 
above.  
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Figure 5 Relationship between CSP, ECG and the PQ & QRST 

intervals  
 

 
Table 1 Heartbeat interval, PQ time, QRST time and the  

CSP rise time RT for a 9-second inflation cycle 
 

3. Results 
 All results were obtained by studying 3 groups 
of animals, namely sheep, pigs and dogs.  The group size 
was 5, 5 and 3 respectively.  All animals were pre-
medicated with two ampoules atropine intramuscular and 
anesthetized before the catheters were placed into the 

right ear artery for arterial pressure monitoring and/or the 
right ear vein for intravenous infusions. 
At each step of the experiment the animals were 
monitored online to avoid any unnecessary suffering 
and to ensure anesthesia was still effective. The 
experiment was terminated during complete anesthesia 
with a high dosage of potassium chloride injection. All 
measurements were recorded on a computerised data 
acquisition system (monitoring and long time storage) 
for biological signals. 
 
The results comprise a preliminary investigation of the 
spread of the derived quantities observed during PICSO 
cycles. The systolic plateau and its rise time were 
calculated for 10 PICSO cycles of approximately 14-
seconds each (10 inflation + 4 deflation).  
 
The systolic plateau and its rise time were used to 
compare the calculations from T90 method and pattern 
recognition method. Figure 6 shows the results of both 
calculations; it is clear that the systolic plateau of 
pattern recognition method is higher than its T90 
counterpart.  
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Figure 6  Comparison of Systolic Plateaus for 10 PICSO cycles using 

T90 and pattern recognition methods 
 
The new technique can identify accurate occlusion and 
release points within PICSO cycles, thus helping to 
achieve an increase of Coronary Sinus Pressure CSP to 
yield higher blood pressure values resulting in better 
distribution of the blood flow through the ischemic 
area.   
 

Heartbeat 
Interval PQ QRST 

QRST– 
PQ 

RT 
(secs) 

533.33 196.66 336.66 140 4.04 
506.66 203.33 303.33 100 4.58 
556.66 193.33 363.33 170 5.08 
536.66 206.66 330 123.33 5.64 
526.66 200 326.66 126.66 6.18 
550 206.66 343.33 136.66 6.70 
540 210 330 120 7.25 
540 216.66 323.33 106.66 7.79 
500 210 290 80 8.33 
580 226.66 353.33 126.66 8.83 
523.33 210 313.33 103.33 9.41 
540 216.66 323.33 106.66 9.94 
516.66 220 296.66 76.66 10.48 
563.33 236.66 326.66 90 10.99 
543.33 210 333.33 123.33 11.56 
540 203.33 336.66 133.33 12.10 
513.33 196.66 316.66 120 12.64 
556.66 216.66 340 123.33 13.15 
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Abstract – High throughput biological experiments such as 
DNA Microarrays are very powerful tools to understand and 
characterize multiple illnesses. These types of experiments, 
however, have also been described as large, complex, 
expensive and hard to analyze. For these reasons, analyses 
with linear assumptions are frequently bypassed for more 
sophisticated procedures with higher complexity. In this work, 
a search procedure for potential biomarkers using data from 
microarray experiments is proposed under purely linear 
assumptions. The method shows a high discrimination rate 
and does not require the adjustment of parameters by the user, 
thus preserving analysis objectivity and repeatability. A case 
study in the identification of potential biomarkers for cervix 
cancer is presented to illustrate the application of the 
proposed procedure.  

Keywords: Cancer biomarkers, Microarray Experiments,  

 

1 Introduction 
  The search for genes whose measured change in 
expression behavior is an indication of a tissue being in a 
particular state (e.g. in a state of cancer vs. a state of health) is 
an important research objective in biology and the medical 
sciences. These genes are known as biomarkers. Microarray 
experiments play an important role in the identification of this 
type of genes. In the successful identification of potential 
biomarker genes, lies an important characterization of the cell 
in the presence of cancer. This can lead to enhance disease 
diagnosis and prognosis capabilities.  

Based on our own experience with microarray data, the 
following challenges regarding microarray experiments can 
be identified: (1) the available data is highly dimensional in 
terms of the number of genes to be studied (~104) while 
showing a scarce number of replicates, (2) there is a rather 
large variation across replicates, (3) the data is not normally 
distributed and does not exhibit homogeneous variances, (4) 
there is a considerable number of missing observations in the 
majority of experiments, (5) the data is commonly found 
already being normalized or nonlinearly transformed. All of 
these complicate the detection of potential biomarkers.  

Furthermore, when it comes to data analyses, the following 
are also important challenges: (i) there is no standard way to 
compare results for gene selection or identification between 
studies, (ii) even with the same data (and sometimes with the 
same technique) different researchers end up with different 
screening of genes [Ein-dor, et al. 2005] thereby leading to a 
large number of potential biomarkers to be investigated, the 
research of which could prove lengthy and very expensive.  

Truly integrated work across disciplines is not frequent in 
most microarray analysis works. Biology and Medicine 
experts are usually left with the burden of using coded 
analysis tools with a series of parameters -of statistical, 
computational or mathematical nature/ that significantly 
affect the outcome of the software packages [Pan, 2002]. This 
leads to issues in results reproducibility and comparability 
between studies.  

These challenges motivate the search for microarray analysis 
techniques from which consistent results can be achieved 
across several experiments and users, particularly for the 
identification of potential biomarkers.  

The purpose of this work is to introduce an approach to 
identify potential biomarkers from the analysis of microarray 
experiments based solely on linear models and assumptions. 
Although an initial purpose on the design of the method was 
to establish a baseline of comparison for the many 
sophisticated methods with underlying nonlinear 
assumptions, it soon became apparent that a very effective 
strategy might be based on linearity.  

2 The Analysis Strategy 
 Figure 1 schematically shows the strategy proposed in 
this work. Each step is explained below.  

Step 1: Microarray Experiment.  The process begins with a 
microarray experiment with m1 tissues in state one (Healthy) 
and m2 tissues in state two (Cancer) characterized in n genes. 
In the intersection of each of the n genes with each of the 
m1+m2 tissues, the relative expression of that particular gene 
in the selected tissue is quantified.  
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Step 2: Represent each gene with multiple performance 
measures. In this work, the use of a p_values is advocated to 
represent each gene. A p_value can be computed from the 
application of a statistical comparison test, like the Mann-
Whitney nonparametric test for difference of medians. A 
different p_value for the same gene can be obtained by 
removing a couple of tissues from the microarray experiment 
under analysis. In a comparison of medians, a low p_value 
indicates a high probability for the medians to be significantly 
different.  

Step 3: Apply Data Envelopment Analysis. Data 
Envelopment Analysis (DEA) finds the convex envelop of a 
particular data set consistently and without the need of 
varying parameters manually. If, for example, two p_values 
were used to represent each of the n genes in the experiment, 
then DEA can be used to find the envelope conformed by the 
dominating genes following the minimization direction of 
both p_values. Finding such envelope is done through the 
application of a linear programming formulation, which is the 
first instance where linearity becomes useful.  

Step 4: Select genes in a series of efficient frontiers. The 
envelopes found through DEA are formally known as 
efficient frontiers. When an efficient frontier is found, then 
the solutions lying on it can be removed (as a layer of an 
onion), to then find the efficient frontier right underneath it. 
Following this scheme, several layers can be chosen 
containing different numbers of genes. These genes, having 
been found through the minimization of their p_values, are 
the most likely candidates to be biomarkers. These will be 
referred to as efficient genes.  

Step 5: Create an experimental design to vary the efficient 
genes. An experimental design using as controllable variables 
the presence of the genes can be constructed. Each variable 
can take a value of 0 or 1 (0 for absence of the gene). This 
experimental design will prescribe a limited number of runs 
to measure a particular response of interest. In this case, one 
run corresponds to a combination of efficient genes.  

Step 6: At each experimental design point, measure 
classification performance through linear discriminant 
analysis. Using the experimental design from the previous 
step, at each combination of efficient genes it is possible to 
obtain a measure of classification performance using a linear 
classifier through linear discriminant analysis. A linear 
classifier of this kind will always converge to the same 
position, thus preserving consistent results. At this point, 
then, a complete experimental design relating the 
classification rate with the absence or presence of the 
potential biomarkers is available.  

Step 7: Fit a 1st order linear regression model. With the 
complete experimental design, it is possible to fit a 1st order 
linear regression model. This model will relate classification 
performance (response) to the absence or presence of the 
efficient genes (independent variables).  

Step 8: Apply integer linear programming to choose the 
potential biomarkers that maximize classification 
performance. An optimization problem can be set up in this 
stage. This problem entails finding the combination of 
efficient genes –recall that each gene is represented by a 
variable that can take values of 0 or 1 to indicate absence or 
presence of that gene-, that maximizes the classification 
performance, i.e. choose the genes that maximize the 
regression model from the previous step.  

This procedure, as it was explained, uses only linear models. 
Because of the techniques chosen in the strategy, the results 
are consistent. Furthermore, the selected genes do not depend 
upon the setting of any parameters by the user. This favors 
the repeatability and auditability of the analysis.  

 

Figure 1. Analysis Strategy based on Linear Models 
 

3 Case Study on Cervix Cancer 
 
 This case study helps to illustrate the application and the 
performance of the proposed procedure.  
 
Step 1. The microarray database under analysis is related to 
cervix cancer and was compiled by Wong et al [3]. The 
database consists of 8 healthy tissues and 25 cervix cancer 
tissues, all of them with expression level readings for 10,690 
genes. 
 
Step 2. The Mann-Whitney nonparametric two-sided test for 
comparison of medians was used to generate two different 
p_values per gene, following a leave-one-tissue-out strategy, 
which focuses on extracting a particular tissue associated with 
one state. By removing a vector, a replicate is deleted from the 
set, thereby forcing a p_value that is different to the original 
one. Thus, two different p_values are effectively created.  The 
selection of the tissue to be removed to create a distinct matrix 
is performed randomly as a first approach.  
 
Step 3. The Data Envelopment Analysis model used for this 
case study was the Banks-Charnes-Cooper (BCC) model [4]. 
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This is a linear programming model with the following 
associated formulations: 
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The optimal values of the decision variables correspond to the 
interceptor and the partial first derivatives (with respect of 
each performance measure involved) of a supporting 
hyperplane lying on top of extreme points of the data set 
under analysis. At the end of the analysis, a piece-wise 
frontier is distinguishable as shown in Figure 3.  
 

 
 

Figure 3. Representation of genes characterized through two 
different p_values. Only the case with 2 p_values has a 
convenient graphical representation, but the analysis can be 
extended to as many dimensions as performance measures 
selected. 
 
Step 4. The first ten frontiers were kept for this analysis 
containing a total of 28 genes. It is important to note the 
discrimination rate shown by the method already at this point: 
a reduction of four orders of magnitude in the number of 
genes to analyze.  
 

Step 5. A composite experimental design involving 28 binary 
variables (one per gene in the shortlist from the previous step), 
was used.  Three different experimental designs form the 
composite with 123 runs. The first design is an orthogonal 
array consisting on 47 runs with between 10 to 18 genes each; 
the second design has 48 runs with between 1 to 26 genes 
generated randomly; and the third design consisted of 28 runs, 
each with only one gene. Figures 4, 5 and 6 show the resulting 
designs.   
 

 
Figure 5. Design of Experiment 1. Shaded in gray are the 

values of 1. 
 

 
Figure 6. Design of Experiment 2 (Runs 1-16: 20% of total 
number of genes, runs 16-32: 50% of total number of genes, 

runs 33-48: 80% of total number of genes). Shaded in gray are 
the values of 1. 

 

 
Figure 7. Design of Experiment 3. Shaded in gray are the 

values of 1. 
 
Step 6. A linear discriminant analysis was carried out using 
the combination of genes prescribed by each run of the 
composite design to record the classification performance of a 
linear classifier.  
 
Step 7. With the experimental design complete, a linear 
regression of the classification performance as a function of 
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the presence or absence of the 28 genes is built as shown in 
Table 1.  
 

Variable Coefficient 
Symbol 

Regression 
Coefficient 

 b0 0.8868 
g1 b1 0.0152 
g2 b2 0.0027 
g3 b3 0.0097 
g4 b4 0.0146 
g5 b5 0.0030 
g6 b6 0.0083 
g7 b7 -0.0034 
g8 b8 0.0051 
g9 b9 0.0001 

g10 b10 0.0054 
g11 b11 0.0008 
g12 b12 -0.0020 
g13 b13 0.0120 
g14 b14 -0.0027 
g15 b15 0.0138 
g16 b16 0.0089 
g17 b17 0.0166 
g18 b18 0.0145 
g19 b19 0.0089 
g20 b20 0.0120 
g21 b21 0.0137 
g22 b22 0.0105 
g23 b23 -0.0068 
g24 b24 -0.0025 
g25 b25 0.0093 
g26 b26 0.0050 
g27 b27 0.0079 
g28 b28 0.0158 

Table 1. Linear Regression Model using 123 experimental 

designs. 

 
Step 8. Using the linear regression model from Table 1, the 
optimization model is to find the combination of genes 
(through the use of binary variables) to maximize the 
predicted classification performance. Such optimization 
resulted in the identification of 23 important genes, that is, 
potential cervix cancer biomarkers. These are shown in Table  
2.  
 

Currently, our group is working on the validation of these 
potential biomarkers, as well as on their representation in a 
hierarchical list or a relationship network.  
 
 

Index Frontier Accession 
Number 

Optimization 
Selection 

1 1 AA488645 X 
2 2 H22826 X 
3 3 AI553969 X 
4 3 T71316 X 
5 3 AA243749 X 
6 3 AA460827 X 
7 4 AA454831   
8 4 AA913408, 

AA913864 
X 

9 5 AA487237 X 
10 5 AA446565 X 
11 6 H23187 X 
12 7 AI221445   
13 7 R36086 X 

14 7 AA282537   

15 8 N93686 X 
16 8 R91078 X 
17 8 R44822 X 
18 9 AI334914 X 
19 9 R93394 X 
20 9 AA621155 x 
21 9 AA705112 x 
22 9 R52794 x 
23 10 AA424344   
24 10 H69876   
25 10 H55909 x 
26 10 W74657 x 
27 10 AI017398 x 
28 10 H99699 x 

 
Table 2. The procedure selected 23 potential biomarkers 
through the maximization of the expected classification 

performance. 
 

4 Conclusions 
 
 In this work, a strategy to detect potential biomarkers 
from the analysis of microarray experiments is proposed. The 
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strategy is based solely on linear models and assumptions. Its 
consistent convergence and lack of parameter setting by the 
users, make this method a very competitive and attractive one 
for repeatability and auditability. This is especially important 
in high throughput experiments and in a highly 
interdisciplinary field like bioinformatics. A case study 
involving the analysis of a microarray database on cervix 
cancer was presented to demonstrate the capabilities of the 
strategy. Indeed, in this case study it was possible to 
discriminate among more than 10,000 genes to converge to 
23 potential cervix cancer biomarkers. These are currently 
under analysis for validation in our research group.  
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Abstract— Data mining and classification is a growing
and important field in bioinformatics. Machine learning
algorithms such as support vector machines can be used with
genetic information to predict disease susceptibility. In par-
ticular, single nucleotide polymorphisms have been analyzed
to classify an individual into "sick" or "healthy" categories
for a specific genetic disorder. The most computationally
intensive part of the support vector machine algorithm
involves solving a quadratic programming problem through
the use of an iterative solver. This research examines various
iterative solving methods that are utilized within support
vector machines. In such a solver, the solution of the problem
is obtained through successively converging on an optimal
result. These solvers are analyzed based on efficiency and
the accuracy of the classification.

Keywords: Data mining, gene classification, Krylov iterative
methods, support vector machine

1. Introduction
With the development of the deoxyribonucleic acid (DNA)

microarray technique, it has become possible to gather
genetic information at lower costs [2]. The greater amount
of information available has led to an effort to apply data
mining and classification techniques to this information [11].
The end goal is to develop an algorithm that, when given
genetic information as input, can predict an individual’s
susceptibility to disease.

Single nucleotide polymorphisms (SNPs) show much
promise in this search. SNPs are single base changes of
one nucleotide in a strand of DNA. Sets of SNPs present
in a single block of DNA can be gathered together in a
genotype [4]. One method that has been used to analyze
genetic information is the support vector machine (SVM).
This classification algorithm treats each SNP genotype as a
feature vector. The SVM builds a model after reading in sets
of genotypes from individuals in the "healthy" and "sick"
categories [6].

In building the model, the SVM constructs a hyperplane
that best separates the data points into the two categories.
To do this, it solves a quadratic programming problem [6].
When dealing with genetic information, the dimensionality
of the data can be very large. There may be hundreds or thou-
sands of SNPs in each feature vector. The resulting quadratic

programming (QP) problem can be computationally inten-
sive, and not feasibly solvable with a direct solver [12].
To overcome this, iterative solvers can be used. Iterative
solvers approach a solution over many iterations to provide
an approximation. In many cases, this approximation is good
enough for practical purposes [12].

This paper is organized as follows: Section 2 gives a
concise introduction to the implementation of the SVM.
In Section 3, a selection of Krylov iterative methods are
discussed in detail. Section 4 presents the numerical results
of our experiments. Concluding remarks are made in Section
5.

2. Support Vector Machines
The SVM, first introduced by Vladimir Vapnik in 1992,

has been established as a powerful algorithmic approach to
the problem of classification, which belongs to the larger
context known as supervised learning [12]. Within this
supervised learning problem of classification, one is given a
set of training data consisting of n individual points,

D = {(xi, yi) | xi ∈ Rp, yi ∈ {−1, 1}}ni=1 , (1)

where yi may be the value of ±1, which indicates the
class for which xi belongs—either in (+1) or out (−1) of
the set that one wishes to learn to recognize [3]. Each xi

from Eq. (1) is a real vector in p-dimensions that describes
the data point. The initial goal of the SVM is to locate
the maximum margin hyperplane that divides the points
described by yi = 1 from those as yi = −1. A hyperplane
may be represented as the set of points x which satisfies the
following decision rule:

f(x) ≡ w · x− b = 0, (2)

where w is a normal vector perpendicular to the hyperplane,
and all training points with yi = 1 lie on one side of the
hyperplane, while all the training points with yi = −1 lie
on the other side [12]. SVMs aim to choose w (a normal
vector to the hyperplane) and b (some offset) to maximize
the distance between the parallel hyperplanes such that they
are as far apart as possible while still separating the data,
hence establishing f(x) as the decision rule. Using Eq. (2),
these parallel hyperplanes may be described as follows:

w · x− b = 1, (3)
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and
w · x− b = −1. (4)

For training data that are linearly separable—that is, two
sets of points in p-dimensions that may be separated by
a hyperplane—one may select the two hyperplanes of the
margin in such a way that there are no points between them
and then try to maximize their distance. As one increases
the size of the margin, one must prevent data points from
falling into it. To ensure that this does not occur, one must
utilize the following constraints on Eq. (3) – (4):

w · xi + b ≥ +1 when yi = +1 (5)

and
w · xi + b ≤ −1 when yi = −1. (6)

Eq. (5) – (6) represent parallel hyperplanes that separate the
data, which—together—are referred to as the fat plane [12].
Eq (5) – (6) may be rewritten as

yi(w · xi + b) ≥ 1, for all 1 ≤ i ≤ n. (7)

Using geometry, the perpendicular distance between these
parallel hyperplanes (twice the margin) is

2×margin = 2(w ·w)−
1
2 . (8)

Utilizing Eq. (7) – (8), one may construct the fattest possible
fat plane, known as the maximum margin SVM [12], by
solving a particular problem in quadratic programming:

minimize: 1
2w ·w (9a)

subject to: yi(w · xi + b) i = 1, . . . ,m. (9b)

When arriving to the solution of Eq. (9), some of the training
data points will lie on the extreme boundaries of the fat
plane, denoted the support vectors [12]. The Krylov iterative
methods for solving this quadratic programming problem are
discussed in the following section.

3. Krylov Iterative Methods
Given a square system of n linear equations with a vector

of unknowns x, we may construct the following matrix
equation:

Ax = b, (10)

where the components of Eq. (10) may be represented as

A =


a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

. . .
...

an1 an2 · · · ann

 , x =


x1
x2
...
xn

 , b =


b1
b2
...
bn

 .
(11)

From Eq. (11), A may then be decomposed into a diag-
onal component D and strictly lower and upper triangular
components L and U:

A = D + L + U, (12)

where the components of Eq. (12) may be represented as

D =


a11 0 · · · 0
0 a22 · · · 0
...

...
. . .

...
0 0 · · · ann

, L =


0 0 · · · 0
a21 0 · · · 0

...
...

. . .
...

an1 an2 · · · 0

,
(13a)

U =


0 a12 · · · a1n
0 0 · · · a2n
...

...
. . .

...
0 0 · · · 0

. (13b)

The system of linear equations from Eq. (10) – (13) may be
rewritten as

(D + ωL)x = ωb− [ωU + (ω − 1)D]x (14)

for a constant ω > 1 [1]. Various iterative methods exist to
solve the expression of Eq. (14).

3.1 Successive Overrelaxation Method
The successive overrelaxtion (SOR) method is derived

by extrapolating the Gauss-Seidel method [8]. This ex-
trapolation takes the form of a weighted average between
the previous iterate and the computed Gauss-Seidel iterate
successively for each component:

xi
k = ωx̄ki + (1− ω)xi

k−1, (15)

where x̄ represents a Gauss-Seidel iterate and ω is the
extrapolation factor [1].

In matrix terms, the SOR algorithm may be written as
follows:

xk = (D−ωL)−1[ωU+(1−ω)D]xk−1 +ω(D−ωL)−1b,
(16)

where the matrices D, L and U represent the diagonal,
strictly lower-triangular and strictly upper-triangular parts of
A from Eq. (13), respectively [1].

The underlying success behind SOR is to choose a value
for ω that accelerates the rate of convergence. When ω = 1,
the SOR method simplifies to the Gauss-Seidel method [1],
yet it will fail to converge if ω /∈ {0, 2} [8]. Generally
speaking, it is impossible to choose the most desirable value
for ω in advance, thus it is common to utilize the following
heuristic estimate:

ω = 2−O(h), (17)

where h is the mesh spacing of the discretization of the
underlying physical domain [1].

3.2 Quasi-Minimal Residual Method
Iterative methods often exhibit irregular convergence be-

haviors. A related algorithm, known as the quasi-minimal
residual (QMR) method [5], attempts to overcome this
problem. The underlying idea behind this algorithm is to
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solve the reduced tridiagonal system in a least squares sense.
QMR also uses look-ahead techniques to avoid breakdowns
in its Lanczos process, which makes it more robust than
SOR [1].

3.3 Biconjugate Gradient Method
The biconjugate gradient (BiCG) method [9] is commonly

used in solving systems of linear equations. It is a general-
ized form of the conjugate gradient method, in that it can
be applied to matrices that are non-symmetric. To formulate
the biconjugate gradient method as an iterative method, it is
necessary to use a metric at each iteration to determine if
the approximation vector x is closer to the solution x∗. It
has been shown that this solution is also the minimizer for
the quadratic function [13]:

f(x) = 1
2x

TAx− xTb, x ∈ Rn. (18)

Therefore, as Eq. (18) is smaller than the previous iteration,
the value of x is closer to the solution. Starting with an initial
guess x0, the gradient of the function will be Ax0 − b. If
x0 is assumed to start at 0, the first basis vector p1 will
equal b. Each of the other vectors in the basis is conjugate
to the gradient of the function.

The error at each iteration is measured as the residual.
This residual is defined as

rk = b−Axk. (19)

In calculating the basis vectors at each step, this residual
from Eq. (19) is taken into account in order to move the
approximation towards the solution. The value of x therefore
is updated during each iteration to

x = x+ α× p, (20)

where α is based on the residual divided by A× p.
The resulting algorithm involves two matrix vector prod-

ucts, including one transpose product. This is the major
computational cost of the biconjugate gradient method [10].

3.4 Biconjugate Gradient Stabilized Method
The biconjugate gradient stabilized (BiCGSTAB)

method [14] is a variation of the biconjugate gradient and
conjugate gradient squared (CGS) methods. BiCGSTAB
makes several improvements, most importantly in that it
stabilizes the algorithm. CGS relies on the squaring of the
residual, which can result in rounding errors that affect
the approximation in greater amounts at each iteration.
As a result, the convergence pattern may be irregular.
BiCGSTAB smooths this convergence by updating the way
the approximation x is determined at each step:

x = x+ α× p+ ω × s. (21)

Here, ω from Eq. (21) is a scaling factor that allows the
distance that the approximation changes to vary. Larger steps
may be taken during iterations, which assists in speeding up

convergence. The stabilizer s is what allows for a smoother
convergence. It is based on the residual and the matrix:

s = r − αA× p. (22)

Eq. (22) results in avoiding the irregular convergence that is
associated with BiCG. Further, there is no transpose involved
in this algorithm, which is often desirable for solving certain
matrices [13].

4. Numerical Results
The dataset used with the SVM was taken from publicly

available genetic information. It is derived from the 616
kilobase region on Chromosome 5q31 [4]. Within this re-
gion may contain the genetic variation that is responsible
for Crohn’s disease [3]. The data contains a total of 103
genotyped single nucleotide polymorphisms for each of the
387 genotypes. Of this, 144 of them are case and 243 are
control.

The SVM package chosen was the Mangasarian-Musicant
variation due to its brevity [12]. Each of the genotypes was
treated as a feature vector and read as input to the SVM. The
kernel function increased the dimensionality of the dataset
using a linear kernel. Half of the genotypes were used as
the training set. During the solving of the SVM, each of the
four different iterative solvers was used to solve the quadratic
programming portion. The other half of the genotypes was
then classified using the training data. Table 1 shows the
resulting data that was collected.

For each of the solvers, we measured the efficiency of the
solver as well as the accuracy of the classification resulting
from the solution. The number of iterations each solver took
to converge as well as the time it took can be considered
a measure of its efficiency. For the classification, a simple
accuracy measurement consisting of the percent of genotypes
correctly classified. The sensitivity and specificity of the
data was also taken. The sensitivity is the proportion of
individuals who have the disease and are correctly identified
as such. The specificity is the proportion of individuals who
do not have the disease and are correctly identified.

All of the solvers except QMR were able to achieve con-
vergence within the maximum number of iterations. QMR
terminated after 43 iterations as a result of a breakdown in
the gamma variable. However, it still was able to produce a
viable classification. The QMR algorithm is not as robust as
some of the other methods, and the algorithm failed on this
particular matrix.

Out of the four solvers, BiCG was the most accurate,
correctly placing 64.1% of the SNPs into the proper category.
The classification of BiCGSTAB was similar with a 62.1%
accuracy. SOR and QMR both resulted in classifications with
60.2% accuracies. The accuracies of each of the solvers were
relatively similar. Further, the results were comparable to the
same dataset used with other SVM packages. In particular,
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Table 1: Classification results of the QP solvers
Solver Iterations Solve Time (sec) Accuracy (%) Specificity (%) Sensitivity (%)
SOR 60 0.0500 60.2 51.9 68.6
QMR 43 0.0050 60.2 51.9 68.6
BiCG 149 0.0020 64.1 61.5 66.7

BiCGSTAB 63 0.0012 62.1 53.8 70.5

Fig. 1. Convergence history of the SOR solver Fig. 2. Convergence history of the QMR solver

Fig. 3. Convergence history of the BiCG solver Fig. 4. Convergence history of the BiCGSTAB solver

the commonly used SVM-Light package resulted in 62%
accuracy [7].

The convergence histories of the solvers can be seen in
Figures 1–4. The failure of the QMR method can be seen
as no change in the residual. SOR converges slower than
BiCG and BiCGSTAB. These two solvers quickly reached
a low residual value, and then slowly converged within the
tolerance. The stabilizing effect of the BiCGSTAB algorithm
over the BiCG can clearly be seen. The convergence history
of BiCG is erratic, with many increases in the residual. The
BiCGSTAB smooths this, resulting in a much more stable
convergence.

In terms of time, BiCGSTAB was clearly the most effi-

cient solver, converging in 0.0012s. Of note is that not all
times correlated with the number of iterations. For example,
SOR iterated a similar number of times as BiCGSTAB.
However, each iteration took a greater amount of time, and as
a result took longer to converge. The BiCG took the greatest
number of iterations. The time per iteration was smaller than
QMR and SOR, and as a result converged in less time.

5. Conclusion
Support vector machines can be applied confidently to

the problem of classification of genetic data. As more and
more genetic information becomes available, classification
algorithms such as the SVM can be used to make useful
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models based on the data. With the addition of sophisticated
iterative methods, an accurate solution can be achieved in
less time.

The numerical results demonstrate the efficiency of var-
ious iterative solvers. As can be seen with the failure of
QMR, certain methods may not be applicable with certain
matrices. The BiCGSTAB provided a model with high
classification accuracy. It is also the most efficient of the
methods examined in terms of time. Overall, the results
suggest that BiCGSTAB is a robust algorithm that is a good
choice for solving large quadratic programming problems.
This experiment may assist researchers in selecting an iter-
ative method when dealing with data mining using genetic
information.
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Abstract— Splice sites prediction is an important objective
of genome sequencing. In last years, careful attention has
been paid in order to the improve the performance of the
algorithms used, but the study of most feasible methods to
improve the performance in large and imbalanced data-sets
is still of immense importance. This paper presents a novel
SVMs classification method which works with gene data, the
proposed method reduces significantly the training time and
obtain a high accuracy on huge and imbalanced data-sets.
Experimental results show that the accuracy obtained by the
proposed algorithm is slightly better (98.9%) in comparison
with other SVMs implementations such as SMO (98.6%),
LibSVM (98.6%), and Simple SVM (98.2%). Furthermore
the proposed approach can be used in large and imbalanced
data-sets obtaining high classification accuracy.

Keywords: SVM, Splicing, Imbalanced data-sets

1. Introduction
The advances and development in DNA sequencing tech-

nologies have resulted in a impressive increase in the size
of genomic sequences. This growth of sequence data de-
mands effective techniques to processing huge amounts of
biological information. Identifying genes is an important
issue in bioinformatics, and the accurate identification of
splice sites in DNA sequences plays one of the central
roles of gene structural prediction in eukaryotic cells. An
effective detection of splice sites requires the knowledge of
characteristics, dependencies, relationship of nucleotides in
the splice site surrounding region and an effective encoding
method.

The classification of gene sequence into regions that code
for genetic material and regions that do not is a challenging
task in DNA sequence analysis. It is not an easy challenge. It
is due to size of DNA sequences and sometimes regions that
encode in proteins (exons) can be interrupted by regions that
do not encode (introns). These sequences are characterized,
however they are not clearly defined by local characteristics
at splicing sites. Identifying exons into DNA sequences
presents a computational challenge. In some organisms the
introns are small regions and the splicing sites are fully
characterized. However, in some other sequences, including

human genome, it is a great problem to localize the correct
transition between the regions that encode and the ones that
not. Furthermore, the genes in many organisms splice of
different way, which complicates considerably the task. On
the other hand, splice sites fall into two categories: donor
sites of introns and acceptor sites of introns. These sites
display some characteristic patterns, e.g. 99% of donor sites
begin with base pairs GT while 99% acceptor sites end with
based pairs AG. However, not all locations with base pairs
GT or AG are necessarily splice sites. Some occurrences
of AG or GT occur outside of a gene or inside an exon.
These are called decoys, because they do not indicate the
presence of a splice site. Furthermore, the majority of gene
data-sets are imbalanced and the bulk of classifiers generally
perform poorly on imbalanced data-sets because making the
classifier too specific may make it too sensitive to noise and
more prone to learn an erroneous hypothesis. Another factor
is that in imbalanced data-sets an instance can be treated
as noise and ignored completely by the classifier. Due to it,
efficient methods and fast techniques that aims to tackle this
problem are necessary.

In this paper, we use a novel approach for train and
predict acceptor and donor splice sites in huge and im-
balanced data-sets using Support Vector Machines (SVM).
SVM has received considerable attention due to its optimal
solution, discriminative power and performance. Lately some
SVM classification algorithms have been used in splice
site detection with acceptable accuracies [1] [2] [3] [10]
[12] [14]. Cheng et al [2] use SVMs in order to predict
mRNA polyadenylation sites [poly(A) sites] the method can
help identify genes, define gene boundaries, and elucidate
regulatory mechanisms. Damaevicius [3] and Xia [12] use
SVMs in order to detect splice-junction (intron-exon or
exon-intron) sites in DNA sequences. In [14] the authors use
a SVM in order to discover sequence information that could
be used to distinguish real exons from pseudo exons. Baten
et al. [1] make use of SVM with polynomial kernel in order
to obtain an effective detection of splice sites, the authors
used a first order Markov model as a pre-processing step of
DNA sequences. Some authors have been using SVM for
the detection of splicing sites. However, when faced SVM
with imbalanced data-sets the performance of SVM drops
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significantly. Other important disadvantage of SVMs is due
to memory requirements grows with square of input data
points, so training complexity of SVMs is highly dependent
on the size of a data-set.

This paper presents a novel splice sites fast classification
model using SVM for imbalanced data-sets. The proposed
method reduces intelligently the input data-set, tackling the
problem of imbalanced data-sets with SVM and reducing
significatively the training time. The rest of the paper is or-
ganized as following: Section II reviews some preliminaries
of SVM. Section III focuses on explaining the methodology
of proposed SVM classification algorithm. Section IV shows
experimental results. Conclusions are given in Section V.

2. Preliminaries
2.1 Support Vector Machines

Support Vector Machines aim at estimating an optimal
classification function using labeled training data from Xtr

such that f will correctly classify unseen examples (test
data). In our case, input space X will contain simple
representations of sequences A,C, G, T while corresponds to
true splice and decoy sites, respectively. Considering binary
classification, we assume that a training set Xtr is given as:

(x1,y1), (x2,y2), . . . , (xn,yn) (1)

i.e. Xtr = {xi, yi}ni=1 where xi ∈ Rd and yi ∈ (+1,−1) is
the label of example xi. The generated classification function
can be written as

g(x) = sign

(
n∑

i=1

αiyiK(xi,xj) + b

)
(2)

where x = [x1, x2, . . . , xl] is the input data, αi and yi are
Lagrange multipliers. SVM training obtain a set of real-
valued weights αi ≥ 0 such the normal vector can be
expressed as a linear combination of input vectors, w =
n∑

i=1

yiαixi. Input vectors xi having non-zero weight are

called support vectors and they determine the SVM solution.
Once the SVM is trained, a new object x can be classified
using (2). The vector xi is shown only in the way of inner
product. The αis are Lagrange multipliers and b is the usual
bias which are the result of SVM training.

The principal disadvantage of SVMs is due to complexity
that grows with square of input data points. Sequential
minimal optimization (SMO) breaks the large Quadratic
Programming (QP) problem into a series of smallest possible
QP problems [9]. These small QP problems can be solved
analytically, which avoids using a time-consuming numerical
QP optimization as an inner loop. The memory required by
SMO is linear in the training set size, which allows SMO
to handle very large training sets [9]. A requirement in (3)

is
n∑

i=1

αiyi = 0, it is enforced throughout the iterations

and implies that the smallest number of multipliers can be

optimized at each step is two. At each step SMO chooses
two elements αi and αj to jointly optimize, it finds the
optimal values for these two parameters while all others
are fixed. The choice of the two points is determined by a
heuristic algorithm, the optimization of the two multipliers
is performed analytically.

2.2 Methods for imbalanced classification
The classification of imbalanced data-sets is a crucial

problem in machine learning because it normally causes neg-
ative effects on the performance of a classification method.
There are two methods to tackle this problem. At the data
level, re-sampling training data is a popular solution to
classification of imbalanced data-sets, the most important
techniques used at the data level or by preprocessing data
exist are Over-sampling and Under-sampling.

2.2.1 Over-sampling
This technique over samples the minority class to balance

the class distribution of a training data-set. Specifically, the
minority class is over sampled until the size is equal to
the size of the maximum class. Over sampling is a popular
technique tackle some imbalanced classification problems.
However in SVM increases significatively the training time.

2.2.2 Under-sampling
This technique under samples the majority class to balance

the class distribution of a training data-set. Specifically,
the majority class is under sampled until the size is equal
to the size of the minimum class. Some previous studies
showed that under sampling was better than over sampling
in classification of imbalanced data-sets. It should also noted
that under sampling usually reduces the training time but
discard some potentially useful training examples and may
degrade the performance of the classifier.

On the other hand, at the algorithmic level, weighting
training data assign a larger weight to the minority class
in order to balance the input data-set.

3. Methodology
In the following, we describe the methodology for splice

sites recognition. Given a sequence, the proposed algorithm
starts by encoding the DNA sequences. DNA encoding is
crucial to successful intron/exon prediction. The next step is
done by training SVMs on the training data and tuning their
hyperparameters on the validation data.

3.1 DNA Encoding
DNA encoding has been extensively researched in recent

years [5][8]. Each technique is based on the most important
features to be shown. Sparse encoding is a widely used
encoding schema which represents each nucleotide with 4
bits: A → 1000, C → 0100, G → 0010 and T → 0001 [7].
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Suppose we have a DNA sequence of AGGCGTATGAGG.
With the sparse encoding, the sequence is represented as:
1000 | 0010 | 0010 | 0100 | 0010 | 0001 | 1000 | 0001 |
0010 | 1000 | 0010 | 0010. where | is a virtual separator
used to illustrate the example.

We use 18 additional features with the sparse encoding
schema. The first 16 components define the nucleotide pairs
into a DNA sequence, which are defined as β = {(xAA),
(xAC), (xAG), (xAT ),. . .,(xTA),(xTC),(xTG),(xTT )}.
When some nucleotide pair is in the sequence, it is marked
with 1 and an absence of this pair is marked with 0. The
DNA sequence, AGGCGTATGAGG can be encoding by
this schema as: 0 0 1 1 0 0 1 0 1 1 1 1 1 0 1 0.

The last two components correspond to the informative
function of each triples in the sequence ranked by their F -
value. For each triple, we specify its location relative (pre
and post) and its mean frequency among exons and decoys
µ+
k − µ

−
k respectively.

The F -value criterium is that used by Golub et al [6].
For each triple xk,k = 1, ..., n, we calculated the mean
µ+
k (µ

−
k ) and the standard deviation σ+

k (σ
−
k ) using positive

and negative examples. The F -value criterium is given by

F (xk) =

∣∣∣∣µ+
k − µ

−
k

σ+
k + σ−

k

∣∣∣∣ (3)

where xk is the k − esime triple, the F -value serves as a
simple heuristic for ranking the triples according to how well
they discriminate. The last point in the vector is represented
by the relative presence of each triple of nucleotides. If this
sequence AGGCGTATGAGG belong to data-set of example
1 can be encoding by this schema as: γ = {fAGG, fAGG} =
{0.231, 0.231}, where γ is computed using the F -value
criterium. The F -value is repeated because the triple AGG is
in the sequence pre and post (AGG...CGTATG... AGG).

The proposed encoding schema allows to obtain the
nucleotides of each sequence, encoding the pairs show the
importance of some pairs in the sequence, and obtain the
importance of each triple at the begin and at the end of each
sequence. The previous DNA sequence can be encoding by
the complete schema as: 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1,
0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0,
0, 0, 0, 0, 1, 0, 0, 0, 1, 0 |0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1,
0, 1, 0 | 0.231, 0.231. Where | is a virtual separator which
objective is just illustrate the three techniques used. With
the proposed encoding schema SVM can use the features
and discriminate between the categories.

1000 | 0010 | 0010 | 0100 | 0010 | 0001 | 1000 | 0001 |
0010 | 1000 | 0010 | 0010.

3.2 Classification algorithm
SVM classification aim at estimating a classification func-

tion H : X → {±1} using labeled training data from
X×{±1} such that H will correctly classify unseen exam-
ples (testing data). In our case, input space X will contain

simple representations of sequences {A,C,G, T}N , while
±1 corresponds to true splice and decoy sites, respectively.

Learning with imbalanced data is one of the recent
challenges in machine learning. There are some techniques
proposed in order to find a solution for this problem, such
as the application of a preprocessing stage focused on
balancing data, in preprocessing data two tendencies exist:
reduce the set of examples (under-sampling) or replicate
minority class examples (over-sampling). Over-sampling of
minority classes can be done by re-sampling the exam-
ples from minority classes thus increasing the bias of the
learned classifier towards them and increasing the accuracy
on minority classes. Under-sampling with imbalanced data-
sets could be considered as a prototype selection procedure
which the majority class can reduce the bias of the learned
classifier towards it and thus improve the accuracy on the
minority classes. In this paper, we used under-sampling, the
selection process under-sample the majority class in order
to remove noisy and redundant training instances however
the proposed algorithm recover the most important data
points and the outliers keeping all the information in the
training data-set. Our goal in this case is to retain and
use this information, because even though under-sampling
the majority class provokes an inherent loss of valuable
information.

INPUT: XEDS

//XEDS ; Entire Imbalanced data-set
OUTPUT: Hf : {xi ∈ xEDS : xi ∈ SV s} ;
Initialization;
1. X+

r ← 0 /* training data-set with positive labels
begins empty */
2. X−

r ← 0 /* training data-set with negative labels
begins empty */
3. X+

r ← {xi ∈ xEDS : yi = +1} , i = 1, 2, ..., p;
4. X− ←
get_RandomSampling {xi ∈ xEDS : yi = −1} , i =
1, 2, ..., p;
5. Obtain outliers (O+, O−) using Algorithm 2;

6. Obtain
(
X+

f , X
−
f

)
using Algorithm 2;

7. X+
RD ←

(
X+

f ∪O+
)

;

8. X−
RD ←

(
X−

f ∪O−
)

;

9. Hf

(
X+

RD, X
−
RD

)
← trainSVM

(
X+

RD, X
−
RD

)
;

10. return Hf

(
X+

RD, X
−
RD

)
Algorithm 1: SVM training

In this paper, we propose a fast SVM algorithm to work
with imbalanced data-sets. The proposed algorithm is based
in the sparse property of SVM When using SVM for
classification, in most cases has been found that after the
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training, the number of SV is very small compared with
the number of elements of the training data-set, so taking
advantage of this fact, the basic idea behind the reduction
of the training data-set strategy is to select elements most
likely to be SV. The Algorithm 1 shows the general process
to detect splices sites or decoys by our technique.

The first step in the proposed algorithm consists in ob-
tain the minority class which contains p instances, in the
imbalanced data-set and label them as positive X+

r , we also
randomly select from the entire data-set XEDS and label
them as negative X−

r .
X+

r and X−
r are used by the algorithm 2 in order to

find an introductory hyperplane H1 (X
+
r , X

−
r ), from H1 we

obtain SV, non-SV and O+ ∪O− by testing the hyperplane
obtained in the entire data-set, the data-set O+∪O− contains
all data points that are misclassified with H1 and contains
valuable information in this process. In order to obtain
the most important data points in the entire data-set we
train a SVM and obtain H2

(
X+

ch, X
−
ch

)
where X+

chandX
−
ch

represent the data points that are SV and non SV with H1

respectively. Testing H2 in the entire data-set we obtain the
most important data points and eliminate redundant training
instances.

The small size of (X+
RD, X

−
RD) contributes to speed up the

training of the proposed method. Furthermore, the reduced
data-set obtained contains the most important data points in
the entire data-set.
∩

INPUT: X+
r , X

+
r

//XTr; Training data-set
OUTPUT: X+

f , X
−
f , O

+, O−;
Initialization;
1. H1 (X

+
r , X

−
r )← trainSVM (X+

r , X
−
r );

2. SV ← get_SV (H1 (X
+
r , X

−
r );

3. nonSV ← get_nonSV (H1 (X
+
r , X

−
r );

4. X+
r ← 0 /* positive outliers or missclassified data

points with H1 are empty */ ;
5. X−

r ← 0 /* negative outliers or missclassified data
points with H1 are empty */ ;
6. O+ ∪O− ← testing_SVMH1 (X

+
r , X

−
r ) ;

7. X+
ch ← SV ;

8. X−
ch ← nonSV ;

9. H2

(
X+

ch, X
−
ch

)
← trainSVM

(
X+

ch, X
−
ch

)
;

10. (X+
f , X

−
f )← testing_SVMH2

(
X+

ch, X
−
ch

)
;

11. return X+
f , X

−
f , O

+, O−.

Algorithm 2: Proposed under-sampling algorithm

The main advantages of proposed model include a) it can
make use of the discriminative features (features which show
relevant differences between true splices sites and decoys),

reducing the influence of some irrelevant and redundant fea-
tures; b) it can work on imbalanced data-sets, the algorithm
implements an undersampling technique in order to balance
the data points and recover the most important data points in
the data-set, retain valuable information with the proposed
process; c) The training time obtained with the proposed
method is very fast in comparison with other fast SVM
implementations.

4. Experimental Results
In this section, we describe the methodology used and

show the results obtained with the proposed algorithm,

4.1 Metrics for Imbalanced Classification
In order to evaluate classifiers on highly imbalanced data-

sets, is necessary to use an adequate metric. With highly
skewed data distribution, the overall accuracy metric is not
sufficient any more. This is because with an imbalance of
99 to 1, a classifier that classifies everything negative will be
99% accurate, but it will be completely useless as a classifier
to detect rare positive samples.

The medical community, and increasingly the machine
learning community, use two metrics, the sensitivity and
the specificity, when evaluating the performance of various
tests. The sensitivity is the performance of proposed SVM to
calculate the proportion of noncoding nucleotides that have
been correctly predicted as noncoding and it is evaluated as

Sfalse
n =

TN
TN + FP

(4)

Sn is the proportion of candidate sites in the testing data-set
that have been correctly predicted and it is expressed as

Sn =
Nc

Nt
(5)

Strue
n is the proportion of coding nucleotides that have been

correctly predicted as coding, i.e.,

Strue
n =

TP
TP + FN

(6)

where TP is the number os sequences with real splice sites
which are predicted to be true (true positives), TN is the
number of sequences without real splice sites which are
predicted to be false (true negatives), FP is the number of
sequences without real splice sites which are predicted to be
true (false positives) FN is the number of sequences with real
splice sites which are predicted to be false (false negatives),
Nc is the number of exons that have been correctly predicted
in the testing data-set, and Nt is the total number of exons
sites in the testing data-set.

The receiver operator characteristic curve (ROC) analysis
describes the sensitivity and specificity of a classification
model using graphics. It is considered as an effective method
to assess the performance of a classification method. We also
used this metric to evaluate our classifier. We also list the
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sensitivity and specificity separately to give the reader an
even better idea of the performance of our classifier.

4.2 Model selection
SVM training involves to fixing several parameters. The

parameters chosen have a crucial effect of the performance
of the trained classifier. To be able to apply the SVM, we
select the radial basis function (RBF) kernel function to train
the SVM. The RBF kernel function is defined as

K(xi − xj) = exp(−γ ‖xi − xj‖2), γ > 0 (7)

we have to find the complexity parameter C and γ, con-
trolling the tradeoff between training error and complexity,
and the kernel parameters. In order to identify an optimal
hyperparameter set, we applied a “grid search” on C and γ
using cross-validation.

4.3 Examples
In order to show the experimental results of the proposed

method, we use two examples. First example is a small
data-set with balance data-set, but the second example is
an imbalanced and large data-set example.

4.3.1 Example 1

We use Primate splice-junction gene sequences(DNA)
taken from Genbank64.1 (ftp site: genbank.bio.net).The
DNA data-set contains 3190 DNA sequences with 62
descriptors for each sequence, 767exon/intron bound-
aries(referred to as EI sites), 768 intron/exon bound-
aries(referred to as IE sites) and 1655 neither.

In this example, we use 80% of the input data to train the
SVM and 20% to test. The SVM was trained and evaluated
20 times, the experimental results are shown in the Table I.
It shows the experimental results obtained with the proposed
approach with the average accuracy (Acc) and the standard
deviation(SD). The results obtained with Sfalse

n , Sn and
Strue
n provide a good measure of the classifier. However,

in this case the data-set is very small, the training time is
almost the same with some SVM implementations like Sim-
pleSVM, Libsvm, Sequential Minimal Optimization(SMO),
but when the training data-set is large the training time grows
exponentially.

Table I
Genbank 64.1 data-set

Av_EI Av_IE Av_Neither
Acc 99.37 99.18 97.8
SD 0.16 0.27 0.24
Strue
n 0.99 0.98 0.97
Sfalse
n 0.99 0.98 0.97
Sn 0.99 0.99 0.97

Acc.-average accuracy, SD.- standard deviation.
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Fig. 1: ROC curves of the four classifiers. The proposed
method, LibSVM, SMO and SimpleSVM.

4.3.2 Example 2
The second example is acceptor/donor

data-set which was obtained from
http://www2.fml.tuebingen.mpg.de/raetsch/projects/.
The data-set contains 91546 training data points and
75905(2132 true sites) testing data points for acceptors
and 89163 training data points and 73784(2132 true sites)
testing data points for donors. In this example we show the
difference of training time between the proposed approach
and other fast SVM implementations.

The Figure 1 shows the ROC curves obtained with the
proposed algorithm, The AUC for the proposed method,
LibSVM, SMO and SimpleSVM are 0.9894, 0.9860, 9865
and 9823 respectively. The Figure 2 shows the discriminative
power of the proposed method, in the Figure 2 are shown the
AUC of LibSVM with only the sparse encoding and the AUC
of proposed method. It is clear that, a set of highly discrimi-
native features could significantly improve the classification
accuracy. Some features were added with the purpose of
enhancing the classifier performance. Moreover, not only in
the performance measure is more robust, but also we get a
small training time as can we see in the Table II.

Table II
Acceptor data-set Donnor data-set
Algorithm t AUC t Acc
Proposed App 469 98.9 673 98.7
LIBSVM 6371 98.6 4924 98.5
SMO 123493 98.6 104525 98.4
SimpleSVM 432919 98.2 381049 98.1

# traininig data, t training time in seconds, Acc accuracy.
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Fig. 2: ROC curves of the four classifiers. The proposed
method, LibSVM, SMO and SimpleSVM.

5. Conclusions
In this paper we present a novel SVM classification

approach for large data-sets using imbalanced data-sets. In
order to reduce SVM training time for large data-sets, we
use a modified algorithm which overcomes the drawback that
only part of the original data near the support vectors are
trained. Experiments done with real world data-sets, show
that the proposed method has advantage in large data-sets.
Furthermore, not only in the training time is more robust,
but also we get much area under the ROC curve, providing
an adequate measure for the quality of the classifier. Some
features have been proposed for the classification Don-
nor/acceptor. introducing a new encoding method. However,
not all features are equally effective for the classification
task. Therefore, the careful choice of features is crucial for
building accurate splice detectors and if an appropiate system
for imbalanced data-sets is implemented, the SVM classifier
easily outperform previously proposed methods. Choosing a
set of highly discriminative features could significantly im-
prove the classification accuracy. In this work, we study the
some features with the purpose of enhancing the classifier
performance, and improve significatively the training time
used with other fast SVM implementations.
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A Study on Acupressure Points Online Database  
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Abstract: Acupuncture points or acupressure points have been popularly used for thousands years for 

Chinese to cure various illness or pains. The method comes with less or no side effects, comparing the 

western medicine chemicals. With the new computer information technologies, the ancient Chinese 

healing tool could be very convenient for us to take care of ourselves at home or work. In this paper, we 

present our online database system for locating the acupressure points. A case study shows the details of 

the design and structure of the online system.   

 
Keywords: Acupressure points, databases, information systems, PHP/MySQL 

 

1   Introduction 
 

The vast applications of information systems have been developed very fast in the past decades. 

Typically, common information systems consist of people, procedures, data, software, and 

hardware that are integrated together in order to serve the objectives. Specifically computer-

based information systems are corresponding networks of hardware/software that people and 

organizations use to collect, filter, process, create, and distribute. As computers grew in speed 

and capability, a number of general-purpose database systems emerged. Databases are designed 

to offer an organized mechanism for storing, managing, and fetching information in an efficient 

manner. In many cases, PHP and MySQL are used widely to create online databases that help us 

in need [1]. 
 

PHP is a general-purpose scripting language that is especially designed for Web development 

and can be embedded into HTML. It supports most of modern databases such as Informix, 

Oracle, and Sybase. It is open source software, meaning PHP is free to download and use. It can 

be used for both command-line scripting and client-side GUI applications. With PHP, embed 

dynamic Web design and programming become easy to handle. There is also unlimited control 

over the web server when using PHP. Whether you need to modify HTML on the fly, process a 

credit card, add user details to a database, or fetch information from a third-party website, you 

can do it all from within the same PHP files which the HTML itself is also located.  

 

With more than ten million installations, MySQL database is one of the world's most popular 

database management systems for dynamic Web applications. It was developed in the mid 1990s 

and is now becoming a mature technology that powers wide ranges of Internet sites. MySQL is a 

popularly used not just because of its open source and free to use, but also its excellent 

performance, high reliability, and ease of use. Furthermore, it can even run on the most basic of 

hardware, and hardly puts a dent in system resources. So MySQL is highly scalable, meaning a 
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Figure 1 Acupressure points 

website using MySQL has the potential to grow [3]. In fact, in a comparison of several databases 

by eWeek, MySQL and Oracle tied for both best performance and for greatest scalability.   

 

With PHP/MySQL, we construct an online information system that allows the user to select an 

illness and/or uncomfortable body part, and then present all the related acupressure points 

(Figure 1) that cure the particular symptom or illness. Beside these points are links to the 

location of the point with an image as well as 

directions on how to massage the specific point. 

Also, when an administrator logs in with the correct 

password and username, the administrator has the 

option of adding a record to the database.  

 

Acupressure and acupuncture share the same active 

points (also called trigger points). Over 5,000 years 

ago, the ancient Chinese developed this system of 

active points stimulation. These active points are 

located on imaginary lines called meridians. 

Accordingly, the points are referred to by the 

meridian they are located on and consecutive number 

of point on that meridian [3].  

 

In the next section, we will present a case study that 

details the system design and structure, including the 

files, tables, and examples of usages. And then  

conclusions follow.    

2   Case Study 
 

The URL of the online system is 

http://zwang.vwc.edu/~tasantos.  

 

There are following nine PHP files to interact with the 

MySQL database. 

 directions.php – lists all the directions on how to massage the point of concern.  

 header.php – creates a banner and menu options on every page it is posted on. 

 index.php – the homepage that contains project objectives and links to resources.  

 insert.php – text boxes for the administrator to input another record. 

 login.php – text boxes for administrator username and password. 

 login1.php – lets administrator know if login was successful.  

 output.php – adding new acupressure points to the points database.  This file lets the 

administrator know if adding the record was successful.  The INSERT INTO method is used 
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to obtain the information to create additional database entries.  It is only available for the 

administrator to perform operations, and the code is as follows. 

 
<?php 

      $server = „localhost‟; 

      $user = „******‟; 

      $pass = „******‟; 

      $mydb = „******‟; 

      $connect = mysql_connect($server, $user, $pass); 

      $table_name = „points‟; 

      Print “Table $table_name Data<br>”; 

      $query = “INSERT INTO $table_name VALUES „0‟, „$name‟, „$chinesename‟,        

„$linkurl‟, „$headache‟, „$hangover‟, „$sorethroat‟, „$heartburn‟, 

„$weightloss‟, „$depression‟, „$insomnia‟, „$memory_and_concentration‟, 

„$hiccoughs‟, „$high_blood_pressure‟)”; 

 

      Print “The Query is <i>$query</i><br>”; 

      mysql_select_db($mydb); 

      print „<br><font size=”4” color=”blue”>‟; 

      if (mysql_query($query, $connect)) 

      {  print “Insert into $mydb was successful!</font>”;  } 

   else 

      {  print “Insert into $mydb failed!</font>”;  } 

mysql_close($connect); 
 

 search1.php – this form selects the symptom(s) and searches for the corresponding points. 

See sample of search1.php code below:  

 
<?php include „header.php‟; ?> 

<font face = papyrus> 

<p> 

<FORM ACTION=test.php METHOD=post> 

<?php 

    $menu = array(„Headache‟, „Hangover‟, „Sore Throat‟, „Heartburn‟, 

„Weightloss‟, „Depression‟, „Insomnia‟, „Memory & Concentration‟, 

„Hiccoughs‟, „High Blood Pressure‟); 

    PRINT „<b>Please select your symptom(s):</b> <BR>‟; 

    for($i=0; $i < count ($menu); $i++) 

    {   echo “<INPUT type=checkbox name=symptom[] value=$i> menu[$i]”; 

        echo “<BR>; 

    } 

?> 

<p> 

<INPUT type=submit value=”Submit”> 

<INPUT type=reset value=”Reset”></font></FORM></BODY> 

 

 test.php – the action code for search1.php; outputs the points, including Chinese name, and 

hyperlink of its location. 

 

When this code is submitted, all of the tables that are present in my database will show. Figure 2 

shows the structure and content of the points table. 
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Figure 2 The structure of Points table 

 
When this code is typed in, a display is outputted of all the table’s fields and their formats. 

Let’s go through the design of the website and what the site has to offer to those who have a 

headache. When the user clicks on the link to go to the Acupressure Points System, the 

following page would then present itself. 

 

 

Figure 3 The layout of the online acupressure points database system 

 

The Figure 3 page is created in the search1.php file which simply lists the symptoms currently 

listed in the database. The symptoms the user may select include headache, hangover, sore 

throat, heartburn, weight loss, depression, insomnia, improve memory and concentration, 

hiccoughs, and high blood pressure. Figure 4 shows the MySQL data in which the table 

information is stored. 
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Figure 4 The content of Points table 

 

If the user chooses headache as his or her symptom. The results would be shown in Figure 5. 

 

 

Figure 5 The display of output results 

 

The page then outputs what the user selected as his or her symptom and lists all the related points 

to cure the headache. When the user clicks on the linking (a blue heart image), a Web page will 

appear that shows the points location, as Figure 6. This is the location of the first point B2 in 

Figure 5.  

146 Int'l Conf. Bioinformatics and Computational Biology |  BIOCOMP'11  |



 

 

Figure 6 The exact acupressure point location 

3   Conclusions 
 

The paper presents the design and structure of online information system that is an easy-to-use 

and efficient way to help users to cure an individual’s ailments naturally. The system was 

implemented by using a server side and open source scripting language and database 

PHP/MySQL. The results of system consist of several different acupressure points along with a 

linking Web page of the points’ location, as well as detailed descriptions of how to massage 

these points. By using the system, the user can find ways to cure or at least relieve his/her 

specific symptom.  
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Human Identification
via Neural Network
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Abstract
This paper presents a novel approach of iris 
verification based on Learning Vector Quantization 
Neural Network. The features used in this approach 
are based on the differences between the lines, rakes, 
and vessels of each iris considered as being non 
identical with any other one in the world. And for 
extracting these features, equipments like edge 
detection and discrete cosine transform (DCT) are 
used. The recognition obtained is 98% in small size 
database given via Learning Vector Quantization 
Neural Network. 
Key words: Canny edge detection, discrete cosine 
transform, Learning Vector Quantization

1. Introduction
There are variable ways of human verification 
through out the world, as it is of great importance for 
all organizations, and different centers. Nowadays, 
the most important ways of human verification are 
recognition via DNA, face, fingerprint, signature, 
speech, and iris. 

Among all, one of the recent, reliable, and 
technological methods is iris recognition which is 
practiced by some organizations today, and its wide 
usage in the future is of no doubt. Iris is a non 
identical organism made of colorful muscles 
including robots with shaped lines. These lines are 
the main causes of making every one’s iris non 
identical. Even the irises of a pair of eyes of one 
person are completely different from one another. 
Even in the case of identical twins irises are 
completely different. Each iris is specialized by very 
narrow lines, rakes, and vessels in different people. 

The precision of identification via iris is 
increased by using more and more details. It has been 
proven that iris patterns are never changed nearly 
from the time the child is one year old through out all 
his life. 

Over the past few years there has been 
considerable interest in the development of neural 
network based pattern recognition systems, because 
of their ability to classify data. The kind of neural 
network practiced by the researcher is the Learning 
Vector Quantization which is a competitive network 
functional in the field of classification of the patterns. 

The iris images prepared as the database is 
in the form of PNG (portable network graphics) 

pattern, meanwhile they must be preprocessed 
through which the boundary of the iris is recognized 
and their features are extracted. For doing so, edge 
detection is done by the usage of Canny approach.
For more diverse and feature extraction of iris images 
DCT transform is practiced.

2. Feature Extraction
For increasing the precision of our verification of iris 
system we should extract the features so that they
contain the main items of the images for comparison 
and identification. The extracted features should be 
in a way that cause the least of flaw in the output of 
the system and in the ideal condition the output flaw 
of the system should be zero. The useful features 
which should be extracted are obtained through edge 
detection in the first step and the in next step we use 
DCT transform.  

2.1 Edge Detection 
The first step locates the iris outer boundary, i.e. 
border between the iris and the sclera. This is done 
by performing edge detection on the gray scale iris 
image. In this work, the edges of the irises are 
detected using the “Canny method” which finds 
edges by finding local maxima of the gradient. The 
gradient is calculated using the derivative of a 
Gaussian filter. The method uses two thresholds, to 
detect strong and weak edges, and includes the weak 
edges in the output only if they are connected to 
strong edges. This method is robust to additive noise, 
and able to detect “true” weak edges. Figures 1 and 2
are the original and edge images, respectively.

                 
Figure 1: image of a sample iris

                         

         Figure 2: edges of a sample iris

Although certain literature has considered 
the detection of ideal step edges, the edges obtained 
from natural images are usually not at all ideal step 
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edges. Instead they are normally affected by one or 
several of these effects: focal blur caused by a finite 
depth-of-field and finite point spread function, 
penumbral blur caused by shadows created by light 
sources of non-zero radius, shading at a smooth 
object edge, and local peculiarities or inter reflections
in the vicinity of object edges. 

Despite the following model does not 
capture the full variability of real-life edges, the error 
function ( ) has been used by a number of 
researchers as the simplest extension of the ideal step 
edge model for modeling the effects of edge blur in 
practical applications. Thus, a one-dimensional
image (f) which has exactly one edge placed at x = 0
may be modeled as:

         (1)

At the left side of the edge, the intensity is

, and right of the edge it is

. The scale parameter σ is called the 
blur scale of the edge.

2.1.1 Canny Method
The Canny edge detection algorithm is known to 
many as the optimal edge detector. Canny's 
intentions were to enhance the many edge detectors 
already out at the time he started his work. He was 
very successful in achieving his goal and his ideas 
and methods can be found in his paper, "A 
Computational Approach to Edge Detection". In his 
paper, he followed a list of criteria to improve current 
methods of edge detection. The first and most 
obvious is low error rate. It is important that edges 
existing in images should not be missed and that 
there be NO responses to non-edges. The second 
criterion is that the edge points be well localized. In 
other words, the distance between the edge pixels as 
found by the detector and the actual edge is to be at a 
minimum. A third criterion is to have only one 
response to a single edge. This was implemented 
because the first 2 were not substantial enough to 
completely eliminate the possibility of multiple 
responses to an edge.

The Canny operator works in a multi-stage 
process. First of all the image is smoothed by 
Gaussian convolution. Then a simple 2-D first 
derivative operator (somewhat like the Roberts 
Cross) is applied to the smoothed image to highlight 
regions of the image with important spatial 
derivatives. Edges give rise to ridges in the gradient 
magnitude image. The algorithm then tracks along 
the top of these ridges and sets to zero all pixels that 
are not actually on the ridge top so as to give a thin 
line in the output, a process known as non-maximal 
suppression. The tracking process exhibits hysteresis 
controlled by two thresholds: T1 and T2, with T1 > 
T2. Tracking can only begin at a point on a ridge 

higher than T1. Tracking then continues in both 
directions out from that point until the height of the 
ridge falls below T2. This hysteresis helps to ensure 
that noisy edges are not broken up into multiple edge 
fragments.

An edge in an image may point in a variety 
of directions, so the Canny algorithm uses four filters 
to detect horizontal, vertical and diagonal edges in 
the blurred image. The edge detection operator 
(Roberts, Prewitt, Sobel for example) returns a value 
for the first derivative in the horizontal direction (Gy) 
and the vertical direction (Gx). From this the edge 
gradient and direction can be determined:

        (2) 

   (3)

The edge direction angle (theta) is rounded to one of 
four angles representing vertical, horizontal and the 
two diagonals (0, 45, 90 and 135 degrees for 
example).

2.2 Discrete Cosine Transform
Like any Fourier-related transform, discrete cosine 
transforms (DCTs) express a function or a signal in 
terms of a sum of sinusoids with different 
frequencies and amplitudes. Like the discrete Fourier 
transform (DFT), a DCT operates on a function at a 
finite number of discrete data points. The obvious 
distinction between a DCT and a DFT is that the 
former uses only cosine functions, while the latter 
uses both cosines and sinusoids (in the form of 
complex exponentials). However, this visible 
difference is merely a consequence of a deeper 
distinction: a DCT implies different boundary 
conditions than the DFT or other related transforms.

The Fourier-related transforms that operate 
on a function over a finite domain, such as the DFT 
or DCT or a Fourier series, can be thought of as 
implicitly defining an extension of that function 
outside the domain. That is, once you write a 
function f(x) as a sum of sinusoids, you can evaluate 
that sum at any x, even for x where the original f(x) 
was not specified. The DFT, like the Fourier series, 
implies a periodic extension of the original function. 
A DCT, like a cosine transform, implies an even
extension of the original function.

A discrete cosine transform (DCT) 
expresses a sequence of finitely many data points in 
terms of a sum of cosine functions oscillating at 
different frequencies. DCTs are important to 
numerous applications in science and engineering, 
from lossy compression of audio and images (where
small high-frequency components can be discarded), 
to spectral methods for the numerical solution of 
partial differential equations. The use of cosine rather 
than sine functions is critical in these applications: 
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for compression, it turns out that cosine functions are 
much more efficient (as explained below, fewer are 
needed to approximate a typical signal), whereas for 
differential equations the cosines express a particular 
choice of boundary conditions.

In particular, a DCT is a Fourier-related 
transform similar to the discrete Fourier transform
(DFT), but using only real numbers. DCTs are 
equivalent to DFTs of roughly twice the length, 
operating on real data with even symmetry (since the 
Fourier transform of a real and even function is real 
and even), where in some variants the input and 
output data are shifted by half a sample. There are 
eight standard DCT variants, of which four are 
common.

The most common variant of discrete cosine 
transform is the type-II DCT, which is often called 
simply "the DCT"; its inverse, the type-III DCT, is 
correspondingly often called simply "the inverse 
DCT" or "the IDCT". Two related transforms are the 
discrete sine transform (DST), which is equivalent to 
a DFT of real and odd functions, and the modified 
discrete cosine transform (MDCT), which is based on 
a DCT of overlapping data.

The DCT, and in particular the DCT-II, is 
often used in signal and image processing, especially 
for lossy data compression, because it has a strong 
"energy compaction" property. Most of the signal 
information tends to be concentrated in a few low-
frequency components of the DCT.

DCT-II

   
(4)

This transform is exactly equivalent (up to an overall 
scale factor of 2) to a DFT of 4N real inputs of even 
symmetry where the even-indexed elements are zero. 
That is, it is half of the DFT of the 4N inputs yn, 
where y2n = 0, y2n + 1 = xn for , and 
y4N − n = yn for 0 < n < 2N.

The DCT-II implies the boundary 
conditions: xn is even around n=-1/2 and even 
around n=N-1/2; Xk is even around k=0 and odd 
around k=N.

3. Neural Network
In this work one Neural Network structure is used, 
which is Learning Vector Quantization Neural 
Network. A brief overview of this network is given 
below.

3.1 Learning Vector Quantization
Learning Vector Quantization (LVQ) is a supervised 

version of vector quantization, similar to Self
organizing Maps (SOM) based on work of Linde et 

al, Gray and Kohonen. It can be applied to pattern 
recognition, multi-class classification and data 
compression tasks, e.g. speech recognition, image 
processing or customer classification. As supervised 
method, LVQ uses known target output 
classifications for each input pattern of the form.
           LVQ algorithms do not approximate density 
functions of class samples like Vector Quantization 
or Probabilistic Neural Networks do, but directly 
define class boundaries based on prototypes, a 
nearest-neighbor rule and a winner-takes-it-all 
paradigm. The main idea is to cover the input space 
of samples with ‘codebook vectors’ (CVs), each 
representing a region labeled with a class. A CV can 
be seen as a prototype of a class member, localized in 
the centre of a class or decision region in the input 
space. A class can be represented by an arbitrarily 
number of CVs, but one CV represents one class 
only.

In terms of neural networks a LVQ is a feed
forward net with one hidden layer of neurons, fully 
connected with the input layer. A CV can be seen as 
a hidden neuron (‘Kohonen neuron’) or a weight 
vector of the weights between all input neurons and 
the regarded Kohonen neuron respectively.
              Learning means modifying the weights in 
accordance with adapting rules and, therefore, 
changing the position of a CV in the input space. 
Since class boundaries are built piecewise-linearly as 
segments of the mid-planes between CVs of 
neighboring classes, the class boundaries are adjusted 
during the learning process. The tessellation induced 
by the set of CVs is optimal if all data within one cell 
indeed belong to the same class. Classification after 
learning is based on a presented sample’s vicinity to 
the CVs: the classifier assigns the same class label to 
all samples that fall into the same tessellation – the 
label of the cell’s prototype (the CV nearest to the 
sample). 
          The core of the heuristics is based on a 
distance function – usually the Euclidean distance is 
used – for comparison between an input vector and 
the class representatives. The distance expresses the 
degree of similarity between presented input vector 
and CVs. Small distance corresponds with a high 
degree of similarity and a higher probability for the 
presented vector to be a member of the class 
represented by the nearest CV. Therefore, the 
definition of class boundaries by LVQ is strongly 
dependent on the distance function, the start positions 
of CVs, their adjustment rules and the pre-selection 
of distinctive input features.

Briefly explaining, this network has two 
layers: a layer of input neurons, and a layer of output 
neurons. The network is given by prototypes 
W=(w(i),...,w(n)). It changes the weights of the 
network in order to classify the data correctly. For 
each data point, the prototype (neuron) that is closest 
to it is determined (called the winner neuron). The 
weights of the connections to this neuron are then 
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adapted, i.e. made closer if it correctly classifies the 
data point or made less similar if it incorrectly 
classifies it.

3.1.1  Learning Algorithm

   (5)
Learning Vector Quantization (LVQ) structure

The number of neurons in the first layer (s1) should 
be equal at least to the number of neurons in the 
second layer, i.e,

21 SS 
Generally, the neurons in the first layer are more than 
the second layer. The behavior of the LVQ Neural 
Network is expressed by the equation below:

|||| 11 T
ii PWn    (6)   

The pure input of the 1st neuron in the first 
layer

And also it is written in Vector form as below:
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The output vector of the first layer is:

)( 11 ncompa     (8)

Therefore, the vector which has the nearest 
weight to the input vector is equal to 1, and the rest 
of the neurons have the zero output. The function of 
the second layer is to compose the subclasses of one 

class and to create just one class. 
2W matrix in each 

column has the element 1 and the other elements are 
zero.

12 jiW    The subclass of i belongs to j class

Kohonen learning rule is used to organize the 
parameters of the LVQ NN layer in the form below:
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4. Simulation Results
Practically we have done this work for a prepared 
database for 10 people in which we gave a class for 
the iris image of the left and right eye of every one 
and in the long run we obtained 10 classes. It means 
that in the second layer (s2) of the LVQ NN the 
number of the neurons is 10, while we put in the first 
layer (s1) 30 neurons. For each one of these 10
persons we took one image of the left eye iris and 
another from the right eye iris, and implemented 
these 20 taken images to the input of neural network 
after feature extraction by Canny edge detection 
approach and DCT transform. After learning network 
for these 20 input images, and testing by the other 
images from other left and right eyes irises other than 
the very 20 images we had, finally the true 
recognition results of our test came to an average of 
98%. In this test we also used different noised 
images.

5. Conclusion 
In this paper, a novel technique is proposed for iris 
verification. The classification is performed using 
LVQ Neural Network. The neural network based 
approach is found to be a promising one for iris 
recognition. 
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Abstract - Telomerase genes have been said to be of great 
importance in various aspects of biology.  Currently their 

composition and purpose is a topic of much research.  Finding 

and validating telomerase genes in different species is of great 

importance and is also a difficult task that consumes many 

resources.  In this research a method for isolating potential 

telomerase gene regions within a genome is discussed.  A 

Support Vector Machine will be used to differentiate regions 

of DNA containing telomerase genes from those that do not.  

The Support Vector Machine will be trained on identified 

telomerase genes from related species, and then it will be used 

to classify sequences encompassing an entire chromosome of 

a different species as either potential telomerase gene regions 
or non-telomerase regions.  Ultimately, a fast algorithm is 

presented that can act as an initial filter to remove large 

portions of a genome, allowing more time intensive routines to 

better target optimal regions of a genome. 

Keywords: Data Mining, Computational Biology, Machine 

Learning 

 

1 Introduction 

 Telomerase (Fig. 1), also called telomere terminal 

transferase, is an enzyme made of protein and RNA subunits 

that dictates the synthesis of telomere terminal repeats. This 

mechanism is required for the maintenance of chromosome 
termini, as the structure and integrity of telomeres are 

essential for genome stability. Telomere deregulation can lead 

to cell death, cell senescence, or abnormal cell proliferation. It 

has been identified that telomerase plays very important roles 

in aging and cancer. Telomerase activity is detected during 

development and has a very low, almost undetectable, activity 

in somatic (body) cells. These somatic cells age as a result of 

telomerase inactivity. So, if telomerase is activated in a cell, 

the cell will continue to grow and divide leading to exciting 

possibilities. In the past several years of research, it has been 

found that cancer cells are immortal and divide 
uncontrollably. Such immortal cancer cells have 10-20 times 

more active telomerase than in normal body cells.  Reducing 

this activity could eventually lead to the death of those cells.  

 

 

Figure 1. Detailed telomerase RNA secondary structure for 

humans and yeast 
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This could be a great therapy especially in the early stages of 

cancer. In the later stages, inhibition or absence of telomerase 
may result in cell crisis in cancer cells and tumor regression 

in cancer patients.  Research on telomerase continues to be a 

very exciting field with potential for discovering many more 

facts about what might help fight cancer and the aging 

process.  

 In this research both yeast telomerase genes and 

telomerase genes of vertebrates are used to teach a supervised 

machine learning algorithm what telomerase genes look like.  

Once the algorithm builds a model to represent these genes, it 

can look through entire genomes to narrow down the search 

for new telomerase genes in species they have not been 

identified.  The type of supervised machine learning 
algorithm used for this research is a Support Vector Machine 

(SVM).  Support Vector Machines have been used for 

instance classification in complex biological domains with 

great effectiveness [1] [3].  SVMs have been shown to obtain 

better results over a wide variety of problems in comparison 

with other algorithms used in supervised machine learning.  

This is because they generalize better due to the nature of 

how they learn. 

 This paper will show how an SVM can be used to 

narrow the search for new telomerase genes.  It will be laid 

out in the following manner.  First, supervised machine 
learning and support vector machines will be briefly 

discussed.  After this, the methodology section will outline 

the steps used in this research to isolate regions of 

chromosomes labeled as having potential to house a 

telomerase gene.  Next, the experiments from this work will 

be presented along with results.  Finally, future enhancements 

to the methodology will be discussed before concluding 

remarks.   

2 Machine Learning  

 Support Vector Machines are a type of supervised 

machine learning algorithm.  Supervised machine learning 

algorithms are used to approximate non-linear functions for 

instance classification.  These algorithms build models from a 

group of data instances called training data, and use these 
models to classify new instances where the class is not 

known.  Each data instance in the training data consists of n 

features, from an n dimensional feature space S, and a label 

that tells the algorithm which class the data instance belongs 

to.  These instances describe locations for each class in S, and 

they are treated as a representation of a non-linear function 

f(i) where i is a an input vector of features.  Once the training 

data is assembled a model is constructed.  While constructing 

the model a portion of the training data is placed into another 

data set called the validation data.  The validation data is 

withheld from the learner while training it and used to test 
how effective the model generalizes to instances outside of 

the training data.  There are different schemes for segmenting 

and utilizing the validation data, this research uses a method 

called n fold cross validation.  N fold cross validation divides 

the training data into n data sets and builds n – 1 models 

where one of the n data sets is used as the validation data.  
The n – 1 models are combined to produce a single model 

that can be used for classification.  This technique helps the 

model generalize better when there are relatively few 

instances in the training data.  Once the final model is built, it 

can be tested with a separate group of disjoint data instances 

called production data.  These instances are labeled as 

belonging to a particular class, but this label is withheld from 

the algorithm during classification to see how accurately the 

model approximates the targeted non-linear function on data 

it has never seen. 

SVMs have been shown to obtain better results over a 

wide variety of problems in comparison with other algorithms 
used in supervised machine learning.  This is because they 

generalize better, due to the nature of how they learn.  SVMs 

learn concepts by separating data distributions into classes of 

data and treating them as two generalized sets of vectors in a 

feature space.  The SVM will find a separating hyperplane 

between these two datasets (or concepts) which is the 

maximum distance from either of the two (Fig. 2).  Other 

machine learning algorithms can find hyperplanes that 

separate datasets but the power of the SVM comes from the 

fact that the hyper plane found by the SVM is the one with 

the greatest distance between either of the two classes.  The 
SVM finds support vectors, which are data instances from 

either class that are the closest to the opposite class.  Once 

these support vectors are found, geometric operations are 

applied to find the hyperplane that is equally distant from 

both sets of support vectors.  Finding support vectors and 

computing the maximum marginal hyperplane is a standard 

quadratic programming problem [4].  This explanation 

assumes a linearly separable feature space because that is the 

easiest way to explain the concept.  SVMs can be generalized 

to support nonlinear features spaces as well as more than two 

classes of data, but these topics are beyond the scope of this 

paper. 

3 Methodology  

 Given feature sets representing data instances, SVMs 
learn concepts and identify instances as belonging to specific 

classes of data.  This project uses SVMs for locating regions 

within chromosomes that have potential to contain telomerase 

genes.  The classes of data instances in this project are + and – 

where + is a segment of chromosome that potentially holds a 

telomerase gene and – is any other region of chromosome.  

The training data used to construct the classification model for 

the SVM is used to tell the SVM what telomerase regions 

look like (+), and what they do not (-).  Since each species has 

only one telomerase gene region, telomerase gene regions 

from related species are used to in the training data as + 
instances.  The - instances in the training data were randomly 

sampled non-telomerase regions from the same group of 

species.  Five times as many – instances were included in the 

training data as available + instances.  The production data  
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 used to test the correctness of the SVM was an entire 

chromosome from species X, where X was related to the 

species in the training data, and the telomerase gene region for 
X had already been positively identified.  This production data 

allows the correctness of the SVM to be effectively measured 

by whether the SVM successfully classifies the telomerase 

region from species X and how much of the rest of the 

chromosome from species X gets correctly labeled non-

telomerase.  The data for this research was gathered from two 

sources.  The telomerase gene regions were obtained from 

http://telomerase.asu.edu/sequences.html, and the 

chromosome in which those regions reside were taken from 

ftp://ftp.ncbi.nih.gov/. 

 During the construction of data sets for this research it 
was imperative that the telomerase gene region from the 

species being used in the production data not be included in 

the training data.  The inclusion of this telomerase region 

would skew the results for the experiment as the SVM would 

be trained specifically on one of the instances it is also being 

evaluated for correctness on.  This kind of scenario leads to 

over fitting on the training data and as a result an SVM 

generalizes poorly. 

 To obtain data instances for submission to the SVM, 

features are computed from segments of DNA.  For the + 

examples used in the training data, the segments of DNA used 

were the telomerase genes from each of the species involved 

in defining the + examples.  For the - examples used in the 

training data, and the examples used in the production data the 

chromosomes were segmented into regions of length m using 
a sliding window over the chromosome.  This sliding window 

was started at index n = 0 and between segments n was 

incremented by x.  For this project x was set to 75 and m was 

set to the average length of the telomerase regions used as + 

instances in the training data.  After the necessary 

chromosomes were segmented and assigned to the training 

and production data sets features for the segments could be 

calculated. 

 There are nine features used in this research to classify 

instances.  These features were either taken from or inspired 

by Guo et al [5] and Schattner [6].  Schattner’s work was of 
particular use to this research.  In Schattner’s paper the base 

composition of sequences are used to determine RNA gene 

regions.  Schattner only uses statistical analysis of these 

regions to infer their class, but these features work very well 

for machine learning.  The features used by Schattner are 

(G+C)%, (G-C)%, (A-T)%, and RO(AB).  The features used 

in this research are the following: 

 

Percentage A: 

 

The percentage nucleotides in the DNA sequence that were A. 

 

Figure 2.  Illustration of what a maximum marginal hyperplane looks like between two set of data instances in a 

feature space. (Image taken from Christopher J.C. Burges [4]) 
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Figure 3.  Methodology flow diagram to illustrate the process of obtaining potential telomerase 

gene regions. 

Int'l Conf. Bioinformatics and Computational Biology |  BIOCOMP'11  | 155



Percentage T: 

 
The percentage nucleotides in the DNA sequence that were T. 

 

 

Percentage G: 

 

The percentage nucleotides in the DNA sequence that were G. 

 

 

Percentage C: 

 

The percentage nucleotides in the DNA sequence that were C. 

 
 

Percentage (X + Y): 

 

The percentage of the nucleotides in the DNA sequence that 

were either X or Y summed, with this feature each possible 

combination of nucleotides were computed.  

 

 

Percentage (X – Y): 

 

The percentage of the nucleotides in the DNA sequence that 
were X subtracted from the percentage of nucleotides in the 

sequence that were Y, with this feature each possible 

combination of nucleotides were computed.  

 

 

Percentage (X / Y): 

 

The percentage of the nucleotides in the DNA sequence that 

were X divided by the percentage of nucleotides in the 

sequence that were Y, with this feature each possible 

combination of nucleotides were computed.  

RO(XY): 
 

The frequency count of XY (FREQ_XY) multiplied by the 

length of the sequence then divided by the percentage X times 

the percentage Y. 

 

ex.  (length * FREQ_XY) / (Percentage X * Percentage Y) 

 

 

Standard Deviation: 

 

The standard deviation of the percentages of A, T, G, and C. 

 

 Once the features are computed for each of the DNA 

segments the SVM can be trained.  Due to the small size of 

the training data, cross fold validation was used to help 

prevent over fitting.  After the SVM was trained the 

production data was classified, and then overlapping segments 

of + classifications were merged together.  This results in 

regions of DNA, of various lengths, that potentially house the 

telomerase gene.  The number of nucleotides in the calculated 

regions can be used against the total number of nucleotides in 

the entire chromosome to compute the percentage of the 
chromosome classified + or -. 

4 Experiment and Results 

The experiments for this research were run in two different 

groups (vertebrates and fungi).  A flow diagram outlining the 

experimental procedure can be seen in Fig. 3.  The training 

data for each group consisted of + instances of telomerase 

genes from as many related species as could be found.  For 

each group three experiments were run.  The experiments 

consisted of removing species X from the training data for 

use as the production data.  After training the SVM, results 

were obtained from classification of the entire chromosome 

containing the telomerase gene region from species X.  The 

results were defined by the recall and precision of the 

classification of gene regions in the chromosome. The recall 
was whether the SVM classified the telomerase region in 

species X correctly, and the precision was how much of the 

rest of the chromosome was classified correctly as non-

telomerase.  For this experiment species X had to meet two 

constraints.  First, its telomerase gene region must be known, 

and second, the rest of the chromosome in which the 

telomerase region resided must have been sequenced.  For 

vertebrates the three species experimented on were Mus 

musculus, Rattus norvegicus and Equus caballus, and for 

fungi the three species were Schizosaccharomyces pombe, 

Saccharomyces cerevisiae and Kluyveromyces lactis.  The 
results are shown in table 1.  The results show the number of 

potential telomerase regions detected and the percentage of 

the chromosome those regions accounted for.  The 

percentage of the chromosome the potential telomerase 

regions account for minus one depicts the amount of the 

chromosome that is excluded from being a potential 

telomerase region.  This shows how far the SVM narrowed 

the search for the telomerase gene.  In each of the 

experiments run, the SVM classified the actual telomerase 

gene correctly.  This puts the recall at 100%.  Since there is 

only one telomerase gene within a genome for any species, 

the percentage of the genome classified as potential 
telomerase regions can be seen as the false positive rate, 

within a very small statistical margin of error.  The results 

show significant information gain. However, the results on 

the vertebrates are significantly better than the results on the 

fungi.  Possible explanations for this could be that the groups 

of vertebrates used in the training data were more closely 

related.  This could make their telomerase genes more alike 

and provide a better representation for the SVM.  Another 

more likely explanation could be that the results on the 

vertebrates were better because the SVM had more data to 

learn from with the vertebrates.  The number of known 
telomerase gene regions in the training data for the 

vertebrates was 22, but only 13 telomerase gene region 

examples were available for the fungi.  A final explanation 

for the better results on the vertebrates could be that in the 

vertebrates the telomerase genes were simply more distinct 

from the rest of the chromosome than they were in the fungi.    
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5 Future Research 

 Future research should be invested in at least two areas 
for this work.  First, the SVM used in this project utilized 

default settings in the WEKA machine learning software 

package (i.e. complexity parameter and a linear kernel).  

Different settings for these parameters such as an RBF kernel, 

or different numeric values for the complexity parameter, 

should be explored to see if the results for the experiment 

could be improved.  Second, new features should be explored 

to see if they can better detect potential telomerase regions.  

One such feature could reflect base pairings within the 

sequence of DNA.  Telomerase genes should have a unique 

and learnable base pairing signature that sets them apart from 
the rest of the chromosome (i.e. the way a telomerase region 

folds to create its secondary structure should be distinctive).  

Another feature that should be looked into would be to isolate 

the most commonly repeated l-mer in the + examples from 

the training data and provide the number of times the 

particular subsequence (either exactly or with some 

accommodation for mutation allowed) appears in the 

instance.  A third feature would be to create a multiple 

alignment from the + instances in the training data to obtain a 

median string (or consensus string) used for computing global 

and local alignment scores for each instance.  In telomerase 

genes from related species there should exist conserved 
regions, and thus telomerase genes could have a unique 

scoring signature against this median string. 

6 Conclusion 

 The work presented in this paper provides substantial 

results showing an SVM can definitively narrow the search 

for telomerase genes within a genome.  A methodology has 

been outlined that segments a chromosome into DNA 

sequences that are treated as data instances in a machine 

learning application.  Features are computed from these DNA 

sequences and the feature vectors are classified by an SVM as 

either potential telomerase gene regions (+) of not (-).  The 

results from the experiment show significant information gain, 

however they have potential to be improved through the 
exploration of new features and parameter refining in the 

SVM. 
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Species # of Regions Classified + Percentage of Chromosome Classified + 

Schizosaccharomyces pombe 680 0.25377804949519833 

Saccharomyces cerevisiae 165 0.44209262916606207 

Kluyveromyces lactis 196 0.30870646879168767 

Mus musculus 960 0.011700037718866478 

Rattus norvegicus 1536 0.010321241324534453 

Equus caballus 777 0.024617685567403513 

 

Table 1 
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Solving Planted Motif Problem Using Modeling Method 
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Abstract - In this paper we describe a new method for solving 
the Planted Motif Problem that has applications in 
computational biology. A number of algorithms to solve this 
problem have been proposed in the past. The largest problem 
reported solved in the literature is (21, 8). Using the new 
method we have solved much larger problems, up to a size of 
(48, 12). The new method is also much faster, and we compare 
its performance with the best performances reported in the 
literature.  

Keywords: Elmers, heuristics, memory-constrained 
computing, modeling, motif, planted motif problem 

 

1 Introduction 
  The Planted Motif Problem (PMP) may be abstractly 
defined as: “Given a set of n strings, each of length L, over an 
alphabet Σ, find a string M of length l  < L over Σ, such that 
there is at least one d-neighbor of M in each of the n strings, 
where a d-neighbor is a string of length l that differs from M 
in at most d positions and M is the motif  for the given set of  
n strings.”  
 PMP has applications in molecular biology. Identifying 
subtle signals in the transcription-factor binding sites of 
several genes is the primary application of PMP. Finding such 
regulatory patterns among DNA sequences aids the study of 
gene regulatory networks [1]. The alphabet of the Planted 
Motif Problem is usually {A, C, G, T}, corresponding to the 
four nucleotide bases that constitute DNA. In principle, 
however, the problem can be posed for strings over any finite 
alphabet.  
  The Planted Motif Problem can be posed for different 
values of ‘l’ and ‘d’. Larger values of ‘l’ and ‘d’ constitute 
larger problems, and typically take more time and/or memory 
to solve. The pair (l, d) is used to express the size of a given 
problem. Most researchers keep ‘n’ and ‘L’ fixed at 20 and 
600, respectively [2].  
     Several methods currently exist to solve the PMP. These 
are: PMS1 [3]; Pattern Branching [4]; WINNOWER [2]; 
MITRA [5]; Random Projection [6]; Bit-based Multi-core [7]; 
ExVote [8], Stemming [9], PMSPrune [10], RISOTTO [11], 
and algorithms for solving the Extended Motif Problem 
(EMP) [1] [12].  
      We summarize some of these methods below. All these 
methods have limitations in the size of the problems that they 
solve and the running time that they require.  
   In contrast to these existing algorithms, we approach the 
motif-finding problem with a method of deriving the motif 
from clues present in the input strings. If there is a motif of 
length l present for a given set of input strings, the length l 

substrings of the input exhibit certain simple properties. We 
identify these properties and use them to construct the motif. 
The method has been used to solve problem sizes much larger 
than those reported solved in the literature, in times much 
shorter than the times reported for smaller problems in the 
literature. The method also holds promise for problems of 
larger alphabet size than the DNA alphabet size of 4.  
      The rest of the paper is organized as follows. In section 2, 
we illustrate the problem and summarize previous work in the 
area. Section 3 describes ‘modeling’ and the discovered 
properties as a set of propositions. Section 4 presents a formal 
algorithm and analysis of the computational complexity. In 
Section 5 we provide an overview of the statistical properties 
of the factors involved in the computation.  In section 6, we 
present the results that show the superiority of the proposed 
method in terms of ability to solve larger problems with 
smaller run times. We also state the notable shortcomings of 
the method. Finally, Section 7 summarizes our contributions 
and discusses future work. 

2 Problem Illustration and Previous work  
 The Planted Motif Problem has been an area of active 
research for about the last twenty years, and a number of 
different approaches have been described.  
    Before we describe the previous work, let us look at an 
example to illustrate the problem. Consider a set of 3 DNA 
sequences, each of length 32. The problem is to find a string 
(motif) of length 6, for which a 2-neighbor exists in each of 
the 3 sequences. Here, n=3, L=32, l=6, d=2, and ∑={A, C, G, 
T}. The size of the problem is (6, 2).  
 
0 GTCAGACAGATCGTGTTCTATACGACGACTTC  
1 CTATGACCAAGGGATTTCTAACCACGGCACTT  
2 ATCAGTCCCAGGGTGTTCCGCTCGACGTGTTC 
 
     For this problem, there exists a motif – GGCTCG. The 
sub-sequences of length 6 that are in bold face are d-neighbors 
of the motif. The first substring AGATCG differs from the 
motif at the 1st and 3rd positions. The 2nd substring GGCACT 
differs from the motif at the 4th and 6th positions. The third 
substring CGCTCG differs at only the 1st position. So 
GGCTCG is one of the solutions. There could be more than 
one motif. But the problem statement calls for finding any one 
such string. 
     It is important to note that the motif itself may not literally 
occur in any of the input sequences. All that is required is that 
a d-neighbor of the motif occurs in each of the input 
sequences.  
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      We now summarize previous efforts to solve this problem. 
WINNOWER [2] takes a graph-based approach to solve the 
problem. It finds cliques in a graph constructed by 
representing each length l substring of the input as a node. 
Thus the number of nodes will be n*(L-l+1). WINNOWER is 
effective up to problem sizes of (18, 5) and requires 
substantial computational resources (both time and memory).  
    MITRA [5] is based on a trie (or prefix tree) traversal 
algorithm. A mismatch tree data structure is used, in which all 
the possible patterns are segregated into disjoint subsets, with 
each subset starting with a given prefix. It is effective up to 
problem sizes of (18, 6), taking 40 minutes and 650 MB of 
memory. 
       PatternBranching [4] starts with a random seed string and 
searches for the length l neighbors of this string in the input. It 
scores the neighbors with an appropriate scoring function and 
selects the best scoring neighbor.  
      The Random Projection Algorithm [6] finds motifs using 
random projections. For each length l substring of the input, a 
length k string is constructed as a subsequence of the original 
substring, sharing k random positions (i.e., it is a random 
projection). All the length l substrings are hashed using the 
length k string of any length l substring as the hash value. If a 
hashed group has at least a threshold number of substrings in 
it, then it is likely that the motif will have its length k 
projection equal to the length k projection of this group. The 
largest problem the method is reported to have solved is 
(18,6), in about one hour. 
      The PMS1 algorithm [3] is based on exhaustive 
enumeration. The Bit-based algorithm [7] is also based on 
exhaustive enumeration, and is a multicore (i.e. parallel 
processing) implementation, with modifications to address 
memory-sharing issues and enhance performance. The largest 
problem the method is reported to have solved is (21, 8), in 
7.8 hours, using 16 CPU cores [6].  
 
3 Proposed Method 
Our method is based on a process that we call modeling. If 
any sequence of length l on the alphabet ∑ is an ‘l-mer’, and if 
the number of positions at which any two l-mers differ is the 
‘distance’ between them, then given two l-mers l1 and l2 that 
are at a distance of 2d from each other, we can construct 
another l-mer lm that is at a distance d from both l1 and l2 as 
follows:  

(i) Note the points at which l1 differs from l2 (there are 
2d such points)  

(ii) To obtain lm, choose any d points in l1 out of the 2d 
points of difference with l2, and replace them with 
the corresponding letters in l2.  

 
     For example, consider two l-mers l1= AGATCG and l2 = 
GGCACT. They differ in four positions (bold faced). We can 
obtain lm by replacing the letters at any two of these four 
positions in l1, say the 1st and 3rd positions, by the 
corresponding letter in l2, thus forming lm=GGCTCG. This 
differs from both l1and l2 at two positions.  

     We define the process of finding lm by replacing d letters in 
l1 with the corresponding letters of l2 as modeling – l1 is 
modeled on l2, and l2 is a model for l1. 
     Based on the above definition, we make the following 
propositions. Note beforehand that for an input having n 
sequences of length L, there are L – l + 1 number of l-mers in 
each of the n input sequences, and the input sequences are 
numbered from 0 to n – 1.  
Proposition 1:  If there exists a motif of length l for the given 
n sequences, then in each sequence, at least one l-mer of 
length l is a d-neighbor of the motif. In particular, one of the L 
– l + 1 number of l-mers in sequence 0 is a d-neighbor of the 
motif.  
 Proposition 2: If there exists a motif of length l for the given 
n sequences, then the d-neighbor in every sequence from 
sequences 1 to n – 1 is at a distance of at most 2d from the d-
neighbor in sequence 0.  
Proposition 3: If there exists a motif of length l  for the given 
n sequences, then the motif can be found by modeling the d-
neighbor in sequence 0, on any d-neighbor in sequences 1 to n 
– 1 that is at a distance exactly 2d from it.  
     The logic of Proposition 3 is described as follows:  
     If two d-neighbors of the motif, dn0 and dn1, are at a 
distance of exactly 2d from each other, then they are identical 
to each other at exactly l – 2d points. If dn0 and dn1 are 
identical to each other at exactly l – 2d points, the motif 
consists of the identical l – 2d points. This follows necessarily 
from the definition of ‘d-neighbor’ (or, what is the same, from 
the definition of ‘motif’).  
     Therefore, given two d-neighbors of the motif that are at a 
distance of exactly 2d from each other, l – 2d points of the 
motif are readily identified. The task is to identify the 
remaining 2d points of the motif.  
     The key is that these points are supplied by dn0 and dn1 
themselves. The remaining 2d points in the motif are the same 
2d points at which dn0 and dn1 differ. At each of the 2d points, 
the symbol in the motif is identical to the symbol at that point 
in either dn0 or dn1. Further, the motif is identical to dn0 at d 
of the 2d points, and to dn1 at the remaining d of the 2d points. 
Again, this follows necessarily from the definition of d-
neighbor.  
     So the task becomes one of constructing the motif by 
choosing d points from dn0 out of its 2d points of difference 
with dn1, and choosing d points from dn1 out of its 2d points 
of difference with dn0, and inserting the chosen 2d points into 
the corresponding 2d points in the motif.  
     We use modeling to achieve this effect. We take dn0 and 
model it on dn1 at d points out of the 2d points of difference. 
As there are  (2d

d  ) ways in which d points can be chosen out of 
2d points, there are  (  

    As it is not known a priori which l-mer in sequence 0 is a 
d-neighbor of the motif, it is required to choose each l-mer 
one-by-one for processing. Similarly, as it is not known a 
priori which l-mers in sequences 1 to n – 1 are d-neighbors of 
the motif, all the l-mers in sequences 1 to n – 1 that are at a 

2d
d ) ways in which dn0 can be modeled 

on dn1. The motif can be found by taking each variant of dn0 
by turns, and testing to see if it is the motif.  
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distance of exactly 2d from the chosen l-mer in sequence 0, 
have to be found and considered as models.  
    When the d-neighbor of the motif in sequence 0 comes up 
for processing, all the d-neighbors of the motif in sequences 1 
to n – 1 that are at a distance of exactly 2d from it will be 
found, during the search for all the l-mers that are at a distance 
of exactly 2d from it (along with other l-mers that happen to 
satisfy the property). Thereby sooner or later the d-neighbor in 
sequence 0 will be modeled on a d-neighbor of the motif that 
is at a distance of exactly 2d from it, and the motif will be 
found. 
     Accordingly, we construct the following method, 
consisting of twelve steps numbered 1 thru 12, to find the 
motif:  
Step 1: Take the first l-mer of length l in sequence  0; call this 
the ‘root’.  
Step 2: Check whether the root is the motif by finding its 
distance from all the l-mers in sequences 1 to n – 1.  
Step 3: If the root is within distance d of at least one l-mer in 
each of the sequences 1 to n – 1, then the root is the required 
motif. Return the root. Otherwise, continue with the next step.  
Step 4: For the root, find all the 2d-neighbors in sequences 1 
to n – 1.  Call them the ‘candidates’.  
Step 5: From the set of candidates, take the first candidate 
that is at a distance of exactly 2d from the root.  Call it the 
‘model-candidate’. If no such model-candidate exists, repeat 
the steps from Step 1, taking as the root the next l-mer in 
sequence  0.  
Step 6: Model the root on the model-candidate. There are (2d

d  ) 
possible combinations for modeling the root on the model-
candidate. Take the first of the (  

Step 7: Check the distance of the modeled root from all the 
candidates (i.e., all the 2d-neighbors of the root.)  

2d
d ) possible combinations, 

and model the root according to it.  

Step 8: If the modeled root is within distance d of at least one 
candidate from each of the input sequences, it is the required 
motif. Return the modeled root. Otherwise, continue with the 
next step.  
Step 9: Repeat Step 6 by taking the next of the possible (2d

d  ) 
combinations and repeat Step 7. If all the (  

Step 10: If all the candidates found in Step 4 are exhausted 
and the motif is not found, repeat the steps from Step 1, taking 
as the root the next l-mer in sequence  0.  

2d
d ) combinations 

are exhausted and the motif is not found, repeat the steps from 
Step 5, by taking as the model-candidate the next candidate 
that is at a distance of exactly 2d from the root.  

Step 11: If all the l-mers in sequence 0 are exhausted and the 
motif is not found, relocate sequence 0 to the bottom of the 
input, such that it becomes sequence n – 1 and all the other 
sequences are promoted in the order by one step. In particular, 
sequence 1 becomes the new sequence 0. Then repeat the 
entire process from Step 1, with the new sequence  0.  
Step 12. If n – 1 input sequences have been promoted to 
sequence 0 and the motif is not found, then stop and return an 
exception.  
Explanation of Step 11: If all the l-mers in sequence 0 are 
exhausted and the motif is not found (but assumed to exist), it 
means that either:  

(i) the d-neighbor of the motif in sequence 0 is not at a 
distance of exactly d from the motif, or  

(ii) no d-neighbor is found in sequences 1 to n – 1 that is 
at a distance of exactly 2d from the d-neighbor in 
sequence 0  

     In either case, the fundamental requirement of the method, 
given under Proposition 3, is not met. Hence the method starts 
over with a different input sequence taken as sequence 0. 
     It should be noted that the occurrences of condition (i) and 
condition (ii) have a computable probability, which will be 
dealt with in Section 6.  
 
4 Algorithms and Complexity Analysis 
     The algorithm that encapsulates the 12 steps is given below 
in Algorithm 1. We analyze the computational complexity of 
the algorithm as follows:  
    The algorithm halts when it finds the first motif. In the 
worst case, statement 1 is executed n times. For each 
execution of statement 1, statement 2 is executed at most L – l 
+ 1 times. Statement 3 requires comparing the current root Rij 
with all possible l-mers in n – 1 input strings for determining 
whether it is the motif. This requires at most (n – 1)*(L – l + 
1) l-mer comparisons. Each comparison involves at most l 
equality checks. If Rij is not the motif, the control comes to 
statement 5. From here on, we look for a motif using 
modeling. In statement 5, the set C is constructed. This 
requires (n – 1)*(L – l + 1) l-mer comparisons. Since the root 
is a string of size l over an alphabet of size 4, and a  candidate 
is a 2d-neighbor of the root, the probability that any l-mer is a 
candidate is given by the ratio of the total number of 2d-
neighbors that any l-mer can have, to the total number of l-
mers possible. This ratio is:  
                      2d 
                      Σ 3k (  l  k 
PC  =            k = 0                                                                    (1) 

)      
                  4l  
         The probable number of candidates in C is given by 
multiplying the probability PC with the total number of l-mers 
in the field of search, which is (n – 1)*(L – l + 1):  
|C|   =  (n – 1) * (L –  l + 1) * PC                                       (2)  
         Among the candidates in C, those that are at a distance 
of exactly 2d are in the set Cm. These are the model-
candidates. By statement 6, the root is modeled on at most 
|Cm| model-candidates. As Cm ⊆ C, |Cm| <- |C| and therefore the 
root is modeled on at most |C| model-candidates. In statement 
7, the 2d points of difference between Rij and one model-
candidate are identified. This involves at most l equality 
checks. In statement 8, there are (  

     In summary, the upper-bound on the number of 
computations is given by:  

2d
d ) possible combinations of 

d points among the 2d points of difference. In statement 9, Rij 
is modeled according to one combination to get Rijm, which 
takes at most d operations. For each Rijm, statement 10 is 
executed to determine whether it is the motif, which involves 
at most |C| l-mer comparisons. Each comparison involves at 
most l equality checks.   
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|N| = O( n * (L – l + 1) *  ( |C|*( l + (2d
d  

     The values of n and L are usually constant (20 and 600 
respectively), and as L >> l in all practical PMPs, (L – l + 1) ≅ 
L. Omitting the constant factors, we have:  

) * (d + |C|*l )) + (n – 
1)*(L – l + 1)*2*l ) )                                                             (3) 

|N|  =  O (  |C| * ( l + (2d
d  

Thus the significant factors affecting the running time are the 
square of the number of candidates per root |C|2, the number 
of combinations per candidate (

) * (d + |C|*l ) ) )                          (4) 

2d
d  

 

), and l and d. 

Algorithm 1 FindMotif  
Input: n, L, l , d 
Output: M (motif) 
1:  for i = 0 to n - 1 do 
2:      for j = 0 to L - l  do 
3:           check whether  root Rij (an l-mer in  
              sequence i starting at position j) is the motif 
4:           if Rjj is not the motif then 
5:     generate C, the set of all candidates, of which      
                  Cm is the subset containing the model-candidates  
6:       for each model-candidate c in Cm do 
7:           identify the 2d points of difference  
                         between Rij and c  
8:             for each combination of d points of  
                              difference between Rij and c do 
9:                 model Rij on c to get Rijm 
10:    check whether Rijm is the motif using C  
11:   if Rijm is the motif then  

     output Rijm as M   
                                  HALT 
  end if 
12:           end for 
13:      end for 
14: else  
15:     output Rjj as M  

    HALT 
16: end if 
17:      end for 
18: end for 
  
5 Overview of Statistical Properties 
 We have performed a detailed statistical analysis of various 
factors involved in the computation. Owing to space 
constraints, we discuss here the salient statistical properties 
revealed by the analysis, omitting the details.  
     As noted in Section 4, a major contribution to the 
computational workload of the method comes from the square 
of the number of candidates per root, |C|2. An increase in this 
factor increases the computational workload. The value of |C| 
depends on the value of l and d (Equations 1 and 2) such that:   

(i) increasing l keeping d fixed decreases |C|, and  
(ii) increasing d keeping l fixed increases |C|.  

     As the computational workload is proportional to |C|2, it is 
highly sensitive to the ratio l/d. Increasing d keeping l fixed 
results in massive increase of workload for every step of 
increment of d. Our analysis shows that, for a broad range of 

values of l (from 12 to at least 50), a massive increase of |C| 
occurs when d is increased from 0.25l to 0.25l + 1, rendering 
problem sizes in which d is greater than 0.25l challenging for 
this method. Conversely, decreasing d keeping l fixed results 
in a massive drop in |C| for every step of decrement of d. 
Problem sizes in which d is lesser than 0.25l are solved 
extremely fast.  
     Another major contributor to the computational workload, 
as noted in Section 4, is the number of modeling combinations 
per model-candidate, given by (2d

d  ). This number has a sharply 
increasing trend for every step of increment in d. Combined 
with the property that a massive increase of |C| occurs when d 
is increased from 0.25l to 0.25l + 1, a steep barrier exists at 
the boundary between those problem sizes in which d  

     Table I presents the values of |C|, |C|2 and (

<- 0.25l, 
and those in which d > 0.25l (for all values of l ranging from 
12 to at least 50).  

2d
d  ) for a few 

selected problem sizes at the d = 0.25l boundary.  The notable 
feature is that as the problem sizes increase, |C| (and |C|2) 
decrease sharply at every step, and (  2d

d ) increases sharply. As 
the computational load is proportional to |C|2 and (2d

d  ), the 
opposing trends of |C|2 and (  2d

d ) mean that the trend of the 
computational load is essentially U-shaped, with a minima 
occurring in the mid-range of problem sizes. (The opposing 
trends of  |C|2 and (2d

d  

 

) do not perfectly balance each other as 
their rates of change are not the same, and the proportions of 
their contribution to the workload are not the same. Therefore 
we should not expect a flat trend of the workload.)  

TABLE I  
NUMBER OF CANDIDATES PER ROOT AND NUMBER 

OF MODEL COMBINATIONS PER CANDIDATE FOR 
SELECTED PROBLEM SIZES 

 
l 12 16 20 24 28 32 36 40 44 48 
d 3 4 5 6 7 8 9 10 11 12 

|C| 609 302 153 79 41 22 11 6 3 2 
|C|2 370881 91204 23409 6241 1681 484 121 36 9 4 
(2d

d  20 ) 70 252 924 3432 12870 48620 184756 705432 2704156 
Note:  All values of d are equal to 0.25l.  
 
     We now turn to the statistical properties of d-neighbors. 
For modeling to successfully find the motif, the d-neighbor of 
the motif in sequence 0 has to be at a distance of exactly d 
from the motif. Those d-neighbors that are at a distance of less 
than d from the motif are valid d-neighbors, but do not contain 
enough information to find the motif. As such, the d-neighbor 
in sequence 0 may or may not be at a distance of exactly d 
from the motif. The statistics show that the probability of the 
d-neighbor of the motif in sequence 0 being at a distance of 
exactly d from the motif is 90% or better, for all problems 
sizes in which l is in the range of 12 to 50 and d is d <- 

     In the 10% of the cases in which the d-neighbor in 
sequence 0 is at a distance of less than d from the motif, after 
processing the entire sequence 0 the motif will not be found 
and method will enter Step 11. Input sequence 1 will become 
the new sequence 0. The probability that the d-neighbors of 

0.25l. 
(Uniform random distribution of d-neighbors is assumed.)  
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the motif in the first two input sequences are both at a distance 
less than d from the motif  is ~1% (by multiplying the 10% 
probability of each sequence, as they are mutually 
independent.) Therefore probability that the d-neighbor of the 
motif in the new sequence 0 is at a distance of exactly d from 
the motif is about 99%, and the method can be expected to 
enter Step 11 for a second time only in 1% of the cases.  
      The second condition for modeling to successfully find the 
motif is that at least one d-neighbor in input sequences 1 to n 
– 1 should be at a distance of exactly 2d from the d-neighbor 
in sequence 0. The probability of such a d-neighbor existing 
has been found to depend on the ratio l / d. If d is increased 
keeping l fixed, the probability decreases, and if l is increased 
keeping d fixed, the probability increases. If the probability is 
too low and therefore such a d-neighbor does not exist, a 
different input sequence has to be taken as sequence 0. The d-
neighbor in the new sequence 0 may be such that there is at 
least one d-neighbor in input sequences 1 to n – 1 that is at a 
distance of exactly 2d from it. That is, Step 11 has to be 
executed.  
     For problem sizes that have higher values of d relative to l, 
the method enters Step 11 more number of times. The number 
of times that the method enters Step 11 is called the Swap 
factor (S), and it can be probabilistically calculated for every 
problem size, from the statistical properties of d-neighbors 
through the values of l and d. The problem of swapping, 
however, has been found to become acute only for PMP sizes 
of (36, 9) and higher (when d is restricted to 0.25l or less). 
Table II shows the calculated values of the Swap factor S for 
selected problem sizes having l in the range of 36 to 50.   
    

TABLE II  
SWAP FACTOR S FOR SELECTED PROBLEM SIZES 

l = 36 
d 8 9 10 11 12 
S 0 1 2 7 25 

l = 40 
d 9 10 11 12 13 
S 0 1 4 11 38 

l = 44 
d 10 11 12 13 14 
S 1 2 5 15 51 

l = 48 
d 11 12 13 14 15 
S 1 3 8 21 67 

l = 50 
d 11 12 13 14 15 
S 1 2 6 15 44 

 
6 Experimental Results 
     We implemented the modeling method in a single-threaded 
C++ program and executed it for 11 selected problem sizes on 
a system with 2.2GHz Intel Core2 Duo Processor T6600, 800 
MHz FSB and 4 GB RAM.  

    Although the algorithm terminates when the first motif is 
found, in the implementation we processed all the roots so as 
to observe the processing time for the entire sequence 0. This  

is required because the ‘correct’ root (i.e. the d-neighbor of 
the motif) in sequence 0 can occur anywhere in the sequence 
from position 0 to position L – l, which means the motif may 
be found at any stage in the processing of sequence 0. The 
time taken to find the motif is therefore not a meaningful 
indicator of performance. The meaningful indicator is the time 
taken to process the entire sequence 0.  
     Also in the implementation, 20 trials were conducted for 
each problem size, using each of the 20 input sequences as 
sequence 0, by turns. The rotation was done to observe the 
variation in processing time when different input sequences 
are taken as sequence 0. (This rotation of input sequences is 
unrelated to Step 11 of the method, by which if the motif is 
not found after processing sequence 0, another input sequence 
is used as sequence 0, till all the 20 input sequences are used 
up. It has the same effect as Step 11, however, and therefore, 
Step 11 of the method was omitted in the test runs as 
redundant.)  

     The running time, has to be subjected to certain 
considerations. Firstly, because the d-neighbor of the motif in 
sequence 0 is at a distance of exactly d from the motif in only 
90% of the cases, the extra time taken when the method enters 
Step 11 in 10% of the cases has to be accounted for. Secondly, 
when the Swap factor S is ≥ 1, the method enters Step 11 S 
times, and processes a new sequence 0 each time. Therefore 
the running time has to be multiplied by S. (Only problem 
sizes (36, 9) and above are affected by this, however.) 
Thirdly, the time taken to process sequence 0 is different 
when a different input sequence is taken as sequence 0. This is 
because all the roots are different and exactly the same 
number of candidates will not be found for the roots (see 
Equations 1 and 2). As the complexity is proportional to |C|2, 
the running time is sensitive to fluctuations in |C|.  
     For problem size (36, 9), the lowest time among the 20 
trials, to process all the roots in sequence 0 (=565 in number), 
was 21 seconds. The motif was found in 9 seconds by 
modeling root # 318 on l-mer # 185 of sequence 4. (This 
means that the d-neighbor of the motif in sequence 0 was at 
position 318, and there was a d-neighbor of the motif in 
sequence 4 at position 119, that was its ‘2d’ neighbor.)  
     The highest time among the 20 trials was 244 seconds. The 
motif was found in 129 seconds by modeling root # 185 on l-
mer # 318 of sequence 16.  
     The average time over the 20 trials, for problem size (36, 
9), was 117 seconds. The motif was found on 14 of the 20 
trials and not found on 6.  
     We term the average time over the 20 trials as tAVG20, and 
deem the indicator of the time taken to find the motif in 
sequence 0 to be 0.5 * tAVG20. This is the intermediate case, 
between the two extremes of the ‘correct’ root occurring at 
position 0 (in which case it takes ~ 0 time to find the motif), 
and occurring at position L – l  (in which case it takes the full 
average time of tAVG20).  
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     To account for the extra time taken when the method enters 
Step 11, in 10% of the cases that the d-neighbor of the motif 
in sequence 0 is not at a distance of exactly d from the motif, 
an amortized amount of 10% is added to tAVG20.  
     The time to process sequence 0, obtained from these two 
considerations, is:  
tCORR =  0.5 * tAVG20 + 0.1 * tAVG20 = 0.6 * tAVG20          (5)  
     For problem size (36, 9), tCORR is 0.6 * 117) = 71 sec.  We 
now consider the extra time taken on account of the Swap 
factor S. If S swaps are expected, an amount of time equal to 
S * tAVG20 has to be added to tCORR to get the expected time 
taken to find the motif. Thereby, the expected time taken to 
find the motif tEXP is:  tEXP = (S + 0.6) * tAVG20     (6)  
     Note that the full tAVG20 rather than half has to be 
considered for swap time, because the method always runs 
through the entire sequence 0 before making a swap.  
     For problem size (36, 9), 1 swap is expected (see Table II).  
Therefore, the expected time taken to find the motif tEXP for 
problem size (36, 9) comes to (1 + 0.6) * 117 = 187 sec.  
     Table III shows the values of the expected time taken to 
solve problem sizes in the range of l = 12 to 50 having d = 
0.25l. For each problem size, the amount of time added on 
account of swaps is indicated, as is the 10% correction amount 
to account for the ‘correct’ root not occurring in sequence # 0 
of the input 10% of the time.  
     It can be observed from Table III that the best-case 
performance in the test runs was for problem size (32, 8), with 
an expected time of 48 seconds, and the worst-case 
performance was for problem size (48, 12), with an expected 
time of 6892 seconds, or about 1.9 hours.  
     The trend in Table III of the expected running time is more 
or less flat in the range (12, 3) to (24, 6). In the range (28, 7) 
to (48, 12), there is a clear U-shaped trend with a minima 
occurring in the mid-range at (32, 8). In this range, the trend is 
in line with what was expected for the entire range from the 
statistical analysis in Section 5 (the value for (50, 12) is 
irrelevant for the trend, as it is an anomalous problem size in 
the table.) The other notable feature in Table III is the 
variation over 20 trials, of the range of time taken to process 
sequence 0. The ratio of the maximum time taken to the 
minimum time taken increases from about 1 at (24, 6) to about 
28 at (44, 11), and then drops to being about 10 for (48, 12) 
and 5 for (50, 12). The reason for this trend remains to be 
investigated.  
     For problem sizes in which d is less than 25% of l, the 
method is expected to perform much faster than for problem 
sizes in which d is exactly 25% of l (see Section 5). This has 
been observed to be the case in practice, and as a ready 
indicator of the increase in speed for problem sizes in which d 
is less than 25% of l, the time taken for problem size (50, 12) 
is included in Table III. This can be compared with the time 
taken for problem size (48, 12). Although l is larger in the (50, 
12) problem, it is solved in less than a third of the time as (48, 
12), because d is slightly less than 25% of l in it. The 
consequence of a slightly smaller d is a significantly reduced 
computational workload, and also a smaller swap factor S. (It 
can be observed from Table II that the swap factor decreases 
with a decrease in d relative to l.) These factors combine to 

greatly reduce the time taken to solve the (50, 12) problem 
relative to the (48, 12) problem. Other problem sizes in which 
d is < 0.25l have been omitted due to space constraints.  

TABLE III 
TIME TAKEN BY MODELING METHOD FOR 

SELECTED PROBLEM SIZES  
(1)  

Problem 
size               

. 

(2) (3)           
tCORR   
0.6 x 
(2c) 

(4)       
Swap 
factor      

S                    

(5)              
S * 

tAVG20 
(4)x(2c)      

(6)                      
tEXP        

.                    
(3)+(5) 

Time for Seq. 0 
Min Max tAVG20 
(a) (b) ( c ) 

(12, 3) 1216 1335 1259 756 0 0 756 
(16, 4) 1236 1326 1277 767 0 0 767 
(20, 5) 1372 1643 1477 887 0 0 887 
(24, 6) 1195 1679 1408 846 0 0 846 
(28, 7) 288 519 381 229 0 0 229 
(32, 8) 25 150 80 48 0 0 48 
(36, 9) 21 244 117 71 1 117 187 

(40, 10) 33 522 163 98 1 163 262 
(44, 11) 24 666 367 221 2 735 955 
(48, 12) 645 6625 1939 1164 3 5818 6982 
(50, 12) 389 2126 869 522 2 1738 2260 

   Note:  All times are in seconds.  
 Min, Max and Average times are from 20 trials. 
 
     It should be noted that tEXP reported in Table III is derived 
from practically observed values, and can vary either way, 
when working with different input sets generated of the same 
problem size. A different set of n input sequences would have 
a different distribution of l-mers, affecting the values of |C| 
and also possibly the number of actual swaps that happen. 
However the overall trend over the different problem sizes 
will be more or less the same.  
     Further, as with any computer program, tEXP depends 
heavily on the platform used (including the hardware and the 
operating system) and also the implementation (for example, 
using the bitset data structure rather than character or string 
formats for the input sequences and l-mers results in a speed-
up of about 2x, as comparison operations run much faster with 
the bitset data structure).  
     Coming to the memory requirements, the method uses very 
little memory. We have calculated that the worst-case memory 
requirement is well under 1 MB, which is negligible.  
     From these facts, it is established that the method is very 
effective for solving PMPs as large as (48, 12). Thus it solves 
problems much larger than those reported solved in the 
literature, in running times much shorter than the times 
reported for smaller problems in the literature. For 
comparison, Table IV contains representative samples of the 
time taken by various other methods as reported in the 
literature.  
 
7 Summary and Future Work 
An efficient method of solving the Planted Motif Problem has 
been developed that uses a technique called modeling. The 
method is very fast over a broad range of problem sizes, and 
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takes up very little memory. Using the method, PMPs having 
problem sizes up to (48, 12) have been solved, with a single-
threaded program executed on a system having one 2.2GHz 
Intel Core2 Duo Processor T6600, 800 MHz FSB and 4 GB 
RAM.  
     The high speed of the method, combined with low memory 
requirement brings motif-finding problems of the order of (48, 
12) within easy reach of ordinary desktop/laptop computers. 
The program can be run comfortably along with the other 
applications that are typically found in a desktop environment. 
(In other words, high-end / dedicated systems are not 
required.)  

In conclusion, we note that modeling is independent of the 
radix of the alphabet, as it works by one-to-one substitution of 
characters. The same amount of time is taken to model l-mers 
over an alphabet of size 20, say, as it takes to model l-mers 
over an alphabet of size 4. As the method is not restricted to 
the A, C, G, T alphabet of the Planted Motif Problem, it can 
have applications in other areas of pattern-finding, which is to 
be investigated.  

TABLE IV  
REPRESENTATIVE SAMPLES OF TIME TAKEN BY 

VARIOUS OTHER METHODS 
 

A Algorithm 
(l, d) Time Time Time Time 

 PROJECTION Styczynski et al.’s ExVote  
(10,2) (161.1s) (8 min) (0.1 s)  
(11,2) (12.5 s) (< 1 min) (0.7 s)  
(12,3) (8.7 min) (10.5 h) (9.8 s)  
(13,3) (46.0 s) (10 min) (17.4 s)  
(14,4) (15.4 min) (> 3 months) (197.5 s)  
(15,4) (129.0 s) (6 h) (206.1 s)  
(17,5) (273.2 s) (3 weeks) (27 min)  
Source: An Efficient Algorithm for Extended (l, d)-Motif Problem With 
Unknown Number of Binding Sites, by Leung and Chin [1]  

B Algorithm 
(l, d) Stemming MITRA PMSPrune RISOTTO 
(9,2) 0.95s 0.89s 0.99s 1.64s 
(11,3) 8.8s 17.9s 10.4s 24.6s 
(13,4) 31s 203s 103s 291s 
(15,5) 187s 1835s 858s 2974s 
(17,6) 1462s 4012s 7743s 29792s 
(19,7) 8397s n/a 81010s n/a 
Source: Efficient Discovery of Common Patterns in Sequences Over 
Large Alphabets, by Kuksa And Pavlovic [9] 

C Algorithm 
 BitBased 

(l, d) 16 CPU 8 CPU 4 CPU  
(11,3) 1s 1s 2s  
(13,4) 2s 2s 4s  
(15,5) 15s 24s 47s  
(17,6) 2.8m 5m 9.2m  
(19,7) 35m 63m 112m  
(21,8) 7.8h - -  

Source: An Efficient Multicore Implementation of Planted Motif  
Problem, by Ranjan et al [7]  
Note on Table IV: Problems larger than (21,8) have not been 
reported solved to the best of our knowledge.   
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Abstract - RNA-binding proteins (RBPs) play diverse roles in 

eukaryotic RNA processing. Despite their pervasive functions 

in coding and non-coding RNA biogenesis and regulation, 

elucidating the specificities that define protein-RNA 

interactions remains a major challenge. Here, we describe a 

novel model-based approach — RNAMotifModeler to identify 

binding consensus of RBPs by integrating sequence features 

and RNA secondary structures. Using RNA sequences derived 

from Cross-linking immunoprecipitation (CLIP) followed by 

high-throughput sequencing for SRSF1 proteins, we identified 

a purine-rich octamer ‘AGAAGAAG’ in a highly single-

stranded RNA context, which is consistent with previous 

knowledge. The successful implementation on SRSF1 CLIP-

seq data demonstrates great potential to improve our 

understanding on the binding specificity of RNA binding 

proteins.  

Keywords: protein-RNA binding, RNA secondary structure, 

motif, SRSF1, particle swarm optimization  

 

1 Introduction 

  RNA-binding proteins (RBPs) are implicated in 

virtually every step of post-transcriptional gene expression 

including pre-mRNA splicing, RNA editing and 

polyadenylation [1]. These proteins possess a diverse array of 

structurally and functionally distinct RNA-binding domains 

such as RNA recognition motifs (RRM), KH domains, RGG 

boxes, zinc finger, double-stranded RNA-binding domain, etc 

[1]. Although the structures of many RNA binding domains 

have been solved at high resolution, establishing the sequence 

and RNA-structural determinants to binding specificity 

remains largely unexplored. 

Several methods for elucidating the specificity of protein-

RNA interactions enable rapid advances in our understanding 

of RBP functions. One recent innovation is the Cross-Linking 

ImmunoPrecipitation (CLIP). CLIP exploits photoreactive 

residues in RNA and polypeptides to generate covalently 

linked complexes. Because UV irradiation does not induce 

protein-protein cross-links CLIP is thought to be more 

specific than other IP based assays for protein-RNA 

interactions. CLIP was successfully applied to identify mRNA 

targets of the NOVA protein, a neural splicing factor 

associated with paraneoplastic opsoclonus myoclonus ataxia 

(POMA) [2-4]. Coupling CLIP with next-generation high-

throughput sequencing technology, known as CLIP-seq or 

HITS-CLIP, provides a cost-efficient method to increase the 

sensitivity of the assay by surveying the RNA landscape on a 

more global scale. Several groups have successfully 

implemented CLIP-seq analysis of NOVA, SRSF1, fox2 and 

PTB proteins in mammalian systems [2, 5-7]. Both MEME 

and Z-score statistics have been used to reveal consensus 

binding motifs that are overrepresented in CLIP-Seq data [2, 

6]. Although Z-score statistics may be able to find out the 

overrepresented sequence motifs, it does not consider the 

degenerated feature of the binding specificities of RBPs. 

MEME-based method is well known to be an excellent tool 

for cases only regarding sequence specificity [8]. Neither of 

these approaches can ascertain the roles of RNA secondary 

structure in establishing the context of the protein-RNA 

interaction. Hiller et al. extended MEME by adding a pre-

computing procedure to measure single-strandedness of RNA 

sequence as a priori information to guide the motif search. 

They demonstrated that their model, MEMERIS, is able to 

identify binding motifs located in single-stranded regions 

with applications to both artificial and biological data [9]. 

Recently, Kazan et al. proposed RNAcontext for learning both 

sequence and structural binding preferences of RNA-binding 

proteins [10]. 

Here we describe a model-based approach—

RNAMotifModeler to evaluate protein-RNA interactions 

using a retained binding affinity ratio, which is considered to 

be affected by two major factors—sequence degeneracy and 

RNA secondary structure deviation. RNAMotifModeler 

incorporates predicted unpaired probability of each nucleotide 

in the protein-RNA binding regions; such probability is 

derived from RNA secondary prediction algorithms (e.g. 

RNAfold [2]) based on the nucleotide compositions of the 

neighbouring flanking sequences. This strategy is different 
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from RNAContext, which uses predicted RNA secondary 

structures as input such as ‘Paired’, ‘Hairpin Loop’, 

‘Unstructured’ or ‘Miscellaneous’. Unlike MEMERIS, 

RNAMotifModeler uses the base-pairing probability for each 

nucleotide rather than the entire sequence (PU or EF values) 

[3]. For each binding instance, RNAMotifModeler defines a 

score that evaluates the consensus binding site within an 

optimal structural context, and aims at searching for an 

optimal RNA sequence-structural consensus for an RNA 

binding protein. These features enhance our ability to 

calculate and estimate the sequences that yield the highest 

binding affinity for a specific RBP. 

We tested RNAMotifModeler on CLIP-seq data that 

profile the transcriptome-wide binding pattern of SRSF1, 

serine/arginine-rich splicing factor 1 [4]. The sequence 

features of the binding motifs is consistent with the 

experimentally defined cis-acting RNA elements recognized 

by SRSF1 [5]. Interestingly, the prediction suggests that the 

second and fifth bases of SRSF1 octamer motif have stronger 

sequence specificities, but lower p-values of unpaired 

probabilities, while the third, fourth, sixth and seventh bases 

are more significantly to be single-stranded, but have less 

sequence specificities. Therefore, we hypothesize that the 

sequence and structure specificities are both required and are 

playing complementary roles during binding site recognition 

of SRSF1. 

 

2 Results 

 SRSF1 is an essential splicing factor with multiple roles 

in post-transcriptional gene expression [6]. SRSF1 is also a 

potent proto-oncogene and implicated in maintaining 

genome stability [7]. Moreover, loss of SRSF1 binding sites 

by mutations linked to genetic diseases can induce aberrant 

patterns of pre-mRNA splicing [4]. Thus considerable effort 

has been focused on defining the binding specificity and 

RNA targets of SRSF1. Here we report a novel model-based 

approach intended to examine the contributions of structural 

and sequence elements in RNA fragments co-purified with 

SRSF1 by CLIP. 

2.1 Workflow of RNAMotifModeler 

The first step of RNAMotifModeler is to do data 

preparations. In the present study, 904 positive gold standard 

sequences were selected from commonly targeted regions 

across three out of four samples in our previous SRSF1 CLIP-

seq experiments [4]. The same number of negative sequences 

were randomly picked from non-SRSF1-targeted regions 

falling in the same genomic category (exonic, intronic, 

intergenic, etc) as their positive counterparts. Base pairing 

probabilities of each nucleotide to its neighbours were 

subsequently predicted by RNAfold [2] (ViennaRNA 

package, version 1.8.5) for both positive and negative gold 

standard sequences.  

Our next step, as shown in Fig. 1, is to identify sequence-

structural consensus using gold standard sequences and 

corresponding base pairing probabilities derived from 

RNAfold. We took an iterative approach that alternates 

between: 1) optimization of parameters specifying sequence 

degeneracy and structural context given a reference motif 

(the optimal binding sequence), and 2) searching for optimal 

reference motif given the estimated parameters by evaluation 

of each motif candidate’s contribution to binding affinities of 

positive gold standard sequences (more details in Methods). 

The above two steps will be repeated until a convergence 

when the starting motif candidate makes the most 

contribution to binding affinities. 

 
Fig. 1. Workflow of RNAMotifModeler 

Finally, RNAMotifModeler outputs the converged 

reference motif, optimal parameters, statistical evaluation 

such as the AUC scores. The AUC scores are measured by 

the area under the ROC (Receiver Operating Characteristic) 

curves derived from predictions of gold standard sequences 

being bound by SRSF1 proteins using the predicted 

parameters. In order to predict binding sites of SRSF1 

proteins, we pick the sequence binding affinity yielding the 

maximal prediction accuracy as a cutoff score. Based on the 

predicted reference motif and corresponding parameters, 

positive gold-standard sequences can be scanned to find all 

potential binding sites with binding affinities higher than the 

cutoff score. These binding sites can be further used to create 

a sequence consensus logo and transformed to positional 

weight matrix, which is much more widely used. 

2.2 Convergence of SRSF1 consensus motif 

searching 

We call the converging path from a starting motif 

candidate to the final consensus motif a motif searching 

pathway. This graph provides a visual demonstration on the 

pathways through which the reference motifs are determined. 

To have a global overview of the convergence, motif 

searching pathways for all motif candidates are organized 

together to form a motif searching graph. In the particular 

case of hexamer predictions for SRSF1, all 4096 motif 

candidates converge to a short list of candidates (Fig. 2). All 

motif candidates converge within three iterations, of which 

85.7% converge after the first iteration. AGAAGA, 

AAGAAG and GAAGAA are top three hexamers with the 

highest in-degrees, responsible for 99.7% of all motif 
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candidates (Table 1). The other twelve reference motifs are 

closely related to these three motifs, only with one or two 

sequence alterations. It is also noted that nearly an equal 

number of motif candidates converge to each one of the top 

three reference motifs. More interestingly, these hexamers 

share a core of ‘AAGA’ indicating that they may be adjacent 

to each other in RNA fragments. 

 
Fig. 2. Motif searching graph. Source, intermediary and destination motifs are 

denoted by nodes colored in blue, purple and red, respectively. The size of node 

is proportional to its in-degree. Arrows between nodes indicate converging 

directions. This figure demonstrates the fast convergence of the vast majority of 

motif candidates using the Quantum Particle Swarm Optimization algorithm. 

 

Table 1. Converged motifs and corresponding numbers of source motifs 

Converged motif No. of source motifs 

AGAAGA 1484 

AAGAAG 1375 

GAAGAA 1225 

others 12 

 

RNAMotifModeler provides an option to predict 

sequence-structural consensus of different lengths. For short 

motifs, it is suggested to perform predictions starting from 

every potential motif candidate and generate a motif 

searching graph to inspect the global convergence. For longer 

motifs, however, generating such a graph will be 

computationally expensive. In this case, we conduct 

predictions starting from a sufficient number of motif 

candidates randomly picked from the motif space. The 

converged motif with the highest prediction power, measured 

by AUC, is selected as the optimal one. 

2.3 Predicted sequence and structural features 

of SRSF1 binding regions 

To better compare RNAMoifModeler predictions with 

the SRSF1 binding motif reported previously, here we focus 

on octamer predictions. Consistent with the sequence 

consensus predicted by MEME [4], the reference motif of 

SRSF1 identified using RNAMotifModeler is also 

‘AGAAGAAG’. The optimal parameters associated with the 

reference motif are displayed in Table 2. The first row listed 

the reference sequence motif identified while the following 

four rows include retained binding affinity ratios due to 

sequence alterations. The last row in Table 2, however, is 

constituted by unpaired probabilities for all nucleotides in the 

motif, indicating the optimal RNA secondary structure of 

SRSF1 binding regions. We note that every nucleotide of the 

predicted SRSF1 binding motif has a very high probability to 

be single-stranded, suggesting that SRSF1 proteins tend to 

bind on highly unpaired RNA regions. 

 
Table 2. Predicted sequence-structural consensus of SRSF1 

  A  G  A  A  G  A  A  G  

A 1.00 0.17 1.00 1.00 0.24 1.00 1.00 0.81 

G 0.79 1.00 0.65 0.90 1.00 0.84 1.00 1.00 

C 0.52 0.32 0.50 0.16 0.35 0.02 0.34 0.63 

U 0.75 0.15 0.39 0.63 0.09 0.06 0.73 0.55 

UP 0.99 0.96 0.99 0.99 0.98 0.99 0.92 0.83 

 

Based on the predicted optimal parameters, we obtained 

an AUC of 0.875 (Fig. 3 A) and an maximal accuracy of 

0.803 (Fig. 3 B), which are both higher than the MEME-

based prediction, of which the AUC is 0.86 and maximal 

accuracy is 0.78 [4]. 

 

Fig. 3. ROC curve and accuracy curve describing the prediction power of 

RNAMotifModeler for SRSF1 proteins 

To visualize the predicted SRSF1 sequence consensus 

more straightforwardly, positive gold standard sequence were 

scanned to search binding sites with binding affinities higher 

than the threshold 0.138, based on which a sequence logo 

(Fig. 4) was created by Weblogo [8]. This motif is consistent 

with the positional weight matrix (PWM) identified by 

MEME using the same gold standard sequences in our 

previous study [4], and is similar to the motifs found by other 

groups [9-11].  

 

Fig. 4. Sequence consensus logo for SRSF1 proteins 

2.4 SRSF1-RNA binding regions are 

significantly single-stranded 

To further test the hypothesis that RNA regions bound by 

SRSF1 proteins are significantly unpaired, we compared 
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2904 binding sites predicted by RNAMotifModeler with a 

same number of controls binding sites, randomly selected in 

the same positive gold standard sequences. P-values were 

obtained from Wilcoxon rank sum tests on unpaired 

probabilities of nucleotides between predicted and randomly 

selected binding sites. All median unpaired probabilities of 

positive binding sites are significantly higher than controls 

(Fig. 5B). Wilcoxon tests were also performed on unpaired 

probabilities of nucleotides between predicted binding sites 

and random binding sites selected in negative gold standard 

sequences. For all the eight nucleotides, binding sites in 

positive gold standard sequences tend to be single-stranded 

(Fig. 5A).  

 

Fig. 5. P-values of nucleotides in the motif suggesting significant single-

strandedness. The p-values are derived from Wilcoxon tests, with the 

alternative hypothesis that (A) predicted binding sites in positive gold standard 

sequences are more single-stranded than their counterparts in negative gold 

standard sequences, and (B) binding sites predicted by RNAMotifModeler are 

more single-stranded than randomly selected binding sites in positive gold 

standard sequences. 

The two groups of Wilcoxon tests demonstrate that 

binding sites predicted by RNAMotifModeler are not only 

more single-stranded in positive gold standard sequences 

than negative controls, but also less structured than by chance 

within the same CLIP sequences. More interestingly, 

comparing Fig. 5 B with Fig. 4, we found that the second and 

fifth nucleotide of SRSF1 motif have much stronger sequence 

specificities but lower p-values of unpaired probabilities, 

while the third, fourth, sixth and seventh nucleotide are more 

significantly single-stranded but have less sequence 

specificities, suggesting that both the sequence and a lack of 

secondary structure may play complementary roles in SRSF1-

RNA binding.  

2.5 Predictions before and after incorporating 

RNA structure information 

RNAMotifModeler can also predict consensus motifs 

without using structural information. Using the same positive 

and negative gold-standard sequences, we identified the same 

reference motif ‘AGAAGAAG’ and very similar retained 

binding affinity ratios due to sequence alterations. However, 

we obtained an optimal AUC of 0.853 and the maximal 

accuracy of 0.789, suggesting a slightly reduced prediction 

power when discarding RNA secondary structure 

information.  

Using identified parameter matrix based on only 

sequences we predicted 2295 binding sites, of which 81% are 

commonly identified by incorporating RNA secondary 

structure information (Fig. 6 A). The unpaired probabilities 

of the other 437 binding sites are significantly lower than 

identified binding sites using both sequence and structural 

information (Fig. 6 B and 6 C). Except the third nucleotide of 

motif, all of the unpaired probabilities of these binding sites 

are even lower than background, indicating that binding sites 

predictions may result in a considerable number of false 

positives due to ignoring RNA secondary structures. Bringing 

in RNA secondary structure information, we found 1046 

more binding sites. These binding sites may have low 

sequence specificities, but could be of high structure 

specificities.  Although the AUC increases only by 0.023 after 

introducing RNA secondary structure information, false 

positive and false negative binding sites are both significantly 

reduced. 

 
Fig. 6. Comparisons between predicted binding sites before and after 

incorporating RNA secondary structure information. (A) The number of 

binding sites predicted by RNAMotifModeler using only sequence information 

(blue ellipse) and after incorporating structure information (red ellipse); (B) 

Boxplots of unpaired probabilities of 1858 binding sites both predicted by the 

two methods; (C) Boxplots of unpaired probabilities of 437 binding sites only 

predicted without RNA secondary structure information 

3 Discussions 

 In recent years, there is an increasing interest in using 

high-throughput sequencing technology to study protein-

RNA binding specificities, but almost all of currently 

available bioinformatic approaches used for this purpose do 

not take into account RNA secondary structures, which have 

been demonstrated to have critical impact on protein-RNA 

binding in previous biochemical experiments. Thus, the 

motivation of our proposed model—RNAMotifModeler is to 

predict both structural and sequence specificities of protein-

RNA binding regions.  

RNAMotifModeler incorporates RNA secondary 

structure using RNAfold derived probabilities of nucleotides 

being paired with its neighbours. The preference for base-

pairing probabilities over RNA secondary structures is due to 

a couple of concerns: a) It is very difficult to take into 

account RNA secondary structures directly in many real 

applications because of multiple RNA folding choices 

including optimal and sub-optimal structures; b) Unlike 
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MEMERIS, RNAMotifModeler tries to identify the optimal 

structural feature that is expected to represent the base 

pairing probability for each nucleotide in motif. Therefore, 

we did not use PU or EF scores [3], which are the 

measurements of single-strandedness of protein-binding 

regions in MEMERIS. c) The base-pairing probabilities 

predicted by RNAfold program [2] account for all possible 

secondary structures. 

It is noted from our predictions that almost all unpaired 

probabilities of bases in the reference motif of SRSF1 

predicted by RNAMotifModeler are close to 1, suggesting a 

very strong preference of SRSF1 to single-stranded RNA 

context. The statistical significance was further proved by 

two groups of Wilcoxon tests. These findings are consistent 

with previous evidences of SRSF1 proteins. It is known that 

SRSF1 protein contains an arginine-serine rich region (RS 

domain) and two RNA recognition motifs (RRMs), through 

which SRSF1 recognizes specific RNA regions [12, 13]. 

Importantly, RRM is one of the single-stranded RNA-binding 

domains of proteins [14]. Comparing the sequence consensus 

and p-values derived from Wilcoxon tests between the 

unpaired probabilities of predicted binding sites and negative 

controls, we propose that sequence and structural specificity 

may be two complementary factors that both facilitate the 

binding site recognition of SRSF1.  

 
Fig. 7. 3D heatmaps illustrating the effects of the number of particles and 

the contraction-expansion coefficient in QPSO. (A) The prediction power 

measure by AUC, and (B) the time consumed are affected by the number of 

particles and the Contraction-Expansion coefficient, which are two critical 

parameters of QPSO. 

 

RNAMotifModeler also provides an option to predict 

only sequence consensus motifs. This can be potentially 

applied to other fields that only focus on sequence 

specificities such as prediction of protein-DNA binding 

motifs. In the specific application to SRSF1, we found that 

the prediction power in this case is still comparable with 

MEME-based approach, although the AUC and maximum 

accuracy were both slightly reduced when RNA secondary 

structure information was not incorporated. Moreover, only 

using sequence specificity to predict binding sites could result 

in many false positives and false negatives. 

Two parameters—the number of particles nP and the 

contraction-expansion coefficient β of the Quantum Particle 

Swarm Optimization greatly affect the predicting accuracy of 

RNAMotifModeler. To estimate and set up these parameters 

prior to the optimization procedure, we did a series of 

hexamer motif searching tests with nP enumerated from 10 to 

10000 and β ranging from 0 to 1 for SRSF1 CLIP-seq data. 

The AUC scores resulted from optimizations using different 

combinations of these two parameters are presented in 3D 

heatmaps (Fig. 7A). We observed a much more rapid 

decrease in prediction power as β becomes lower when nP is 

small. In contrast, when β is sufficiently high, the AUC score 

is not greatly affected by nP. Thus, the greater nP and β are, 

the higher prediction performance RNAMotifModeler can 

achieve. However, under the consideration of computational 

efficiency, we have to consider the time consumed in each 

test (Fig. 7B). The time consumed is exponential to the 

increment of the number of particles, and is not actually 

controlled by β. When nP is 100 and β equals 1.0, 

RNAMotifModeler achieved a high AUC score of 0.86 within 

three minutes. These two parameters are then selected for all 

other optimizations for the SRSF1 dataset used in this study. 

Convergence of optimization algorithms used in 

predicting protein-DNA or protein-RNA binding sites is a 

common concern due to a number of parameters needed to fit 

in model. In this report, we proposed a motif searching 

pathway and a motif searching graph to inspect whether or 

not the algorithm of RNAMotifModeler indeed has a good 

convergence regardless of the randomly initialized motif 

candidates. In the application to SRSF1 consensus motif, the 

convergence of randomly initialized motif candidates to final 

targets turned out to be very fast. Thus, for short motifs, we 

suggest generate such a motif searching graph in order to 

have a global overview of all possible converged motifs and 

their possible relationships. 

Despite our successful characterization of the binding 

features of SRSF1 proteins, our future work will be applying 

RNAMotifModeler to studying specificities of other RNA 

binding proteins such as fox2, NOVA and EWS, for which 

high-throughput sequences are already available. 
 

4 Methods 

4.1 Predicting RNA base-pairing probabilities 

One of the distinct features of RNAMotifModeler is that 

the information of secondary structures of the RNA regions 

bound by SRSF1 proteins is incorporated into the motif 

identification. For each nucleotide in the RNA fragment, we 

calculate the base pairing probability using the RNAfold 

function of the Vienna RNA package (version 1.8.5) [2]. The 

base pairing probability is used since it integrates likelihood 

of single-strandedness over multiple possible RNA secondary 

structures. For the CLIP-seq derived RNA fragments, these 

probabilities are generated based on the base pairing 

probability of base i being paired with base j, denoted as pi,j. 

The binding probability of base i with all other neighbouring 

bases, defined as Pi, is calculated by: 
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where ns is the length of sequence s. Similar strategies are 

also used elsewhere [15, 16]. 

4.2 Modelling protein-RNA binding affinities 

In RNAMotifModeler, the consensus of each binding 

motif is defined by the following components: 1) the 

reference motif, a k-base RNA sequence on which the protein 

preferably binds; 2) retained binding affinity despite of a one-

nucleotide deviation from reference motif to the sequence of 

one binding sites. For each k-base motif, there are 3k retained 

binding affinities that describe all the possible deviations 

from reference motif. For instance, if the i-th base of the 

reference motif and a specific binding site is mi and fi, 

respectively, the retained binding affinity is defined as 

ii
fmi ,,

 ; 3) a vector that denotes the optimal base pairing 

probability of k bases in the motif θ=(θi); and 4) the penalty 

for the deviation from the optimal base pairing probability α. 

All these parameters will be optimized iteratively. A 

matching score describing the similarity between an RNA 

fragment (F) and a reference motif (R) is defined: 
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where 
i

f
P  represents the pairing probability of the i-th 

nucleotide in the RNA fragment F, calculated in Eq. (1). 

This matching score integrates the loss of binding affinity 

caused by both nucleotide and structure deviances from 

reference motif. We denote the parameter associated to the 

reference motif R as λR = (μ, θ, α)R, where μ, θ and α 

represent the 3k retained binding affinities, optimal base 

pairing probability of k bases, and the penalty for the 

deviation from the optimal base pairing probability, 

respectively. 

4.3 Identify the optimal reference motif from 

CLIP-seq data 

We adopted an iterative approach to identify the optimal 

reference motif and its associated parameters, using a 

Quantum Particle Swarm Optimization algorithm (QPSO) 

[17]. The iterative strategy includes the selection of reference 

motif R, and optimization of the parameters associated to the 

reference motif λR. The overall procedure includes the 

following steps: 

1. Motif initiation. Randomly select a motif candidate Rinit 

from the motif searching space M={b1b2...bk: b1, b2, ..., 

bk∊{A, G, C, U}} as the reference motif.  

2. Parameter optimization. Optimize parameters associated 

with the reference motif by maximizing its ability for 

characterizing the CLIP-seq-derived RNA fragments. 

Step 2.1. Parameter initiation. We first create nP 

particles in the parameter space by randomly selecting 

numbers from U(0, 1).  

Step 2.2. Particle evaluation. For each particle 

(parameters), we evaluate its capability for distinguishing the 

CLIP-seq-derived RNA fragment from background 

sequences. We plot an ROC (Receiver Operating 

Characteristic) curve by adjusting the matching score 

threshold, calculated in Eq. (2).  The quality of the parameter 

will be evaluated based on the AUC (area under the curve) of 

the ROC plot. 

Step 2.3. Particle update. Let  λi
selfbest(t) and λ

globalbest(t)  

be the best individual particle i and the population of 

particles has met at the t-th iteration. As part of QPSO, each 

particle must converge to its local attractor λi
pbest [17]. 

Compute λi
pbest(t) and the mean of the best positions of all 

particles λi
mbest as follows: 
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where φ1 and φ2 are random variables following U(0, 1); 

QPSO employs Monte Carlo method to update 

parameters: 
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where β is called contraction-expansion coefficient 

controlling the convergence speed of QPSO;  u and q are 

random variables which also follow U(0, 1). 

Repeat Step 2 and Step 3 until 

 |)()1(| tt
globalbestglobalbest

λλ  repeatedly, in which ε is a 

tolerance used here as the stop criterion; 

3. Updating reference motifs. Based on the final parameter 

vector λ
globalbest, the maximal binding affinity of motif 

candidate K in positive gold standard sequence F is: 
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where ΩK,F denotes the set of all binding sites for motif K in 

sequence F; aK,F,σ is also computed by Eq. (3).   

In order to update the reference motif, from each 

positive fragment in the gold standard binding set, we 

selected the binding site that contributes to the positive 

selection (genomic loci with the highest binding affinity 

score).  This potential binding site can be either the same as 

the reference motif, or different due to degeneracy. The 

reference motif will be further updated to the binding site that 

can represent largest amount of positive fragments in the 

gold standard binding set. Let nF and nM be the number 

positive gold standard sequences and the number of motif 

candidates, respectively. Let 
FR

init

S
,

 be the maximal binding 

affinity computed using optimized parameters for the initial 

reference motif Rinit in sequence F. To evaluate contribution 
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of each motif candidate, we define a motif contribution score 

matrix 
MS
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and a motif contribution score vector 
M
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We denote the motif associated with the maximum score in v 

as Rmax. If Rmax=Rinit, meaning the initialized reference motif 

accounts for the most contribution to the retained binding 

affinities, then we stop the iteration; otherwise, let Rmax be the 

next Rinit, and repeat step 2 and 3 until convergence. 

4.4 RBP binding motif logo 

RNAMotifModeler provides a parameter matrix 

consisting of retained binding affinity ratios due to sequence 

mutations and structure alterations at each base. For the ease 

of visualization, we provide a method to generate a Positional 

Weight Matrix (PWM). Once RNAMotifModeler reaches a 

convergence, a set of optimal parameters and reference motif 

will be acquired, as well as a cutoff score of binding affinity 

at the peak of the accuracy curve. We trace back subsequently 

to each positive gold standard sequence to identify binding 

sites with binding affinities higher than the cutoff score. 

Finally, using these positive binding sites, we calculate the 

PWM and create a corresponding logo based on the Weblogo 

tool [8].  
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Abstract 

 

The influenza hemagglutinins are viral coat 

glycoproteins that facilitate viral binding to the 

host cell wall;  as a result, the virulence of any 

strain of flu depends significantly on how well 

the hemagglutinin of that strain promotes that 

binding.  Characterizing the evolution  of the 

hemagglutinins is thus fundamental to predicting 

the virulence of  the virus.  Here, I describe a 

linear regression of patristic distance in 

Influenza A/H1N1 hemagglutinin-encoding 

segments on the nominal specimen-collection 

date contained in the label field of the 

hemagglutinin  genomic sequence descriptors; 

the regression predicts an average mutation rate 

of ~2 bp/year (implying, on average,  ~0.1 

mutations  in the hemagglutinin active site per 

year). 

 
Keywords: Influenza, H1N1, hemagglutinin 

 

 

1.0  Introduction 

     The influenza hemagglutinins are viral 

coat glycoproteins that bind to sialic acid 

residues on the glycoproteins exposed at the 

surface of the epithelial cells of the host 

respiratory system. As a result, the virulence 

of any strain of flu depends significantly on 

how well the hemagglutinin of that strain 

promotes that binding.  Characterizing the 

evolution  of the hemagglutinins is thus 

fundamental to predicting the virulence of  

the virus.    

     The influenza A viruses responsible for 

the pandemic of 1918 were derived from 

avian viruses, which typically recognize the 

cell-wall glycan SAa2,3Gal.  The 

hemagglutinins of early isolates from 

humans infected in these pandemics seem to 

have recognized SAa2,6Gal in preference to 

SAa2,3Gal, suggesting that conversion of 

the avian hemagglutinin to one that can 

recognize SAa2,6Gal-terminated 

polysaccharides on host cells is an important 

step in the generation of pandemic strains. 

The principal amino acid substitutions 

involved in this shift of receptor recognition 

are residues 226 and 228 in the H2 and H3 

hemagglutinins (equivalent to residues 222 

and 224 in the H5 hemagglutinin). The 

introduction of these mutations into the H5 

hemagglutinin permitted its binding to an 

a2,6 glycan, although neither change has 

been found in the hemagglutinins of H5N1 

viruses isolated from humans ([13]). A first-

principles theory of hemagglutinin evolution 

is highly desirable but currently beyond the 

state of the art.  First-principles 

computational methods such as molecular 

dynamics could provide insight into relevant 

drug-site free-energetics, but  such methods 

are often computationally expensive and in 

the case of the hemagglutinins, would 

require an initial, realistic specification of 

the in situ environment.  Relatively few 

H1N1 hemagglutinin structures are available 

at present, and none address the effect of the 

molecules' environment  on their active 

sites.   In contrast, phylogenetic comparisons 
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of the genomic encoding of the 

hemagglutinins might, by translational 

proxy, provide insight; some phylogenetic 

methods, furthermore, are computationally 

inexpensive.  Over 10000 hemagglutinin-

encoding (HA) segments of the viral 

genomes are available for A/H1N1 ([4]).  

 

2.0  Method 
 

     The general method of this study has four 

steps: downloading H1N1 HA segment 

descriptors, aligning the descriptors, 

computing the patristic distances among the 

segments, and analyzing the correlation of 

segment patristic distance with segment 

collection-date.  Unless otherwise noted, all 

processing described in this section was 

performed on a Dell Inspiron 545 with an  

Intel Core2 Quad CPU Q8200 (clocked @ 

2.33 GHz) and 8.00 GB RAM, running 

under the Windows Vista Home Premium 

(SP2) operating environment, connected by 

a 1.5 Mbit/s DSL link to the Internet. 

     Influenza H1N1 HA segments were 

downloaded from the Influenza Research 

Database ([4])  on 13 January 2011.  The 

query/download parameters are shown in 

Figure 1. 

 

______________________________________________________________________________ 

 
   Query parameters: 

 

 Select Segments: 4 (HA) 

 Subtype: H1N1 

 Date Range: 1915 to 2011 

 Geographic Grouping:  All 

 Host: All 

 Data to Return: Segment/Nucleotide 

  

 Advanced Options: 

  Display Fields:  Sequence Accession, Date 

 

 Display:  sort on (increasing) date 

 

 

   Download parameters: 

 Select: All segments 

 Select Download Type:  Segment FASTA 

 Label Sequence By:  Custom -- Accession Number, Date 

 

Figure 1.  Influenza Research Database ([4]) query/download parameters for the Influenza 

A/H1N1 HA segment descriptors used in this study. 

 

______________________________________________________________________________ 

 

     The file resulting from the previous step 

was edited in BioEdit  v7.0.5.3 ([6]) to 

remove any sequences  shorter than 1600 bp 

or longer than 1800 bp, a range chosen by 

inspection of the sequence descriptors to 

include some of the descriptors with the 

earliest collection dates in the set, while 

excluding descriptors that were 50% shorter 

or longer that the average descriptor length 

in the set.  The BioEdit navigation for this 

filtering was 
 

   Sequence --> Filter Out 

     Sequences Containing 

      Certain Characters --> 

      Delete them  -->  are <x 

        [>x] long (x = 1600 

       [1800]) -->  

        File  --> Save as (type 
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    = Fasta, filename = 

ten.fasta) 

 

     If fewer than 10 sequences for a given 

year were in the resulting file, all sequence 

descriptors for that year were saved.  Else, 

only the first 10 sequence descriptors in 

each year were saved.  (This helps to reduce 

time bias in the sample, some of which, due 

to the scarcity of specimens collected before 

1930,  is unavoidable).    The result was a 

collection of FASTA-formatted sequence 

descriptors 1600-1800 bp long.  BioEdit was 

then used to save the descriptor Labels of 

this length- filtered set to a separate file. 

     The "Label" fields in the FASTA-

formatted sequence descriptors obtained 

from the previous step were edited in Word 

2007 so that each had the form 

"GenBankAccessionID_yyyy", where yyyy 

is the year contained in the Label.    (In this 

paper, that year is called the "collection 

date".  It should be noted that such a date is 

merely part of a free-text field; thus, in 

principle, that "date" could be, and mean, 

anything.  It is relatively common practice, 

however, for such a date to represent the 

date on which the organism from which the 

sequence was derived was collected.) 

     The FASTA-formatted sequences from 

the previous step were aligned using 

MAFFT  v6.847b-win32 ([2]), invoked from 

a Vista Command Prompt window.  The 

parameters for the alignment were 

 
 Order: input 

 Output format: clustal 

 Strategy: FFT-NS-i 

          (Standard) 

     Iterative refinement 

      (Maximum of 2 iterations) 

      All other parameters: 

          defaulted 

 

The resulting CLUSTAL-formatted ([11]) 

file was edited in Notepad  to remove blank 

lines and lines containing asterisks. 

     A PAUP ([8]) neighbor-joining (NJ, 

[12]) script was built in Notepad, 

incorporating the descriptor labels and 

aligned sequences obtained in previous 

steps.  The template for the PAUP script is 

shown in Figure 2. 

 

______________________________________________________________________________ 

 
   #NEXUS 

   begin taxa; 

    dimensions ntax=389; 

    taxlabels 

       [descriptor labels go here (not shown)] 

   ; 

   end; 

 

   begin characters; 

    dimensions nchar=1794; 

    format missing=? gap=- matchchar=. interleave datatype=dna; 

    matrix 

       [aligned data goes here (not shown)] 

   ; 

   end; 

   begin paup; 

      [1]  log start file=H1N1_HA_nj_patdist.log replace; 

      [1]  nj; 

      [3]  savedist file=tenpatdist.txt format=oneColumn; 

   end; 

 

Figure 2.  Template of PAUP script used to obtain the patristic distances used in this study. 
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     Patristic distances from a 1918 

"reference" segment (AF117241 in [4]), and 

corresponding label-times expressed as 

years-since-1918, were extracted using the 

get_pats software ([7]) running under 

Cygwin (in turn running under Vista) from 

the patristic distance file produced by 

PAUP. The output of get_pats is a comma-

separated file.  This file was converted to a 

space-separated file using Notepad.  A linear 

regression of patristic distance on time was 

performed by the Mathematica ([5] script  

shown in Figure 3 ([9]). 

 

______________________________________________________________________________ 

 
   patdistimedata = ReadList[ToFilename[{"C:",  

     "BIOCOMP2011",   "Influenza_H1N1_HA"},  

       "tenpatdistime.txt"], {Number, Number}]; 

 

   model=LinearModelFit[patdistimedata,x,x] 

 

   model["BestFit"] 

 

   Show[ListPlot[patdistimedata, AxesOrigin -> {0,0},  

      AxesLabel -> {"Years After 1918", "Patristic Distance from 

         AF117247"}], Plot[model["BestFit"], {x, 0, 100}]] 

 

   model["ParameterTable"] 

 

   model["RSquared"]  

 

   model["AdjustedRSquared"] 

 

 

Figure 3.  Mathematica script used for  linear regression in this study. 

_____________________________________________________________ 

 

3.0  Results 
 
     10147 sequences were produced by the 

Influenza Research Database 

query/download described in Section 2.0.   

     The length-filtering and time-debiasing 

steps in BioEdit  described in Section 2.0 

yielded 389 FASTA-formatted sequences. 

     The MAFFT alignment step described in 

Section 2.0  yielded CLUSTAL-formatted 

sequence descriptors with 1794 characters 

per sequence.  388 patristic-distance/time 

pairs were produced by the  patristic-

distance/time extraction (via get-pats) from 

the patristic distance file produced by 

PAUP. 

     The linear regression computed by 

Mathematica was  

 
   

patristic_distance_from_AF117241 

    = 0.0621597 +           

0.00128348*Years_Since_1918 

 

 

A scatterplot and the best linear fit to that 

data is shown in Figure 4. 
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Figure 4.  Scatterplot and best linear fit of patristic-distance/time data used in this study. 

 

___________________________________________________________ 

 

Some parameter statistics for this regression are: 

 
   Parm  Estimate Standard Error t Statistic  P-Value 

   b       0.0621597 0.00437122       14.2202  3.38122*10-37 

   m       0.00128348 0.0000625213 20.5286  7.74847*10-64 

 

 

where b is the intercept on the patristic-distance axis, and m is the slope of the regression.  The 

regression coefficient, r
7 
, is 0.521937 ; the adjusted r

2 
, 0.520698. 

 

 

4.0  Discussion 

 
The method described in Section 2.0 and the 

results of Section 3.0 motivate several 

observations: 

     1.  The slope of the regression line 

suggests that the typical Influenza A/H1N1 

HA segment experiences, on average, 

~0.001 change per year.  Since a nominal 

HA segment has length ~1700 bp, we 

would, based on the regression formula in 

Section 3.0, expect  (~1700 bp x ~0.001 = )  

~2 bp change per year.  Such a change 

would be sufficient to alter at least one 

amide in the active site of the  

hemagglutinin encoded by the segment 

about every 5 years, if we assume the active 

site is determined by ~50 bp  and that  

mutations are uniformly distributed across 

the molecule.  This rate is consistent with 

the nominal mutation rate suggested by 

other considerations  ([10]). 

     In general, we could not expect 

"collection date" to provide any information 

about mutation rate.  However, if specimens 

are collected at a rate that is comparable to 

the mutation rate (as is the case with flu 

genomic segments),  collection dates will 

tend to exhibit a strong correlation with 

mutation rates. 

     2. In contrast to a similar study 

performed on H1N1 NA segments ([14]), 

the regression reported in Section 3.0 is 

relatively small.  Inspection of Figure 4 

suggests why this is so.  Beginning in 

~1978, HA segments diverged into three  

relatively distinct cohorts, two of which 

were well removed from a linear 

extrapolation from earlier segments.   This 

sharp change coincides with the beginning 

of a flu epidemic in swine in the US. 
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     3.  The sequence-descriptor sampling 

protocol described in Section 2.0  is 

intended to help mitigate time-biasing in the 

sample by restricting the number of 

sequence descriptors sampled per year to no 

more than 10.   The results aren't perfect: for 

some years, [4] contains fewer than 10 (for 

some years, no) sequence descriptors.  Other 

protocols are of course possible, but the one 

used in this study is a practical compromise 

between under-, or over-, sampling any 

given year, given the data available in [4]. 
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Abstract - Deciphering the complex interaction between 
transcriptional regulatory (both trans- and cis-) elements 
comprehensively and identifying these potential binding sites 
are fundamental problems in functional genomics. Therefore, 
determining the transcription factors that regulate a gene in 
different cell types and the cis-regulatory elements they are 
binding to will help lay the foundation for building gene 
regulatory networks. While many computational approaches 
have been developed for lower eukaryotes and prokaryotes, 
most of them often do not generalize to vertebrates. Here, we 
use gene ontological evidences to perform functional 
enrichment analysis among the TFs and genes, and group the 
functionally related genes to characterize their 
transcriptional association. We also analyze correlations 
between TFs and genes using their expression profiles.  Thus, 
we search for putative transcriptional regulatory elements 
(transcription factor binding sites) along core promoter 
regions of the grouped genes. The performance of our search 
is highly satisfactory in term of binding site hit accuracy.  

 
Keywords: Transcriptional Regulatory Elements, Functional 
Enrichment, Gene Ontology, Gene Expression Profiles, 
Microarray Analysis. 

 

1 Introduction 
With the completion of draft sequencing of genomes 

of various species (a.k.a. human, mouse, rat, yeast etc.), one 
of the objectives of functional genomics is to interpret 
biological significance of the sequences, and to delineate the 
functional modules along the genomes. Although a large 
number of genes have been identified, their regulatory 
mechanism remains mostly unknown at the transcriptional 
level[1]. To understand the complex interaction of gene 
regulation comprehensively, we need to identify the 
regulatory elements in the human genome and comprehend 
how the genes regulate and interact with each other.  

Simply put, the interaction between transcription 
factor (TF, a.k.a. trans-elements) and transcription factor 
binding sites (TFBS, a.k.a. cis-elements) plays a crucial role 
in controlling gene expression. To modulate transcription and 
consequently to control the expression of genes, transcription 

factor proteins bind to binding sites in the promoter regions 
and thus either facilitate or inhibit the gene expression. To 
some extent, the pattern of expression of each gene can be 
formulated as a function of specific transcription factors, and 
their binding to the cis-elements. So, transcription factors 
constitute one of the major components in constructing gene 
regulatory networks. Literally, trans-elements can be viewed 
as “keys” needed to unlock the cis-elements which act as 
“locks”. To comprehend gene transcription mechanism, it is 
not sufficient to know which keys (trans-elements) are needed 
to lock/unlock a specific gene, but we also need to identify 
their corresponding locks (cis-elements). 

Since the human genome sequences are available, 
quite a number of computational approaches have been 
developed to discover functional elements in lower 
prokaryotes by combining genome sequence data and 
expression profiles[2]. But, due to more degenerate nature 
and complex interactions of TFs in the multi-cellular 
mammals (higher eukaryotes), most of the techniques are not 
able to generalize to mammal genomes. Moreover, these 
computational techniques are fallible to high false positive 
prediction rate[3]. In reality, this unusually high false 
prediction sometimes overwhelms the prospective techniques 
to deter finding regulatory regions accurately. On the other 
hand, comparative genome analysis, which is a biologically 
more relevant approach, provides a powerful way to search 
for similarities across the species at the sequence level and 
consequently to assign functional annotations[4]. Besides this, 
it is assumed that genes with similar functions are most likely 
to be regulated through the same mechanisms[5]. Thus, we 
can infer transcriptional sub-networks based on functional 
enrichment of genes. 

In this paper, we propose a systematic technique to 
identify putative transcriptional regulatory elements in human 
genome by functional enrichment of genes using ontology. 
Our hypothesis is inspired by the axiomatic supposition that 
genes that are in the same functional complex and located in 
closer cellular proximity are often regulated by the same 
transcription factors[6]. In fact, two proteins, sharing same 
molecular function in alike biological process and residing in 
close physical location, are more likely to interact with each 
other[7].  Therefore, clustering the genes set using functional 
enrichment allows us search for cis-modules along the 
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promoter regions of the genes more efficiently. Initially, we 
analyze the correlations among the genes and corresponding 
TFs using microarray expression data. Besides this, we used 
the popular gene ontology to come up with the enrichment 
analysis of the genes. In fact, functional enrichment analysis 
complements the findings for correlations from expression 
profiles. To evaluate the efficacy of our approach, we 
validated our prediction for the transcription factor binding 
sites from functionally enriched gene clusters by comparing 
with TRANSFAC[8]. 

 
2    Related works 

In silico discovery[9] of binding sites is quite 
effective for prokaryotes, like Escherichia coli[10], where 
genomes are more compact with many genes being regulated 
by a single operon, is relatively easy to locate. Similar 
successes have been reported for simple unicellular 
eukaryotes, like Saccharomyces cerevisiae[2]. The main 
approach for finding cis-elements of such simple organisms is 
to find overrepresented motifs modeled by known background 
profiles, such as position weighted matrices (PWMs)[11], 
position specific score matrices (PSSMs)[12], while some use 
clustering to demarcate cis-regulatory modules[13, 14].  

For higher multi-cellular eukaryotes, model-based 
approaches[1, 15]  that discover patterns among co-expressed 
genes with respect to regulating transcription factors have 
been proposed. The idea behind these techniques involves the 
proximity of common cis-regulatory modules among the co-
expressed genes. Among other common model-based (a.k.a. 
machine learning) techniques, artificial neural networks[16], 
greedy algorithm[17], Gibbs Sampling[18], Markov 
chains[19], Expectation Maximization (EM) algorithm[20] 
are widely used  for eukaryotes. However, it has been 
reported that these model-prediction techniques are 
susceptible to high false positive prediction rate and majority 
of predicted TFBS generated with predictive models (in 
silico) have no functional role in vivo [21].  

Jin et al.[22] analyzed conserved human-mouse 
orthologous gene pairs to find core promoter elements and 
Bussemaker et al.[23] addressed the issue of detecting 
regulatory elements using correlation of expressions. A recent 
paper by Kim et al.[24] dealt with predicting transcriptional 
regulatory elements of human promoters using gene 
expression and promoter analysis data, which compare two 
pools of genes using z-scores. 
 
3  Methods and materials 
3.1 Data preprocessing  

We collected publicly available microarray data of 
normal human tissues[25], which provide us with 26,260 
unique genes from 35 different organs. In total, the data set 
consists of 115 tissue specimens. For each experimental tissue 
sample, Cy5- and Cy3- labeled samples were co-hybridized to 
a cDNA microarray containing 39,711 human cDNA’s, 
representing 26,260 different genes [26]. Expression ratios 

were globally normalized by mean-centering each gene across 
all arrays.  
 

3.2 Calculation of correlation co-efficient 

If a transcription factor does regulate a gene, 
according to reported results[15] in the literature, it is 
expected that they are linearly correlated. However, we 
observed that very often there seems to be a saturation point 
where the effect on the expression level of the gene 
diminishes as the level of transcription factor continues to 
increase and may reach a plateau or even decrease in some 
cases. Thus, instead of using simple linear correlation, we 
measure the correlation using Equation 1 as our regression 
curve.  
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Where α is an exponential constant 
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Where, n is the sample size, and xi and yi are the sum of X 
and Y from i = 1 to n 

 
In Equation (1), y is the original expression level, 

and it is multiplied by some exponential constant to generate 
new values. The value of parameter α was set to 0.25. This 
correlation coefficient is more general than simple linear 
correlation coefficient. By setting α = 0.0, we end up with the 
simple linear correlation coefficient. We calculated Pearson’s 
Correlation Coefficient (Equation (2)) of all pairs of gene and 
TF. The correlation coefficients indicate how tightly genes are 
up-regulated and down-regulated with respect to transcription 
factors. The values of Pearson’s Correlation Coefficient range 
from -1 to +1. Any value in positive scale indicates increasing 
correlationship, with +1 being perfectly linear correlated and 
negative values denote the case of a negative correlationship. 
Any value in between in all other cases represents the degree 
of dependency between the variables (i.e. gene and TF pair).  

 
3.3 Gene Ontology 

Genome-wide comparison has revealed that a large 
fraction of genes encoding the core biological processes and 
molecular functions are shared by all the eukaryotes, with a 
few exceptions[27]. In fact, comprehensive knowledge about 
biological roles of common gene products in diverse species 
can obviously explain, and often provide strong implication 
of, its function in the like genomes. However, due to 
divergent nomenclatures and interpretations of biological 
elements, it has been difficult for the researchers to talk in 
common language. To address this issue, the Gene Ontology 
(GO) Consortium[28] has been formed. Basically, Gene 
Ontology (GO) provides a great resource for describing gene 
products by standardizing biological concepts and by 
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consolidating gene annotation information from 
heterogeneous data sources in a consistent manner. As a 
mainstay standard for facilitating annotation of gene products, 
it has been successfully used in unraveling protein-protein 
interactions and classifications in genomes, such as Homo 
sapiens, Saccharomyces cerevisiae, Drosophila 
melanogaster, Caenorhabditis elegans, Mus musculus, 
Arabidopsis thaliana.  

Gene Ontology (GO) Consortium has developed a 
database consisting of standardized, structured, dynamically 
controlled vocabularies (ontological) to encode various 
aspects of gene products in organisms[28]. The Gene 
Ontology (GO) is categorized into three orthogonal entities: 
(1) molecular function (MF) describes the role of a gene 
product in molecular level; (2) biological process (BP) 
outlines the processes (objectives) the gene products partake 
in; (3) cellular component (CC) refers to the cellular 
localization of the proteins where they are active. Each GO is 
represented as a directed acyclic graph (DAG), in which each 
term is either a child of one or multiple parents (“is-a” 
relationship) or a constituent instance (“part-of” relationship) 
of the parent terms. In the graph, the nodes correspond to the 
GO terms, while edges denote the relationships among the 
terms. Depending on the depth (level) of a node, we can 
determine the specificity of the term. The closer to the root a 
term is, the more general the term is. Conversely, if it is 
located in the leaf levels, the term is the most specific with 
respect to that particular ontology.  

 
3.4 Functional enrichment measure 

Although semantic similarity based methods are 
popular in assessing functional similarity among the gene 
products, there are a number of drawbacks we need to 
consider. First of all, different methods treat the commonality 
(a.k.a. generality and specificity) of nearest common 
ancestors in different ways. Secondly, in the GO graph, the 
depth of terms does not actually signify the specificity of the 
corresponding concepts. Different terms in the same rank 
(depth) are necessarily not equally specific. Finally, as the GO 
is a continuing project where new vocabularies are constantly 
added (updated), therefore very often the similarity measures 
are subject to change. 

Regarding all these issues, we attempt to define a 
similarity metric based on assigned GO terms to a gene 
product instead of concerning much about frequently 
changing GO semantic structure. Again, as we are interested 
in clustering functionally related genes on the basis of their 
GO terms, our distance measure provides straightforward 
approach to group them together. The idea behind our metric 
definition is that the more genes have common (general) GO 
terms, and the less they have specific GO terms, the more 
likely they tend to be functionally related. Our distance 
measure is based on the Czekanowski-Dice formula (see 
Equation 3). 

Let two sets of GO terms of annotated genes G1 and 
G2 be  and },....,,,{ mgogogogoGO 11312111 =

},....,,,{ ngogogogoGO 22322212 =  in order.  
According to our algorithm, the distance measure between G1 
and G2: 
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The closer the genes are in respect with biological 
function, the lesser the distance measure ( ) is. In 
our analysis, we label this distance measure as functional 
enrichment score. This distance formula weighs more on the 
significance of the common GO terms by giving more 
emphasis to similarities than to dissimilarities. Thus, if two 
gene products do not share any GO terms, the distance value 
would be one (1), the highest possible value, while for two 
gene products sharing exactly the identical set of GO terms, 
the distance value is zero (0), which is the lowest possible 
value.  

),( 21 GG

3.5 Finding cis-regulatory elements 

To determine the (putative) cis-regulatory elements, 
we identify associated genes with certain TF with correlation 
co-efficient greater that a threshold (>0.5). Using functional 
enrichment analysis, we construct cluster of genes that are 
functionally related to certain transcription factor. After 
calculating the distance measures (functional enrichment 
scores) of the respective TF against rest of the genes, we sort 
them by enrichment score in ascending order (genes with less 
score at the top). For further analysis, we selected top ten 
genes from this list, which include genes that are functionally 
enriched with corresponding TF (enrichment score < 1.0) with 
moderately high correlation coefficient (~>0.60).   

Transcriptional regulatory elements are found either 
upstream or downstream of genes, scattered all along 
thousands of bps in both intergenic and intragenic regions. 
However, most TFBS predictors tend to focus in the proximal 
promoter region[3] because the difficulty of TFBS prediction 
tends to increase with the size of the region of interest. 
Besides, increasing the region of interest upstream of the 
transcription start site to more than a few thousand base pairs 
increases the chances of falsely identifying common repeat 
elements. This, we focus on the core promoter regions from 
1500 bps upstream to 500 bps downstream (-1500 to +500, 
total 2000 bps) and extracted the nucleotide sequences for the 
genes as FASTA format. 

To ensure that our putative TF binding sites are of high 
quality, we validated them with TRANSFAC database[15], 
which is the largest repository for experimentally derived 
(validated) TFBS. We also performed further corroboration of 
our putative sites using P-Match[29]-public (which is a 
TRANSFAC subsidiary) and ConSite[30], which combines 
pattern matching and weight matrix approaches thus 
providing higher accuracy of recognition than each of the 
methods alone. To reduce false-positive validation using P-
match, we chose “high quality vertebrate matrices only” as 
our default option. We obtained the report for all pre-selected 
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genes, setting cut-off selection for matrices to minimize (1) 
false-positive, (2) false-negative, and (3) the sum of both error 
rates. Moreover, ConSite[30] is  a user-friendly, web-based 

tool for finding cis-regulatory elements in genomic sequences 
using high-quality transcription factor models and cross-
species comparison filtering.  
 

Table 1: The list of identified binding sites for E2F5 and RELB TFs. Results were validated using both 
TRANSFAC and ConSite. 

E2F5 (TRANSFAC: E2F, ConSite: E2F) 

 
 

Genes 
Correlation 
Coefficient 

Functional enrichment 
score 

Position in 
sequence 
(strand) 

Consensus 
sequence 

MBD4 0.82118 0.76 942 (+) TTTGCcgc 
DCK 0.79218 0.904 1496 (-) gcgCCAAA 

MCM6 0.78034 0.629 1347 (+) TTTGGcgc 
MYBL1 0.76635 0.538 N/A N/A 

DR1 0.76331 0.578 N/A N/A 
LSM6 0.75098 0.739 1755 (-) ccgCGAAA 
EZH2 0.74767 0.583 1533 (+) TTTGGcgc 
PCNA 0.73964 0.769 1442 (-) gcgGGAAA 

HMGB2 0.69681 0.75 336 (+) TTTGGcgc 
NMI 0.61465 0.733 1553 (+) TTTCGcgg 

 
 
 

 RELB (TRANSFAC: c-REL, ConSite: c-Rel) 

 
 

Genes 
Correlation 
Coefficient 

Functional enrichment 
score 

Position in 
sequence 
(strand) 

Consensus 
sequence 

PSMB9 0.91903 0.833 1107 (-) GGAAAgtccc 
COX7B 0.80250 0.76 N/A N/A 
ZFP106 0.76718 0.913 1343 (-) GGAATcctca 

ARHGAP5 0.76682 0.909 1884 (+) gggtgCTTTC 
NFE2L1 0.74318 0.619 641 (-) GAAACatccc 

MAPKAPK3 0.73573 0.904 197 (-) TGTAGcaccc 
RYR2 0.72470 0.8 549 (-) GGAATgctcg 

DNAJB6 0.71556 0.809 137 (+) gggatTTTTC 
ARF1 0.71359 0.933 256 (+) ggggcTTTCC 
IRF2 0.70548 0.474 1468 (+) ggggaTTTCC 
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4   Results and Discussion 
 As a case study, we selected E2F5 and RELB for our 

candidate TF.  We screened out genes that are functionally 
enriched with these TFs. In order to quantify the regulatory 
elements along these gene sequences, the core promoter 
regions (see Methods) were fed to P-Match[29] using all three 
available options for handling false discoveries. Basically, the 
output with option “minimizing false negative” considers 
merely minimal number of base pairs match and calls it a hit. 
Thus it improves its recall numbers (maximize loose-bound 
relevance at the cost of precision), with a huge list of cis-
element candidates. We expect the false-positive rate to be 
extremely high for the predictions to be meaningful. 
Therefore, we did not discard this option. Among the other 
options, “minimize false positive” tries to find exact (~100%) 
PWM match and accounts for the most precise TF hits. The 
other option “minimize sum of both error rates” seems to take 
advantage from the best of both worlds (keeping balance on 
both recall and precision) and evens out high false discovery 
rates. To ensure better quality of our analysis, we considered 
only the option “minimize false positive”, which maximizes 
the precision values without compromising too much with 
recall values.  We summarize the sample results for E2F5 and 
RELB genes in Table 1. The results for consulting ConSite are 
furnished as well. The consensus sequences (Logo-plots[31]) 
for respective TFBS were extracted from TFM-Explorer[11]. 

Our predictions for cis-elements for these two TFs 
are highly accurate. Out of the ten human genes that are 
associated with E2F5 (E2F transcription factor 5), a member 
of E2F TF family, eight genes (80% hit rate) carry the 
supposed binding sites precisely (negative strands are give as 
reverse complemented. Comparing the sequence patterns of 
binding sites, we can say that almost all of them share the 
consensus sequence ‘TTTSSCGC’ where S could be a C or 
G. Likewise, for the ten human genes functionally correlated 
with TF RELB, we have found nine genes have the consensus 
sequence for RELB binding sites, which achieves a hit rate of 
~90%. Here, we found “TTTCC” as sense (+), or “GGAAA” 
as anti-sense (-) complementary, to be common motif with a 
number of out of pattern nucleotides around.  

. 
5  Conclusions  

In short, we propose a computational method to 
identify putative transcriptional regulatory elements by 
analyzing functional enrichment using gene ontology. 
Although there are a lot of computational techniques for this 
purpose, it is not possible to extend those from motif finding 
in lower prokaryotes to that in mammals. These techniques 
also tend to show higher false discovery rates. We 
demonstrated that the use of our similarity (distance) metric 
can group genes based on enrichment score and it strengthens 
the findings from gene expression profile analysis. In each 
group genes are functionally related to the corresponding TFs; 
so searching for functional modules along the promoters of 
genes is more appropriate for capturing possible regulatory 
relationship. Finally, we validate our prediction for cis-

regulatory motifs in both genomes using TRANSFAC. As a 
possible further step to confirm the regulatory relationships, 
the TF-gene pairs and their functional enrichment constructed 
here may serve as a reference of additional evidence for ChIP-
chip results. 
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Abstract - Protein classification has been performed by many 
protein databases to infer annotations of unknown proteins 
and therefore enhance the performance of protein annotation. 
In this study, we implemented an integrated pipeline for 
protein classification using specific PSSMs and proteins with 
the same entity name. After clustering sequences on the basis 
of their evolutionary distances, a target group is selected 
using Jarccard distance. Finally, each group is represented 
using specific PSSMs generated from sequences in the target 
group.  Using 76 p53-relative and 155 non-relative sequences 
to validate the performance of our pipeline, we measured 
100% accuracy of protein classification by our pipeline. In 
addition, we identified 35 homologous proteins of p53 among 
86,718 sequences through high-throughput analysis of human 
proteome.  

Keywords: PSSM, protein classification, text mining, 
Jarccard distance, p53 

 

1 Introduction 
   There is a high demand of automated protein 
annotation approaches and methods due to the latest advance 
in high throughput genomics and proteomics technology. 
However, automated protein annotation is a very challenging 
task in computational biology. In general, the first step in 
annotating a novel protein is to identify homologous proteins 
related to the protein. If its homologous proteins are well 
annotated, we can infer the characteristics of the protein from 
the homologous proteins’ annotations.  
 One of the simplest methods to identify homologous 
proteins is to measure the similarity between novel and 
reference sequences [1, 2]. If their identity is high, they can be 
structural and/or functional homologous. However, for 
sequences that are distantly related, sequence-sequence 
comparison algorithms may lose the sensitivity in detecting 
the homologous relationship [3]. To increase the sensitivity in 
detecting remote homologues, instead of comparing two 
proteins directly through pair-wise sequence alignment, the 
new sequence can be compared with profiles, which contain 
common information from known protein sequences 
belonging to the same families. Indeed, after building multiple 
sequence alignments of related sequences in the same family, 
a PSSM (Position Specific Scoring Matrice) or HMM 
(Hidden Markov Model) model is then generated on the basis 
of the common information from the alignments. Using PSSM 

or HMM, sequence-profile comparison methods such as PSI-
BLAST (Position specific iterative-BLAST) and SAM 
(Sequence Alignment and Modeling System) can increase the 
sensitivity in detecting the distant homologous sequences with 
low sequence identities [4, 5]. In addition, the sensitivity and 
specificity of PSSM or HMM tend to depend on sequences 
used for building multiple sequence alignments. Thus, 
specific PSSMs generated from functional related sequences 
can improve the sensitivity of protein classification. 
 In this study, we implemented an integrated pipeline for 
protein classification using specific PSSMs and considering 
proteins with the same name based on the observation that 
biologists tend to assign related genes or proteins similar 
names. Sequences are clustered on the basis of their 
evolutionary distances. After selecting a target group using 
Jarccard distance, specific PSSMs are generated from 
sequences in the target group. Finally, each group is 
represented using specific PSSMs.  
 In next section, we describe the background information 
of tools and resources used in the pipeline. We will then 
introduce our classification pipeline. A case study based on 
p53 (tumor suppressor protein) is provided in detail. 
 
2 Method and Resources 

2.1 Tools and Resources 

 The tools in this study contain PSSM and RPS-BLAST 
(Reverse Position specific iterative-BLAST). A PSSM profile 
is a position-specific scoring matrix with 21 columns and M 
rows where M is the length of probe. Each row matches a 
sequence position of the probe [6]. The first 20 columns in 
each row show the score for searching each of 20 amino acid 
residues at the specific position of the target sequence. A 
penalty for insertions or deletions (INDELs) at each position 
of the target sequence is encoded in the 21st column. When a 
target sequence is compared with PSSMs, the highest score or 
scores above a specified threshold are retained as outputs [6]. 
RPS-BLAST searches homologous sequences in the inverse 
way of PSI-BLAST [7]. Thus, it reverses the role of a 
sequence and PSSMs, comparing a query sequence against a 
library of position-specific scoring matrices (PSSMs).  
 The resources used in the study include UniProtKB, a 
comprehensive knowledgebase about protein sequences and 
functional information, BioThesaurus, a comprehensive 
collection of gene/protein names collected from over 30 
molecular databases for UniProtKB records, and several 

188 Int'l Conf. Bioinformatics and Computational Biology |  BIOCOMP'11  |



gene/protein family classification and functional annotation 
knowledge bases including PANTHER, PIRSF, and Gene 
Ontology. The following summarizes them. 
 UniProtKB provides the scientific community with a 
comprehensive, high-quality and freely accessible resource of 
protein sequence and functional information [8, 9]. It consists 
of a manually annotated and reviewed component, Swiss-
Prot, and an automatically annotated component, TrEMBL. 
Proteins with sequence similarities of 50% or 90% were 
grouped into UniREF50 and UniREF90 clusters [10].   
 BioThesaurus is a thesaurus aiming to provide a 
comprehensive collection of protein and gene names for 
protein records in the UniProtKB. Currently covering six 
million proteins, the latest version of BioThesaurus consists 
of over eight million names extracted from multiple molecular 
biological databases according to the database cross-
references in UniProtKB and iProClass [11].  
 The PANTHER (Protein ANalysis THrough Evolutiona- 
ry Relationships Classification System) is a resource that 
classifies genes by their functions, using published scientific 
experimental evidence and evolutionary relationships to 
predict function even in the absence of direct experimental 
evidence [12]. Proteins are classified by expert biologists into 
families and subfamilies of shared function, which are then 
categorized by GO terms.  
 The PIRSF (Protein superfamily classification system) is 
a protein classification system based on the domain 
information of the whole proteins. It provides comprehensive 
and non-overlapping clustering of UniProtKB sequences into 
a hierarchical order to reflect their evolutionary relationships 
[13]. 
 Gene Ontology (GO) presents a structured vocabulary 
about biological roles of gene and proteins from different 
species [14]. GO defines three different parts including 
molecular function, biological process and cellular 
component. GO terms are organized in directed acyclic 
graphs (DAG) whose nodes have child-parent relationships 
[14].   
 PHYLIP (Phylogeny Inference Package) is a package of 
programs for inference of phylogenies from sequences.  Data 
types of the package include molecular sequences, gene 
frequencies, restriction sites and fragments, distance matrices, 
and discrete characters. Methods in the package are to 
generate distance matrix and consensus trees, and calculate 
bootstrapping, parsimony, and likelihood [15]. 
 
2.2 Method 

 Figure 1 shows the pipeline that consists of three 
modules. The first module is to collect sequences from public 
databases based on names collected in BioThesaurus, then 
calculate evolutionary distances among sequences, and finally 
cluster proteins in groups on the basis of their evolutionary 
distances. 
 The second module is to characterize clustered groups 
by measuring the dissimilarity between the groups and 
reference protein families in PIRSF and PANTHER. After 

calculating the relative frequencies of domain architectures 
and Gene ontology terms which each protein family has, we 
use weighted Jaccard distance to measure their dissimilarity. 
Jaccard distance is generally used to measure dissimilarity 
between sample sets [16], and is calculated by subtracting the 
Jaccard coefficient from 1 in equation (1) and (2). Then, we 
give a relative frequency weight  to Jaccard distance for 
reflecting the number of domain architectures or GO terms. 
Since the sum of the relative frequencies of domain 
architectures or GO terms is 1 in a protein family, we assume 
that the probabilities that protein family C1 and C2 have the 
same domain architecture or GO terms are P(C1) and P(C2).  
Then, the weight is defined in equation (3) assuming 
independency and mutual exclusiveness. We finally define 
weighted Jaccard distance in equation (4) : 

Figure 1: Diagram showing the workflow of the pipeline 
for protein classification 
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 The third module is to identify the characteristics of a 
protein using specific PSSMs. After selecting a target group 
for the classification, we generate specific PSSMs using 
sequences in the group.  PSSM generally describes the 
distribution of residues at each position in a conserved pattern 
such as motif or domain. Thus, if we generate specific PSSMs 
using sequences in a specific group, the specific PSSMs can 
allow us to identify proteins whose functional charactersitics 
are similar to the specific group in novel proteins or 
proteomes.  
 Based on this assumption, a pipeline first generates 
PSSMs from sequences which have similar domain 
architectures and functional GO terms. Second, each query 
sequence is searched against the specific PSSMs using RPS-
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BLAST. If the alignments returned from the search do not 
satisfy our e-value threshold, they are filtered out. Then, 
given the alignments to specific PSSMs, a residue score is 
calculated. For every alignment returned from the RPS-
BLAST search of each query against specific PSSMs, each 
amino acid of a query which is identically or positively 
(identical, but conserved) aligned is scored with BLOSUM62 
score for the aligned pairs. These scores are summed for each 
amino acid of the query (i.e., residue score). The specific 
score for a query protein is calculated using equation (5). 

 

                 
1

1 n

i
i

p
n 
 if                                (5) 0ip 

where n is the length of a protein sequence and ip  is a 
positional score of ith amino acid of the protein. 
 
3 Results 
 To validate the performance of our pipeline, we first 
selected p53 tumor suppressing protein as a key word. Using 
BioThesaurus, we collected 205 sequences, which have the 
entity name as “p53”, and 3204 sequences, whose sequence 
similarities are over 50%, from UniProtKB, based on 
UniREF50. We calculated evolutionary distances among 
these sequences using phylip library and clustered them into 
38 groups. 
 

Table 1. The weighted Jaccard distances of domain 
architecture and functional GO term between group1 and 
protein families in PIRSF. 

 

Figure 2: The identification of conserved regions in a protein 
sequence using specific PSSMs. (a) domain regions predicted 
by BLAST (b) the distribution of residue scores (c) the 
conserved regions predicted by the new pipeline using 
specific PSSMs. 

 To test the accuracy of the prediction, we selected 76 
sequences as a positive dataset and 155 sequences (RRM: 37, 
non-nucleic binding protein: 127) as a negative dataset. Then, 
we calculated sensitivity, specificity, and accuracy using 
equation (5), (6), and (7). The pipeline did not identify any 
conserved region in proteins not related to p53 proteins, the 
sensitivity, specificity, and accuracy of the pipeline are 100%. 
 
                T PSensitivity =  100%

T P FN



                    (5)            

               T NSpecificity =  100%
T N FP




                     (6) 

 Calculating the weighted Jaccard distances of these 
groups against protein families in PIRSF, the weighted 
Jaccard distance of the biggest group is very close to 
PIRSF002089 (tumor suppressor p53) in Table 1. Among 111 
sequences in the group, we selected 35 reviewed sequences 
for the generation of specific PSSMs. We then chose 76 
sequences as a positive dataset, and 26 RRM (Rna 
Recognition Motif)s and 127 non-nucleic binding proteins as 
a negative dataset. 

        T P T NAccuracy =  100%
T P T N FP FN

 
  

          (7) 

 

Table 2. The sensitivity, specificity, and accuracy of positive 
and negative datasets about p53 proteins.  

 

 Shown in Figure 2, the specific PSSMs successfully 
identified the conserved patterns related to p53 in a sequence 
of testing dataset. X-axis represents the position of amino 
acid, and Y-axis represents residue score. Since Figure 2 (b) 
shows only the distribution of residue scores, we filtered 
residue scores using smoothing filter for the identification of 
conserved regions. Shown in Figure 2 (c), the conserved 
regions match the domain regions identified by BLAST. This 
indicates that our pipeline can predict the conserved regions 
such as domains or motifs in a protein sequence using specific 
PSSMs. 

 For further validation, we identified p53 related proteins 
in human proteome. In fact, after downloading 86,718 
proteins from International Protein Index (IPI) site, we did 
high-throughput analysis of these proteins using specific 
PSSM for p53 proteins. Among 86,718 sequences, we 
identified 12 of p53, 13 of p63, and 10 of p73 proteins. 
 Even though we used specific PSSMs for p53 proteins, 
our pipeline identified tumor-related proteins including p63 
and p73 proteins in the proteomic analysis. In 2009, Dr. 
Vladimir’s group proved that they are evolutionary close to 
each other and they have very similar structures [17]. Because 
of that, our pipeline captured all of p53, p63, and p73 proteins  
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in human proteome. Therefore, these two experiments suggest 
that, generating functional specific PSSMs for sequences with 
similar functional characteristics is able to identify new 
proteins that have similar characteristics.  

 
4 Conclusions 
 Many protein databases use homology-based approaches 
to build protein families and improve their protein 
annotations. While these protein families provide important 
resources for biologists to predict structures and functions of 
novel proteins, it is not clear how well those protein families 
capture the characteristics of proteins. Generally, we use 
sequence similarity, domains (or domain architectures), and 
GO terms to annotate proteins. Since protein families are used 
to infer protein annotations, proteins from the same family 
should tend to share similar GO terms and domain 
architectures. The names of biological entities related to these 
proteins can also be shared. 
 Based on the above, we add reliable information related 
to the characteristics of protein families into a pipeline for 
protein classification. As we use sequences which are 
collected on the basis of similar domain architectures and 
functional GO terms for specific PSSMs, these specific 
PSSMs allow RPS-BLAST to identify proteins which have 
similar characteristics in human proteome with high accuracy. 
Thus, this study suggests that additional information such as 
the entity name, evolutionary distance, domain architecture, 
and functional GO terms besides sequence similarity is 
helpful in improving protein classification. Finally, the 
integration of different methods in different fields into one 
pipeline can be cornerstone to implement a unified protein 
classifier. 
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Abstract - DNA-binding proteins perform various functions in 
the cells. Determining the structures of protein-DNA 
complexes using experimental methods are hindered by many 
obstacles. Thus, computational methods for predicting DNA-
binding sites on protein structures are needed to elucidate the 
mechanism of protein-DNA interactions. In this study, we 
divided atoms of amino acid residues into 14 groups and used 
a vector consisting of the distribution of these atom groups to 
describe the characteristics of protein surface around an 
amino acid. We then trained a Random Forest method to 
predict DNA-binding sites on protein surface. The predictions 
were then refined using a post-processing procedure based on 
the clustering of DNA-binding residues on the surface. The 
method achieved an accuracy of 80.8% when evaluated using 
10-fold cross-validation. The results show that the distribution 
of different types of atoms around the surface provides 
sufficient structural information for predicting DNA-binding 
sites on protein structures. 

Keywords: Random Forest, DNA -binding, prediction, 
features 

 

1 Introduction 
  Structural genomics projects are yielding an increasingly 
large number of protein  structures with unknown function. As 
a result, computational methods for predicting functional sites 
on these structures are in u rgent demand. There has been 
significant interest in developing computational methods for 
identifying amino acid residues that participate in p rotein-
DNA interactions based on combinations of sequence, 
structure, evolutionary informat ion, and chemical or physical 
properties. Some methods predict DNA-binding sites using 
protein sequence-derived informat ion as input [1-3]. 
Compared to methods that make pred iction based on protein 
structures, these methods have the advantage that they can be 
applied to proteins whose high-resolution structures are 
unavailable. However, they also suffer relatively  low 
predicting performance. Thus, methods that can explore 
structural features to detect DNA-binding sites are also 
needed. For example, Jones et al. [4] analyzed residue patches 
on the surface of DNA-binding proteins and used electrostatic 
potentials of residues to predict DNA-binding sites. Later, 
they extended that method by including DNA-binding 
structural motifs [5]. In related studies, Tsuchiya et al. [6]  

used a structure-based method to identify  protein-DNA 
binding sites based on electrostatic potentials and surface 
shape, and Keil et al. [7] trained a neural network classifier to 
identify patches likely to be DNA-binding sites based on 
physical and chemical properties of the patches. Neural 
network classifiers have also been used to identify protein-
DNA interface residues based on a combination of sequence 
and structural informat ion [8, 9]. Many recent studies have 
also been published [10-13]. 

 Bagley and Altman [14] developed a FEATURE method 
to investigate the radial distributions of properties around 
protein sites like binding sites for calcium, the milieu of 
disulfide b ridges, and the serine protease active site. Later, 
the method was also used to detect zinc-b inding sites [15], 
phosphorylation sites [16], and peptide binding sites [17]. 
Using a similar approach, in this study, we investigated the 
distribution of atomic g roups around the DNA-binding sites 
and trained a random forest method to predict  DNA-binding 
sites on protein structures. 

2 Materials and methods 

2.1 Datasets 

 139 p rotein-DNA complexes were ext racted from the 
PDB [18]. A ll the structures had resolution better than 3.0 Å 
and R factor less than 0.3. Each protein in this set had at least 
40 amino acid residues and the mutual sequence similarity 
between the proteins in this set was less than 30%. 

2.2 Definition of binding-site residues 

 Binding-site residues were defined based on atom 
distance [19]. A protein residue was defined to be a DNA-
binding residue if the distance from any of its atoms to any 
atom of the interacting DNA was less than 5 Å. The 139 
proteins had 26,862 residues in total and 5,932 of them were 
DNA-binding residues. A residue was defined to be a surface 
residue if its relative accessibility is at least 5% as calculated 
using NACCESS [20]. 
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2.3 Microenvironmental features of DNA-
binding sites on protein surface 

 We calculated the distance from nucleotides to protein 
surface. The average distance is 6 Å. Thus, for every surface 
residue, we define a sphere such that the center of the sphere 
is 6 Å from the protein surface and the line connecting the 
sphere center and the most exposed atom of the residue was 
perpendicular to the protein surface. Then we counted the 
number of different types of atoms from amino acids that fall 
into the sphere. The atoms were div ided into 14 types as 
described in [17], namely : C3 (alphatic carbons; sp3), C= 
(carbonyl carbon; sp2), O= (carbonyl oxygen; sp2), N2H 
(nitrogen of amides; sp2; also sp2 neutral nitrogen of side 
chains), Car (aromatic carbon; sp2; general), O2- (negatively 
charged oxygens (-1/2) in carboxylates; sp2), SH (sulphur in 
thiols; sp3), OH (hydroxyl group; sp3), NarH (aromat ic 
nitrogen with a hydrogen; sp2), NarH+ (aromat ic n itrogen 
with a hydrogen and a postive charge; sp2), Set (sulphur in 
thioethers; sp3), C+ (carbon of carbocations; sp2), N3H+ (sp3 
nitrogen with a hydrogen and a positive charge), N2H+ (sp2 
nitrogen with a hydrogen and a positive charge). Thus, for 
each surface amino acid residue, a  vector of 14 features was 
obtained. These vectors describe the structural characteristics 
on the protein surface centering at each surface amino acid. 
We used these vectors to train a classifier to classify surface 
residues into DNA-binding and non-DNA-binding classes 
based on these structural characteristics. Different rad ius 
values of the sphere were tested and the best result was 
achieved when the radius was 20 Å. 

2.4 Classifier for predicting DNA-binding 
residues 

 We used a Random Forest (RF) method [21] to  train  a 
classifier to predict DNA-binding residues. A RF is a method 
consisting of an ensemble of tree-structured classifiers. It has 
been applied to solve many bio informat ics problems in recent 
years. In this study, we used the implementation of RF in 
WEKA package [22]. Ten fo ld cross-validations were used to 
evaluate the performance of the classifier. The proteins in the 
dataset were randomly split into 10 subsets. In each round of 
experiments, 9 subsets were used as training set to train a 
classifier, and the remaining subset was used as test set.  This 
procedure was repeated 10 times with each subset being used 
as test set once. From a protein in the training set, the feature 
vectors associated with all binding-site residues were used as 
positive examples. We noticed that the sphere of a binding-
site residue and that of a non-binding surface residue might 
overlap in space. Thus, to reduce noise in the training set, for 
the negative examples we only considered the surface 
residues whose spheres did not overlap with any spheres of 
binding-site residues. The feature vectors extracted from these 
residues were used as negative train ing examples. For a 
protein from the test set, all surface residues were used as test 
examples, so that a prediction was made for every surface 
residue. 

2.5 Assessment of prediction performance 

 Prediction performance was evaluated using sensitivity, 
precision, accuracy (ACC), and Matthews’ correlation 
coefficient (MCC): 

 

ACC =
TP + TN

TP + TN + FP + FN                            (1) 

 

Sensitivity =
TP

TP + FN                                    (2) 

FPTN
TNySpecificit
+

=
                                (3) 

 

MCC =
TP × TN − FP × FN

(TP + FN)(TP + FP)(TN + FP)(TN + FN)               (4) 
where TP was the number of true positives (i.e., residues 
predicted to be DNA-binding residues that are in  fact DNA-
binding residues); TN was the number of true negatives (i.e., 
residues predicted to be non-DNA-binding residues that are in 
fact non-DNA-binding residues); FN was the number of false 
negatives (i.e., residues predicted to be non-DNA-binding 
residues that are in fact DNA-binding residues) and FP was 
the number o f false positives (i.e., residues predicted to be 
DNA-binding residues that are in fact not interface residues). 
Sensitivity is a measure of the percentage of DNA-binding 
residues that are correctly pred icted. Specificity is the fraction 
of non-DNA-binding residues that are correctly predicted. 
Accuracy is the percentage of overall predictions that are 
correct. MCC (Matthews correlat ion coefficient) measures the 
correlation between predictions and actual class labels, which 
is in the range of [-1, 1], with 1 denoting perfect predictions 
and -1 denoting that every example is incorrectly predicted. 
In a two-class classification, if the numbers of examples of 
the two classes are not equal, MCC is a better measure than 
accuracy [23].  
 
3 Results 

3.1 Identification of DNA-binding residues by 
the Random Forest method 

 A Random Forest (RF) classifier was trained to predict 
whether a surface residue is DNA-bind ing residue based on 
the feature vector associated with its surrounding sphere. 10-
fold cross-validation was used to evaluate the performance of 
the classifier. Table 1 (co lumn 2) shows that the classifier 
achieved an overall accuracy of 67.3% with a MCC of 0.2, 
and 57.9% of DNA-binding residues and 69% of non-DNA-
binding residues are correctly identified. 

3.2 Post-processing of prediction results  

 A visualizat ion of the DNA-binding sites revealed that 
DNA-binding residues clustered on protein surface to form a 
contiguous patch. Thus, the predicted DNA-binding residues 
were also expected to form a patch on the surface. However, 
when we analyzed  the prediction results by RF, we found that 
that some predicted DNA-binding residues were isolated on 
protein surface, and in some cases, the predicted DNA-
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binding sites form multiple small patches on the surface. 
Thus, we designed a post-processing procedure to remove 
isolated predictions and merge small patches into a large one. 
For a surface residue that was predicted to be DNA-binding 
residue, if less than 2 of its neighboring surface residues were 
predicted to be DNA-binding, then we changed its prediction 
to non-DNA-binding. For a surface residue that was predicted 
to be non-DNA-binding, if more than 60% of its neighboring 
residues were pred icted to be DNA bind ing, then we changed 
its prediction to DNA binding. After the post-processing 
(Table 1, column 3), the predict ion performance was 
improved to an  overall accuracy  of 73.5% with a MCC of 
0.26, and  57.2% of DNA-binding  residues and 76.0% of non-
DNA-binding residues are correct ly identified. Compared this 
with the results without post-processing, we can see that the 
post-processing improve accuracy, MCC, and precision at 
only litt le cost of sensitivity. 

3.3 Relaxation of prediction results after post-
processing 

 In this study, the DNA-binding residues were defined 
based on their d istance to the binding DNA using a cutoff 
chosen in a previous study [19]. However, different cutoff 
values had been used in many other studies. In our study, the 
majority of the false positive predictions were very close to 
the observed DNA-binding residues (either being the d irect 
neighbor of a DNA-binding residue or separated from the 
DNA-binding sites by only one residue). Some of these false 
positive predictions could have been counted as true positives 
if a different cutoff value was used. To account for the 
uncertainty in the cutoff value, we re-evaluated the 
performance by relaxing the criterion of true positive as in 
[9]. With the relaxed criterion when a surface residue was 
predicted to be a DNA-binding residue, the prediction is 
considered a true positive prediction if (1) the surface residue 
was indeed a DNA -binding residue, or (2) it was a direct 
neighbor (on the protein surface) of a DNA-binding residue. 
After the relaxat ion (Table 1, column 4), the prediction had 
an accuracy of 80.8%, with 0.50 MCC, 71.5% sensitivity and 
80.8% precision. 

Table 1. Predict ion performances of the proposed method 

 Random 
Forest1 

Post-
processing2 

Relaxation3 

Sensitivity (%) 57.9 57.2 71.5 

Specificity (%) 69.0 76.0 83.5 

ACC (%) 67.3 73.5 80.8 

MCC 0.20 0.26 0.50 

1Predictions by the Random Forest method. 2Predictions from 
the Random Forest method were processed using the post-

processing procedure. 3A relaxed criterion of true positive 
was used to evaluate the performance. 

4 Conclusions 
 In this study, we used vectors consisting of the 
distribution of atom groups to describe the characteristics of 
protein surface and used them to train  a RF method to predict 
DNA-binding residues. A post-processing procedure was 
used to refine the pred ictions based on the distribution of 
DNA-binding residues over the protein surface. After the 
post-processing, the predicted DNA-binding sites form a 
contiguous path on the protein surface. The accuracy of the 
method reached 80.8% based on a relaxed criterion. The 
results confirmed that the distribution of atom groups on the 
protein surface provided useful structural informat ion for 
predicting DNA-binding sites. 
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Abstract—The characterization of chemical compounds based
on their molecular graphs is an important task for identifying
properties such as toxicity or mutagenicity. We used different
groups of topological descriptors using the AMES mutagenicity
data. Instead of optimizing the classification performance, the
aim of this study is to perform a structural analysis of the
underlying set of molecular graphs to gain better insights of the
data set.
The structural analysis identifies two groups of molecular
networks. One group contains graphs with linear patterns
(outliers), and the other group contains graphs that exhibit
patterns of regular graphs (remainders). We show that the set
of used topological descriptors chosen for this study cannot
capture enough group-specific structural information within
the remainders group to achieve the discrimination ability of
the outliers group. Finally, this leads us to the conclusion that
it is necessary to identify existing or develop new descriptors
that capturing specific structural information to achieve better
discrimination ability.

Keywords: Topological network descriptors, network biology,
drug design, machine learning

I. BACKGROUND

The classification of drug-like compounds by using struc-
tural information of their underlying molecular graphs is an
important task to identify chemical properties (e.g. toxic-
ity or mutagenicity) [Feng et al., 2003], [Votano et al., 2004].
In general, graph classification is a challenging prob-
lem and has been tackled by using different meth-
ods [Cook and Holder, 2007], [Dehmer and Mehler, 2007],
[Deshpande et al., 2003]. Note that classical work relates to
applying methods from exact and inexact graph matching
[Cook and Holder, 2007], [Dehmer and Mehler, 2007]. In a
more biologically motivated work performed by Li et al.,
graph kernels to predict gene functions have been utilized
[Li et al., 2007]. Chuang et al. used subnetworks to train
a classifier for the detection of breast cancer metastasis
[Chuang et al., 2007].
For our investigation we use the Ames mutagenicity
data set, that is a benchmark set to classify graphs
[Hansen et al., 2009]. It consists of 6512 graphs, that rep-
resent compounds that are categorized as Ames posi-

tive (AMES+) or negative (AMES−) by the Ames test
[Ames et al., 1973]. Hansen et al. [Hansen et al., 2009] used
the commercial software tool Dragon [Todeschini et al., 2003]
to calculate a large set of molecular network descriptors to
classify the Ames mutagenicity data set.
Dehmer et al. [Dehmer et al., 2010] used entropy-based
descriptors [Dehmer and Mowshowitz, 2011] for weighted
chemical structures to classify the AMES data set. After re-
moving the isomorphic graphs, they showed that it is possible
to classify the remaining graphs with a reasonable classifica-
tion performance, by only using a set of seven descriptors.
For our analysis we modify this set of graphs, as we only
consider the structural skeletons of the molecules. We con-
struct a structural skeleton by using unlabeled nodes and
unweighted edges. The main contribution of this paper is
to identify discriminatory features of the AMES graphs
to classify the structures properly. For this, we calculate
the descriptors using the freely available R-package QuACN
[Mueller et al., 2010b] and selected groups of measures from
Dragon [Todeschini et al., 2003] on the resulting set of molec-
ular skeletons.
Note, the classification of Ames mutagenicity by only using
structural properties without labels is surely a critical under-
taking. The aim of this study is not to increase or optimize
the classification performance for this data set but rather to
investigate the structural information of molecular networks.

This paper is structured as follows: The Material and
Methods section describes the data set of molecular networks
that we analyze and gives a brief overview about the used
methods. The results section lists the results of the initial
classification that motivates the structural analysis. It also
contains the results of the structural analysis of the data. In
chapter IV we summarize and discuss the results. Section
V concludes the paper and provides an outlook on further
investigation steps.

II. MATERIAL AND METHODS

The modified AMES Mutagenicity Set for Molecular Networks

The initial data set of Ames mutagenicity
[Hansen et al., 2009] was designed to benchmark the
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classification performance of different kind of graph
classification strategies. It contains 6512 molecular
compounds that were categorized positive or negative
by the Ames test [Ames et al., 1973] for mutagenicity.
Hansen et al. [Hansen et al., 2009] used six different public
available data sets and studies to create this benchmark
data set. This data set contains n+ = 3503 AMES positive
(AMES+) and n− = 3009 AMES negative (AMES−)
molecular networks. We used the data set of Dehmer et al.
[Dehmer et al., 2010] were isomorphic graphs were removed
and modified this set, as we only took the structural skeletons
of the molecules. This means that each atom is represented
by an unlabeled vertex. Moreover, we represent each kind of
bond with an undirected edge. This results in a data set of
n = 3947 skeletons of molecular networks with n+ = 2179
AMES positive and n− = 1768 AMES negative graphs. This
set of molecular networks was used for further analysis.

Topological Network Descriptors

After modifying the AMES data set we calculate
different groups of topological descriptors. Topological
network descriptors are numerical graph invariants
that quantitatively characterize the structure of the
underlying network [Emmert-Streib and Dehmer, 2011]
We calculated the entropy-based descriptors available
in QuACN [Mueller et al., 2010b] and six groups of
descriptors offered by the commercial software tool Dragon
[Todeschini et al., 2003]. Table I gives an overview about the
calculated descriptors.

Each descriptor in Table I results in a single value that
characterizes the structure of the underlying molecular net-
work in a certain way. The calculated descriptors can be
treated like features and then be used for machine learning
[Mueller et al., 2010a], [Mueller et al., 2011].

Also, we will not describe the descriptors in detail.
For a better understanding of the selected measures
see corresponding literature (e.g. [Bonchev, 1983],
[Dehmer et al., 2010], [Todeschini and Consonni, 2009],
[Mowshowitz, 1968]). Dehmer and Mowshowitz
[Dehmer et al., 2010] discuss entropy-based descriptors,
Todeschini et al. [Todeschini and Consonni, 2009] describes
the descriptors implemented in Dragon.

Supervised Machine Learning

To classify the molecular networks between AMES+

and AMES− we treat every topological descriptor
as feature. We use support vector machines (SVM)
[Vapnik and Lerner, 1963] with a radial basis function
kernel.

To compare the results of the support vector machines
we use Random Forest (RF) [Svetnik et al., 2003]. After
optimizing the parameters and the classification with the
mentioned algorithms we calculate the area under the ROC-
curve (AOC), the accuracy and the f-score of the results. For
each classification we perform a 10-fold cross validation.

To select the best set of topological network descrip-
tors we use the feature selection algorithm information gain
[Quinlan, 1993]. The best features of each group were com-
bined to a so called superindex that is defined as follows
[Bonchev et al., 1981], [Dehmer et al., 2010].

Definition 1. Let I1, . . . , Ij be topological network de-
scriptors. The superindex of these measures is defined as
SI := {I1, . . . , Ij}.

III. RESULTS

Supervised Machine Learning

The performance of the classification with support vector
machines is shown in Table II. The corresponding ROC curves
are shown in Fig. 1. It can be seen that the different groups
lead to divergent results. The group of vertex degree-based
topological descriptors (Dragon 3) achieves the best accuracy
with 73.04%. Four groups (Dragon 1, 2, 3, and 5) achieve
similar AUCs with about 72%. The groups Dragon 1 and
Dragon 3 achieve the best f-scores of about 67%, for details
see Table II. It can be summarized that the best classification
performances (accuracy, AOC and f-score) is achieved by
using the group Dragon 3, containing vertex degree-based
topological descriptors.

Fig. 1. This figure shows the ROC curves for each descriptor group for the
classification using support vector machines.

To evaluate the performance of the support vector machine
we use RF to classify the same groups again. Fig. 2 shows the
ROC curves for the different groups of descriptors. The results
in Table III show that the best performance is achieved by the
groups Dragon 1, 2 and 3. The group called Dragon 1 has
the highest AUC of 74.89%, Dragon 2 the highest accuracy of
71.55% and Dragon 3 achieved the highest f-score of 67.34%.

This result shows that the different groups of topological
network descriptors perform similar using SVM and RF.
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TABLE I
OVERVIEW OF THE USED INFORMATION-THEORETIC TOPOLOGICAL DESCRIPTORS.

Group name Group Subgroup No. Descriptors
QuACN 1 Entropy based Partition based and parametric graph entropy 9
QuACN 2 Polynomial based – 50
Dragon 1 Walk and path counts – 46
Dragon 2 Connectivity indices – 37
Dragon 3 Topological indices Vertex degree-based 26
Dragon 4 Topological indices Distance-based indices 13
Dragon 5 Information indices Basic descriptors 17
Dragon 6 Information indices Indices of neighborhood symmetry 30

TABLE II
CLASSIFICATION PERFORMANCE FOR EACH GROUP USING SVM

Precision Recall Specificity Sensitivity Accuracy AUC F-Score
QuACN 1 0.4785 0.6395 0.6486 0.6395 0.6456 0.6625 0.5474
QuACN 2 0.5803 0.6854 0.6971 0.6854 0.6927 0.7120 0.6285
Dragon 1 0.6476 0.7152 0.7344 0.7152 0.7266 0.7216 0.6797
Dragon 2 0.6041 0.7427 0.7210 0.7427 0.7289 0.7220 0.6663
Dragon 3 0.6357 0.7280 0.7320 0.7280 0.7304 0.7223 0.6787
Dragon 4 0.4649 0.6089 0.6357 0.6089 0.6266 0.6265 0.5273
Dragon 5 0.5288 0.7203 0.6855 0.7203 0.6970 0.7243 0.6099
Dragon 6 0.5696 0.6638 0.6868 0.6638 0.6780 0.7088 0.6131

TABLE III
CLASSIFICATION PERFORMANCE FOR EACH GROUP USING RANDOM FOREST

Precision Recall Specificity Sensitivity Accuracy AUC F-Score
QuACN 1 0.5215 0.5895 0.6450 0.5895 0.6230 0.6281 0.5534
QuACN 2 0.5724 0.6216 0.6740 0.6216 0.6524 0.7102 0.5960
Dragon 1 0.6663 0.6747 0.7319 0.6747 0.7066 0.7489 0.6705
Dragon 2 0.6369 0.7007 0.7256 0.7007 0.7155 0.7406 0.6673
Dragon 3 0.6578 0.6898 0.7324 0.6898 0.7142 0.7363 0.6734
Dragon 4 0.6222 0.6599 0.7070 0.6599 0.6871 0.6022 0.6405
Dragon 5 0.6227 0.6613 0.7077 0.6613 0.6881 0.7223 0.6414
Dragon 6 0.5339 0.5885 0.6483 0.5885 0.6240 0.7166 0.5599

Moreover, the classification with RF achieves a slightly higher
performance. However, it can be seen that the groups Dragon
1-3 are qualified best to discriminate between AMES+ and
AMES− for this set of molecular networks.

To study the classification performance we perform a feature
selection with information gain for each group and selected the
best three descriptors of each group to create a superindex.
Classifying by applying the superindex leads to the results
shown in Table IV. The ROC curves are shown in Fig. 3.

The performance of SVM and RF are similar but RF
performs better with an accuracy of 74.21% and AUC of 76.62
and an f-score of 70.80%.

To evaluate the stability of the results we randomly se-
lect 1000 molecular networks and classify them using the
superindex and RF. We repeat this procedure 1000 times.
This results in a mean f-score of 64% with a standard
deviation of 2%. This small standard deviation indicates that
the classification performance is stable.

In order to analyze the classification performance we inves-
tigate the structural information of the set of the molecular
networks. Therefore, we calculate a set of distance-based de-
scriptors [Skorobogatov and Dobrynin, 1988] to explore basic
structural properties.

Exemplarily, we use the average path length to outline a
prototype of the structural analysis. Fig. 4 shows the average

path length (APL) for all molecular networks. One function
represents the graphs that are grouped as AMES+ the other
one shows the graphs that are AMES−. The vertical lines
represent the mean and the standard deviation (dashed) for
each group. Fig. 4 shows, in a descriptive way, that the
distribution of the average path length of the two groups
(AMES+ and AMES−) is largely overlapping. This can also
be observed for the other distance-based descriptors.

We hypothesize that the outliers are more discriminative
than the remaining graphs. We define outliers as at least one
standard deviation away from the mean of each group (see
Fig. 4. Using this criteria we split the molecular networks into
two groups (outliers and remainders) with noutliers = 1102
and nrest = 2623 graphs. We then classifying this two
group separately, using the superindex and random forest.
This results in an f-score for the outliers of 72.73%. The
performance of the classification for the remainders obtained
an f-score of 66.63%.

To identify structural information of the different groups
we look at single graphs in the two groups (AMES+ and
AMES−). Fig. 5 exemplary shows two graphs of each group.
Fig. 5(a) and 5(b) show two outliers, and Fig. 5(c) and 5(d)
represent two networks of the remainders. It can be seen that
the outliers possess linear patterns, in contrast the remainders
show regular patters. A regular graph is a graph where each
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TABLE IV
CLASSIFICATION PERFORMANCE OF THE SUPERINDEX

Precision Recall Specificity Sensitivity Accuracy AUC F-Score
Support vector machine 0.6561 0.7374 0.7439 0.7374 0.7413 0.7367 0.6944

Random forest 0.6980 0.7183 0.7604 0.7183 0.7421 0.7662 0.7080

Fig. 2. This figure shows the ROC curves for each descriptor group for the
classification using RF.

vertex has the same degree. These characteristics can also be
observed for other graphs of the corresponding groups.

Repeating this kind of outlier analysis with different
distance-based descriptors (i.e. eccentricity or average dis-
tance) leads to similar results. In summary we see that the
outliers possess linear patterns. This is in contrast to graphs
that are close to the mean of the corresponding descriptor,
which exhibit rather regulatority.

IV. SUMMARY AND DISCUSSION

The AMES mutagenicity set of molecular networks is a
benchmark set to evaluate the performance of graph classi-
fication algorithms. By only using the underlying skeletons,
the classification of this AMES mutagenicity is a difficult and
complex endeavor. It becomes even harder, when removing
isomorphic graphs, the information of node labels and edge
properties. To classify the remaining network skeletons we
used different groups of topological network descriptors and
constructed a so called superindex by selecting the best
features of each group with the feature selection method in-
formation gain. We used support vector machines and random
forest to perform the classification.

The group of vertex degree-based indices achieved the best
results, what indicates that the degree has a hight discrimina-
tion ability within this set of molecular networks. Different
groups of topological network descriptors capture different

Fig. 3. This figure shows the ROC curves for the classification with SVM
and RF using the superindex.

structural information, what led to a higher discrimination
ability by combining them to a superindex.

Hansen et al. [Hansen et al., 2009] achieved an AUC of
86%. One can see that our classification performance is less
than 10% lower. Considering the fact, that Hansen et al. also
used groups of descriptors that take information about the
atoms (e.g.: atom type, atom weights) and different bind-
ing types into account, and we reduced the information in
the molecular network by reducing them to their structural
skeletons, we achieve fairly acceptable results. Moreover, the
removal of the isomorphic graphs can be a reason for the
lower discrimination ability. Imagine that if a graph is correctly
classified, all isomorphic graphs would also be correctly
classified, what would increase the overall performance of the
classification. By using molecular skeletons it can happen that
two molecules are reduced to the same skeleton and then can
be found in the AMES+ and in the AMES− group. That
can also be a possible reason for a lower classification power.

Comparing our results with Dehmer et al.
[Dehmer et al., 2010], they achieved 71.4% including label
information, shows that our best classification performance by
using the superindex and random forest, is only about 0.6%
lower. Compared to their results when using unlabeled graphs,
the difference is even smaller. Note, that the fact that the
results are fairly the same, strengthens our hypothesis that the
classification performance cannot be increased dramatically,
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(a) (b)

(c) (d)

Fig. 5. This figure shows exemplary two graphs of the two groups, split by the value of the average path length. One group ((a) and (b)) represent outliers
that are at least one standard deviation away from the mean (see Fig. 4. (c) and (d) represent the groups of the remaining molecular networks.

by only using the this set of molecular descriptors.

In order to increase the classification performance in further
studies we analyzed the set of molecular networks structurally.
Therefore, we applied a set of distance-based descriptors to
them, and analyzed the structure of the outliers. An interesting
finding is that the outliers show linear patterns, compared to
the remaining graphs that show properties of regular graphs.
Moreover, as these regular graphs show more equal vertex
degrees than the linear ones, this assumption matches with
observation that the group of vertex degree-based descriptors
has the highest classification performance of all selected
groups of topological network descriptors. An other interesting
finding is that the remaining regular graphs contain ring-like
structures.

V. CONCLUSION AND OUTLOOK

This study deals with the structural analysis of the AMES
mutagenicity data set. It turned out that vertex degree-based
descriptors led to a good classification performance. Combin-
ing different groups of descriptors to a superindex is promising
as it increased the classification performance.

The major challenge of this study was to explore the se-
lected topological network descriptors. They failed to capture
enough structural information that would have been needed
for achieving a better discrimination ability. The structural
analysis showed that there is a set of graphs possessing linear
patterns and a set of graphs showing regular characteristics.
For future work it is necessary either to identify existing
descriptors or develop new descriptors that can better discrim-
inate between these graphs. Therefore, a thorough analysis of
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Fig. 4. This figure shows the average path length for each group: AMES+

(green) and AMES− (blue). The vertical lines represent the mean and the
standard deviation (dashed) for each group.

the data set is needed.
Moreover, defining superindices to combine different de-

scriptors, which capture different kinds of structural properties
can be a promising strategy. The combination of different
superindices could lead to an approach that can capture group-
specific combinations of different structural information to
distinguish between AMES positive and AMES negative tested
chemical compounds.
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Abstract
When using the Gene Ontology (GO), nucleotide and

amino acid sequences are annotated by terms in a structured
and controlled vocabulary organized into a relational graph.
The usage of the vocabulary (GO terms) in the annotation
of these sequences may diverge from the relations defined
in the ontology. We measure the consistency of the use
of GO terms by comparing GO’s defined structure to the
terms’ application. To do this, we first use synthetic data with
different characteristics to understand how these character-
istics influence the correlation values determined by various
similarity measures. Using these results as a baseline, we
found that the correlation between GO’s definition and its
application to real data is relatively low, suggesting that GO
annotations might not be applied in a manner consistent with
its definition. In contrast, we found a sub-ontology of GO
that correlates well with its usage in UniProtKB.

1. Introduction
The Gene Ontology (GO) [1] is a controlled vocabulary

describing the domain of gene products, i.e., enzymes and
other proteins encoded in DNA. GO is made up of three
independent, orthogonal ontologies: (1) the Cellular Com-
ponent ontology, which describes where a gene product is
located at a subcellular level; (2) the Molecular Function
ontology, which describes the function a gene product can
perform; and (3) the Biological Process ontology, which
describes series of events and molecular functions. Each
ontology is structured as a directed acyclic graph (DAG).
Each node of each DAG is a term with a distinct name and
description. The edges of a DAG represent the relations be-
tween the connected nodes. The relations are endowed with
descriptive logic so that inferences can be made between
parent and child nodes. A gene product can be annotated by
assigning GO terms to the description of the gene product.
This assignment is also referred to as an association between
a term and a gene product.

GO has become widely accepted in the genomics com-
munity as a concise means of annotating gene products for
machine translation [2]. However, due to the wide scope of
the genomics community, ambiguities in term usage exist.

The GO project is a collaborative effort between groups
sharing their vocabularies. Group members participate on
a self-interested, best-effort basis to reach consensus on
the addition, deletion or editing of terms within the three
ontologies. However, individual curators from different com-
munities may interpret the definitions differently, resulting in
inconsistent usage, and thus it is necessary to continually
refine terms. With the large increase of gene products
that are annotated with GO, methods to evaluate semantic
similarity based on annotations are critical in evaluating the
consistency of usage. This motivates our study, which is
to apply measures of semantic similarity to estimate the
consistency between how GO is defined and how it is used
in practice.

The notion of semantic similarity is frequently used in
information retrieval, where terms are indexed by similar
meaning rather than similar words. This concept was used in
early research with natural language processing techniques:
associating descriptive language with terms and quantifying
this similarity. The ontology terms in GO may be examined
by clustering terms together with similar semantics [3] using
these techniques.

Earlier work done [4], [5] to determine semantic similarity
of terms using the annotation they have been associated
with were designed for specific applications: malapropism
correction (the correction of outliers in the annotation),
assessing functional similarity of gene products [6], pre-
dicting protein interaction [7], assessing the influence of
electronic annotations [8] and assisting in the annotation of
new sequences [4]. In contrast, we use some of the same
measures they do, but for the purposes of measuring the
consistency of the use of GO.

All three ontologies within GO contain many biologi-
cally/biochemically descriptive terms that have not been used
(not applied to any annotation). A large number of terms are
used only once or not at all. This creates a usage pattern
where a large percent of GO terms fall in the tail of the
distribution, (called the long tail phenomenon). Because of
this phenomenon, certain types of similarity measures may
be preferable to others in evaluating ontology usage. Thus,
one of our results is a test using synthetic data with different
characteristics to understand how various similarity measures
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measure correlation, and how these measures are influenced
by various properties of the data. We then describe how
the synthetic data parameters imply properties of real data.
Our results show that one measure (called “Cosine”) is only
useful in recognizing correlations when the gene product
usage comes with a long tail and each term is annotated by
many moderately concentrated terms in the ontology. An-
other measure (“Jiang’s”) is not well suited for unbalanced
usage of terms in the ontology. The remaining measures
(“Resnik’s,” “Lin’s,” and “Rel”) are almost independent of
the data characteristics that we varied, especially Resnik’s.

Using our results on synthetic data as a baseline, we then
sampled partial ontologies from GO and measured corre-
lations between their definitions and their usage. Relative
to correlation results found in synthetic data with similar
configurations to the real data, we found that the average
correlation is low. This might suggest that GO annotations
are not applied in a manner consistent with their definition.
In contrast, we found that the sub-ontology rooted at the term
“GO:0005275: amine transmembrane transporter activity”
correlates well with its usage in UniProtKB.

2. Method
2.1 Problem Formalization

An ontology G = (V,E) is a directed acyclic graph
(DAG), where each vertex corresponds to a term ci. There
is an edge from ci to cj if and only if cj is explicitly a
ci. Since this “is_a” relation is transitive, cj is_a ci if and
only if there is a path from ci to cj . We consider cj to be a
descendant of ci if a path from ci to cj exists.

According to the gene product annotation guidelines [9],
a gene product can be annotated by zero or more nodes of
each ontology. Let Ci be the set of terms used to annotate
gene product ei. Similarly, we can define Ej as the set of
gene products annotated by term cj . By definition, cj ∈
Ci ⇔ ei ∈ Ej . In addition, annotating a gene product with
a term implies that the gene product is also annotated by
all ancestors of the term. Thus, ci is a descendant of cj
implies Ei ⊆ Ej . The ancestor term inherits all annotations
from its descendant, so the root term has all annotations:
Eroot =

⋃
i

Ei.

2.2 Similarity Measures
There are many different functions for calculating seman-

tic similarity between terms. We consider the following five
measures.

Resnik [10] proposed that the amount of information
provided by the common ancestors of the two terms may
be used as a measure:

SimResnik(ci, ci) = max
ck∈S(ci,cj)

− logP (ck) , (1)

where S(ci, ci) is the set of ancestors shared by both ci and
cj and P (ck) is the probability that a randomly selected gene
product is annotated by term ck: P (ck) = |Ek|/|Eroot|.

Lin [11] extended Resnik’s measure by modifying the
information content of a term to take both descendants into
consideration:

SimLin(ci, ci) = max
ck∈S(ci,cj)

(
2 logP (ck)

logP (ci) + logP (cj)

)
.

(2)
Generic terms do not have a high relevance for the com-

parison of different gene products. Andreas’s [5] relevance
measure combined both Lin’s and Resnik’s measure by
weighting Lin’s similarity measure with 1 − P (ck). For a
detailed term ck, P (ck) becomes relatively very small and
makes 1− P (ck) close to 1 and negligible:

SimRel(ci, ci) = max
ck∈S(ci,cj)

(
2(1− P (ck)) logP (ck)

logP (ci) + logP (cj)

)
.

(3)
Jiang [12] proposed a similarity measure as the reciprocal

of semantic distance:

SimJiang(ci, ci) =

max
ck∈S(ci,cj)

(
1

− logP (ci)− logP (cj) + 2 logP (ck)

)
.

(4)

The Cosine similarity [13] is a measure frequently used in
data mining. It is defined as the cosine of the angle between
two vectors in a hyperspace. We model each term ci as
a vector vi = (vi1, vi2, . . . , vin), in which vij = 1 if ci
annotates ej , and 0 otherwise. The measure is then defined
as

Simcos(ci, ck) =
〈vi, vk〉
‖vi‖‖vk‖

, (5)

where 〈vi, vk〉 is the dot product of vectors vi and vk and
‖vi‖ is the length of vi.

2.3 Evaluation
In order to measure how well an ontology’s usage corre-

lates with its definition, we measure the correlation between
how the gene products are annotated with terms (via the
similarity measures in Section 2.2) and the terms as they
are defined in the ontology. Formally, for each pair of terms
(ci, cj), we measure their distance in the ontology DAG. We
then sort all term pairs in descending order (greatest distance
first) and put them into a sorted list LDAG. We then measure
the similarity between each pair of terms via the similarity
measures in Section 2.2, sort the term pairs in ascending
order (loweset similarity first) and put them into a sorted
list Lmeasure, where the measure is Resnik’s, Lin’s, Jiang’s,
Rel or Cosine. Finally, we measure the correlation between
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the two sorted lists LDAG and Lmeasure using Kendall’s τ
coefficient [14].

The basic τ method requires all values in the ranked lists
to be unique, which cannot be guaranteed in our problem
setting. Therefore, we make a common modification [15]
to the basic method as follows. Let L1 and L2 be the two
(equal-length) lists that we are comparing. Let `i1 ∈ L1 be
the ith element in L1, and `i2 ∈ L2 be the ith element in
L2. Similarly define `j1 and `j2 for j 6= i. Now consider each
pair of pairs ((`i1, `

i
2), (`j1, `

j
2)) for i 6= j. We say that this

pair is concordant if `i1 > `j1 and `i2 > `j2 or `i1 < `j1 and
`i2 < `j2. The pair is discordant if `i1 > `j1 and `i2 < `j2 or
`i1 < `j1 and `i2 > `j2. (Note that all inequalities are strict.)
Now let nc be the number of concordant pairs, and nd be
the number of discordant pairs. Finally, let n1 be the number
of ties among elements of L1 and n2 be the number of ties
among elements of L2. Then the τ coeficient is defined as:

τ(L1, L2) =
nc − nd√

(nc + nd + n1)(nc + nd + n2)
. (6)

The τ coefficient ranges from −1 (perfect negative correla-
tion) to +1 (perfect positive correlation).

3. Generating Synthetic Data
Before we apply our correlation technique to real on-

tological data, we must first determine what τ values we
should expect if an ontology’s application to annotating
gene products in fact does reflect its definition, under each
similarity measure of Section 2.2. Thus we generated pairs
(ei, Ci), where ei is a synthetic gene product and Ci is its
simulated annotation set, i.e. each term cj ∈ Ci annotates
gene product ei. The synthetic data has various properties,
which we use to characterize the similarity measures.

Let G = (V,E) be the ontology DAG and m = |V |. For
simplicity, we assume G to be a complete tree of depth d
and branching factor k. The synthetic annotation data was
generated using the following randomized process on G. For
each of the n distinct gene products, we select one term as
the first term according to a predetermined initial distribution
ω0. The annotation data set is then generated using three
parameters n, r, and γ as follows.

1) Choose a initial distribution ω0 =
{P0(c1), P0(c2), P0(c3), ..., P0(cm)} over terms
C = {c1, c2, c3, ..., cm}. We will examine the
distribution ω0 in Section 4.

2) Randomly choose a starting term si ∈ C according to
ω0 for each of the n synthesized gene products ei.

3) Let D be the all-pairs shortest path matrix on the
ontology DAG G, where Dij is the number of steps
needed to reach cj from ci. For each si, generate a
distribution Qi over C, where the probability for each
term decreases exponentially with its distance to si,
i.e. Qi(cj) = γDij .

4) Choose r terms from C according to Qi, and add them
to Ci. For each cj chosen, add all of its ancestors to
Ci.

4. Result and Discussion
4.1 Synthetic Data: Parameter Sensitivity
Analysis

To observe how the parameters of Section 3 influence
correlation, we start by choosing ω0 to be the uniform
distribution. Thus each starting term was chosen uniformly
from the ontology DAG. Twenty sets of annotations were
generated for each configuration of (n, r, γ) on a complete
binary tree of depth 7. We evaluated the mean values of
the correlation between LDAG defined in Section 2.3 and
the sorted list for each measure, which are τ(LDAG, LLin),
τ(LDAG, LResnik), τ(LDAG, LRel), τ(LDAG, LJiang) and
τ(LDAG, LCos) on various configurations of parameter val-
ues.

Figure 1 shows the the average τ for a variable number n
of gene products using r = 15 and γ = 0.6. In Figure 1, the
average correlation for Cosine increases with increasing n
(the number of annotations), while the four other measures
are not affected by n. Also, we notice that when n > 170,
further increase of n will not increase τ for any measure
very much.

Fig. 1: Average τ of each similarity measure with respect to
n the number of distinct gene product when fixing r and γ
(n ∈ [40, 200], r = 15, γ = 0.6).

Figure 2 shows the results for variable γ when n = 200
and r = 8. For γ < 0.65, the correlation for Jiang’s measure
decreases with growing γ. In contrast, τ for Cosine increases
with growing γ. Also, the change of γ does not influence
the correlation for other three measures. When γ > 0.65,
τ for every measure begins to decrease with increasing γ,
especially for Cosine, which decreases dramatically.

In Figure 3, we chose a moderate γ = 0.6 and sufficiently
large n = 200 to examine the trend in the values of r. Similar
to the results in Figure 1, correlations for Resnik’s, Lin’s, and
Rel change little with increasing r, Jiang’s decreases slightly,
and the correlation for Cosine increases significantly.

From the three figures, we can see that γ affects τ of
all similarity measures, though less so for Lin’s, Rel, and
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Fig. 2: Average τ of each similarity measure with respect to
γ when fixing n and r (n = 200, r = 8, γ ∈ [0.2, 0.9]).

Fig. 3: Average τ of each similarity measure with respect
to r the number of terms associated with each gene product
when fixing n and γ (n = 200, r ∈ [2, 20], γ = 0.6).

Resnik’s. A gene product can be associated with a number
of distinct terms, and γ defines how sparse the annotation
of a gene product is distributed in the ontology. A small γ
indicates that the gene product has been annotated by several
terms close each other. Results show that Cosine correlates
more when γ ≈ 0.65 while the correlation for the other four
increases when γ is low.

The parameter r defines the number of terms assigned to
a gene product. Higher r indicates that an individual gene
product receives more annotations. This parameter affects
Cosine significantly: its correlation goes high with increasing
r. In contrast, Resnik’s, Lin’s and Rel show a very slight
decrease when r increases, though they are still quite stable.

In contrast to γ and r, the number of gene products n
has limited influence on the correlation. Generally, higher τ
can be obtained for all measures when more annotations are
made. However, as long as there is a sufficient number of
annotation records (n > 170), further increase brings only a
slight increase to the correlation.

From these results we see that Cosine is only suited
for evenly annotated data with moderate γ ≈ 0.65 and
high r, which means each gene product is annotated by
many moderately concentrated terms in the ontology. Jiang’s
measure is best suited for data with low γ and r, which
means each gene product is annotated by very few closely
related terms in the ontology. Also, we found that Resnik’s,

Lin’s and Rel are almost independent of the three parameters.

4.2 Synthetic Data: Geometrically Distributed
Number of Annotations

We now modify the synthetic data generation model to
be more realistic. When an ontology is used in practice,
the terms commonly used often come from a relatively
small subset of the entire set of terms. As an example,
refer to Figure 4, which shows that in the database UniPro-
tKB/Swiss_Prot, 40% of the gene products are annotated
by at most two GO terms, and less than 10% of gene
products receive annotation from more than 5 terms. On
average, there are five terms used to annotate each gene
product. Thus, in our updated model, we let r (the number
of terms annotating a gene product) vary among the gene
products. Based on Figure 4, we assume the number of terms
follows a geometric distribution with parameter p, which
is the probability that a randomly selected gene product is
annotated by a single term. (So a smaller value of p results
in a longer tail.) Figure 4 suggests a value of p between 0.35
and 0.50.

Ten sets of annotations were generated on each configura-
tion of n = 100, γ = 0.3 and p, whose values ranged from
0.1 to 0.9, on a complete binary tree of depth 7. In Figure 5,
we show the average value of τ that resulted from running
our experiments for variable values of p. The figure suggests
that larger values of p tend to increase the correlation for all
measures, except for Cosine (which decreases) and Resnik’s
(which is the most stable of all). The correlation of Jiang’s
increases dramatically with p.

Fig. 4: Percentage of gene products annotated in GO versus
number of terms used to annotate them.

The second variation we made over the experiments of
Section 4.1 is in the distribution ω0. Our results in Sec-
tion 4.1 used a uniform distribution for initial distribution
ω0. We now examine the effect of nonuniformity of the ω0

on the τ correlation coefficient for each similarity measure
using skewed ω0, where nonuniformity is measured by the
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Fig. 5: Average value of τ based on variable number of
annotations r geometrically distributed with parameter p
(n = 100, γ = 0.3).

normalized entropy H0:

H0(ω0) =
H(ω0)

Hmax
=

−
m∑
i=1

P (ci) log2 P (ci)

log2m

.

Two hundred sets of annotations were generated from
the configuration n = 200, γ = 0.6 and r = 2. In each
set, we chose m values at random from [0, 1] according
to an exponential distribution with parameter λ ∈ [0.5, 10]
and then normalized them to get ω0. Figure 6 shows the
impact of ω0’s normalized entropy on τ . We can see that
increasing H0 (making ω0 more uniform) generally increases
the correlation of all five measures, though Resnik’s and
Lin’s are fairly stable. In particular, Cosine and Jiang’s
increase dramatically with increasing H0.

Fig. 6: Average value of τ versus the normalized entropy H0

of the starting distribution ω0 (n = 200, γ = 0.6, r = 5).

From these results we can see that Cosine and Jiang’s are
not well suited for skewed data (with a low-entropy ω0),
and Cosine is not well suited for data with a short tail (high
p value). Also, unlike Cosine and Jiang’s, the correlation
values of Resnik’s, Lin’s and Rel (especially Resnik’s) are
more stable across many parameter values.

4.3 Real Data: Partial Ontology
We empirically compared Rel, Cosine, Resnik’s, Lin’s,

and Jiang’s similarity measures using annotations from
UniProtKB [16] with a corresponding sub-ontology from

Table 1: Comparison of τ on “GO:0005275”
Measure UniProtKB/Prot UniProtKB

Cos 0.424 0.319
Resnik 0.596 0.576

Lin 0.621 0.602
Rel 0.618 0.630

Jiang 0.441 0.480

Terms 17 25
Genes 895 25105

Annotations 907 25593

GO. We used a subset of 25593 annotations along with
the subtree from GO, rooted at the term “GO:0005275:
amine transmembrane transporter activity.” This annotation
set consists of 25105 identified genes and contains 25
unique terms. UniProtKB is comprised of two sections,
UniProtKB/Swiss_Prot and UniProtKB/TrEMBL. UniPro-
tKB/Swiss_Prot contains curated annotations while UniPro-
tKB/TrEMBL contains entries with computationally ana-
lyzed annotations generated by automatic procedures. These
are not reviewed and curated by an author. Thus, UniPro-
tKB/Swiss_Prot may have data of higher quality than
UniProtKB/TrEMBL. Note that 98% of the records are
electronically annotated. We first computed correlations us-
ing only UniProtKB/Swiss_Prot, then using the entire set
(UniProtKB).

The electronic annotations in UniProtKB/TrEMBL have
many gene products that are each annotated by a sin-
gle term. Further, the annotation in UniProtKB/TrEMBL
contains only a subset of GO terms and is significantly
larger than UniProtKB/Swiss_Prot. Thus, in Table 1 we see
that Cosine’s correlation decreased dramatically while only
Rel and Jiang’s have slightly improved correlation when
switching from UniProtKB/Swiss_Prot to UniProtKB. Since
Resnik’s, Lin’s and Jiang’s are almost immune to changes in
parameter values (according to Section 4.2), we can use their
correlations from our tests on synthetic data as a baseline
for our experiments here. The τ ≈ 0.6 for these three
measures from Table 1 is very close to the baseline suggested
by Figures 1–3. This leads us to believe that this partial
ontology correlates well to its usage.

4.4 Real Data: Full Ontology
Our experiment on the full ontology was performed on a

copy of GO annotations dated April 2010, which consisted
of 32651844 annotations of 6729320 gene products using
terms from three ontologies (see Table 2). There are 43645
is_a relations defined over the 26664 terms. From the table
we see that the three ontologies differ in size. The Biological
Process ontology is much larger than the other two. Also,
the table shows that more than one third of the terms are
defined but have never been used. For Biological Process,
almost half are unused.

We studied each of GO’s three ontologies by computing
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Table 2: Number of terms and relations for each GO on-
tology. Numbers exclude obsolete terms. “Active” refers to
terms that have been used at least once. “Relations” refers
to is_a relations.

Ontology Terms RelationsTotal Active
Cellular Component 2626 1653 3992
Molecular Function 8659 5885 10132
Biological Process 18005 9497 29521

the Kendall τ rank correlation coefficient for every pair
of measures in Section 2.2 as well as the ontology DAG
distance D. In order to compute τ for m terms, we would
need to compute the sorted similarity measure list on all

(
m
2

)
term pairs. Thus the algorithm for computing the Kendall τ
rank correlation coefficient in our case has a complexity of
Θ(m4 log(m)) [17]. Given that the number of terms ranges
from 1653 to 9497 (Table 2), it is infeasible to evaluate
τ directly. Instead, we estimate τ by uniformly randomly
sampling term pairs from the list. In order to do so, each
time we sample 1000 term pairs from the list and compute τi,
and then repeat this sampling process 50 times. We estimate
τ as the mean of τ1, . . . , τ50. Since the standard deviation of
τ1, . . . , τ50 between each measure was < 0.01, we consider
the mean to be a good estimate.

Tables 3–5 present the τ values for each pair of similarity
measures for each of the three ontologies. The first column
of each table shows the correlations between DAG distance
and the five measures. Res, Lin, Rel and Jiang each correlate
with DAG at about the same values, while Cosine only
shows a weak correlation. Also, we noticed that the first
four are highly correlated with each other, especially Jiang
vs. Lin and Res vs. Rel, which correlate near 0.99. This is
unsurprising given the relationships among the definitions of
these measures.

Table 3: Estimated τ between similarity measures on Cellu-
lar Component.

DAG Cos Jiang Rel Lin
Res 0.44 0.25 0.85 0.99 0.83
Lin 0.40 0.45 0.98 0.83
Rel 0.44 0.25 0.84

Jiang 0.40 0.43
Cos 0.23

Table 4: Estimated τ between similarity measures on Molec-
ular Function.

DAG Cos Jiang Rel Lin
Res 0.40 0.20 0.90 0.99 0.89
Lin 0.37 0.33 0.99 0.89
Rel 0.40 0.20 0.90

Jiang 0.38 0.32
Cos 0.19

Table 5: Estimated τ between similarity measures on Bio-
logical Process.

DAG Cos Jiang Rel Lin
Res 0.37 0.25 0.96 0.99 0.96
Lin 0.37 0.29 0.99 0.95
Rel 0.37 0.25 0.96

Jiang 0.37 0.29
Cos 0.24

From Section 4.1, we understand how values for n, r, γ,
p, and H0(ω0) for an ontology and its annotations affect
correlation values for the similarity measures we use. The
values of n, r, and p are directly estimated from the data.
However, it is not obvious how to directly estimate γ and
H0(ω0) from the data. But if we look at H0(ω) (the nor-
malized entropy of the final distribution over the terms), we
find that it is generally low. From this we estimate that both
H0(ω0) (the normalized entropy of the initial distribution)
and γ are generally low in the real data. Specifically, we use
H0(ω) as an upper bound of H0(ω0). Table 6 shows values
of the relevant parameters in GO; γ is omitted and instead is
qualitatively estimated as “low”, since Table 6 gives H0(ω)
as relatively low, ranging from 0.44 to 0.58.

Table 6: Corresponding parameters for each ontology.
Ontology n r p H0(ω)

Molecular Function 5860336 2.85 0.35 0.58
Cellular Component 3217382 2.13 0.47 0.44
Biological Process 5127003 1.94 0.52 0.55

Since increasing n beyond a sufficient number (170 in
synthetic data) brings only minimal changes in correlation,
we expect n will have little effect on correlation values even
though it is four orders of magnitude higher than the values
used in our synthetic data. The τ ≈ 0.2 for Cosine in GO
lies in the interval [0.1, 0.4] that is suggested by Figures 3
and 5 for synthetic data of similar characteristics.

Table 6 gives low H0(ω) from 0.44 to 0.58, which
suggests that both γ and H0(ω0) are low. The τ ≈ 0.39
for Jiang’s is low compared to either 0.8 given by low γ in
Figure 2, 0.45 given by p ≈ 0.25 in Figure 5 or 0.6 given
by H0(ω0) around 0.4 in Figure 6.

In addition, the average τ ∈ [0.37, 0.44] for Resnik’s,
Lin’s and Rel are low compared with those from the syn-
thetic data and GO:0005275, where similar configurations
show that correlations around 0.6 are possible (and very
stable in the case of Resnik’s). All these results suggest
that GO’s use correlates less with its defintion compared
to GO:0005275, though more experimentation should be
performed to confirm this.

5. Conclusion
The Gene Ontology (GO) terms are widely used to

annotate gene products. However, it is unknown whether
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the terms defined in GO are used to label gene products in a
manner consistent with their definition. Since there are many
ways to measure semantic similarity, we first used various
synthetic data models to study several similarity measures
to characterize their sensitivity to various properties of the
data. We found that Cosine is only suitable for annotation
sets that have with long tails (low p values) and in which
each term is annotated by many moderately concentrated
terms in the ontology. Jiang’s measure is not well suited
for skewed data (with a low-entropy ω0) and in which each
gene product is annotated by very few closely related terms
in the ontology. Also, we found that Resnik’s, Lin’s and Rel
are almost independent of the these parameters, especially
Resnik’s.

Then we investigated a small sub-ontology and its annota-
tions of data from UniProtKB and found that Rel, Resnik’s
and Jiang’s measures indicate correlations between the DAG
and its application relative to what seems to be the best
possible based on tests on synthetic data. Thus we conclude
that this partial ontology’s definition relates well to its usage.

Finally, from our preliminary result on the full GO ontolo-
gies, we found that correlation results using the more stable
measures (especially Resnik’s) seem to indicate that the cor-
relation between GO’s use and its defintion is low, especially
when compared to the correlation between GO:0005275 and
UniProtKB. More experimentation should be performed to
confirm this.

In addition to a more detailed analysis, future work
includes examining other measures that evaluate semantic
similarity, and characterizing them based on synthetic data
parameters as we did with those of this paper. This might
reveal measures that are even less sensitive to the parameter
values and might in turn be even more useful for studying
real data.

Our synthetic data model was based on complete binary
trees that were not similar to the DAGs in GO. Thus it is
possible that the trends observed in our synthetic data results
might not reflect what we would see in a full ontology.
Therefore, in our ongoing work, we randomly selected 100
terms from GO, each with around 100 child terms, yielding
100 subDAGs, each of size approximately 100. We then
measured the sensitivity of each similarity measure’s τ value
to the five parameters by repeating the tests of Section 4.1
on each of the 100 subDAGs. Our preliminary results show
that Resnik’s measure remained almost invariant to changes
in parameter values when the subDAG remains unchanged.
However, Resnik’s τ value was sensitive to the topology
of the subDAG. In our continued research, we will fur-
ther investigate this, attempting to correlate the similarity
measures’ τ values to properties of the subDAGs, such as
branching factor, depth, diameter, and skewness.
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Abstract - Several molecular and genetic tools, browsers 

and servers are currently available online for biologists to 

access, analyze and process data. The BioExtract Server 

represents a powerful web-based data integration 

application, combining the most common biological 

databases with the most used algorithms by scientists from 

all the biological fields. This Server allows researchers to 

extract data, execute local and web-accessible analytic tools 

and create customized workflows. Each workflow can be 

used for different similar queries and offers an easy access 

to the results of all the executed tools at once. This paper 

describes a BioExtract workflow providing a simple 

phylogenic analysis, as one of the numerous applications 

that the BioExtract Server offers to biologist researchers.   

Keywords: BioExtract Server, workflow, phylogenetic 

analysis  

1 Introduction 

  The study of genome evolution involves a global 

comparative approach in which individual genetic events 

are considered and integrated in their evolutionary context, 

which in turn may be correlated to the population history, 

the environment and the different phonemes [1]. Many 

tools and techniques are currently used to study evolution 

and infer the evolutionary relationship between species and 

organisms. These techniques include morphology, anatomy, 

paleontology, physiology and molecular phylogeny [2]. 

Phylogeny based analysis provides an ideal framework for 

performing such investigations, by pinpointing when a 

genetic event occurred and by identifying the simultaneous 

occurrence of several events [1]. There are principally five 

stages in the molecular phylogenic analysis [2]. The first 

stage is the acquisition of the sequence which can be 

performed through many sources including Genbank or 

HomoloGene gene databases, Rfam for RNA, Pfam for 

proteins or ICTV for viruses. Once sequences are acquired, 

a multiple sequence alignment will be performed on 

homologous sequences. This stage is considered a critical 

step of phylogenetic analysis subject to many important 

considerations. The next stages will be the specification of a 

statistical model of nucleotide or amino acid evolution, the 

construction of the evolution tree, and finally the 

interpretation of the generated tree [2]. Among an important 

number of online tools and servers, the BioExtract Server 

(http://bioextract.org) is a powerful Web-based data 

integration application that can be used to help researchers 

accomplish all these phylogenetic analysis steps. The 

BioExtract Server was designed to help scientists 

consolidate, analyze, and serve data from heterogeneous 

bio-molecular databases [3]. It allows them to query 

multiple data sources, save query results as searchable data 

sets, execute local and Web-accessible analytic tools, and 

create computational customized workflows [3, 4].  

We describe here a simple BioExtract Server workflow that 

can be used for standard phylogenetic analysis starting from 

a protein sequence query. 

2 Methods 

 The BioExtract Server was used to create a workflow 

for comparing and aligning a number of nucleotide 

sequences to build a phylogenetic evolutionary tree (Figure 

1A). The workflow covers five steps using five different 

molecular online tools (Table 1). 

Table1. Tools used in the phylogenic workflow 

Tool Common Link Description Ref. 

Blastp http://blast.ncbi.nlm

.nih.gov/Blast.cgi 

Search protein database using 

a protein query 

[5] 

xmknr http://vmatch.de Reads multiple sequence 

records in FASTA format and 

removes duplicates 

[6] 

ClustalW http://clustal.org Computes a multiple sequence 

alignment for Protein or DNA 

sequences 

[7] 

make_mb_n

ex 

http://bioextract.org

/ 

Creates a MrBayes nexus file 

from a clustal alignment file 

 

MrBayes http://mrbayes.csit.f

su.edu/ 

Estimate phylogeny upon 

Bayesian inference which is 

based on the probability of a 

tree conditioned on the 

observations. 

[8] 

The query sequence can be selected from the common or 

specific databases available through the BioExtract Server 

or simply uploaded from a private source. When executing 

the workflow, similar sequences will be extracted by the 

“Blastp” tool. Duplicate sequences will be then removed 

using “xmknr” tool, a simple shell script utilizing the 

Vmatch tool. Users can further refine the Blastp results by 

selecting sequences according to the length or the E score 

through the “extract page” before running the next step. 

Once selected, sequences will be aligned using the 

“ClustalW” multiple sequences alignment program.  
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Figure 1. (A) BioExtract Server workflow created for the phylogenic analysis (B) The first three steps of the workflow 

showed on the general report 

In order to perform the phylogenic analysis for the 

remaining aligned sequences, we developed a new tool 

“make_mb_nex” and included it within the BioExtract 

Server tools page.  

This tool will create a nexus file from an alignment file.  

The user can configure the created nexus file by specifying 

the appropriate evolutionary model and the MCMC 

(Markov chain Monte Carlo) algorithm parameters. For this 

study, Following parameter settings were used: set nst=6 

rates=invgamma [according to the General Time Model 

GTM]; mcmc ngen=1000; samplefreq=10; sump burnin=25 

and sumt burnin=25. Finally, the generated nexus file is 

executed on the “MrBayes” program according to the 

maximum likelihood model [9] and the evolutionary tree is 

drawn. 

In order to test the feasibility and usefulness of this 

workflow, the human Frataxin protein sequence (variant 1: 

NP_000135) was used as the initial query. 

3 Results 

 Human Frataxin protein is a mitochondrial protein 

encoded by the FXN gene and seems to be implicated in the 

iron-sulfur clusters. Reduced or modified frataxin causes 

Freidreich’s ataxia, an autosomal recessive 

neurodegenerative disorder. Alternative splicing results in 

multiple transcripts variants [10]. The variant 1 

[NP_000135] was used as an input query to run the 

BioExtract Server phylogenetic analysis workflow. 

The execution of the workflow led to the extraction of 100 

sequences homologous to the frataxin protein. After 

duplicates were excluded, multiple sequence alignments are 

performed for all the sequences. Once poorly aligned 

sequences are removed, the corresponding phylogenetic 

tree is estimated using a Bayesian method based on a 

general time reversible (GTR) model.  

All the results are summarized in a general report (Figure 

1B). Each output can be visualized or uploaded by clicking 

on “View File” corresponding to each tool. As an example 

of the workflow output, the resulting phylogenic tree and 

the credibility values are shown on Figure 2.  

This workflow is shared on the “MyExperiment” portal and 

is accessible through the following link 

http://www.myexperiment.org/workflows/1941.html. 

4 Discussion 

The BioExtract Server is a Web-based system designed to 

aid researchers in the analysis of distributed genomic data 

by providing a platform to facilitate the creation of 

bioinformatic workflows [4]. The basic operations of the 

BioExtract server allow researchers via their Web browsers 

to: specify data sources; flexibly query data sources with a 

range of relational operators; apply analytic tools; download 

result sets; and store query results for later reuse. As the 

researcher works with the system, their "steps" are saved in 

the background. At any time these steps can be saved as a 

workflow simply by providing a name and description. 

Once saved, these workflows can be executed and/or 

modified [3]. The execution of any created workflow 

generates the running of all the tools at once, and provides 

access to all the results via the general workflow report. 

Consequently, the results are obtained in an extremely 

reduced time compared to conventional methods. In 

addition, the results are recorded in the workflow and can 

be easily retrieved from the server when needed. 

The workflow presented in this paper provides a simple 

phylogenic analysis starting from a protein query. Users can 
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Figure 2.  Clade credibility values and Phylogram 

modify the query by simply changing the accession number 

on the workflow’s query step. Similar workflows can be 

created to analyse DNA or RNA sequences by modifying 

the query database on the first step and replacing Blastp 

with Blastn in the second step of the workflow. The two 

first steps of the workflow can also be eliminated if the user 

needs to directly upload his or her own aligned sequences. 

Several other enhancements can be added to the phylogeny 

analysis workflow by adding additional phylogenic tools 

and packages available through the BioExtract Server such 

as “PAUP”, “dnadist”, “propars” and “MrModelist”.  

This workflow represents one of numerous applications that 

the BioExtract Server offers to biologist researchers. 

Containing a large cluster of tools and giving access to 

numerous databases, the BioExtract Server can be used for 

genomic and protein annotation, sequence mutation 

analysis, gene or protein function prediction and many other 

complex molecular and genetic analyses. Some of these 

applications are actually shared on the "MyExperiment" 

website [http://www.myexperiment.org/] where they can be 

easily launched and used. 

Various enhancements to the BioExtract Server are under 

development that, when added, will broaden the spectrum of 

users by adding more tools and databases which could be 

used for many additional biological fields. 
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ABSTRACT
Motivation: Recently, much attention has focused on using prediction
from population genetic theory to quantify variation in recombination
rate along the human genome owing to the promise of association
or linkage disequilibrium(LD) mapping to identify genes underlying
complex traits. Current state of the art approaches to the problem
estimate the local population recombination rate from patterns of LD
among common single nucleotide polymorphisms(SNPs) assuming
the population is randomly mating and constant in size.
Results: Here we describe an alternative method that can
accommodate complex population structure and ascertainment bias.
Using multiple linear regression and non-parametric bootstrap re-
sampling, our method uses the variances and co-variances of
un-phased SNPs at different frequencies to estimate the local
recombination rate. We evaluate this new approach via Monte Carlo
simulation and compare its performance with three other available
methods. Our approach is less biased when the demographic
assumptions of the standard neutral model are violated. We also
apply our approach to the well-characterized hot spots near the
human TAP2 gene and a 206-kb region on human chromosome
1q42.3 near minisatellite MS32. The results are consistent with
findings in literatures.
Keywords: Recombination, Regression, Linkage Disequilibrium
Contact: lan.zhu@okstate.edu

1 INTRODUCTION
Understanding how and why recombination rates vary along
a genome is a fundamental problem in genomics. From an
evolutionary perspective, recombination is a rich source of novel
variation and a potent force that can lead to gametic associations
among positively selected mutations as well as break up associations
among deleterious mutations. Recombination rates also vary
dramatically among genomes with some, such as Drosophila,
showing no clear fine-scale structure while others, such as humans,
showing a great deal of local variation where regions of low to
moderate recombination are punctuated by short 1-2 kb hotspots of
meiotic exchange that can account for 50−80% of all recombination
events (McVean et al., 2004; Myers et al., 2005).

When the contributions of recombination and its interaction with
selection to the process of evolution are shown essential (Cutter and
Choi, 2010; Cutter and Moses, 2011), understanding recombination
rate variation is also fundamentally important to the design of
efficient methods for association mapping, since the degree of
association among markers dictates the density and distribution of
markers used for mapping (Noor et. al., 2001). Classical methods
for estimating recombination rates from natural populations include
pedigree studies, sperm typing analysis and methods based on

predictions from population genetics. In humans, the difficulty of
obtaining large pedigrees limits the utility of pedigrees to estimation
of large-scale (megabase) recombination rates (Kong et al., 2002).
Likewise, while sperm typing can provide accurate estimates of
the local recombination rate in male gamete production, it is
typically only applied to a few individuals and to only short regions
of the genome (Greenawalt et al., 2006). Moreover, it is very
labor intensive and expensive. These limitations coupled with the
increasing availability of genome-wide polymorphism data from
humans and other species make estimation of recombination rates
via population genetic theory an attractive alternative.

A number of estimators of the population recombination rate
(R = 4Ner , where r is the rate of crossing over for the region
and Ne is the effective population size) are currently available,
including moment-based (Hey and Wakeley, 1997; Hudson, 1985;
Hudson, 1987; Wall, 2000), full maximum likelihood estimators
(Fearnhead and Donnelly, 2001; Griffiths and Marjoram, 1996;
Kuhner, et al., 2000; Nielsen, 2000), and full-likelihood Markov
chain Monte Carlo method (Wang and Rannala, 2008). From
a statistical perspective, one would prefer to use full-likelihood
methods, since these are guaranteed to capture the most amount of
information in the data regarding recombination. However since it
can take months of computer time to estimate recombination rate
for even a modest size region using full-likelihood, there has been
considerable effort to develop a litany of approximate likelihood
estimators (Crawford et al., 2004; Fearnhead and Donnelly, 2002;
Fearnhead, et al., 2004; Fearnhead and Smith, 2005; Haubold, et.
al., 2010; Hudson, 2001; Jiang et. al., 2009; Li and Stephens,
2003; McVean, et al., 2002; McVean, et al., 2004). For example,
the composite likelihood methods of Hudson (2001) and McVean
et al. (2004) use pre-computation of pairwise likelihood for a given
sample size to achieve speeds orders of magnitude faster than full-
likelihood. Auton and McVean (2007) further constructed a pseudo-
likelihood as the product of the likelihood over all pairs of SNPs
in the region under consideration. To maintain the computational
feasibility, SNPs separated by no more than 50 intermediate SNPs
were considered to contribute to the composite likelihood.

These approaches, while quite fast, have several limitations
including the need to precompute pairwise likelihood for a novel
sample size or demographic model and an apparent lack of power
to detect recombination hotspots that do not significantly affect
linkage disequilibrium (Jeffreys, et al., 2005) . The methods of
Fearnhead et al. (2004), Li and Stephens (2003), and Fearnhead
and Smith (2005) appear to have excellent power to detect hotspots,
but are computationally costly (e.g., according to Fearnhead and
Smith (2005) it takes their method 10-30 minutes to estimate
the recombination rate for a window of six SNPs with sample
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size 60 sequences). It is also important to note that the effective
population size is confounded within the estimate of the population
recombination rate, therefore, population genetic estimators are by
definition dependent on assumptions regarding the demographic
history of the sample. A limitation of many of these approaches,
therefore, is that they are based on the assumption that the
population under study is randomly mating and constant in size
- an assumption violated by nearly all populations to which
the approaches are applied. In theory, population structure and
demography can be built into almost any method, but for methods
such as composite likelihood that make use of a great deal of pre-
computation, this will require months (or years) of computer time
for each new model to generate the lookup tables used in estimation.

In this paper, we present a novel statistical method for estimating
the population recombination rate via coalescent simulations with
recombination coupled with multiple linear regression (MLR) and
non-parametric bootstrap. Three advantage of our method are that
(1) it can readily accommodate complex demographic history, (2)
provide prediction intervals for the estimated recombination rate,
and (3) is computationally efficient and applicable to whole-genome
data. Furthermore, since the method appears to weight heavily the
variance of new mutations in estimating recombination rates, it may
be able to detect recent changes in recombination rate that do not
leave an explicit LD signal.

Our method is based on a readily discernible statistic of the data:
the observed variability in the number of mutations at different
frequencies across sub-samples of the data. It is important to note
that the idea of using the variance of mutation counts in a sample
to estimate recombination rates is not new. About two decades
ago, Hudson (1987) introduced an estimator of the population
recombination rate based on the variance of pairwise nucleotide
differences among sequences in the sample. In 1997, Wakeley
proposed an improved version of Hudsons (1987) estimator that
has smaller bias and standard error. Our approach is loosely a
generalization of Hudsons estimator in that we aim to use the most
informative components of the frequency distribution to estimate the
local recombination rate. A major advantage of this approach is that
it does not require calculation of pair-wise linkage disequilibrium
and, thus, does not require phasing of the data. Likewise, while
our approach requires some pre-computation to fit the model, it
is orders of magnitude less than existing approaches (roughly
minutes to hours for our approach compared to days or weeks for
composite likelihood). We investigate the accuracy of the approach
using Monte Carlo simulations under a wide range of demographic
models. We also compare the performance of our method to three
commonly used approaches (Hey and Wakeley, 1997; Hudson,
1987; McVean, et al., 2002).

2 METHODS

2.1 Data and Model
Consider a set of n aligned DNA sequences from a population with
known demography Q (e.g., population of constant size, bottleneck, island
migration, recent population growth, etc.) in which S sites are observed to be
variable in the alignment. Let Xi for i = 1 . . . n - 1 represent the number of
SNPs at frequency i out of n in the sample. For simplicity, here the ancestral
state of each SNP is assumed known (i.e., the polarized site-frequency
spectrum); a model with unknown ancestral state can be easily derived in
the similar way. Across independent realizations of the evolutionary process,

X will vary stochastically so that for each component one has an associated
variance Vi. For example, V1 is the variance in the number of singletons
that one would observe if one were to have rerun the evolutionary process
and obtained an independent sampling of chromosomes at the same locus.
Here we describe how recombination affects the variances and co-variances
of the components of the SFS (SFS variances) in a fully predictable way and
how by estimating SFS variances, one can predict the recombination rate
of a genomic region for a given demographic model. For a given observed
data set, however, one only has a single observed vector of frequencies, so
we must first define what we mean by variance within components of the
site-frequency spectrum.

Here, we consider the variance in Xi under two scenarios: (1)
independent realizations of the evolutionary process (i.e., a variance that
one can estimate only via simulation) and (2) bootstrap resampling of the
sequences (i.e., a variance one can readily estimate via a common statistical
readily applicable to the observed data). As we show in the results section,
these two scenarios give different, but nearly perfectly correlated variances
such that one may estimate the former given an observed value from the later.

First, let us assume that one was able to rerun the evolutionary process
Q under the same recombination rate R so as to obtain Q replicate data
sets, sampling an independent set of n sequence each time. From population
genetic theory we expect variance and co-variance of the Xis across the
Q replicates to be informative about recombination (Fu, 1995; Sawyer and
Hartl, 1992; Zhu and Bustamante, 2005).

For example, for a population that evolves according to the standard
neutral Wright-Fisher model, Fu (1995) derived that variance and co-
variances of the Xis as a function of the population mutate rate θ = 4Neµ
under complete linkage. Specifically, under complete linkage one can write
the variance of Xi as Vi=Var(Xi)=θ/i+σiiθ2, where σii is a function of
i and sample size n. Under complete independence among sites, Ewens
(1972) and Sawyer and Hartl (1992) showed that Xi should be Poisson
distributed with mean and variance Vi = θ/i. Given these two well-known
results, one might posit a monotonic decrease in the variance of Vi with
increasing R so that recombination acts simply to decrease the σii term
above. (These predictions are born out in Figures 1 and 2 as explained
below.) The reasoning above immediately suggests a simple and potentially
powerful strategy for estimating R.

2.2 Algorithms for Estimating Recombination Rate
2.2.1 Algorithm 1: estimating recombination rate across evolutionary
replicates

1. Simulate data by Hudson’s ms program (Hudson, 2002) under the
demographic model for Q replicates keeping the matrix of site-
frequency spectra (SFS) with the Q rows representing the site-
frequency spectra for independent replicates (simulations can be carried
out conditional on the estimated mutation rate, θ, or on the observed
number of segregating sites, S):∣∣∣∣∣∣∣∣∣∣∣∣

x1,1 x2,1 ... xn−1,1

x1,2 x2,2 ... xn−1,2

. . . .

. . . .

. . . .
x1,Q x2,Q ... xn−1,Q

∣∣∣∣∣∣∣∣∣∣∣∣
2. For each pair of columns i and k, calculate the column means Xi

, column variances Vi, and co-variance Vik across replicates (note
Vii = Vi in our notation above). The results of this step will constitute
an n− 1 dimensional vector of SFS meansX = [X1, X2, ..., Xn−1]

, where Xi =
∑Q

j=1
Xi,j

Q
and a variance-covariance matrix with

entries: Vik =
∑Q

j=1

(Xi,j−Xi)(Xk,j−Xk)

Q
.

3. Repeat above steps across a range of recombination rates (in practice
we use R ∈ {1, 5, 10, 20, 50, 100, 200, 400, 1000, 2000}) so as to
produce a set of predictor variables in the form of the (n− 1) variance
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and
(n−1

2

)
covariance entries of the variance-covariance matrices

across levels of R.

4. Natural log-transform both the predictor (Vik for different levels of R)
and predicted variables (R).

5. Use stepwise selection or best subset methods to choose the model that
is sufficient to explain the relationship among log(R) and the log of
the components of the variance-covariance matrix. Formally, the full
model would have

(n−1
2

)
+ (n− 1) + 1 terms of the form:

log(Rj) = α+
∑n−1

i=1

∑i
k=1 βiklog(Vik,j) + ej

where ej ∼ N(0, σ2). In the model above, α is the intercept of the
regression, βik are regression coefficients under the saturated model,
and ej are independent and identically distributed error terms for the
residual variance for j = 1 ... J where J is the number of levels
of recombination used to fit the model. In practice, we use stepwise
selection and best subset methods to search over the space of models so
as to identify the subset of βik terms that are sufficient to explain the
data.

6. Check all assumptions for fitting a linear regression model, including
normality, equal variance of residuals, and independence among
residuals.

2.2.2 Algorithm 2: estimating recombination rate by bootstrap-
based regression(BSTReg) across k-subset replicates A potential
problem of applying the above method to real data is that for a given data
set, one only has a single observed site-frequency spectrum, X . In order
to generate estimates of the variance/covariance matrix across replicates of
the evolutionary process we need to use a resampling scheme such as non-
parametric bootstrap resampling of the data. Since the estimated variances
under the bootstrapping procedure use correlated data, we expect estimates
of Vik to be affected. Therefore, we need to modify our MLR fitting
procedure as follows:

1. Sample a single data set with n sequences under a demographic model
of interest Θ, and label the data set q.

2. Divide the n sequences into k subsets of equal size, calculate the
SFS for each subset, then modify the above step so that the mean
and variance-covariance matrix are now calculated across the k site-
frequency spectra.

3. Repeat this k-subset division sampling for the same n sequences for B
bootstrap replicates to obtain B variance-covariance matrices.

4. Let V (q)
i = 1

B

∑B
k=1 Vi,k be the average variance of component i

and Cov(q)ij = 1
B

∑B
k=1 Covijk the average covariance across the B

replicates of the subsetting approach. (In practice, we use n = 60 and
k = 10. If the data is unphased, resample individuals; if the data is
phased, resample phased haplotypes.

Repeat steps 1-4 for Q replicate data sets to obtain the bootstrap estimated
variance-covariance matrix Vbs for a given model Θ, where Vi bs =
1
Q

∑Q
q=1 V

(q)
i and Covij bs = 1

Q

∑Q
q=1 Cov

(q)
ij .

3 RESULTS
3.1 Estimating recombination rate when θ is known or

S is fixed under evolutionary replication
We first consider the problem of predicting the population
recombination rate from polymorphism data arising under a known
demographic model. Using standard coalescent algorithms, we
simulated 10, 000 replicate samples for each of 10 levels of
recombination rate R ∈ {1, 2, 5, 10, 20, 50, 100, 200, 400, 1000}
under a fixed mutation rate θ = 4Neµ = 30 where µ is the
regional mutation rate per chromosome. (These parameter values
correspond roughly to a 30kb region in humans with recombination
rate varying from 2.5 × 10−4 cM to 0.25cM .) or a fixed number

Fig. 1. Linear regression of log transformed recombination rate (logR)
and log transformed variance in the number of singletons in the
sample. Top: 200 replicates of data sets each with sample size
n = 6, S = 10 were simulated independently under the standard
neutral Wright-Fisher model. Each points represents the V1 quantiles
{0.025, 0.10, 0.20, 0.40, 0.5, 0.60, 0.80, 0.90, 0.975} corresponding toR
in the range of {1, 5, 10, 50, 100, 400}. Cross signs are the means of logV1
over 200 replicates; Bottom: Linear model is fitted by logR on the average
of logV1 bs by k-subset bootstrap resampling over 1000 replicates.

of segregating sites S = {10, 20, 30, 50, 100}. For a given level
of recombination, we calculate the vector of SFS variances V =
{V1, V2, ..., Vn−1} across the Q replicate data sets as explained in
the method description above.

When we perform the multiple linear regression of R on all
Viks including all pairwise covariances among SFS components
and use both stepwise selection and best subset methods, all terms
are dropped except for the variance of singletons (V1) in the
model. Scatter plot of R versus the V1 across simulated data sets
shows a curvilinear relationship suggesting that linear regression
of log-transformed data could be used to estimate R from a
linear combination of the components in V . Using a step-wise
addition rule, we find that log(V1) alone is a sufficient predicator
variable for the population recombination rate with the best fit linear
regression explaining over 95% of the variance in either fixed θ or
S scenarios, as shown in Figure 1 (top) when S = 10. Diagnostic
tests (linearity, constant variance, normality, independence) for
validation of the model were performed and none of the tests
suggests a violation of the assumptions. (Note: for all regressions
performed, diagnostic tests were checked and no violation is found,
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Fig. 2. Relationship between the average of bootstrap estimated variance
in the number of singletons (V1 bs) and that from independent sampling
(V1 iid). Sample size n = 6, S = 10 under the standard neutral Wright-
Fisher model.

Fig. 3. Coverage of predicted local recombination rate using our bootstrap-
based linear regression method with sample size n = 60, S = {10, 20},
k = 10. X-axis is plotted in log scale. Linear regression model is fitted in
the range of R = {1, 5, 10, 20, 50, 100, 200, 1000, 2000} with equation
log(R) = 13.644 − 16.612 ∗ log(V1) for S = 10 (R2 = 0.933) and
log(R) = 17.544− 9.517 ∗ log(V1) for S = 20 (R2 = 0.959). Coverage
is defined as the percentage of replicates that have 90% or 95% predicted
intervals cover true recombination rate.

results not shown). This simple example shows that for a fixed
level of the mutation rate or a fixed number of segregating sites,
the transformed recombination rate and the first component of SFS
variances are highly correlated. By choosing a fixed number of
segregating sites in a genomic region, one can reliably predict the
recombination rate for the region using the observed SFS variances
across samples.

3.2 Estimating recombination using bootstrap
re-sampling and k-subseting (BSTReg)

For a real data set, however, one only has a single observed SFS
vector. To estimate the SFS variances, one therefore needs to
couple a re-sampling step such as non-parametric bootstrapping

Table 1. Multiple linear regression output for estimating log(R) on
log(V1 bs) for Q = 1, 000 replicate simulated data set, each with n = 60,
S = 10, R ∈ {1, 5, 10, 20, 50, 100, 200, 400}. Each V1 bs was estimated
by K-subset non-parametric bootstrap sampling as described in the method
session. Here K = 10.

log(R) = 11.9959− 14.2855 ∗ Log(v1)
RSquare 0.9846
RSquare Adj 0.9820

Parameter Estimates
Term Estimate Std. Error t value Prob > |t|
Intercept 11.9959 0.45210 26.53 1.89e-07
log(v1) -14.2855 0.7294 -19.59 1.15e-06

to the MLR procedure. K-subset bootstrap sampling as described
in the method session results in a predictive relationship between
log(R) and the average of log(V1 bs) over 1000 replicates as shown
in Figure 1 (bottom). The output of the regression is shown in
Table 1. In simulations we have also found that non-parametric
bootstrap estimates of variances are systematically smaller than the
evolutionary variance since the bootstrap procedure only considers
variability across samples with the same population history instead
of the evolutionary variance across random populations; however,
there is a clear linear relationship between these two variance on
a log-log scale. Figure 2 shows the near-perfect linear correlation
between the average log(V1 iid) and average log(V1 bs) as indicated
by the cross-signs. This provides us the flexibility of using i.i.d.
samples to estimate the relationship between log(R) and the SFS
variances for a given demographic model. We can then estimate
log(V1 bs) from log(V1 iid) greatly speeding up the computation.

3.3 Comparing BSTReg to existing methods
Figure 3 shows the coverage (the percentage of replicates that have
90% or 95% prediction intervals cover true recombination rate)
of predicted local recombination rate using our bootstrap based
linear regression model with sample size n = 60, segregating sites
S = {10, 20} under the standard neutral Wright-Fisher model.
The method performs well with coverage close to or greater than
90% at all level of R in the range of 1 to 400. Moreover, the
coverage increases with the number of segregating sites where more
information is included in the data. Mean square errors (MSEs) in
figure 4 are low and uniform by our new method compared with
Hudson’s (1987) approach. LDhat results in the lowest MSE. Due
to the limit of the maximum R that can be estimated by LDhat
software, R > 100 are not explored here. We did not include
Hey-Wakeley’s (1997) performance in MSE comparison because
for data with S = 10, Hey-Wakeley’s (1997) failed to output
the estimates and for samples with S = 20, the estimators were
quite under estimated. This can be seen in figure 5 where we
report the ratio of the median estimates over the true parameters
for four methods. We can see that Hey-Wakeley’s (1997) estimator
is uniformly downwardly biased for all levels of the recombination
rate in the range of R ∈ {1, 5, 10, 20, 50, 100, 200, 400} while
Hudson’s (1987) is upwardly biased forR ≤ 50 and performs better
for larger R. Our new BSTReg approach performs almost equally

218 Int'l Conf. Bioinformatics and Computational Biology |  BIOCOMP'11  |



Fig. 4. Comparison of mean square errors (MSE) of predicted local
recombination rate over 1000 replicates using Hudson’s (1987) method,
LDhat (McVean 2004) and our bootstrap based linear regression method.
Sample size n = 60, segregating sites S = {10, 20}, k = 10. X-axis
is plotted in log scale. Linear models are the same as used in the coverage
evaluation. Due to the limit of the maximum R that can be estimated by
LDhat software, R > 100 are not explored.

well as LDhat when the population size is constant and without
structure: the ratios are around 1 for all levels of R.

One question that arises is: how sensitive are other approaches
to the demographic assumptions of the standard neutral model? In
figure 6, we report the ratio of median estimates to the true paramter
by our BSTReg method and LDhat across a range of recombination
rates for 1, 000 simulated data sets under two island migration
(4Nem = 12) and population growth (rate = 5.0). We note that
our approach has less bias, presumably since it can incorporate the
demographic details explicitly in the estimating equations.

3.4 Application to the TAP2 and MS32 recombination
hotspots

We have also used our approach to estimate fine-scale recombination
rate variation around two recombination hotspots in the human
genome characterized through sperm typing (haplotype sequences
were kindly provided by Professor Sir Alec J. Jeffreys). For the
TAP2 gene region, a total of 60 sequences with 48 SNPs were
included in the analysis. According to Jeffreys et al. (2000), 81%
of the sperm crossover breakpoints in the data were localize to
the 1.4kb region between markers T15 and T30 (depicted as grey
box from position 4, 017 to 5, 417 in Figure 7). We estimated the
recombination rate between adjacent pairs of SNPs (as well as
associated prediction intervals) using a sliding window approach
with 10 SNPs in each window as described in the Methods section.
Figure 7 shows the mean and lower bound of the 95% prediction
interval of the recombination rate along the TAP2 genomic region
before the SNP ascertainment bias correction. As we see from
Figure 7, the hot spots regions identified by our approach are
completely consistent with the results from both sperm typing
and haplotype analysis (Jeffreys, et al., 2000). That is we detect
a strong signal of dramatically active recombinational exchange
in the regions between markers T16(4180) and T18(4553),

Fig. 5. Performance comparison of Hudson’s (1987), Hey-Wakeley’s(1997),
LDhat (McVean 2004) and our bootstrap-based linear regression method
in terms of the ratio of the median of predicted local recombination rates
over 1000 replicates to the true recombination rate. Sample size n = 60,
segregating sites S = {10, 20}, k = 10. Both axes are plotted in log scale.
(For S = 10, Hey-Wakeley’s (1997) method fails to work due to not enough
informative segregating sites, results are not included in the figure; results of
R > 100 from LDhat are not explored as well).

Fig. 6. Median estimates over the true recombination rate ratio over
1000 replicates by LDhat (McVean 2004) and our bootstrap-based linear
regression methods under twoisland migration model (4Nem = 12) and
population exponentially growing model (growth rate G = 5.0). Sample
size n = 60, segregating sites S = 10. X-axis is in log-scale.

T23(4917) and T24(4934), and T27(5188) and T30(5417). After
the ascertainment bias correction, the same hot spots regions
are identified (result not shown); but without correcting the
ascertainment bias will results in more conservative estimation. In
this case, the ascertainment bias increased the variance of singletons
about 1.55 fold.
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Fig. 7. The mean and lower bound of 95% prediction interval of
recombination rate along the TAP2 region. The regression model in Table
1 is used for the prediction. SNPs marker positions are consistent with those
in Jeffreys et al. (2000). Region in the grey box is the location where sperm
crossover breakpoints were highly clustered (Jeffreys et al., 2000).

We have also applied this approach to a 206 kb region
on human chromosome 1q42.3 which contains several well-
characterized autosomal crossover hotspots around the highly
variable minisatellite MS32 (Jeffreys, et al., 1998). Due to
the complexity of the SNPs identification in this data set, we
only estimated the recombination rate without correcting the
ascertainment bias. For this analysis, 80 individuals with 214 SNPs
were included (we again use a w = 10 SNP window). Figure
8(top) shows the mean ratio of predicted recombination rate to the
estimated background rate (the estimated background rates along
the region which are the average rates of the local predicted rates
exclude the putative hotspot regions are shown in figure 8 bottom)
as well as the location of predicted hotspots by several approaches
as reported in figure 1b of Jeffreys et al. (Jeffreys, et al., 2005).
The black rectangles in our figure 8(top) show the location of
recombination hotspots as estimated by sperm typing (figure 1b,
Jeffreys et al., 2005). As demonstrated in Jeffreys et al. (2005), the
approximate likelihood method of Fearnhead et al. (2004) (white
triangles) and the PAC likelihood method of Li and Stephens (2003)
(grey triangles) do an excellent job of identifying the location of the
hotspots in the region as evidence by the strong concordance with
hotspots estimated from sperm typing. Both of these approaches
are very computationally intensive and require hours to run on the
data set, and are thus not currently viable options for genome-
wide estimation of recombination rate variation. We note that our
approach (which takes about 70 seconds by a Power Mac G5 with
2.5GHz CPU speed and 4GB memory to run on the same region)
shows clear signatures of recombination rate variation near the six
putative hotspots (NID1,NID2, andNID3 in and near theNID
gene, as well as MS32, MSTM1 and MSTM2).

Fig. 8. Top: Ratio of recombination rate estimates to the background
values in the 206 kb interval surrounding minisatellite MS32 on
chromosome 1q42.3. Putative hotspots identified by sperm typing
(Jeffreys et al., 2005), Fearnheads method (2004), Hotspotter (Li and
Stephens, 2003), and LDhot (McVean et al., 2004), respectively, are
also shown as reported in Jeffreys et al. (2005), Figure 1b. Bottom:
Estimated background recombination rate along the region. Data from:
http://www.le.ac.uk/ge/ajj/MS32/MS32%20genotypes%20file.html.

4 DISCUSSION
We proposed a new bootstrap-based linear regression approach to
estimate the population recombination rate. While the algorithm we
have presented is fast, flexible, and scalable to the whole genome
level, a few caveats must be raised. In order to make inference, we
must still presuppose some demographic model for the data. Our
preliminary results confirm the predictions of population genetic
theory that recombination rate estimates will be sensitive to the
demographic model used in the MLR fitting step. This sensitivity
is not likely unique to our approach and probably holds for the
majority of algorithms currently in use. At the same time, it also
appears that our approach is robust to demography for the problem
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of detecting recombination rate variation. Secondly, our method
can currently only deal with uniform ascertainment schemes. When
ascertainment differs dramatically among SNPs in the same region,
however, this may likely cause problems for any method aiming to
discover variation in recombination rate.

It is important to note that the choice of the window size on the
regression region may affect rate estimation. Windows significantly
overlap when we move one SNP site step by step. If the window size
is too large, rate estimates are upwardly or downwardly affected
by adjacent SNPs, especially when the window ranges from no
or low recombination rate region to a hot spots region. From our
experience with this model, we suggest that a window size between
10 to 20 SNPs appears to be an optimal trade-off between signal of
recombination rate variation and noise due to stochastic variation of
individual SNPs.

Lastly, we have assumed (as all other methods) that the SNPs in
our sample are evolving neutrally. Since natural selection is known
to affect both the patterns of linkage disequilibrium as well as the
site-frequency spectrum in a region, our method is likely sensitive
to this assumption. For example, a region that has experienced a
recent selective sweep is expected to have low levels of nucleotide
variation as well as a skew towards rare alleles. If the variance of
singletons in the region is also reduced, then one may overestimate
the recombination rate. One possible way to distinguish these two
factors is to test explicitly for evidence of a selective sweep in the
region (which is expected to leave a characteristic spatial pattern
of reduced variation around the target of selection). For regions
that show strong evidence of a sweep other approaches such as
direct sperm typing may be necessary for accurate estimation of
recombination rate variation.
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Abstract— Insertions and deletions occur during evolution
of biological sequences resulting in gaps in sequence align-
ments. The quality of an alignment depends on the placement
of the gaps. Reliable pairwise as well as multiple sequence
alignments are useful in inferring protein protein interacton
sites through residue conservation[23], [24]. It has been
reported that the Zipfian distribution best approximates
the observed gap-lengths in the sequence alignments. The
probability of a gap of length N decreases, inversely related
to length, as a function ofN−c for some suitable c. We
have analysed four different gap scoring models: affine,
log, power and the new Zipf that is based on Zipfian
distribution. When tested on pairwise alignments from the
BAliBASE benchmark suite, the widely used affine gaps were
outperformed by the three other models. Log, Power and Zipf
gap models performed comparably well.

Keywords: protein sequence, sequence alignment, gap penalty,
parameter reduction, zipfian distribution, riemann zeta function

1. Introduction
Aligning a new protein sequence to a known sequence

is an essential and first step to study the structural and
functional information of the new protein molecule. Pairwise
alignments are done through a method called dynamic pro-
gramming, first applied to biological sequences by Needle-
man and Wunsch [13]. Historically local sequence align-
ments are calculated using the algorithm Smith-Waterman
[19] and global alignments are calculated by Needleman-
Wunsch [13], each having their own advantages. For ex-
ample, local alignments are more suitable for identifying
protein domains irrespective of their domain shuffling and
global alignment is necessary when you want full length
alignments.

Many variants of sequence alignment algorithms are used
for searching sequence databases e.g. SSEARCH [16] as
well as methods that use word search for example FASTA
[15], BLAST [2], PSI-BLAST [3] etc. Alignment scores
are used to rank sequences and provide statistics for the
likelihood of homology with the query. Therefore alignment
quality directly influences the signal-to-noise, hence the
sensitivity of database searches.

Gaps are common in alignments of biological sequences.
They occur more frequently between distantly related se-

quences. Gaps in pairwise or multiple sequence alignments
represent insertion or deletion (indels) events in the evolution
of biological sequences.

The quality of an alignment is obtained in part through
scoring aligned pairs of residues. The indels are scored by
pairing a residue in one sequence with a gap in another
sequence. The placement of gaps influences the quality score
and hence the quality of an alignment.

Thus placement of gaps is critical in sequence alignment
and they have been studied extensively [19], [18], [11], [1],
[12].

A number of different gap scoring models have been dis-
cussed. However three parameters, gap open, gap extension
and length of the gap are common to most of the gap models.

It has recently been proposed that observed gap lengths
obey a Zipfian distribution and that this could be used to
derive an appropriate gap penalty model, although this was
not tested [6]. Since the Zipfian equation is so simple, we
were interested in evaluating its performance for pairwise
alignment. Here we report the performance of Zipfian gap
penalties using the BAliBASE testbed and compare it to
other concave gap models.

2. Methods
2.1 Gap Models

Gaps in sequence alignment represent the insertions and
deletions that occurred in the history of the protein family of
sequences [4]. Placing gaps in the right place is essential to
the quality of an alignment. We have studied four different
gap models by modifying the Monotone pairwise alignment
package [12]. The quality of alignment for different gap
models are assessed with the BAliBASE benchmark database
[20].

2.2 Affine gap model
The affine gap model is the most widely used gap scoring

scheme in alignment algorithms.

gapcost = m · x + c , m < c (1)

wherec is the cost for opening a gap andm is the cost of
extending a gap andx is length of the gap. The default values
in Monotone are for gap openc = 9 and gap extension
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m = 3. However,c = 10 and m = 1 are commonly used
for protein database searches.

The affine gap model is an extension of a linear gap
model of the formgapcost = mx. In the affine model
the conditionm < c is set to allow long insertions and
deletions to be penalised less to overcome the deficiency of
the linear gap model where short and long gaps are treated
as equally likely. It has been shown by [6] that for gaps
observed in aligned protein sequences, the affine gap is a
poor approximation. The affine gap model was used to study
the distribution of indel lengths [17] and they suggested a
quadruple affine gap model as an alternative to plain affine
gap model. This would be expensive to calculate. The linear
gap model equation is in fact a straight line equation.

2.3 Log gap model
The log gap model [12] is of the form

gapcost = c + m · log(x) (2)

wherec is the gap open penalty,m is the gap extension
penalty andx is length of gap. The default values in
Monotone are for gap openc = 9 and gap extensionm = 3.

2.4 Power gap model
The Power gap model [12] is of the form

gapcost = c + m · xd where d > 0 (3)

wherec is the gap open penalty,m is the gap extension
penalty,d is gap power and x is the length of the gap. The
power law is convex only for0 < d ≤ 1.

The default values in Monotone are for gap openc = 9
and gap extensionm = 3 and powerd = 0.5.

2.5 The new Zipf gap model based on Zipfian
distribution

Chang and Benner have studied the gap length distribution
in a set of pairwise alignments and suggested that the Zipfian
distribution can be used as a best approximation for scoring
the gaps in an alignment [6]. Their detailed study shows that
the number of gaps say n of length N decreases according
to the expression

n = c1N
−c2 (4)

where c1 and c2 are parameters empirically selected to fit
the data.

Benner also suggested that this function is independent of
the length of the gap and the extent of divergence. One caveat
is that they used a dataset with just one gap per pairwise
alignment. Even if the Zipfian holds for multiple gaps, the
derived parameters may not. We have further tested their
suggestion by incorporating the Zipfian gap scoring model
into the Monotone [12] pairwise alignment package.

Figure 1: Gap penalty scores generated by the Zipfian curve
for 10 ∗N−1.7 where N is the gap length. Starting value of
c1 = 10 is typical for pairwise alignment with the Blosum62
matrix.

Figure 1 shows the gap penalty scores generated by the
Zipfian curve for10 ∗ N−1.7 where N is the gap length. A
starting value of 10 is typical for pairwise alignment with
Blosum62 [10]. The value of the curve at position N is added
to the gap extension cost at position N-1. Since the curve
converges, we cannot use the equation 1 as it is. Therefore
we take the cumulative sum over the entire given gap length.

Define the cumulative sum

gapcost(n) = P =
n∑

N=1

c1

N c2
(5)

Here the cumulative sum P can be used as the gap cost for
inserting a gap of N (or n) symbols. This gap cost function is
monotonically increasing wheregapcost(n) > gapcost(n−
1) for all n. In other words it is a non-decreasing, concave
gap function.

The equation 5 is in fact the partial sum of the infinite
series of the famous Riemann Zeta function of the form

ζ(p) =
∞∑

n=1

n−p (6)

As a special case whenp = 1, the ζ(p) becomes the
logorithm function which is an advantage that one could
mimic different gap models inside the alignment algorithm
by changing the exponentp of Riemann Zeta function [21].

Riemann Zeta function is extensively studied in number
theory and has number of interesting properties. When one
considers indels as infinite series of evolutionary events then
it would be interesting to study these events in the light of
Riemann Zeta function.

The Figure 1 shows the plot of equation 4. The curve is
asymptotic to X-axis.
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Figure 2: Shows the cumulative distribution plot of equation-
5 showing the gap score for different gap lengths. The value
of the curve at position n is added to the gap extension
cost at position n-1. For gaps of more than 20 residues,
the extension cost becomes very small. This curve diverges
as the length of the gap increases. The costs of opening
and then extending small gaps are high. However the curve
becomes asymptotic and the costs of further extending long
gaps become very small.

Figure 2 shows the Cumulative sum for the Zipfian values
in Figure 1 (See equation 5). The costs of opening and then
extending small gaps are high. However the curve becomes
asymptotic and the costs of extending long gaps become
very small.

3. Results
3.1 The Scoring Method

We used the BAliBASE Version 2.0 benchmark alignment
database [20]. BAliBASE is designed for evaluating multiple
sequence alignment algorithms. Alignments in BAliBASE
were derived from visually inspected structure alignments.
Therefore they are not biased toward any sequence alignment
method.

BAliBASE consists of mainly five different reference
alignment sets. Reference 1 consists of equidistant se-
quences, Reference 2 consists of related families with diver-
gent, orphan sequences, Reference 3 consists of families of
related sequences, Reference 4 consists of N and C terminal
extension sequences, Reference 5 consists of internal inser-
tions. Refer to the BAliBASE [20] paper for more details.

We have modified Richard Mott’s software package
Monotone [12] to allow Zipfian values to be computed and
used for gap scoring. The Monotone package is elegantly
designed and it was easy to incorporate the new Zipfian gap
model. Monotone also comes with the affine, log and power
gap models.

Monotone reads two sequences from two different files. So
it was necessary to split the sequences from the BAliBASE
sequence files. First the sequences from reference files
were separated into single files and the multiple sequence
alignment files were also separated with all the possible
pairwise combinations intact. See table 1 for details.

Table 1: Pairwise alignments available in BaliBASE-2
Set Number of Files Sequences Pairwise alignments

Ref1 82 367 652
Ref2 23 412 3544
Ref3 12 266 2865
Ref4 12 107 504
Ref5 12 112 570

Each file in each Balibase reference set consists of different numbers of
sequences. Note that the total pairwisen(n−1)

2
comparisons is based on

the number of sequences in each file.

A script was written to generate all the possible pairwise
alignment commands to run Monotone for different gap
models. The program BaliScore was used to assess the
quality of the alignment with reference to the test alignment.
BaliScore gives SP, Sum of Pairs score and CS, Column
Score. The SP score determines the extent to which the test
program, in this case Monotone, succeeded in aligning the
sequences. The CS score is designed to see whether the test
program can align all of the sequences correctly in a multiple
alignment (that is not relevant here).

We plotted the overall SP scores for all the different
gap models using Blosum62 [10] and Gonnet PAM250 [5]
matrices by varying the exponent of the Zipfian gap model
by 0.1 increments over a range from 1.0 to 2.0.

3.2 Comparison of four penalty schemes
Figures 3 and 4 show the comparison of the four gap

penalty models: affine, log, power and Zipfian. The X-axis
shows the gap open penalty varied from 1 to 25 and the Y-
axis shows the overall percentage BaliScore [20] for all five
different reference sets (See Table.1). The range of baliscore
is from 0, the lowest, to 1, the highest for each alignments.
We used two different popular comparison matrices namely
Blosum62 [10] and Gonnet PAM250 [5].

Examining the affine scores in Figures 3 and 4, the best
scores are achieved with gap opening in the range 7.0 -
9.0 for both matrices, however the overall score is higher
for PAM250, indicative of better alignments. Better quality
alignments for the PAM250 matrix are in accordance with
previous matrix comparisons (Vogt et al., 1995). Optimal
gap opening penalties observed here are slightly lower than
the typical values used as defaults in sequence alignment.

In both figures, the peak BALiBASE scores for affine gap
are below the peak scores of the other gap functions. It is
also clear that the affine gap penalty does not tolerate the
higher penalty values as well as the other models. (This is
not a major consideration provided that gap penalties are
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Figure 3: Comparison of 4 gap penalty schemes tested
by pairwise BAliBASE scores for the Blosum62 exchange
matrix. The obtained BAliBASE score (Y axis) is reported
for the cost of opening a gap varied over a range of 2
to 25 (X axis). For all gap penalties, affine gaps always
perform worse than the other functions. Peak performances
of the log, power and Zipf functions are very close with log
slightly ahead. See text for the equations describing the gap
functions.

Figure 4: Comparison of 4 gap penalty schemes tested
by pairwise BAliBASE scores for the Gonnet PAM250
exchange matrix, suitable for aligning highly divergent pro-
teins. The obtained BAliBASE score (Y axis) is reported
for the cost of opening a gap varied over a range of 2 to
25 (X axis). Affine gaps again perform worse than the other
functions. Note that the better performance of the smooth
models is more apparent with the more sensitive PAM250
matrix than with the Blosum62. Peak performances of the
log, power and Zipf functions are very close again with log
slightly ahead. See text for the equations describing the gap
functions.

being set close to optimal perfomance). The peak difference
is smaller than we expected, especially for Blosum62. The
poorer performance of affine becomes clearer using the more
sensitive PAM250 matrix. This may imply that alignment
with better residue exchange parameterisation benefits more
from the improved gap penalty models.

The log, power and Zipfian models outperform affine for
both Blosum62 and PAM250. However, the peak perfor-
mances of the three smooth models are all very close for
both tested matrices. Based solely on performance in our
tests, we would not be able to choose between the three
models. Note that for log and power we ran the tests using
the default Monotone gap extension value of 3.0. This value
has already been well optimised for the smooth gap models
supplied in the Monotone package. However, we observed
very poor performance for affine with the Monotone defaults
(data not shown) - a gap penalty of 3.0 is much higher than
usually recommended for protein alignment. Therefore, in
accordance with standard practice, we have kept the affine
gap opening and gap extension penalties in the ratio of 10
to 1 for the tests.

From these figures, it is clear that the default gap opening
penalty value 9.0 for Monotone could be set to higher.

3.3 Effect of varying the Zipfian exponent
The exponent of the equation 5c2 has been varied in the

range of 1.0 to 2.0 keepingc1 at a constant 1.0. The Figure
5 and Figure 6 are graphs showing the overall percentage
BaliScore score distribution for the variations ofc2. The gap
opening penalties are computed using the equation 5. With
the exponent 1.7 the highest score 24.18 is achieved when
gap opening penalty is 8 or 9 for Blosum62 matrix whereas
for PAM250 matrix with the same exponent the highest score
is 26.48 when the gap open penalty is 8. For exponent 1.8
the highest score 26.49 with gap open 8.0 for PAM250, and
with Blosum62 it is 24.15 with gap open 9.0.

The results are in good agreement with the observed value
of exponentc2 = 1.8 [6]. Though the higher exponent
tolerates large gap penalties they do not get higher score
comparatively. In a progressive multiple sequence alignment
scenario the exponent in the Zipfian could be used to adjust
the gap openings dynamically for different divergence.

4. Discussion
The Zipf law has been used to study phenomena in many

areas e.g. linguistic, audio signals [8] and also recently to
study the human transcriptome [14]. The Zipf law suggests
that the frequency of occurrence of a word is inversely
proportional to its rank.

Chang and Benner showed that the gap-lengths can be
approximated by the Zipfian distribution with the probability
of a gap of length N decreasing as a function of the gap
length [6].
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Figure 5: BAliBASE score distributions for different ex-
ponent values of the Zipfian function and the Blosum62
matrix. Varying the exponent yields a small difference for
peak performance withN−1.4 marginally best. However,
this value performs relatively less well when gap penalties
are set too high. Values closer to the Benner exponent
of N−1.8 have a broader peak and are more tolerant of
higher gap penalties: These values may be appropriate when
sequence similarity varies widely and gap penalty values are
necessarily imprecise.

Figure 6: BAliBASE score distributions for different expo-
nent values of the Zipfian function and the Gonnet PAM250
matrix. Varying the exponent yields even smaller differ-
ences than for Blosum62 for peak performance withN−1.4

marginally best. Again, this value performs relatively less
well when gap penalties are set too high. Values closer to
the Benner exponent ofN−1.8 have a broader peak and are
more tolerant of higher gap penalties: These values may be
appropriate when sequence similarity varies widely and gap
penalty values are necessarily imprecise.

Other authors have proposed concave gap functions. For
long gaps, Gotoh used a piecewise linear gap-weighting
function that approximated a smooth concave function [9].
Miller and Myers [11] and Waterman [22] also used concave
weighting functions to compare sequences. Mott has shown
that by using monotonic gap penalties, the chances of
detecting a similarity containing a long gap is greater over
affine gap penalties. We have seen that in Monotone the
default value of gap opening 9 and gap extension 3 for
affine gaps performed very poorly. The situation improved
when we modified the affine gap extension as one tenth of
gap opening penalty, which is typical for protein sequence
alignment, but still the affine gap penalty was worse.

Despite the extensive literature on concave penalty func-
tions, all widely used alignment and database search soft-
ware continue to use affine gaps. One reason may be in-
creased computational costs. Myers and Miller found affine
gaps to be three times faster than other concave functions.
Performance should be less important with recent computer
hardware. Furthermore precalculation and array lookup can
reduce the time penalty for any gap scheme that is more
complicated than affine.

BAliBASE is the most widely used alignment bench-
marking suite. Using BAliBASE we have now shown that
the non-affine gap penalties are better suited for pairwise
sequence alignments. Although it does not outperform the
other smooth gap models, the Zipfian model shows promise
as the simplest of the models tried, with the lowest parameter
space. From the Figure 5 and Figure 6 it is clear that the
higher exponent tolerates longer gaps.

We would like to suggest that in a progressive multiple
alignment environment where the highly homologous se-
quences are aligned first, the gap opening in equation 4 could
be adjusted automatically to fit to the extent of divergence
of the sequence or profile that are already aligned with the
new sequences or profile. This is quite logical because a
fixed gap opening cannot perform well for merging group
of sequences with varied degree of divergence.

BAliBASE covers a range of alignment test cases includ-
ing long gaps. Though BAliBASE benchmark alignments are
designed for testing multiple sequence alignment programs,
BAliBASE can also be adopted for use with pairwise align-
ments. The pairwise test with local alignment approximates
database search properties. Thus Zipfian gap model should
be suitable for use in sequence database searches.

The Zipfian gap model might also be useful for nucleic
acid alignment, since genomic sequence alignment needs to
handle very large indels. For example, insertion of a Line-1
element creates a gap of more than 8000 bases and affine
gaps are completely unsuitable for dealing with such long
gaps.

In future work, we hope to examine the performance of
Zipfian penalties for the progressive alignment algorithm of
Clustalw [7]
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Abstract— High-Throughput Sequencers such as Illumina
and ABI SOLiD, generate large quantities of data, typically
above 10 Gigabytes of text files. These platforms enable
multiplex sequencing, that is, the sequencing of multiple
samples in a single run, through a marking system. This
requires a computational process for separation the data
generated, which contains the mixture of all samples in
a single output. It is necessary that the quality of the
marking system is evaluated to ensure the reliability of this
separation. This work proposes measures to characterize the
marking system obtained from SOLiD sequencing. In fact,
measures presented are proven to be sufficient to describe
the sequencing and hence guide the process of filtering the
data and the analysis of the sequencing protocol.

Keywords: Statistical Analysis, Multiplex Sequencing, SOLiD,
Barcode System.

1. Introduction
The volume of data generated by new DNA sequencers

increased substantially in recent years. Platforms such as
Illumina and ABI SOLiD, High-Throughput Sequencers, can
generate millions of small reads sequences from different
samples in a single multiplex run.

The SOLiD platform has its own peculiarities when com-
pared to other sequencers, particularly, the data represen-
tation, which is coded in "two base color encoding", also
called colorspace. This represents the transition between two
nucleotides of a characteristic color obtained by the detection
of fluorochromes: FAM; Cy3; TXR; or Cy5 [1]. What, in
turn, implies the need to add a step for converting the data,
in order to obtain the DNA sequence of nucleotide bases.

Additionally, the SOLiD sequencing supports up to 256
multiplex samples by means of, among other items, the
marking system called barcode [2]. These have a charac-
teristic central to the process of discernment between the
samples, the orthogonality, meaning that a barcode of the
standard library has no correlation with each other. However,
even with all the security surrounding the library of markers,
there were failures of common error, known as erroneous
color calls, and in the quality aspects associated with the
transitions of nucleotide bases [3].

These failures should be identified and, if possible, miti-
gated, given the importance of accuracy in the recovery of

sequences per marker. However, each run held in the SOLiD
platform has unique characteristics for the marking system,
which ratifies the need to study methods to assess the quality
of sequencing protocols.

It is important to consider the impact of a high degree of
reliability for the sequencing data due to the fact that failures
in barcode systems can cause a shuffle in the sequences of
interest. And it implies in a waste of computer processing
in genome analysis and eventual errors in results.

In this context, the lack of literature, studying measures
to characterize the sequencing as the marking system, moti-
vated this work, in which a statistical analysis is developed
in order to identify summary measures to characterize the
SOLiD sequencing as the marking system.

Through computational tests, it was defined four mea-
sures: median, mode, variance and sequences to barcodes
ratio. The results obtained allowed demonstrating the differ-
ences in the marking system for each run analyzed. In fact,
the previously mentioned measures are sufficient to describe
the sequencing and hence, guide the process of filtering data
and the analysis of the sequencing protocol.

This paper is organized as follows: section two presents
the related work to the analysis made, section three describes
the materials and methods used in the development of this
work, which is presented in section four. The results obtained
are discussed in section five and finally, section six presents
the conclusions.

2. Correlated Works
Most studies that involve the filtering of errors or quality

assessment of data generated by the SOLiD platform are
based on heuristics. Taking for example the work of [4],
sequences that show some transition with quality below
a predetermined threshold are retained by the filter. In
this same study, the default values adopted for filtering
independent errors is a Quality Value (QV) <= 10, while
the errors of polymorphism is QV >= 25.

Other works like [5] treat the errors of substitutions,
insertions and deletions. However, this treatment does not
take into account the quality value, because they filter the
data in advance using a system based on heuristics.

It should be noted that such heuristics are useful for
the analysis of large sequences. Heuristic-based algorithms
usually have lower complexity and require less processing
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time compared with analytical algorithms. On the other
hand, analytical algorithms improve reliability by generating
accurate results based on analysis, something required for
barcodes.

The differential matter of this study is the adoption of a
statistical analysis in order to assess the quality of barcodes,
that allow the characterization of sequencing protocols to
guide the development of a custom filter to the marking
system used in the SOLiD platform.

3. Materials and Methods
The biological material used in the studies was derived

from cancer patients, extracting two samples each, with
the written consent for study approved by the Committee
of Ethics in from the Federal University of Pará, protocol
number 14052004 / HUJBB.

The sequencing process is preceded by some essential
procedures: sample collection after the DNA is fragmented,
as the sequencer can only read fragments from 35 to 50 base;
the linkage to known sequence fragments with adapters,
named P1 and P2, as shown in Figure 1.

Fig. 1: Schematic drawing of sample preparation.

The adapter has a P1 sequence complementary to the
metal beads; and P2 has complemented by a polystyrene
coated bead, a material which floats in water; this way, the
fragments that do not affect P1 and P2, will be discarded.
The templates relating to the selected beads have their 3 ’end
modified, so they can join covalently to the blade. In the end,
they are deposited on the blades and taken for sequencing,
as shown in Figure 2.

Fig. 2: Modification of the P2 adapter to allow the grip to
glass surface.

The markers in each sample are inserted into the adapter
P2. The SOLiD Small RNA Expression Kit (Ambion Inc.,
U.S.), was used for the preparation of fragments. All miR-
NAs were attached to the library with a specific extension
of primers, in this case, the barcode system.

The data generated from three runs consists by the bar-
codes, samples sequences and quality values files. Together
they amounted over 175 Gigabytes (Gb), which about 24
Gb correspond to information from barcodes. These data
were analyzed in order to obtain sufficient statistics from the
following summary measures: mean, mode and variance, in
addition to viewing the probability distribution to facilitate
evaluation of multiplex sequencing.

4. Statistical Analysis of Multiplex Se-
quencing

For this analysis, it is necessary to know the probability
of the marking sequence, however, the Applied BioSystems
does not provide the mapping function between the value of
quality and the associated probability.

In [6] we found a function that adapted for the range
of quality values generated by the SOLiD platform and
approximate the quality-probability mapping, as follows:

P (Q) = 1− 10−(Q+1)/10 (1)

The value P (Q) represents the probabilistic degree of
confidence of a given transition, as evaluated by their quality
value, represented in Equation 1 to (Q +1). This aspect was
used for normalization, for Q is comprised in the range from
-1 to 35, so the value of -1 would indicate a negative outlook.

To calculate the confidence level of a given sequence
(θ), multiply the probabilities of all existing transitions. The
result represents the probability that the sequence obtained
is, in fact, present in the sample.

P (θ) =
∏

P (Q) (2)

To optimize the calculation of summary measures and
plotting the probability distribution, the results obtained by
applying Equation 2 are stored in a data structure, the
map [7]. This structure is composed by two fields, one for
storing the key and another for the value; in this problem,
the likelihood is the access key that points to the number of
occurrences, so the probability distribution is easily manipu-
lated. Other relevant information is the relationship between
the total amount of marking sequences obtained and those
which corresponded to one of the ten barcodes presented in
the standard library used in the experiments.

5. Results
The statistics contained in Table 1 have revealed that C1,

with an average of 81.23% has a higher confidence than
C2 and C3 in the quality of markers and, consequently, the
recovery of sequences from samples. The variance of 5.5%
was the lowest compared to other runs, indicating a low
dispersion of data in relation to the expected value.

It is observed that 30.88% was the most frequent like-
lihood in the runs C1 and C3. Moreover, C2 had higher
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Table 1: Information about Sequencing Analyzed.
Data First Run(C1) Second Run(C2) Third Run(C3)

Number of
sequences 142,453,565 19,523,621 27,634,981
Mean 0.8123 0.4715 0.5917
Mode 0.3088 0.3726 0.3088
Variance 0.0553 0.0687 0.0806
Sequence to
Barcode ratio 73,42% 1,45% 44,66%

value, of 37.26%, in the value of mode. The proportion the
Sequence to Barcode ratio presented in C1 is 73.42%. C3
showed a drop to 44.66%; and in C2, the ratio is extremely
low, 1.45%, indicating prior sequencing problems.

However, between C2 and C3, the latter showed the
best performance, with an average of 59.17% and 8% of
variance. The graphical analysis of these two runs, obtained
by comparing Figures 4 and 5, evidences this difference,
especially regarding the density of sequences with low
confidence, presented in Figure 4 ; even though the mode of
this run is higher, it does not reflects the general scenario.

Fig. 3: Probability distribution of first run.

Fig. 4: Probability distribution of second run.

Such statements were pertinent to the sequencing protocol
analysis and verification of possible disposal of the data
generated in the case of low confidence. For example,
the values for runs C1 and C3 are statistically significant,
detecting at least 45% of the sequences marked, thus proving
trustworthy for the genomic analysis.

Fig. 5: Probability distribution of third run.

However, the data qualities of C2 are extremely low,
with only 2% of recognized barcodes that were actually
used in the sequencing; possibly indicating a shuffling of
the samples. A scenario that illustrates this problem is the
sequencing of two patients, one healthy and another sick;
if the marking system has characteristics similar to C2, the
sequences of interest can be exchanged between the patients,
which causes errors in the results.

Regarding the poor quality of data from C2, among the
possible causes of this failure, it can be highlighted the
fluctuation of electric power on the sequencing unit .This
particular failure could affected the capture of beads, as
these are captured through an electromagnetic field, which
is extremely sensitive to power quality.

6. Conclusions
The lack of literature on summary measures able to

characterize the sequencing with regards to the marking
system is one of the aspects that motivated this work. Also,
we stress the importance of a high degree of reliability of
these data; in particular, because the marking system failures
can cause the shuffle of the sequences of interest, which
implies on a waste of computational processing for genome
analysis and errors in the results.

Seeking to fill these gaps, we developed a statistical
analysis that had the following summary measures: median,
mode, variance and sequences to barcodes ratio. This allows,
among other analysis: the evaluation of protocols used in
the preparation of the libraries for labeling in multiplex
sequencing; assessment of possible discard of the generated
data; and the initial guiding in the process of developing a
custom filter for barcodes.
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Abstract— DNA methylation is an important type of epige-
netic modification that plays an instrumental role in organo-
genesis, cellular differentiation, suppression of deleterious el-
ements, and carcinogenesis. In addition to the experiment-
based approaches, computational prediction provides guid-
ance in an effective, fast and cheap way to the genome-
wide DNA methylation profiling. In this paper, we describe
the development of support vector machine-based models for
the prediction of the CpG island methylation. The features
used for prediction include those that have been previously
demonstrated effective (e.g., CpG island specific attributes,
DNA sequence composition patterns, DNA structure patterns,
distribution patterns of functional and evolutionarily conserved
elements, and histone methylation status) as well as those
that have not been extensively explored but are likely to
contribute additional information from a biological point of
view (e.g., nucleosome positioning propensities, gene functions,
and histone acetylation status). Statistical tests were performed
to identify the features that are significantly correlated with
the methylation status of CpG islands, and principal component
analysis was subsequently performed to decorrelate the selected
features. The CpG island methylation profile data from the
Human Epigenetic Project were used to train, validate and test
our predictive models. Specifically, the models were trained
and validated by using the data of the CD4 lymphocyte, and
were then further tested for generalizability using the data of
the other 11 tissues and cell types. The experiments showed
that (1) an eight-dimensional feature space that was selected
via the principal component analysis and that combines all
categories of information was effective for predicting the CpG
island methylation status, (2) by incorporating the information
regarding the nucleosome positioning, gene functions, and
histone acetylation, the model could achieve a higher specificity
and accuracy than the existing model while maintaining a
comparable sensitivity, (3) the histone modification information
contributed significantly to the prediction, without which the
performance of the model deteriorated, especially in terms of
sensitivity, and, (4) the predictive models generalized well to
different tissues and cell types, no matter whether the histone
modification information was incorporated or not.

I. INTRODUCTION

Epigenetics refers to a somatically inheritable pattern of
gene expression that is determined by mechanisms other
than those encoded in DNA sequences. DNA methylation
is an important type of epigenetic modification, implicated
in critical cellular functions including genetic imprinting,
X-chromosome inactivation, suppression of retroviral ele-
ments, and carcinogenesis. DNA methylation involves the
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addition of a methyl group to DNA via DNA methyltrans-
ferase, and typically occurs at the cytosine residues in a
CpG dinucleotide context [1]. CpG dinucleotides in human
genome are relatively rare but are enriched in short DNA
segments known as CpG islands [2]. Most CpG dinucleotides
are methylated in human somatic cells [3], but the CpG
dinucleotides residing within CpG islands tend to remain
unmethylated.

DNA methylation can be determined experimentally via
biochemical assays or sequencing. On the other hand, com-
putational modeling can effectively complement the wet
chemistry approach in identifying critical factors or pathways
controlling DNA methylation patterns, as well as to provide
valuable information when methylation data are unavailable
for certain genome regions. Computational prediction of
DNA methylation has been conducted at two levels – CpG
dinucleotides and CpG islands, respectively. At the CpG
dinucleotide level, DNA fragments of fixed length with a
cytosine in the center were used for the prediction. Each nu-
cleotide was represented by a 5-bit binary sparse code, so that
each DNA fragment was represented by a series of codes and
the difference between DNA fragments could be quantified.
With the optimal DNA fragment length (39 nucleotides), a
∼75% of accuracy could be reached for predicting whether a
CpG dinucleotide is methylated or not [4]. At the other level,
computational models have been developed to distinguish
between methylated and unmethylated CpG islands (or DNA
fragments with high CpG density). For example, Feltus et
al. used DNA sequence patterns to distinguish methylation-
prone and methylation-resistant CpG islands under de novo
methylation, and reached an 82% accuracy [2]. Bock et al.
augmented the feature space by including DNA sequence
patterns, DNA repeats and predicted DNA structure. Their
experiments on the Human Epigenome Project (HEP) data
set showed a ∼90% accuracy for predicting the methylation
status of DNA fragments of high CpG density [5] [6].
The MethCGI used both the DNA sequence composition
and transcription factor binding site (TFBS) features to
characterize CpG islands and reached an 84% specificity
and 84% sensitivity on human brain data [7]. Fan et al.
augmented the feature space of the CpG island by including
histone methylation information, which is highly correlated
with DNA methylation, and reported a 94% sensitivity and
74% specificity on the HEP data [8].

In this study, we considered various attributes that are
possibly related to the CpG island methylation. These at-
tributes include those that have been previously investigated
(e.g., the CpG island specific attributes, DNA sequence
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patterns, DNA structure patterns, distribution patterns of
functional and evolutionarily conserved elements, and the
histone methylation status) as well as those that have not
been extensively investigated (e.g., nucleosome positioning
propensities, gene functions, and histone acetylation status).
The contribution of each individual feature was evaluated
by statistical tests; and the correlation between features was
reduced by principal component analysis (PCA). These DNA
methylation-relevant yet non-intercorrelated features were
then used to build support vector machine-based classifiers
to predict the methylation status of CpG islands. The pre-
dictive models were evaluated by using the HEP data set.
Specifically, the CpG island methylation profiles in the CD4
lymphocyte were used to train and validate the models,
while the CpG island methylation profiles in the other 11
tissues/cell types were used to test the generalizability of
the models. Through these experiments, we assessed the
individual and combinational influence of the newly added
features (nucleosome positioning propensities, functions of
nearby genes, and the acetylation status of nearby histones)
and the impact of histone modification information.

II. DATA SETS

Methylation profiles were obtained from HEP. HEP aims
to provide the high-resolution data set regarding genome-
wide DNA methylation patterns in human tissues and cell
lines [9]. It currently covers chromosomes 6, 20 and 22,
and provides 1.9 million CpG methylation values of 2,524
amplicons derived from 12 different tissues and 43 different
samples using bisulfite DNA sequencing. The methylation
values of the analyzed CpGs range from 0 to 100 inclusive,
where 0 corresponds to the lowest and 100 to the highest
methylation intensity.

CpG islands can be defined in a number of ways, one of
which is based on the Gardiner-Garden criteria: (i) with at
least 200 base pairs (bp), (ii) with a GC content>50%, and
(iii) with an observed/expected CpG ratio>60% [10]. When
applying the Gardiner-Garden criteria on the human genome,
we also excluded the repetitive sequence fragments (such
as the Alu repeats, which are GC rich and with high CpG
observed-to-expected ratio). The methylation intensity of a
CpG island was considered as the average methylation inten-
sities of all CpG dinucleotides contained in the island. For
statistical reliability, we only considered those CpG islands
with more than 10% CpG dinucleotides being measured the
methylation intensity levels, and defined unmethylated CpG
islands as those whose average methylation intensities are
less than 10% while methylated CpG islands as those whose
average methylation intensities are larger than 50% [8].

III. METHODS

A. Feature Extraction

It has been shown that the CpG island methylation status is
correlated with the following features: CpG island specific
attributes (e.g. length, GC content, GC observed/expected
ratio) [11] [12] [7], patterns of DNA sequence composition
[2] [12] [5], patterns of predicted DNA structure [11] [5],

patterns of repetitive elements [11] [12] [7] [5], patterns of
TFBS, patterns of evolutionarily conserved elements [11],
as well as the methylation status of nearby histones [8].
Computational prediction of CpG island methylation status
based on the statistical properties of these features could
render fairly reasonable accuracy (e.g., ∼89% [2] [8]). In
this study we incorporated three more sets of attributes that
have not been extensively explored, including (i) the nucle-
osome positioning propensities of the CpG island, (ii) the
acetylation status of nearby histones, and (iii) the functional
roles of nearby genes. These attributes are promising to add
more dimensions of information, because an accumulating
body of evidence has shown that DNA methylation is in-
fluenced by nucleosome positioning [13], associated with
histone acetylation [14], and involved in biological processes
such as gene imprinting, X chromosome inactivation, and
tumor suppressor gene silencing [15] [16]. In the following
paragraphs of A.1 to A.6., we describe how these features
were extracted.

A.1. The CpG island specific attributes, including the
GC content, length and observed/expected CpG ratio, were
directly obtained from UCSC human genome browser.

A.2. We considered the DNA composition and structure of
each CpG island. For the DNA compositional features, we
focused on the frequencies of the tetramer oligonucleotides
and their z-scores; and, for the DNA structural features, we
focused on those basic characteristics capturing the DNA
3-D conformation as well as the nucleosome positioning
propensities.

The z-score of a tetramer oligonucleotide fragment,
N1N2N3N4, was calculated as:

Z(N1N2N3N4) =
O(N1N2N3N4)− E(N1N2N3N4)

σ(N1N2N3N4)
(1)

where O(·) represents the observed frequency, E(·) and
σ(·) represent the expected frequency and standard devia-
tion. E(N1N2N3N4) was estimated empirically based on a
maximal-order Markov model [17]:

E(N1N2N3N4) =
O(N1N2N3)O(N2N3N4)

O(N2N3)
(2)

and σ(N1N2N3N4) was approximated as:

σ(N1N2N3N4) = E(N1N2N3N4)∗
[O(N2N3)−O(N1N2N3)][O(N2N3)−O(N2N3N4)]

O2(N2N3)
(3)

The DNA conformation related attributes include twist,
tilt, roll, shift, slide and rise, which were estimated based
on a model of dinucleotide stiffness [18]. For each of these
six attributes, the average value over all dinucleotides of the
CpG island was used.

Nucleosome positioning propensities of the CpG islands
were estimated based on the genome-wide prediction of the
nucleosome organization map [19]. There were two types
of predictions, one at the nucleotide level, and the other
at the DNA fragment level. The nucleotide level prediction
regards the probability of each nucleotide being covered by
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any nucleosome, based on which we calculated the mean
and standard deviation over the entire CpG island. The
fragment level prediction regards the nucleosome positioning
potential of each 147 bp (the typical length of a nucleosome)
DNA fragment, based on which we calculated the mean and
standard deviation over all fragments overlapping with the
CpG island.

A.3. We also considered the distribution patterns of the
functional or evolutionarily conserved elements in the chro-
mosomal region flanking the CpG island, where the func-
tional elements refer to the TFBS that are conserved in
human, mouse and rat genomes [20], and the evolutionarily
conserved elements are those that are conserved across
vertebrate, insect, worm and yeast genomes [21]. To account
for both the short- and long-range association between these
elements and CpG islands, we considered flanking regions
of various lengths, ranging from 100 bps to 2,000 bps
(with step size of 100 bps) upstream and downstream of
the CpG island. Each TFBS or evolutionarily conserved
element is characterized by a score quantifying its degree of
conservativeness across genomes. We counted the number
of these elements overlapping with the CpG island, and
calculated their average score.

A.4. We examined whether a CpG island’s nearby genes
are involved in any cancer-related biological processes. A
CpG island’s nearby genes refer to those whose promoter
region (from the 1,000 bps upstream to the 200 bps down-
stream of the transcription start site) overlaps with the CpG
island. 37 biological processes (30 oncogene related, 11
tumor suppressor related, and 4 common) were determined
through gene ontology enrichment analysis of the genes
retrieved from the Cancer Gene Census [22]. If the gene
ontology annotations of a gene include one or more of these
processes, the corresponding gene function feature is 1 and
0 otherwise.

A.5. We considered the methylation and acetylation sta-
tuses of each CpG island’s nearby histones. The histone
methylation information was obtained from Barkski et al’s
data set, which characterizes the genome wide distribution
of 20 histone methylations as well as histone variant H2A.Z,
RNA polymerase II, and the insulator binding protein CTCF
in CD4 lymphocytes [23]. The histone acetylation informa-
tion was obtained from Wang et al.’s data set [24], which
characterizes the genome-wide patterns of 18 histone acety-
lations in CD4 lymphocytes. In both data sets, a nucleotide
is tagged if its nearby histone undertakes a methylation
or acetylation modification; hence, the number of tags at
each nucleotide can be interpreted as being proportional
to the modification level of nearby histones. We used the
average and standard deviation of the number of tags over
all nucleotides of a CpG island to represent the methylation
(or acetylation) level of the CpG island’s nearby histones.

B. Feature Selection through Statistical Tests and Principal
Component Analysis

A total number of 841 features were extracted for each
CpG island, including three CpG island-specific attributes,

512 DNA compositional features and 10 DNA structural
features of the CpG island, 230 about the distribution of
TFBS and two about the distribution of the evolutionarily
conserved elements in the flanking chromosomal region, two
about the involvement of the neighboring genes in onco-
gene or tumor-suppressor related processes, and 82 about
the methylation and acetylation status of nearby histones.
The extraction of these features was biologically motivated.
However, from a statistical point of view, the correlations
of these features to the CpG island methylation status vary
from one feature to another. For instance, it was reported
that DNA sequence composition patterns, distribution of
repeat elements, and DNA structure properties are highly
or moderately correlated with the CpG island methylation
status; whereas the distribution of genes, single nucleotide
polymorphism, and CpG island distribution are only weakly
correlated with the CpG island methylation status [5]. To
screen out the features of predictive power, we performed
various statistical tests, including the Fisher’s exact test
[25], Chi-squared test [26], and Kolmogorov-Smirnov (KS)
test [27]. The Fisher’s exact test was used for functional
roles of nearby genes, for which the feature variable is
categorical and some expected values in the contingency
tables are extremely small (<5); the Chi-squared test with
Yates corrections [28] was used for the other categorical
features (i.e., the number of functional and evolutionarily
conserved elements in the flanking chromosomal region);
and, the KS test was used for those features whose values are
continuous, including CpG island specific attributes, tetramer
frequencies and z-scores, DNA structural features, scores of
functional and evolutionarily conserved elements, and scores
of histone methylation and acetylation. For each of these
statistical tests, a feature was considered to be statistically
significantly correlated with the methylation status of CpG
islands if its p-value was less than 0.05.

Besides their correlations with the CpG island methylation
status, these features might be inter-correlated. For example,
the histone methylation and acetylation status are likely to
be correlated, because some acetylation and methylation
(e.g. histone H3 at lysine 9) play opposite roles in gene
activity [29]; DNA sequence and structure properties are
likely to be correlated, because most DNA structures are
predicted based on DNA sequences; and, the distribution
of functional/evolutionarily conserved elements in a short
flanking neighborhood (e.g., +/- 200 bps) is likely to be
correlated with the distribution in a longer flanking neighbor-
hood (e.g., +/- 2000 bps). The correlation between features
makes the feature space unnecessarily high-dimensional. To
minimize the redundancy in the features, we performed the
PCA on those CpG island methylation-related features that
were selected via the above statistical tests.

C. Prediction Test

The features selected through statistical tests and PCA
were used to build support vector machine-based models to
predict the CpG island methylation status. To examine the
contribution of the newly added features as well as the impact
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of the inhibitive-to-acquire histone modification information,
we established the following predictive models, (1) M1: a
model with all information being incorporated, (2) M2: a
model with all but the histone modification information being
incorporated, (3) M3–M9: seven models with individual or
combinations of the newly added features being excluded,
and (4) M10–M16: seven models with individual or combi-
nations of the newly added features as well as the histone
methylation information being excluded. We used the CD4
lymphocyte data for training and validating the models, while
the data of the other 11 tissues/cell types for generalizability
testing.

Training/Validation (based on the CD4 lymphocyte
data): All these models were trained and validated by
using a 10-fold cross validation scheme. That is, all CpG
islands were partitioned randomly into 10 approximately
equally-sized folds, each of which was used in turn for
validation while the remaining folds were used for training.
The performance of the classifiers was assessed by using
three metrics defined in Eqns. (4)–(6), namely, sensitivity
(SE), specificity (SP), and accuracy (ACC). This partition-
training-and-validation procedure was repeated for 20 times,
and the classifier performance was averaged over the 200
validation folds.

SP =
#correctly classified unmethylated CpG islands

#unmethylated CpG islands
(4)

SE =
#correctly classified methylated CpG islands

#methylated CpG islands
(5)

ACC =
#correctly classified CpG islands

#CpG islands
(6)

For fair comparisons with the existing method, a leave-
one-out cross-validation (LOOCV) scheme was also used.
That is, each CpG island was in turn used for validation
while the remaining CpG islands were used for training. The
performance of the model in the LOOCV scheme was also
assessed by the three metrics averaged over all validation
CpG islands.

Generalizability testing (based on data of other tis-
sue/cell types): Two predictive models built on the CD4
lymphocyte data were tested for generalizability using the
data of the other 11 tissues and cell types: one (M1) relying
on all information, while the other (M2) relying on all
but the histone modification information. For the former
model, because the genome-wide histone methylation and
acetylation profiles are not available for these 11 tissues and
cell types, we used the genome-wide histone modification
profiles in the CD4 lymphocytes, assuming that histone
modifications in various cell types are moderately or even
highly correlated [41].

IV. RESULTS AND DISCUSSIONS

A. Statistical Tests and PCA

Out of a total number of 841 features, 342 features were
retained whose p-values in the statistical tests were less

than 0.05. These features include two of the CpG island
specific attributes, 217 DNA compositional and eight DNA
structural features, 35 functional element features and two
evolutionarily conserved element features, two features re-
garding the functional roles of the neighboring genes, and 76
features related to the modification status of nearby histones.
Particularly, among the newly added features, two out of the
four nucleosome positioning features, all of the 36 histone
acetylation features, and both of the features regarding the
functional roles of the neighboring genes were retained after
statistical tests.

PCA was performed to decorrelate these 342 selected
features. Table I summarizes the number of principal com-
ponents that must be retained to keep a certain percentage of
the variance of the original feature space. Observe that the
first eight principal components together can account for the
∼99.90% of the variance in the original feature space and
were therefore used to build the predictive models. Fig. 1
depicts the contribution of each of the 342 original feature
dimensions to the eight principal components. Observe from
Fig. 1 that each of the following eight categories of features,
(i) the CpG island specific attributes, (ii) DNA sequence pat-
terns, (iii) DNA structure patterns, (iv) distribution of TFBS,
(v) distribution of the evolutionarily conserved elements, (vi)
gene functions, (vii) histone methylation and (viii) histone
acetylation status, makes substantial contributions to one or
more principal components, suggesting that these categories
of information, though correlated, are complementary to a
certain extent for predicting the CpG island methylation.

TABLE I
NUMBER OF PRINCIPAL COMPONENTS (PCS) REQUIRED TO RETAIN A

CERTAIN PERCENTAGE (PCNT) OF THE TOTAL VARIANCE.

Pcnt 100% 99.99% 99.90% 99.00%
PCs 342 10 8 6

Pcnt 95.00% 90.00 75.0% 50.00%
PCs 5 4 3 2

B. Performance of the Predictive Models Based on the CD4
Lymphocyte Data

The specificity, sensitivity, and accuracy measures of our
predictive model M1 that incorporates all information are
summarized in Table II. Observe that both cross-validation
schemes rendered similar results, indicating that these mea-
sures can reliably characterize our model. The performance
of our classifier was compared to that of Fan et al.’s [8]
method. Note that both models incorporated the histone
modification information. Observe that our model showed
an improved specificity and accuracy than Fan et al.’s model
while maintaining a comparable sensitivity. Furthermore, it
was reported in [8] that when evaluated on the human brain
data, Fan et. al.’s method could outperform Epigraph [6].

We could argue that the improvement of our model M1

over the existing model was partly due to the incorporation
of the three new types of features – nucleosome positioning
propensities, gene functions, and histone acetylation status.
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Fig. 1. Contribution of the 342 features to the eight principal components. Each column corresponds to a principal component, and each row corresponds
to an original feature dimension.

The performance of our models M3 through M9, each with
an individual or a combination of the new types of features
being excluded, are summarized in Table III. Observe that the
performance of the predictive model deteriorated to different
extents when individual or combinations of the newly added
features were excluded. Specifically, the models without
histone acetylation information (M3, M6, M7, and M9)
deteriorated more than those models with histone acetylation
information but without the other two types of newly added
features (M4, M5, and M8). Therefore, histone acetylation
appears to be the most influential feature to the performance
of the predictive model among the newly added features.

We suspected that the information carried by the histone
methylation features was too dominant to fairly assess the
influence of these newly added features; and therefore ex-
cluded the histone methylation features and repeated the
above experiments excluding individual or combinations of
the newly added features. The resultant models were M10

through M16, and their performance was summarized in
Table III. Similarly, the models without an individual or a
combination of the newly added features deteriorated. It is
noteworthy that (1) the histone methylation and acetylation
information greatly affected the sensitivity of the models, and
(2) the loss of histone methylation information could largely
be made up by including the histone acetylation information.
This is not surprising, given that these two forms of histone
modifications are closely related as repeatedly observed in
various tissues and cell types [29].

C. Classifier Generalizability

The two predictive models, one with the histone modifica-
tion information (M1) and the other without (M2), that were
both built on the human CD4 lymphocyte data were tested
on the data of the other 11 tissue and cell types for their

TABLE II
PERFORMANCE OF OUR CLASSIFIERS M1 ON CD4 LYMPHOCYTES WITH

COMPARISON TO THE EXISTING METHOD.

Method SP SE ACC
M1 (10-fold) 0.9405 0.9257 0.9313
M1 (LOOCV) 0.9429 0.9307 0.9403
Fan et al.’s [8] 0.7400 0.9428 0.8994

generalizability. The sensitivity, specificity, and accuracy of
M1 and M2 during these testing experiments are summarized
in Tables IV and V.

When the histone modification information was incorpo-
rated, the classifier model built on the CD4 lymphocyte data
can be applied to most of the other tissues and cell types
(except for sperm) with little or no performance deterioration.
When the histone modification information was not used,
the performance of the predictive model on the data of
the other tissues and cell types deteriorated substantially,
especially in terms of the sensitivity. However, if compared
to the validation results where the histone modification
information was not used, the performance on the testing data
was not unexpected. Therefore, with or without the histone
modification information, the predictive model established on
the CD4 lymphocyte data can well generalize to the other
tissue or cell type data.

Considering that DNA methylation is heavily involved in
cellular differentiation, our results in Tables IV and V look
suspicious. We therefore calculated the correlations of the
CpG island methylation levels between different tissue and
cell types, as depicted in Fig. 2. Observe that the correlation
coefficients between the somatic/placenta cells are very high
(mean: 0.9455, standard deviation: 0.0229), where the cor-
relation coefficients between the somatic/placenta and sperm
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TABLE III
PERFORMANCE OF THE PREDICTIVE MODELS (M3 THROUGH M16), EACH WITH AN INDIVIDUAL OR A COMBINATION OF THE NEWLY ADDED

CATEGORIES OF FEATURES BEING EXCLUDED.

Features SP SE ACC
LOOCV 10-fold LOOCV 10-fold LOOCV 10-fold

Histone Methylation Retained

All retained 0.9429 0.9405 0.9307 0.9257 0.9403 0.9313
Acetylation (M3) 0.9048 0.9012 0.9010 0.8965 0.9175 0.9046

Functional roles (M4) 0.9319 0.9302 0.9315 0.9265 0.9362 0.9210
Nucleosome (M5) 0.9285 0.9270 0.9276 0.9250 0.9205 0.9205

Acetylation + Functional roles (M6) 0.8876 0.8791 0.8912 0.8903 0.8915 0.8897
Acetylation + Nucleosome (M7) 0.8805 0.8698 0.8815 0.8835 0.8902 0.8826

Functional roles + Nucleosome (M8) 0.9208 0.9186 0.9107 0.9116 0.9202 0.9186
All three (M9) 0.8775 0.8685 0.8810 0.8822 0.8806 0.8786

Histone Methylation Excluded

All but histone methylation 0.9321 0.9318 0.5941 0.5932 0.8593 0.8575
Acetylation (M10) 0.9701 0.9670 0.2277 0.2247 0.8102 0.8001

Functional roles (M11) 0.9109 0.9092 0.5720 0.5670 0.8369 0.8312
Nucleosome (M12) 0.9088 0.9078 0.5682 0.5660 0.8298 0.8296

Acetylation + Functional roles (M13) 0.9402 0.9320 0.2289 0.2279 0.7885 0.7862
Acetylation + Nucleosome (M14) 0.9381 0.9266 0.2302 0.2304 0.7752 0.7641

Functional roles + Nucleosome (M15) 0.9012 0.8990 0.5520 0.5519 0.8252 0.8232
All three (M16) 0.9098 0.8972 0.2341 0.2338 0.7406 0.7352

Fig. 2. Correlation coefficients of the CpG island methylation levels across
different tissues and cell types.

cells are only moderate (mean: 0.6706, standard deviation:
0.0225). This suggests that the methylation status of CpG
islands are highly correlated in various somatic/placenta
cells, and therefore do not represent tissue-specific differ-
entially methylated regions. Our observations are consistent
with recent studies [30] [31] that there are few variance
in methylation levels of autosomal CpG island promotersa,
and there is only a relatively small fraction of CpG islands
with tissue-specific methylation. The difference between the
somatic/placenta and sperm cells, as reflected by their mod-
erate cross-correlations and the performance deteriorations of
our prediction models being applied to the sperm cell data,
suggests that gametes are epigenetically more deviated from
somatic cells than somatic cells themselves. This difference
is likely related to the meiotic process, the special conditions
and gene expression required for gamete production [32].

V. CONCLUSIONS AND FUTURE WORKS

The establishment of DNA methylation pattern is a crucial
part of cell differentiation and organ development, suppres-

TABLE IV
PERFORMANCES OF THE CLASSIFIER MODEL BUILT ON THE DATA OF 11
DIFFERENT TISSUES AND CELL TYPES: WITH HISTONE MODIFICATION.

Procedure Tissue/Cell Type SP SE ACC

Validation CD4 (10-fold) 0.9405 0.9257 0.9313
CD4 (LOOCV) 0.9429 0.9307 0.9403

Testing

CD8 0.9608 0.8932 0.9448
liver 0.9680 0.8762 0.9465
heart muscle 0.9462 0.9479 0.9466
skeletal muscle 0.9542 0.9451 0.9524
embryonic skeletal 0.9395 0.9367 0.9389
embryonic liver 0.9259 0.9342 0.9277
placenta 0.9695 0.9130 0.9571
dermal melanocytes 0.9663 0.8785 0.9446
dermal fibroblasts 0.9525 0.9239 0.9467
dermal keratinocytes 0.9385 0.9341 0.9376
sperm 0.8459 0.9778 0.8617

TABLE V
PERFORMANCES OF THE CLASSIFIER MODEL ON THE DATA OF 11

DIFFERENT TISSUES AND CELL TYPES: WITHOUT HISTONE

MODIFICATION.

Procedure Tissue/Cell Type SP SE ACC

Validation CD4 (10-fold) 0.9670 0.2247 0.8001
CD4 (LOOCV) 0.9701 0.2277 0.8102

Testing

CD8 0.9722 0.2108 0.8104
liver 0.9678 0.2143 0.8122
heart muscle 0.9562 0.2386 0.8186
skeletal muscle 0.9594 0.2364 0.8306
embryonic skeletal 0.9425 0.2298 0.8100
embryonic liver 0.9389 0.2306 0.8054
placenta 0.9655 0.2184 0.8276
dermal melanocytes 0.9700 0.2186 0.8156
dermal fibroblasts 0.9605 0.2200 0.8237
dermal keratinocytes 0.9425 0.2204 0.8095
sperm 0.8524 0.2365 0.7625

sion of viral genes and deleterious elements, and carcinogen-
esis. Computational prediction of DNA methylation levels
provides an effective, fast and cheap alternative approach
for studying the DNA methylation patterns. In this study, we
performed the computational prediction of the CpG island
methylation by incorporating additional features and effec-
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tively selecting and decorrelating the features. We incorpo-
rated the information regarding the nucleosome positioning
propensity, acetylation status of nearby histones, and the
functional roles of nearby genes. These features were first
screened through statistical tests and PCA. The most DNA
methylation-relevant yet non-intercorrelated features were
subsequently used to build computational models to predict
the methylation status of CpG islands. Our experiments on
the HEP data set demonstrated that (1) an eight-dimensional
feature space, which combines all the eight categories of in-
formation, was effective in predicting the methylation status
of CpG islands; (2) by incorporating the information regard-
ing the nucleosome positioning propensities, gene functions,
and histone acetylation, our predictive model achieved a
higher specificity and accuracy than the existing model
while maintaining a comparable sensitivity; (3) the histone
modification attributes carry a weight of information for the
prediction, without which the performance of the predictive
model deteriorated substantially in terms of sensitivity; (4)
with or without the histone modification information the
performance of the predictive models are consistent on the
validation and testing data. This computational model, with
its evidently high specificity and sensitivity, provides an
effective tool for identification of new methylation targets
and therefore lays foundation for our future endeavors in the
regulation mechanisms of DNA methylation.
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Abstract— The identification of homologies between protein 
sequences is a central problem in molecular biology and several 
algorithms have been proposed for accomplishing this task. The 
Needleman-Wunsch Algorithm and its close variant, the Smith-
Waterman dynamic programming methods, solve the problem 
exactly in quadratic time and space. However, due to the massive 
amount of data involved in sequence-to-database of sequences 
comparisons, heuristic methods such as BLAST, are used instead. 
This article explores the design of a parallel version of 
Needleman-Wunsch based on a divide-and-conquer idea derived 
from an algorithm first proposed by Hirschberg, for the 
identification of the longest common substring of two strings.    

Keywords: string alignment, dynamic programming, divide-
and-conquer, recursion, parallel computation. 

I.  INTRODUCTION 
The identification of homologies between protein 

sequences is a central problem in molecular biology. In 
computational terms, the problem is stated as the search of an 
optimal alignment between a pair of strings over the 20-
character amino acid alphabet. An alignment of a pair of 
strings S1=x1…xm and S2=y1…yn, is a 2 ! q matrix A[i, j], 
where i = 1, 2 and q " max{m, n}; whose entries are the 
characters of the amino acid alphabet or a gap symbol  “ – ”. 
In addition, A satisfies: 

 
i. For each i = 1, 2 and j, A[i, j] is a character of the 

protein alphabet or either A[1, j] = –  or A[2, j] = 
–, but not both; 

ii. If all gap symbols are removed and each empty cell is 
filled by left shifting by one all the cells to its 
right, then  A[1, j] = xj and A[2, j] = yj  
 

The similarity is quantified with respect to a substitution 
matrix that establishes the rate at which a character in the 
amino acid alphabet changes to each of the other characters in 
the same alphabet, over time. We denote the substitution rate 
of pair of characters xk and yj as r(xk, yj). A gap penalty, in 
turn, is a numerical cost imposed for the insertion of the gap 
symbol in either A[1, j] or A[2, j]. Gap penalties may be 
assigned as a constant per gap symbol inserted, or as an affine 
gap penalty containing separate costs for initiating and for 

extending the gap with consecutive gap symbol insertions. For 
the sake of simplicity, we consider solely constant gap 
penalties. The score of an alignment is the sum of the rate of 
substitution of each pair of aligned characters minus a gap 
penalty per each character that is aligned with the gap symbol. 
The higher the score, the better the alignment. For example, 
let’s consider the alignment of the pair (S1, S2); with S1 = 
PAWHEAE and S2 = HEAGAWGHEE [1]. The next 
alignment is optimal with respect to the BLOSUM50 
substitution matrix and a penalty gap of # = -8.  

TABLE I. AN OPTIMAL ALIGNMENT OF S1 AND S2 

 

This alignment, which reaches the optimal score of 1, is not 
necessarily unique. Indeed, in this particular case as in many 
others, there are other alignments that reach the same score.  

A. Dynamic Programming 
An exhaustive search for an optimal alignment takes 

exponential time. Needleman and Wunsch [2] introduced a 
quadratic time and space dynamic programming method 
known today as the Needleman-Wunsch algorithm (NWA). 
NWA computes an optimal alignment in two main steps. The 
first step uses a recursive formula to fill in, usually row-by-row 
or column-by-column; a dynamic programming matrix D . The 
next pseudo-code describes this process. 

Step 1: Computation of the Dynamic Programming Matrix 
For each k, 0 ! k ! m; 
     D[k, 0] ! k"# 
For each j, 0 ! j ! n;  
     D[0, j] ! j"#  
For each k, 1 ! k ! m; 
    For each j, 1 ! j ! n; 

D[k, j]!max{D[k-1, j-1]+r(xk, yj), D[k-1,j]+#, D[k,j-1]+#} 
 

Matrix D contains the optimal scores for the alignment of 
all subsequences of S1 and S2 that start at x1 and y1; 

H E A G  A W G  H E –  E 

–  –  P –  A W –  H E A E 
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respectively. The last entry in this matrix, this is D[m, n], is the 
optimal score for the alignment of S1 and S2 . The second step 
of NWA backtracks the path of solutions of the subsequence 
alignments that led to the optimal score D[m, n]. We refer to a 
path of indices of D that results from this process as backtrack-
path or b-path. Backtracking is summarized in the next pseudo 
code. 

Step 2: Computation of a b-path 
b-path!{[m, n], [0, 0]} 
While [k, j] $ [0, 0]  is in b-path 

If D[k, j]=D[k-1,j-1]+r(xk,yj) 
b-path! b-path ! {[k-1,j-1]}; 

      Else if D[k, j]=D[k-1,j]+# 
b-path! b-path !"{[k-1, j]}; 

      Else if D[k, j]=D[k,j-1]+# 
b-path!b-path !"#[k, j-1]};  
 

The actual alignment follows from the b-path by applying 
the next rule: 

If [k-1, j-1] and [k, j] are in the b-path, xk is aligned with yj 
If [k-1, j] and [k, j] are in the b-path, xk is aligned with –  
If [k, j -1] and [k, j] are in the b-path, yj is aligned with –  
 

NWA solves the global alignment problem, which is, the 
optimal alignment of the whole S1 and S2 input sequences. 
However, in many biological instances, sequences share only 
segments of meaningful similarity. These may vary from short 
regions to large domains of recognizable similarity. The so-
called local alignment problem is the problem of identifying 
the segments in S1 and S2 with the highest alignment score. An 
exact algorithmic solution of the local alignment problem is the 
Smith-Waterman algorithm (SWA) due to Smith and 
Waterman [3]. The SWA is a variant of the NWA that replaces 
negative scores with zeroes masking thus, segments of low 
similarity score. SWA dynamic programming and backtracking 
steps are similar to the ones in NWA except that backtracking 
starts from the indices of the entry with the highest score in the 
whole matrix D, and ends right before the first 0 encountered 
while performing the backtracking process. Thus, unlike b-
paths, local backtracking paths or lb-path are not necessarily 
anchored in [m, n] and [0, 0]. This difference has deep 
algorithmic consequences.  

B. Some Previous Parallelization Attempts 
Filing D with either NWA or SWA takes O(mn) time and 

space. Backtracking, in turn, is accomplished in O(m + n) time. 
Although most implementations do not store D, the information 
needed to backtrack the optimal alignment still takes O(mn) 
space. Due to the large size of protein sequences and protein 
databases, SWA is often replaced with the heuristic BLAST [4] 
(Basic Local Alignment Sequence Tool) algorithm. Unlike 
BLAST, whose heuristics is well suited for parallelization; the 
parallelization of NWA and SWA is limited by the recursive 
nature of their core processes. Some NWA and SWA 
parallelization attempts exploit the fact that each entry in D 
depends solely on its northern, western and northwestern 

neighbors. Thus, entries lying in the same anti-diagonal of D 
can be computed in parallel. This method is referred as the 
wave-front computation of D and is sometimes attributed to 
Gotoh [5] in the literature. Hsien-Yu Liao [6] et. al. use the 
wave-front computation to pipeline the search for an optimal 
alignment of a query sequence and the sequences in a database. 
The idea is to slide the front-wave across an enhanced scoring 
matrix whose rows correspond with the query sequence while 
the columns, to the concatenation of all the sequences in the 
database. Such concatenation is expected to diminish the 
latency incurred in starting each new comparison. Another 
method, introduced by Fa Zheng [7] et. al. splits the query 
sequence S1 into a fixed number of sequences of approximately 
the same length. Each sub-sequence of S1 is aligned with S2 
independently. A drawback in this method is that the scores 
matrices, which are computed in parallel, do not always 
correspond to sub-problems of the original alignment problem. 
Thus, in order to retrieve the alignment from the computed 
matrices, the authors propose what they called combine and 
extend method; which compromises the sensitivity of the result. 

Most attempts to speedup NWA or SWA concentrate in 
the computation of the score matrix. This article takes a more 
integral approach. The starting point in our search for a 
parallel method is a non-recursive alternative to backtracking. 
The proposed alternative is based on symmetry properties that 
arise when matrix D is compared D*, the dynamic 
programming matrix of the alignment of S1* and S2*, which 
are the original sequences S1 and S2 but in reversed order.  

II. PROPERTIES OF THE DYNAMIC PROGRAMMING MATRIX 
Hirschberg [8] introduced an O(m + n) space algorithm for 

finding the longest common sub-string of a pair of strings. His 
method relies on the rather obvious fact that the longest 
common sub-string of S1 and S2 is the same as the longest 
common sub-string of S1* and S2*. Hirschberg’s idea has been 
extended to the calculation of the edit distances between pairs 
of sequences and to the global alignment of a pair of 
sequences. The authors did not find in the literature any 
extension of Hirschberg’s method to the parallelization of 
NWA. This section develops the mathematical foundations of 
Hirschberg-NWA space saving algorithm, and describes it in a 
way that makes it more suitable for the parallel NWA 
discussed in section III.  

A. The D-D* symmetry 
The mathematical facts that allow the use of Hirschberg’s 

ideas in the solution of the problem of the global alignment of 
a pair of sequences are stated below. 

Lemma 1.  The optimal alignment of a pair (S1, S2) in 
reversed order is an optimal alignment for the pair (S1*, S2*); 
and vice versa. 

The next theorem is crucial in the parallelization and space 
saving strategy of NWA to be discussed in the next section. 
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Theorem 1. Let D and D* be the score matrices 
produced with NWA for the pairs (S1, S2) and (S1*, S2*), 
respectively. Then, for each 0 ! k ! m and each 0 ! j ! n, 

i. D[k, j] + D*[m – k, n – j] ! D[m , n] 

ii. D[k, j] + D*[m – k, n – j] = D[m, n] if and only if 
[k, j] is in a b – path. 

Proof. The proof of assertion i. is by induction on k and j. For 
the base case we set k = 0 and j = 0. Thus, the statement to be 
proved is D[0, 0] + D*[m, n] $ D[m , n]. This statement is true 
because, after Lemma 1, D[m, n] = D*[m , n] and  D[0, 0] = 0. 
We assume now that there is a pair of indices k, j for which 
D[k, j] + D*[m – k, n – j] $ S[m, n] and prove that under this 
assumption the statement:  

(a) D[k + 1, j] + D*[m – k – 1, n – j] $ D[m, n], and 

(b) D[k, j + 1] + D*[m – k, n – j – 1] $ D[m , n], and 

(c) D[k + 1, j + 1] + D*[m – k – 1, n – j – 1] $ D[m, n], 

is also true. The proof of claim (a) is as follows. Since by 
definition of the NW recursion D[k + 1, j] $ D[k , j] + #, we 
have that  

D[k + 1, j] + D*[m – k – 1, n – j] $  

D[k , j] + # + D*[m – k – 1, n – j] $  

D[k, j] + D*[m – k, n – j] $ D[m, n].  

Sub-statement (b) is proved similarly. In order to demonstrate 
claim (c) let B[k, j] be the entry for the pair (xk, yj) in the 
substitution matrix. Then, 

D[k + 1, j + 1] + D*[m – k – 1, n – j – 1] $  

D[k, j] + B[k + 1, j + 1] + D*[m – k – 1, n – j – 1] $  

D[k, j] + D[m – k, n – j] $ D[m ,n].  

Assertion ii is a direct consequence of Lemma 1.  

The index relation ([k, j], [m – k, n – j}) is referred as D-D* 
symmetry and the entries D[k, j] and D*[m – k, n – j] as D-D* 
symmetric entries.  

B. The O(m + n) Space Hirschberg-NWA 
Theorem 1 provides the mathematical basis for a space 

saving Hirschberg-NWA (HNWA). This method, which 
follows the divide-and-conquer paradigm, uses Step 1 of NWA 
repeatedly, each time over sequences of approximately half the 
size of the previous ones, to divide the problem in sub-
problems, until a predetermined sub-problem size is reached. 
Only the last column of each intermediate sub-problem 
dynamic programming matrices D and D* are temporarily 
stored to determine the indices [k, j] that satisfy statement ii of 
Theorem 1. Once [k, j] is known, the problem is split in two 
sub-problems. Indeed, because of the general form of a b-path, 
the indices [r, s] of the b-path segment from [0, 0] to [k, j] must 
satisfy 0 $ r $ k. Similarly, the indices [r, s] of the b-path 
segment from [k, j] to [m, n] must satisfy k $ r $ m. Thus, the 
search for the next indices that satisfy statement ii of Theorem 
1 is reduced to the upper leftmost k ! j block D[r, s], 0 $ r $ k, 
0 $ s $ j; and the lower rightmost (m – k)  ! (n – j) block, this 

is, D[r, s], k $ r $ m, j $ s $ n. This splitting identifies a pair of 
subsequences of S1 and S2, which are aligned in the global 
alignment of S1 and S2, except perhaps for the introduction of 
gaps. By selecting j as close as possible to the middle of the 
subsequence of S2, the corresponding blocks in the dynamic 
programming matrix are of similar size in the average case. 
This process of splitting sequences in subsequences, which we 
refer as the divide phase, is repeated on each of the newly 
identified subsequence up until a predetermined subsequence 
length is reached. The divide phase ends with the application of 
NWA to each of the subsequences of predetermined size. It is 
easy to demonstrate that the divide phase can still be performed 
in O(mn) time, although with a higher constant. The cost in 
memory space, in turn, is reduced in the best case (i.e. one 
point subsequences) to O(m + n). The conquer phase of the 
method is also linear in time and space as it consists basically 
in pasting together the b-path segments computed at the end of 
the divide phase.  

C. A Case Study 
We illustrate the base divide and conquer technique of 

HNWA with the problem of finding an optimal alignment for 
S1 = HEAGAWGHEE and S2 = PAWHEAE. Before the 
illustration of the divide phase it is worth remarking that Step 
1 of NWA can be modified to compute the rightmost column 
of D in-place, this is using only the storage space of one 
column. This is an essential element in HNWA memory space 
reduction strategy. The next pseudo code, which illustrates 
such in-place computation, uses a one-dimensional array C[k], 
0 $ k $ m; to store intermediate and final result. 

Step 1.a. In-place computation of the rightmost column of D 
For k = 1 to m 
 Aux2 ! C[k] 
 If Aux2 + #  > Aux1 + r(xk, character) 
  C[k] ! Aux2 + #  
 Else 
  C[k] ! Aux1 + r(xk, character) 
 If C[k] < C[k – 1] + #  
  C[k] ! C[k – 1] +# 
 If C[k] < 0 
  C[k] ! 0 
 Aux1 ! Aux2   
Return C    
 
We return now to the example. In the first step of the 

division phase, we select j = 5 and split sequence S1 in two 
halves each of length 5. The second half is written in reversed 
order. Thus, we split the original problem of aligning the pair 
(HEAGAWGHEE, PAWHEAE) into two independent 
problems, namely; that of aligning the pair (HEAGA, 
PAWHEAE) and that of aligning the pair (EEHGW, 
EAEHWAP). Now, using the Step 1.a described above, we 
compute the rightmost columns of the dynamic programming 
matrices of each of these pairs of sequences. Although in 
practice these matrices are not store, for the sake of clarity we 
present in Table II the full dynamic programming matrices for 
these two pairs of subsequence alignments. 
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TABLE II.  DYNAMIC PROGRAMMING MATRCES FOR (HEAGA, 
PAWHEAE) AND (EEHGW, EAEHWAP) 

Ind  0 1 2 3 4 5 

 Char  H E A G A 

0  0 -8 -16 -24 -32 -40 

1 P -8 -2 -9 -17 -25 -33 

2 A -16 -10 -3 -4 -12 -20 

3 W -24 -18 -11 -6 -7 -15 

4 H -32 -14 -18 -13 -8 -9 

5 E -40 -22 -8 -16 -16 -9 

6 A -48 -30 -16 -3 -11 -11 

7 E -56 -38 -24 -11 -6 -12 

 

Two border columns and rows have been added to keep 
track of the matrix indices and their corresponding characters 
in the sequences. By adding the D-D* symmetric entries of the 
rightmost columns of the dynamic programming matrices (i.e. 
the fifth column of each matrix in this case) we find that: 

2 = arg max {D[k, 5] + D*[7 – k, 5]: 0$ k $ 7}.   (1) 

Therefore, [2, 5] is in the b-path and the search for the 
segment of the b-path to the left of [2, 5] is reduced to the set of 
indices {[r, s]: 0$ r $ 2, 0 $ s $ 5}; while the search for the 
segment to right of [2, 5] is reduced to {[r, s]: 2 $ r $ 7, 5 $ s $ 
10} or, in terms of D*, to {[r, s]: 0 $ r $ 5, 0 $ s $ 5}. The next 
step is to reduce the sequences accordingly. This gives the 
reduced pairs (HEAGA, PA) and (EEHGW, EAEHW). At this 
point, the algorithm checks whether the lengths of all the latter 
sequence segments are less than or equal to the predetermined 
maximal length. If this is not the case, subsequences HEAGA 
and EEHGW are split into two new sequences and the above 
process is repeated to get two new reduced pairs out of each of 
(HEAGA, PA) and (EEHGW, EAEHW). This decomposition 
generates a binary tree that at each leaf has a pair of segments 
of the original sequences whose length is less than or equal to 
the predetermined length. At this point, a b-path for each pair 

of segments is computed and the conquer phase started. For the 
sake of simplicity, let’s assume that the predetermined length is 
5 in the example. Then, the following dynamic programming 
matrices need to be computed and stored and process with Step 
2 of NWA.  

TABLE III.  DYNAMIC PROGRAMMING MATRICES FOR  
(HEAGA, PA) AND (EEHGW, EAEHW) 

 

Ind  0 1 2 3 4 5 

 Char  H E A G A 

0  0 -8 -16 -24 -32 -40 

1 P -8 -2 -9 -17 -25 -33 

2 A -16 -10 -3 -4 -12 -20 

 

By applying Step 2 of NWA to each of these matrices we get 
the b-paths are {[2, 5], [1, 4], [1, 3], [0, 2], [0, 1], [0, 0]} and 
{[5, 5], [4, 4], [4, 3], [3, 2], [2, 1], [1, 1], [0, 0]}, respectively.   
And by applying the previously discussed rules for 
constructing alignments to each b-path we get the alignments, 

H E A G A 

 –    –   P  –   H 

and 

E   –  E H G W 

 E  A  E  H   –  W 

 

Finally, by reversing the second alignment and 
concatenating it to the first one we retrieve the optimal 
alignment of Table 1.   

It can be easily proved that all other optimal alignments are 
obtained from combinations of the alternative optimal 
alignments of each of the leaf pairs of sequence segments.  

III. PARALLELIZING HIRSCHBERG-NWA 
The parallelization of the previously discussed method 

exploits all independent computations in HNWA divide and 
conquers phases. These are, in summary, the computation of 

Ind  0 1 2 3 4 5 

 Char  E E H G W 

0  0 -8 -16 -24 -32 -40 

1 E -8 6 -2 -10 -18 -40 

2 A -16 -2 5 -3 -10 -18 

3 E -24 -10 4 5 -3 -11 

4 H -32 -18 -4 14 6 -2 

5 W -40 -26 -12 6 11 21 

6 A -48 -34 -20 -2 6 13 

7 P -56 -42 -28 -10 -2 3 

Ind  0 1 2 3 4 5 

 Char  E E H G W 

0  0 -8 -16 -24 -32 -40 

1 E -8 6 -2 -10 -18 -40 

2 A -16 -2 5 -3 -10 -18 

3 E -24 -10 4 5 -3 -11 

4 H -32 -18 -4 14 6 -2 

5 W -40 -26 -12 6 11 21 
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the rightmost column of the dynamic programming matrix for 
the optimal alignment of each pair of subsequences, the 
computation of the b-path of each pair of subsequences of 
length less than or equal to the predetermined maximum 
length, and the production of the corresponding alignments. 
We use the master-workers paradigm with 2P workers for 
describing the parallel method. Each worker is identified by a 
worker’s identification number q, 1 $ q $ 2P. The master’s 
identification number is 0.  

A. Parallel HNWA 
The following pseudo code is a high level description of a 

parallel HNWA.  

Master: 
p ! 1 (global variable) 
On input (S1, S2) 
Aux ! S1 
If (length (Aux) > L or length (S2) > L) and p < P 
 S1 ! first half of Aux 
 Send (S1, S2) to Worker 1 
 S1 ! reversed second half of Aux 
 S2! S2* 
 Send (S1, S2) to Worker 2 
 Receive (Al( 2p – 1), Al( 2p)) 
 Concatenate Al(2p – 1) and Al( 2p)* 
 Return 
Else perform NWA(S1, S2) 
Worker q: 
If 1 ! q ! 2p – 1  
Receive (S1, S2) 
Step a: Compute column C with Step 1.a on (S1, S2) 
If 2p – 1 < q ! 2p  
 Send C to Worker q – 2p – 1  
Else, Receive C from Worker q + 2p – 1  
 Compute index k in formula (1) 
 Send k ! m – k to Worker q + 2p – 1  

S2 ! First k characters of local S2
 

Aux ! local S1 
p ! p + 1 (global update) 
If (length (Aux) > L or length (S2) > L) and p < P 

Local S1 ! first half of Aux 
S1 ! reversed second half of Aux 

 S2! S2* 
Send (S1, S2) to Worker q + 2p – 1  

 Go to Step a 
Else Al( q ) ! NWA alignment of (S1, S2)  
If 1 ! q ! 2p – 1 
 Send Al(q) to Worker q + 2p – 1  

Else Receive A(q – 2p – 1 ) 
Al(q) ! Concatenation of Al(q – 2p – 1 ) and Al(q)* 
p ! p – 1   
Send Al(q) to Worker q + 2p – 1     
  

The pseudo code imposes an additional condition for the 
halting of the HNWA divide phase. The divide phase stops 
when the length of all subsequences is less than or equal to a 
predetermined length L > 0 or when all workers are busy. If the 
conditions for splitting a local subsequence are met at Worker 
q, then Worker q keeps the first half of its local S1 segment and 

the first k characters of its local segment of S2 to repeat the 
processes on them, and sends the second half and m – k (local 
m) remaining characters of S2, both in reversed order, to 
Worker q + 2p – 1.  Therefore, if for instance, P = 2 and the 
conditions for splitting the sequences are always met, the 
divide phase will involve 2 parallel steps. First, the master 
sends tasks to Worker 1 and Worker 2. When these parallel 
tasks are completed, Worker 1 sends a sub-task to Worker 3 
and Worker 2 a sub-task to Worker 4. All four workers process 
their sub-tasks in parallel. So, ideally, the parallel tasks in the 
divide phase spawn a binary tree of height 2, rooted at the 
master’s task. There is P parallel communications, as well. The 
conquer phase, in turn, traverses this tree from the leaves up in 
P additional parallel steps. First, workers 1, 2, 3 and 4 produce 
their local alignments in parallel. Then, Worker 1 sends its 
alignment to Worker 2 and Worker 3 sends its alignment to 
Worker 4. At this point, Worker 2 and Worker 4 concatenate 
their alignments in parallel and send the result to the master.    

B. Performance Estimations 
The next analysis, which is based on a highly simplified 

performance model, shows that the proposed parallelization has 
the potential to speed up the execution time of NWA. Let t(N) 
be the execution time of the NWA on a problem of size N. 
Then, t(N) = d(N) + b(N), where d(N) is the time for the 
computation of the dynamic programming matrix and b(N), the 
time for computing the b-path and forming the alignment. The 
P steps in the divide phase of the parallel HNWA will take 
approximately 

( % + & + … + %P)d(N) =(1 – %P)d(N) time. (2) 

Since local b-paths and alignments are computed in 
parallel, the time for producing them can be estimated as 
approximately %P ! b(N). We also estimate the parallel 
communication overheads as a linear function of N, which we 
represent as c ! N. Thus, the speed up formula is: 

[d(N) + b(N)] / [(1 – %P) d(N) + %P b(N) + cNP]. (3) 

Now, taking into account that d(N) is in general much 
larger than b(N), the quotient f(N) = d(N) / b(N) is always a 
fraction 0 < f(N) < 1, which tends to 0 as N growths to infinity. 
By dividing equation (3) by d(N) we get, 

[1 + f(N)] / [(1 – %P) + %P f(N) +  cPN/d(N)]. (4) 

Therefore, as N growths, the theoretical speed up 
approaches S = 1 / [1 – %P]. 

C. Pipelining 
After returning their local alignments Worker 1 and Worker 

2 are idle. Therefore, a new pair of sequences (S1, S2) can be 
received from the master. Subsequent returns from workers 
liberate the necessary processors for the new sequences to 
spawn the binary tree of tasks, if required. This is especially 
suitable for the parallel processing a query sequence; let’s say 
S1, against a database of sequences. 

IV. CONCLUSIONS 
The exploitation of D-D* symmetries, which are derived 

form the original ideas of Hirschberg, renders a parallel version 
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of the NWA. The parallel method has a theoretical speed up 
over the serial NWA and allows for the pipelined processing of 
a query sequence against a database of sequences. The speed 
up formula obtained from a simplified performance model 
seems to indicate that for large problems, the parallel method is 
more advantageous for small number of processors, this is, a 
coarse grain parallelization. 
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Genetic Matching: An Efficient Algorithm to Adjust

Covariate Imbalance for Data Analysis and Modeling
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Abstract - In causal-effect relationship research, sim-
ilarity of groups being compared in terms of covariates
or patient/disease characteristics is critical to ensure
fairness of the comparison and unbiasedness of the find-
ings. When dissimilarity is suspected, one can either ad-
just for imbalance or match the groups according to cer-
tain important covariates or characteristics. Regression
analysis is commonly used to adjust the imbalance and
matching techniques are usually used to match subjects
between groups. Diamond and Sekhon [2] proposed a ge-
netic matching algorithm to maximize the covariate bal-
ance. We describe the theory and conduct a simulation
study to compare the relative performance of propensity
score matching, Mahalanobis matching, and Genetic
matching. Generally, Genetic matching achieves better
covariate balance and produces more stable and unbi-
ased treatment effect estimates. We also apply Genetic
matching to a clinical study to investigate the treatment
effects on rheumatoid arthritis.

Keywords: propensity score, Mahalanobis matching,
Genetic matching, Robbins-Munro stochastic approxi-
mation, randomized controlled clinical trials.

1 Introduction

In causal-effect relationship research, similarity of
groups being compared in terms of covariates or pa-
tient/disease characteristics is critical to ensure fair-
ness of the comparison and unbiasedness of the find-
ings. When dissimilarity is suspected, one can either ad-
just for imbalance or match according to certain impor-
tant covariates or characteristics. Regression analysis is
commonly used to adjust for imbalance and matching
techniques are usually used to match subjects between
comparison groups. Therefore, matching has become
an important method of causal-effect relationship infer-
ence in many fields including biomedicine, economics,
social science, and statistics, to name a few.

Several matching procedures have been proposed in the
literature by researchers since the early 1970s. Impor-
tant differences between these proposed methods are the

efficiency of the algorithms utilized and the effectiveness
of the methods to reduce imbalance prior to subsequent
inferences.

Propensity score matching based on logistic regression
and multivariate matching based on Mahalanobis dis-
tance are among the more commonly used methods for
this purpose. Several variations and combinations of
these methods are also used frequently by practition-
ers.

When covariates have spherical or ellipsoidal distribu-
tions, these methods generally perform quite well; how-
ever, these methods can perform poorly when the dis-
tributions deviate substantially from this family of dis-
tributions. Therefore, it is highly desirable to have al-
ternatives that can perform well even when the distri-
butions of the covariates deviate substantially from this
family of distributions.

Diamond and Sekhon [2] and Sekhon [15] proposed a ge-
netic matching algorithm that imposes additional prop-
erties and generalizations to propensity score and Ma-
halanobis matching methods and maximizes the balance
of observed covariates between the subject groups be-
ing compared. The method is nonparametric and does
not depend on knowing or estimating the propensity
score; however, when a propensity score is incorporated,
the method can sometimes be improved by taking ad-
vantage of the information embedded in the propensity
scores.

Genetic matching has been successfully utilized in social
sciences to investigate causal-effect relationships (Di-
amond and Sekhon [3], Hopkins [5]); however, it has
rarely been used in biomedical research to investigate
between treatment group differences with covariate im-
balance among subjects in the groups.

As stated by Peto, et al. [7], “There is simply no serious
scientific alternative to the generation of large-scale ran-
domized evidence.If trials can be vastly simplified, · · ·,
and thereby made vastly larger, then they have a cen-
tral role to play in the development of rational criteria
for the planning of health care throughout the world.”
Recruitment of a large number of eligible patients from
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a general population is both a major strength and weak-
ness of large pragmatic trials.

Deliberately broadening the entry criteria means that
the overall result can be difficult to apply to particular
groups. However, in modern medical practice, physi-
cians are often interested in individualized medicine
and how best to use results of randomized clinical tri-
als to maximize the wellbeing of each patient. There-
fore, proper analyses of targeted subgroups of patients
to investigate treatment efficacy has become increas-
ingly necessary if heterogeneity of treatment effects is
likely to occur.

Theoretically, the covariates of subjects should be well
balanced in randomized controlled trials. However, in
actual practice with small to moderate sample sizes, it
is not uncommon to find subgroups of patients under
study with covariate imbalance. This issue is a partic-
ular concern in many observational studies with long-
term follow-up due to subject attrition. Therefore, it is
critical to ensure similarity between subjects on impor-
tant covariates in order to make the efficacy comparison
of treatments meaningful and unbiased.

In section 2 of this article, we describe the theory of the
propensity score, Mahalanobis distance matching and
Genetic matching methods. In section 3, we describe a
simulation study we conducted to compare the relative
performance of these matching methods. In section 4,
we apply Genetic matching to a dataset from a clini-
cal study to investigate the relative effectiveness of two
treatments for rheumatoid. Discussion and conclusions
are presented in section 5.

2 Theory of Propensity Score,
Mahalanobis Distance, and
Genetic Matching

2.1 Propensity Score Matching

The concept of propensity scores is thoroughly discussed
by Rosenbaum and Rubin [10] as well as by other au-
thors. In the following, we describe a few key points for
analytical purposes. Let Yi1 denote the response of the
active treatment of subject i, (1 ≤ i ≤ N), and Yi0 de-
note the response of the control treatment of subject i.
Let Xi denote the vector of covariates associated with
subject i and Ti = 1(0) if subject i receives active (con-
trol) treatment. The observed outcome for subject i is
then Yi = TiYi1 + (1− Ti)Yi0.

If subjects were well randomized between treatment and

control groups, then

E(Yij |Ti = 1) = E(Yij |Ti = 0), j = 0, 1, (1)

even though E(Yi0|Ti = 1) of the treated group and
E(Yi1|Ti = 0) in the control group cannot be estimated
from the data since each subject can receive only either
control or active treatment, but not both.

Under the well-randomized situation, the average treat-
ment effect can be estimated using the observed data by

τ = E(Yi1|Ti = 1)− E(Yi0|Ti = 0) = a1τ1 + b1τ0, (2)

where a1 > 0, b1 > 0, a1 + b1 = 1, and

τ1 = [E(Yi1|Ti = 1)− E(Yi0|Ti = 1)],

τ0 = [E(Yi1|Ti = 0)− E(Yi0|Ti = 0)] (3)

are the (unobserved) treatment effects from the treated
and control groups, respectively.

When imbalance in covariates is suspected between the
patient groups under study, proper matching of covari-
ates is needed prior to subsequent inference in order to
obtain a fair estimate of treatment effect or difference.
Given covariate Xi, and following the results of Rubin
[12, 14], one can show that

E(Yij |Xi, Ti = 1) = E(Yij |Xi, Ti = 0). (4)

Therefore, the treatment effect of the treated group can
be estimated by

τ1 = E{Xi|Ti=1}{E(Yi|Xi, Ti = 1)− E(Yi|Xi, Ti = 0)}
(5)

where the expectation is taken over {Xi|Ti = 1}.

Define the propensity score as

e(Xi) = P (Ti = 1|Xi) = E(Ti|Xi), (6)

namely, the probability of patient i being assigned to ac-
tive treatment given the covariate. Assume, given the
subjects covariates, treatment assignments are not de-
terministic and are independent among study subjects,
Rosenbaum and Rubin [9] had shown that

τ1 = E{e(Xi)|Ti=1}{E(Yi|e(Xi), Ti = 1)

− E(Yi|e(Xi), Ti = 0)|Ti = 1}, (7)

where the expectation is taken over {e(Xi)|Ti = 1},
and τ0 can be estimated similarly. Therefore, the aver-
age treatment effect can be estimated by combining the
results of τ1 and τ0. More details about the propensity
score can be found in Rosenbaum [9] in addition to the
papers mentioned herein.

Let Xi = (xi1, xi2, · · · , xik)′ and m ≤ k be the vector of
covariates. A common method to estimate e(Xi) is via
the logit function, i.e.,

logit(e(Xi)) = β0 + h1(η1i) + h2(η2i), (8)
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where h1 and h2 are known functions and η1i =∑m
r=1 fr(xir), η2i =

∑m
r,q=1 fr(xir)fq(xiq) represent the

main effects and interactions, respectively. The param-
eters in Eq(1) can be estimated using MLE. Goodness-
of-fit can be checked graphically via Landwehr, et al [6]
or Tsai [16].

According to Rosenbaum & Rubin [10], it is advanta-
geous to sub-classify or match not only on e(x) but for
other functions of x as well. In particular, such a re-
fined procedure may be used to obtain estimates of the
average treatment effect in a subpopulation defined by
the components of X; for example, gender or different
disease classifications.

2.2 Mahalanobis Matching and Genetic
Matching

Given two covariates, Xi and Xj , the Mahalanobis and
Genetic Matching are defined as following in terms of
the distance between the covariates

md(Xi, Xj) = {(Xi −Xj)
′S−1(Xi −Xj)}1/2, (9)

and

gmd(Xi, Xj) = {(Xi−Xj)
′S−1/2WS−1/2(Xi−Xj)}1/2,

(10)
respectively, where S1/2 is the Cholesky decomposition
of the covariance matrix of X, and W is a diagonal posi-
tive definite weight matrix. The elements of W are cho-
sen to simultaneously minimize the distributional differ-
ence and location difference of covariates between the
treatment and control groups based on the Kolmogorov-
Smirnov test and t-test, respectively (Sekhon [15]).

The conventional test of covariate balance based on
the t-test focuses only on location and can miss distri-
butional differences between covariates. On the other
hand, the Kolmogorov-Smirnov test compares distribu-
tional differences and can miss differences in locations.
By combining these two tests, the covariates can be bet-
ter matched in both location and other properties of the
distributions.

3 Comparison of Matching
Methods - a Simulation Study

3.1 Design of a Simulation Study

To investigate the performance of various matching
methods, a simulation of 500 iterations was conducted
under various scenarios. Specifically, the simulation
plan was designed as follows:

1. Sample size: assume equal sample size (N =
20, 30, 50, 100) between treatment and control
groups.

2. Assume 3 covariates (xi1, xi2, and xi3) will be
matched between treatment and control groups.
The covariates were assumed to have somewhat
different distributions between treatment and
control. Four different distributions were assumed
and are shown in the following table. They consist
of standard normal distributions with possibly
different means and variances, or contaminated
normal distributions with either symmetric or
asymmetric contaminations from either tail. The
list of distributions is shown in the table below.

Xi Group F:#1 F:#3
xi1 treated N(0, 1) 0.9N(1, 1) + 0.1N(1, 3)

control N(0, 1) 0.9N(0, 1) + 0.1N(0, 3)
xi1 treated N(0, 1) 0.9N(0, 2) + 0.1N(0, 3)

control N(0, 1) 0.9N(1, 2) + 0.1N(1, 3)
xi1 treated N(0, 1) 0.9N(1, 3) + 0.1N(1, 4)

control N(0, 1) 0.9N(0, 3) + 0.1N(0, 4)
Xi Group F:#2 F:#4
xi1 treated N(1, 1) .9N(1, 1) + .1|N(1, 3)|

control N(0, 1) .9N(0, 1) + .1|N(0, 3)|(−1)
xi1 treated N(0, 2) .9N(0, 2) + .1N(0, 3)

control N(1, 2) .9N(1, 2) + .1N(1, 3)
xi1 treated N(1, 3) .9N(1, 3) + .1|N(1, 4)|(−1)

control N(0, 3) .9N(0, 3) + .1|N(0, 4)|

3. The response variable (Y ) was assumed to follow
two different models. The first model is

Yi = treatment effect +

3∑
j=1

xij + error, (11)

and the second model is

Yi = treatment effect+
3∑

j=1

xij+
3∑

j 6=k=1

xijxik+error.

(12)
The treatment effect difference between treatment
and control is assumed to be a constant, e.g., 1.
The purpose of assuming two different models is to
compare these methods when the model is incor-
rectly specified.

4. The statistical methods to be compared are:

(a) Empirical mean difference,

(b) Least squares (LS) fit (assuming the first
model is correct),

(c) LS fit (assuming the second model is correct),

(d) Matching on the propensity score,
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Figure 1: Estimation of treatment effect (=1): Main
effect only. (Labels 1-8 = a-h of item 4 in Sec. 3.1)

(e) Matching on xi1, xi2, and xi3 with all available
data,

(f) Matching on xi1, xi2, xi3, and the propensity
score with all available data,

(g) Matching on xi1, xi2, and xi3 but exclud-
ing data in either tail outside of 2 times
MAD (MAD is defined as 1.483 medi{|xiu −
medj(xju)|}) from the median for each covari-
ate (to mimic Tukey’s robust trimmed esti-
mate),

(h) Matching on xi1, xi2, xi3, and the propensity
score but excluding data in either tail outside
of 2 times MAD from the median for each co-
variate.

5. Two criteria for comparisons are examined:

(a) The estimates of the true treatment effect and
the variation of the estimates,

(b) Balancing the covariates between treatment
and control groups. This will be as-
sessed by examining the minimum p-value of
the Kolmogorov-Smirnov test for equality of
treatment and control groups distributions for
each covariate, respectively, before and after
matching. Large p-values are consistent with
greater comparability of the treatment and
control groups in terms of the covariates, and
hence reflect better covariate balance among
treatment and control groups.

Figure 2: Estimation of treatment effect (=1): With
interactions. (Labels 1-8 = a-h of item 4 in Sec. 3.1)

3.2 Summary Results of the Simulation
Study

By examining the median, the inter-quartile distance,
and the overall range of the box plots of the estimated
treatment effect, we make the following conclusions:

1. The simple observed treatment difference can be a
very poor estimate when the covariate distributions
are different and deviate from standard normal dis-
tributions as shown in panels 2 to 4 of Figures 1 and
2.

2. For the main effect model, the LS fit (when the
model is correctly specified or even over-fitted with
interaction terms) is generally better than other
methods in estimating the treatment effect. But
the LS fit with main effect only can perform poorly
if the true model includes interactions; however,
the LS fit with interactions (correct model) out-
performs other methods.

3. Matching purely based on propensity scores usually
performs worse than Genetic matching either with
all available data or with the trimmed dataset in
estimating the true treatment effect. The trimmed
estimate using Genetic matching to match both
covariates and propensity scores performs almost
uniformly better than any other method regardless
of model specification, except for the LS fit when
the model is correctly specified as discussed in (b)
above.
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Figure 3: Minimum p-value of K-S test of equality:
Main effect. (Labels 2-6 = d-h of item 4 in Sec. 3.1)

4. When the covariates of treatment and control
groups have identical normal distributions, the LS
method outperforms all other methods since there
is no need for matching. Any effort to match is
redundant. The propensity score matching seems
to make the covariate matching worse more often
than not. However, the Genetic matching seems to
perform reasonably well, especially when the out-
liers were trimmed away (Panel 1 of Figures 3 and
4).

5. However, when the covariate distributions are dif-
ferent between treatment and control groups and
deviate from the standard normal, the effect of
matching from all methods becomes very visible.
This can be seen in Panels 2-4 of Figures 3 and 4.
Genetic matching with trimmed outliers tends to
outperform all other methods either matched only
on all covariates or with propensity score included.
This is true for all distributions tested here.

As discussed above, when the model is correctly speci-
fied, the simple LS method outperforms other methods
as expected. However, generally when analyzing data,
one rarely knows the correct model or the distribution
from which the data was generated. Therefore, the per-
formance of LS method can be expected to diminish
in the analysis of real data. On the other hand, the
performance of Genetic Matching seems to be almost
always comparable to the LS method when the model
is correctly specified, and performs much better when
the model is mis-specified as shown in Panels 1, 2, and

Figure 4: Minimum p-value of K-S test of equality: In-
teractions. (Labels 2-6 = d-h of item 4 in Sec. 3.1)

4 of Figure 2. Therefore, the Genetic Matching seems
to serve as a “model mis-specification proof” tool for
general data analysis.

It is interesting to note that Diamond, et al. [2] con-
cluded that Genetic Matching is preferred over other
matching methods because it is more efficient (smaller
MSE) and is less biased.

4 Example

A phase III, multi-national randomized, double blind,
placebo controlled clinical trial was conducted to com-
pare the treatment effect of drug A and drug B to
placebo in controlling disease activity in subjects with
rheumatoid arthritis having an inadequate clinical re-
sponse to methotrexate. The study was not originally
designed to compare drug A and drug B directly. How-
ever, a post hoc analysis to compare these two drugs in
a subgroup of countries of the original study is of clinical
interest and also to meet the regulatory request. A to-
tal of 156 and 165 patients were randomized to drugs A
and B in these countries, respectively. The primary end-
point of the study was the disease activity score based
on 28 joints (DAS28).

Comparisons of several baseline covariates using the t-
test did not show particular imbalance between the two
treatment groups. However, a more in-depth investi-
gation of the baseline distributions by quantile-quantile
plots showed some deviations between the two popu-

Int'l Conf. Bioinformatics and Computational Biology |  BIOCOMP'11  | 249



lations. The objective in this analysis is to properly
estimate the treatment difference under the situation of
baseline imbalance.

The first step in this analysis is to match the patients
from drugs A and B. Both the propensity score and the
Genetic matching methods were used so that we can
compare the relative performance of these two matching
methods.

Several covariates were examined to compare the perfor-
mance of propensity score and Genetic matching. The
baseline pain scores between the treatment groups are
compared and shown in Figure 5. The original Q-Q plot
of pain scores between drug A and drug B is shown in
Panel 1. The Q-Q plots of this covariate using propen-
sity score matching and Genetic matching are shown in
Panels 2 and 3, respectively. One can clearly see sub-
stantial improvement in covariate balance of Genetic
matching over the propensity score matching.

Empirical permutation distributions of the treatment
effect before and after Genetic matching were generated
to determine the level of significance of the observed
treatment effect among the randomly permutated sam-
ples. The observed treatment difference prior to match-
ing is about -0.19. However, the magnitude of the treat-
ment difference was reduced to -0.048 after matching.
The treatment effect estimated after matching indicates
the treatment difference is not as big as the original es-
timate. In other words, without this matching step, the
treatment difference may have potentially been over-
estimated and the medical practice may be misguided.
Even though the permutation test did not show a signif-
icant treatment difference in either pre or post match-
ing; however, the treatment effect distributions from
permutations seem to have some subtle difference and
the test prior to matching showed a higher significance
level than post matching. The 95% confidence inter-
val of the treatment effect difference was also estimated
using the stochastic approximation proposed by Rob-
bins and Munro [8] and implemented by Garthwaite
[4]. A total of 5000 randomized samples were generated
and analyzed. The estimates fluctuate substantially in
the beginning of the approximation process. The pro-
cess began to stabilize after about 2500 randomizations.
Figure 6 shows the stochastic approximation for the up-
per and lower limits of the confidence interval. The
resulting 95% confidence interval is (-0.110, 0.4858).

5 Discussion

Statistical modeling and data analysis are important
steps in advancing innovative scientific research in the
fields of medicine, economics, social sciences, etc. To

Figure 5: Comparison of covariate adjustment before
and after propensity score and genetic matching, re-
spectively.

Figure 6: Stochastic approximation of the 95% confi-
dence interval of treatment effect difference (based on
5000 simulated randomization)

translate data into useful unbiased information is a criti-
cal endeavor for scientists and researchers as well. When
data do not come from well-designed experiments, sta-
tistical modeling and data analysis to extract unbiased
information can become much more challenging.

In this paper, we described various matching techniques
to make the subjects under consideration more compa-
rable before statistical inference; we also conducted a
simulation study to further investigate the performance
of these methods under different scenarios in their rela-
tive ability to better balance the covariates between the
subjects groups, and in obtaining the unbiased estimate
of treatment effect. The methods we compared ranged
from the usual linear regression, conventional matching
techniques with all available data to more robust alter-
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natives, which flexibly weights the outliers. Generally,
Genetic matching is preferred to other methods under
various covariate distributions in balancing the covari-
ates and obtaining the true treatment effect.

Given its longer history, the propensity score matching
has been the most well known and most commonly used
method in casual-effect relationship research; however,
the selection of variables to be incorporated into the
logistic regression model to derive the propensity score
is not a trivial matter.

Several authors have proposed various approaches to
incorporate covariates to estimate the propensity score
(e.g., Rubin & Thomas [11], Rubin [14], Brookhart et.
al. [1]). The general findings are to incorporate co-
variates which are thought to be related to outcomes
and are confounded with both treatment assignment
and outcomes. The model which incorporates as many
covariates as possible or the model which includes ob-
vious covariates such as age, gender, and race do not
seem to perform as well as one would expect. On the
other hand, the Genetic matching method has the ad-
ditional flexibility to allow the covariates to be assigned
unequal weight and also takes into account the covari-
ance of the variables incorporated into the distance cal-
culation which can eliminate some modeling difficulties
caused by co-linearity between covariates.

Estimation and comparison of treatment effects should
only be conducted after careful examination of balance
between the groups being compared. It is important
to note that the research findings should be regarded
as exploratory and be interpreted with care within the
context of biological or scientific plausibility and rele-
vance.
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Abstract - The development of elegant matching procedures 
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1  Introduction 

  The derivation of  functional information from genomic 

sequences has many applications in molecular biology. Since 

similar sequences behave in a similar manner, the 

characteristics of a new sequence can be predicted by 

comparing it with known sequences.  Sequence comparison 

provides an indication of which parts of comparing sequences 

are similar and which parts are different. It is employed to 

identify sequences similar to a given sequence from a 

database [1-3].Two sequences are said to be homologus if  

they evolved from the same ancestor sequence,  and  share 

many common features. 

     Sequence similarity in many ways is synonymous with 

the concept of sequence alignment, which identifies 

similarities and differences between sequences. An alignment 

is a correspondence between the sequences, in which each 

symbol in a sequence is assigned to at most one of the 

symbols in the other sequence while maintaining the order of 

the symbols  in the sequences. The main objective of the 

alignment is to have matching symbols at maximum number 

of positions. 

  

     Sequences can be compared either by global or local 

alignment. Global alignment spans the whole length of 

comparing sequences, and is appropriate if the sequences are 

likely to share substantial similarity. The alignment attempts 

to match them to each other from end to end, even though 

parts of the sequences may not match.  Local alignment is 

used to identify common sub-regions of similarity between 

long sequences. There is no attempt to force entire sequences 

into an alignment, just those parts that appear to have good 

similarity. Thus local alignment is therefore particularly  

useful for comparison of long DNA sequences where only 

small subsequences may be related.  

            The number of possible alignments  for two sequences 

of length m and n is extremely large. Therefore the obvious 

solution of enumerating all alignments and then choosing the 

one with  the smallest or the highest score (depending on the 

scoring scheme used) is computationally impractical. An 

efficient alignment process needs to employ a completely 

automatic method e.g. dynamic programming algorithms, 

which is usually used for solving optimization problems. 

Needleman and Wunsch [4] were the first to propose such a 

method. Their motivation for developing the method was to 

maximize similarities between amino acid sequences. It 

allows global comparison of an entire query sequence with all 

sequences in a database. One drawback of this global 

alignment algorithm is that highly similar shorter 

subsequences with meaningful similarities may be ignored 

because of the overall objective of matching largest number of 

residues of one sequence with another sequence.  

      Smith and Waterman [5] proposed an algorithm, 

perhaps the most widely used local similarity algorithm for 

biological sequence comparison, based on the concept of 

dynamic programming. It identifies pairs of subsequences of 

all possible lengths in the query and the database sequence 

that have maximum degree of similarity. Two other dynamic 

programming algorithms BLAST [1] and FASTA[2] have 

been developed  to identify possible homologues for a query 

sequence in a database of all other known sequences. 
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2  Hardware-based matching 

 
 In recent years there has been some academic and 

industrial efforts on the use of FPGAs (Field Programmable 

Gate Arrays) for enhancing the speed of sequence matching 

[6-8]. However all the techniques developed so far for 

accelerating this task sequentially compare a query sequence 

with sequences stored in a conventional memory system. 

Although this strategy results in improvement in the matching 

speed compared to traditional software-based algorithms, the 

comparison of the query sequence with the stored sequences 

still needs to be done one sequence at a time because of the 

sequential nature of  information retrieval from the memory 

system.  

  The only way significant improvement in the matching 

speed can be achieved if a query sequence can be compared 

with all the stored sequences in parallel, and if all the matched 

sequences can be accessed simultaneously. This paper 

presents a digital hardware-based sequence matching  

procedure based on this principle. It is  assumed that a query 

sequence is a subsequence of one or more sequences stored in  

the computer memory system. The bases and the gap in a 

sequence are represented by binary patterns as shown below: 

 

      A = 000,   C = 010,   G = 100,   T = 110,     (dash) = xx1 

 

where  x  is a don’t care. Thus, a 1 in the least significant bit 

of a 3-bit binary representation indicates a dash.   

  Fig.1 shows the block diagram of the proposed matching 

system. It consists of a dedicated Content Addressable 

Memory (CAM) block and a bi-directional barrel shift 

register. A CAM unlike a traditional RAM (Random Access 

Memory) is addressed by the desired content, and an address 

that stores the content is obtained as the output of the CAM 

[9]. It is assumed that a CAM-based memory system will 

store a large number of sequences, and the content of a stored 

sequence has to have a few common codons i.e. all three 

bases identical, for it to be accessible. However, in order to 

avoid a large number of “hits” in the CAM,  the number of 

codons considered for matching has to be properly selected to 

keep the number of accessed sequences to a realistic number. 

For the sake of simplifying the explanation of our approach 

we consider matching of only one codon for accessing 

relevant sequences in a CAM. 

  While comparing a query sequence with the stored 

sequences in a CAM, a better match may be obtained by 

shifting the query sequence left (or right) by one or more  

bases at a time, and then comparing it with the stored 

sequences. Traditionally the alignment process starts after 

some partially-matched sequences have been retrieved from 

the memory block. Then by proper placement of dashes in the 

query sequence, matching of bases in the comparing pair is 

maximized.  

   In the proposed hardware-based sequence matching 

approach, one of the goals is to retrieve sequences with a high 

degree of similarity whenever possible. The possibility of 

better matching is explored by shifting the query sequence to 

the left (or right) before accessing the stored locations. The 

shifting of a single base in the query sequence requires 

simultaneous shifting of three bits The barrel shifter in Fig.1 

is used for shifting pre-selected multiple data bits. It is used to 

store the query sequence, and has a length of 3b where b is 

the number of bits in the sequence. It has a shift left and shift 

right capability, and can be used to shift three bits i.e. one 

base at a time. 

 

 

 

          

 

         

 

 

 

 

 

 

 

            

             

             Address(es) for matched sequences 

 

       Fig. 1 Hardware based system for sequence match 

 Fig.2 shows the structure of an n-bit barrel shifter; the 

control logic determines the direction of shifting (i.e. left or 

right). It is assumed that that the shift-in data is 001 i.e. a 

dash. Although the proposed system is designed for local 

sequence alignment, it could also be used for global sequence 

alignment.  

  

 

 

 

 

 

    Fig. 2 Bi-directional Barrel Shift Register 

Bi-directional Barrel Shift Register 

 

Content Dressable                                                          

Meomory (CAM) 

0     1     2     ………                        n-1     

Control Logic 

 

Int'l Conf. Bioinformatics and Computational Biology |  BIOCOMP'11  | 253



   A dedicated CAM-based architecture has been designed 

for simultaneous comparison of a pre-defined number of 

codons in a query sequence with the same number of codons 

in  stored sequences in the CAM.  Fig.3 shows the proposed 

architecture. If a majority (pre-selected) of the number of 

codons match with the corresponding codons in the stored 

sequences, then the addresses of these stored sequences are 

retrieved; they identify the locations of sequences that 

partially match the query sequence.The address corresponding 

to a matched location is activated via the output of an k-out-

of-n detector. A k-out-of-n detector produces an output of 1 if 

at least k out of n  inputs is at 1.  

 For example, if the first five codons of a query sequence 

are compared with a stored sequence and a match is assumed 

if any three of the five codons are similar, then a 3-out-of-5 

detector  is used to identify the address of the stored location. 

To illustrate let us assume that the first five codons in the 

following six codon query sequence 
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Fig. 3. Proposed m  n CAM Architecture 

   For example, if the first five codons of a query 

sequence are compared with a stored sequence and a match is 

assumed if any three of the five codons are similar, then a 3-

out-of-5 detector  is used to identify the address of the stored 

location. To illustrate let us assume that the first five codons 

in the following six codon query sequence 

            ACG AT- CGT –GA TCG ATG 

are compared with a stored sequence 

    ACG CAG CGT TTC TCG AC- C-T ATC 

  Since three codons in the comparing sequences match, a 

3-out-of-5 detector circuit will produce an output of 1. On the 

other hand if four codons have to be similar for a match, then 

a 4-out-of-5 detector has to be used; this detector will produce 

an output 0 in this case. Thus, a programmable detector that 

allows pre-selection of the k value in the k-out-of-n detectors 

will enable comparison of pre-selected parts of the query 

sequence to stored sequences.                

    As shown in Fig. 3 the CAM architecture has m rows 

(addresses) and n columns (codons). Each row consists of n 

comparators, n two-input AND gates, and a k-out-of-n 

programmable detector. One of the inputs to a two-input 

AND gate is the output of a comparator, the other input is 

programmable. The programmable input to the AND gate is 

the  output of a comparator, the other input is programmable. 

The programmable input to the AND gate is set at 1 if a 

codon in the query sequence is being matched with the codon 

at the identical position in the stored sequence.     

A matching circuit is used for comparing a codon in the 

query sequence with that in a stored sequence/. Fig. 4 shows 

the circuit for matching of two codons where lmn and pqr are 

the codons in the query sequence and a stored sequence 

respectively. Note that this circuit includes a 2-out-of-3 

detector. . Thus as long as two bases in the comparing codons 

match, the codons are assumed to be matched. The output the 

2-out-of-3 detector is connected to the input of the 

programmable detector associated with the stored sequence 

address decoder via a two-input AND gate. 

To illustrate the application of the system of Fig.1 for 

sequence comparison let us assume the following query 

sequence in the barrel shifter: 

      ACT –GAT-CGAA 
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     Codon in query sequence 

                               

 

 

 

 

 

 

 

 

 

 

  

 

 

  

 

                                                        

    

                  

 

 

Fig  . 4   Matching circuit    

:Suppose the contents of the CAM (assuming it has four 

locations) are as follows                                                                                               

                       Content                        Address 

 A CT GTCGCGA            00           

              ACTG CT  GGAA            01                

 CTATGT  CACT            10                          

AC   G   T  AG            11  

 
If the programmable detectors driving the address 

identifiers in the CAM are considered to be 3-out-of-4 ( n=4 

in this example), then only address 01 will be identified as the 

CAM location that contains the sequence with most matched 

codons. However if k=2 (i.e. 2-out-of-4 detector) is used 

instead, both addresses 01 and 10 will be identified. 

One particular advantage of the proposed strategy is that it 

simplifies the identification of shorter subsequences that may 

be common among several stored sequences. To illustrate let 

us determine whether     TAAG is part of the following 

stored sequences: 

 

 

 

Address            Contents                                     

                      00        ATCT A CAGCG        

          01       TAAGC CAGAG        

          10       TGCTAAGCTGA 

  First    TAAG is transferred to the barrel shift register 

as the query sequence. As shown below, the subsequence 

occupies the first six most significant positions in the barrel 

shifter, the remaining positions are filled with dashes.    

                   TAAG                                                                                                                  

This results in matching with the contents of address 01.   

A shift to the right by two bases  

                      TAAG                                                
will result in matching with the contents of address 10. 

  In certain cases a desired subsequence may appear in a 

stored sequence in bits and pieces. For example, it is not 

immediately obvious that the above subsequence is part of the 

sequence at location 00. However, a number of shift 

operations of the query sequence as shown below verifies its 

presence: 

           TAAG                                       

             TA AG                                                

             T A AG               

         T A  AG    

Certain shift operations in this case required shifting of 

individual bases in the query sequence. Similar situation will 

arise when a query sequence has certain similarity with a 

stored sequence. Once the stored sequence has been retrieved 

a number of shift operations of the individual bases or 

subsequences in the query sequence may be needed to 

increase the number of positions with matching symbols. 

Thus a major objective will be how to design the barrel shifter 

such that one or more bases can be shifted left or right 

without necessarily shifting the whole query sequence, 

3  Conclusions  

     Currently available tools for molecular sequence 

matching are in general software-based. The computation 

time needed for matching is dependent on search sensitivity. 

A low sensitivity search requires short computation time,  
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whereas for a high sensitivity search the computation time is 

very long. The conventional i.e. Von Neumann architecture 

based computers can process information only serially, thus 

limiting their speed of computation. This paper presented a  

digital hardware-based sequence matching technique that 

allows simultaneous comparison of a query sequence with all 

the stored sequences in a database, thereby  achieving 

significant improvement in the matching speed compared to 

software-based techniques.  
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Abstract - Learning human cytogenetics is important for 
biology education and training of clinical cytogenetics 
technologists. To increase the resources of metaphase spreads 
with different chromosomes shapes for student practice, we 
describe effective algorithms for such purposes to enhance our 
cytogenetics tutorial program. 

Keywords: human chromosome, cytogenetics, algorithms 

 

1 Introduction 
  The function of altering human chromosome shape from 
curved to straight is available in the commercial karyotyping 
software [Cytovision, Genetix Corp., San Jose, CA] which is 
used by clinical genetics laboratories for chromosome 
analysis from patience samples. The purpose of chromosome 
straightening in the commercial software is to provide 
viewers with the appearance of neatly arranged chromosomes 
on the karyotype sheet.  However, few cytogenetics 
technologists actually use this function because the 
straightened chromosomes do not provide more information 
from the G-banded chromosomes. In fact, the straightened 
chromosomes appear to be unnatural.   

 For education purposes, however, a versatile program 
with the capability of altering the chromosome shape can 
enrich the metaphase resources for student practice. A basic 
human chromosome modeling program has recently been 
introduced as a tool for cytogenetics education [1, 2].  In the 
early model, however, the changeable parts are limited to 
certain points along the chromosome.  In this paper, we 
describe an improved method for chromosomal 
skeletonization which serves as a basis for programming the 
inter-conversion of chromosome shapes from curved to 
straight and vice versa.    

The functionality of the chromosome shape alteration is 
to reconstruct original chromosome images into different 
shapes. Pixels on the original images are mapped to new 
positions on destination images using a transformation 
function. The new algorithms are capable of changing 
chromosome shapes at any points along the entire length of 
the chromosome. The new function meets the following two 
requirements: First, the length and width of the original 
chromosome image remain unchanged when the altered 
chromosome is created, and second, the original information 

including the grayscale values and G-bands information are 
kept as close as possible to the newly generated model. 
Throughout our beta tests, there were no missing or adding G-
bands on the altered chromosomes. 

2 Chromosome Midline  
 The chromosome midline is to obtain a curve to 
represent the approximate curvature of the chromosome. This 
is the pre-processing step for chromosome shape alteration.  
The human chromosome shape in metaphase is basically 
linear with the length much larger than the width; therefore, 
in practice, the width may be neglected so that a midline can 
be created to represent the chromosome curvature (Fig. 1). 
The midline curve is in parallel to the two sides with the same 
distances. The midline curve can be obtained in three steps: 
boundary detection, thinning, and curve fitting.  Boundary 
detection is to acquire the boundary of chromosome image. 
Thinning is to convert binary shape obtained from boundary 
detection to a 1-pixel wide curve. Curve fitting is used to find 
the “best fit” line or curve for a series of data points. 
 

 
Fig. 1. Midline after curve fitting for human chromosome 2 

 
 

3 Chromosome Straightening 
 Most of original chromosome images under the 
microscope are curved in various degrees. For beginners, it is 
easier to learn G-banded chromosome characteristics from 
straight chromosomes.  Therefore, metaphase spreads with all 
straight chromosomes are ideal for beginning students. Fig 
2.a is a schematic of an originally curved chromosome: The 
red line is the midline which can be calculated by 
chromosome midline introduced in session 2. Fig 2.b is a 
schematic of the same chromosome after straightening. 
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Schematic of originally curved chromosome 

 

Schematic of the chromosome after straightening 

Fig. 2.  Conversion of curved to straight chromosome 

After the midline is calculated, the next step is to map 
the pixels. There are two mapping algorithms: forward 
mapping and inverse mapping [3]. The forward mapping is to 
map the source pixel (x, y) to an appropriate destination place 
(u, v).  However, since the image source pixel is represented 
as an integer, when applying the translation function on the 
source pixel, the value of destination pixel may be 
represented by a decimal number, which must be rounded up 
to an integer. It may result in one target pixel having multiple 
source pixels or some missing destination pixels which lead 
to Mosaic effects. The inverse mapping is that, with the given 
location of the target pixel (u, v) in the destination image, we 
can calculate an appropriate location of the source pixel (x, y) 
in the original image based on the transformation function. 
Thus, all the destination image pixels are mapped to pixels in 
the source image. Therefore, the inverse mapping method was 
chosen for our modeling. Below is the detailed inverse 
mapping calculation:  

In Fig 2.a, pixel P (xP, yP) is the source image, and line 
PR is perpendicular to the midline on pixel R (xR, yR). In Fig 
2.b, Q (xQ, yQ) is the destination pixel of P. In the inverse 
mapping, the position of Q is given, and the position of P 
must be calculated for mapping from P to Q. In Fig 2.a, d is 
the perpendicular distance from P to midline, and l is the 
length from the beginning of the midline to R; therefore:  
-yQ = d and xQ = l 
Assume the equation of midline is y = f(x), then 
 

                          l � 	� �1 � �	
��
��
�                                (1) 

 

																								 � �	
� � 
��� � 	�� � ���� �
																								�	
� � 
��� � 	�	
�� � ����																									(2) 

Because PR⊥midline, then 

                        
�����
�����

� ��	
�� � �1		                              (3) 

Because R is in the midline, then 

                             �	
�� � ��		                                         (4) 

Through solving the above functions, P (xP, yP) can be 
calculated. However, the values of x-axis and y-axis must be 
integers.  An interpolation technique is applied here to obtain 
the pixel value of P. The bicubic interpolation [4] was used to 
determine a more accurate pixel value of P and make the 
destination image smoother. P can be written as P (i+u, j+v). 
The pixel value of P f(i+u, j+v) is calculated from its 16 
neighbors according to the bicubic interpolation. Fig. 3 shows 
the original image of human chromosome 2 on the left side 
and the straightened model on the right side. 

 

Fig. 3.  Result of chromosome 2 straightening 

4 Chromosome Curving 
 The algorithm for converting a straight to a curved 
chromosome is similar to that described in the precious 
section 3, but the midline of the destination chromosome is 
now a curved line. The shape of the curve can be set 
manually. Theoretically this algorithm is capable of changing 
a straight chromosome to any shape.  A painting program (Fig 
4) is provided to allow users to draw a curve as the midline of 
the altered chromosome. Through the curve fitting algorithm 
using interpolation method, an equation of the curve drawn 
by users can be calculated. Based on the equation, the 
originally straight chromosome can be converted to the 
designated shape. In Fig. 5, the originally straight human 
chromosome 2 is on the left, and the curved chromosome on 
the right is created according the curve drawn in Fig 4. 
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Fig. 4. Painter program accepts input such as a curve from 
users. 

 

 

Fig. 5.   Conversion of straight to curved chromosome 2  
 

5 Results and Conclusions 
 Using the algorithms described above, metaphase 
spreads with all or mostly straightened chromosomes (Fig. 6) 
and with all or mostly curved chromosomes (Fig. 7) can be 
created from the original metaphase spread (Fig. 8).  
Likewise, karyotypes with all or mostly straightened 
chromosomes (Fig. 9) and with all or mostly curved 
chromosomes (Fig. 10) can be generated from the original 
karyotype (Fig. 11) . 

This paper describes effective algorithms for alteration 
shapes of human chromosome images, including straightening 
and curving at any points along the entire chromosome. With 
these algorithms, we are able to model and generate a wide 
range of human chromosome images with different shapes, 
thus increasing the teaching resources for learning human 
cytogenetics. The new program can be used in conjunction 
with our computer based cytogenetics learning programs [1, 
2] as a new teaching tool.   

 
Fig. 6.  Metaphase spread with all or mostly straightened 

chromosomes 

 
 

Fig. 7.  Metaphase spread with all or mostly curved 
chromosomes 

 
 

Fig. 8.  Original metaphase spread 
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 Fig. 9.  Karyotype with all or mostly straightened chromosomes 

 

 
Fig. 10.  Karyotype with all or mostly curved chromosomes 

 
Fig. 11.  Original karyotype
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Abstract—Single nucleotide polymorphisms (SNPs) are 

genetic changes that can occur within a DNA sequence.  

Due to the high frequency of SNPs in the human genome, it 

is desirable to select a small set of SNPs (tagging SNPs) 

that can be used to represent the majority of SNPs. We 

propose a Gibbs sampling approach to find a small set of 

SNPs with minimum redundancy for tagging purposes. Pre-

clustering is added in the basic Gibbs sampling procedure 

to avoid the disturbance caused by local optima. We also 

propose two general purpose correlation measures that are 

able to accommodate SNPs with three or more alleles. Our 

experimental results show that Gibbs sampling process 

converges faster and finds better optimum if pre-clustering 

is conducted before the sampling process.  While our 

tagging process is not guided by any prediction algorithm, 

we are able to obtain comparable results as the SNP 

prediction guided algorithm SVM/STSA [1] while requiring 

much less time.  

Keywords: minimum redundancy, Chi-squared statistic, 

mutual information, single nucleotide polymorphism, Gibbs 

sampling 

1 Introduction 

Single nucleotide polymorphism (SNPs) are the most 

frequent variations in the human genome [2], and many 

SNPs show correlated genotypes because of their shared 

evolutionary history [3]. Many known polymorphic sites 

need not be genotyped when testing for genotype-phenotype 

associations because of this redundancy. There is 

considerable interest in finding an informative and minimal 

set of common polymorphisms (tagging SNPs) to detect 

genetic associations while controlling cost [1, 4-7]. 

Halldorsson et al. gave an in-depth review of these 

approaches [8]. 

Popular tagging SNP selection algorithms are typically 

based on block-based heuristics such as LD-Select [9], 

MultiPop-TagSelect [10]. The main drawback of block-

based approaches is that the definition of blocks is not 

always straightforward and there is no consensus on how 

blocks must be formed [11]. Several researchers have 

focused on looking for tagging SNPs using block-free 

methods [1, 8, 11-13]. Most of these methods are based on 

some greedy deterministic searching procedures that are 

susceptible to local optimum. Furthermore, most of these 

methods are using the r
2
 similarity/correlation measure 

between two SNPs. This measure is not able to handle three 

or more alleles. SNPs with three or more alleles are usually 

ignored for processing conveniences. To accommodate 

more alleles, we propose two correlation measures that are 

more general purpose for handling nominal data. The first 

one is mutual information and the second one is the Chi-

squared statistic.  

Finding a set of k tagging SNPs out of a total set of n 

SNPs requires evaluating ��
�� different combinations. It is 

computationally infeasible to exhaustively search the 

optimal solution when n is usually large. In this study, we 

describe a global search heuristic based on a randomized 

procedure (Gibbs sampling) that aims to find a set of 

tagging SNPs with minimum redundancy. Although the 

stochastic nature of Gibbs sampling is presumed to prevent 

it from becoming completely trapped in local optima, it still 

requires a better initial value due to strong disturbance from 

the local optima. We propose a pre-clustering approach to 

obtain a better initial SNP set. The effect of pre-clustering 

will be investigated.  

The paper is organized as follows. In Section 2, we 

explain our Gibbs sampling approach to obtain the 

minimum redundancy SNP set. The experiments and results 

will be discussed in Sections 3 & 4. We conclude our paper 

in Section 5. 

2 Methods 

2.1 Redundancy Measures 

Consider two biallelic loci, locus 1 with alleles a and A, 

locus 2 with alleles b and B. Suppose the frequencies for 

alleles � and � are �� and 1 − ��, the frequencies for alleles 

�  and �  are �  and 1 − � , and the the frequency of 

genotypes having allele � at locus 1 and allele � at locus 2 

is ��.  The commonly used linkage disequilibrium measure 

�� [14] is defined as 

 

�� = ��� − �����

���1 − �����1 − �� 

 

(1) 

The mutual dependency of two random variables can 

also be used as a redundancy measure. Here redundancy and 
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correlation are used interchangeably. The mutual 

information between SNP X and SNP Y is defined as 

����, �� = � � ���, ����� ���, ��
�������� ∈"#∈$

 (2) 

where both X and Y are discrete variables, p(x,y) is the joint 

probability and p(x) and p(y) are marginal probabilities.  

Chi-squared test of independence is adopted here to 

measure the correlation between two SNPs. For SNP X and 

SNP Y, we first obtain a contingency table between the two 

SNPs. The Chi-squared statistic is defined as 

 

χ%
2��, �� = � � '()* − +)*,2

+)*

-

*=1

�

)=1
 (3) 

where r is the number of alleles for SNP �, and c is the 
number of alleles for SNP Y,  (./  is the observed joint 
frequency for i

th
 allele of SNP X and j

th
 allele of SNP Y,  and 

+./  is the expected frequency which is given by 
 

+./ = ∑ (.1 ∑ (1/21345134
6  (4) 

 

where N is the total number of samples. A higher value of
2

sχ indicates a stronger association between the two SNPs. 

For a set S consisting of k SNPs, the total pair-wise 

mutual information is defined as 

��78��7� = � � ���76�. , 76�/�
1

/3.94

1:4

.34
 (5) 

The total pair-wise Chi-squared statistics is defined as 

;<�78��7� = � � χ=
��76�. , 76�/�

1

/3.94

1:4

.34
 (6) 

The total pair-wise ��measure is give by 

 

>278��7� = � � ���76�. , 76�/�
1

/3.94

1:4

.34
 (7) 

2.2 Clustering of  SNP Data 

Due to the nominal nature of SNP data, the commonly 
used K-means clustering and its many variants are not 
suitable.  In this study, we first obtain a similarity matrix 
using a similarity measure that is applicable for nominal data 
such as Chi-square statistic or mutual information. The 
distance matrix is then obtained by subtracting each entry 
from the maximum of all the values. We then apply the 
agglomerative clustering procedure with complete linkage to 
obtain the desired number of clusters.  

2.3 Gibbs Sampling 

Gibbs sampling is a special case of the Metropolis–Hastings 

algorithm. It is a stochastic global search heuristic for 

optimization problems. However, it still requires a better 

starting set to avoid being trapped in local optima. A pre-

clustering is proposed to avoid the disturbance from local 

optima. To achieve this, we first cluster the SNPs into K 

groups, and randomly select an SNP from each group to 

form the initial SNP set. We then follow a Gibbs sampling 

procedure to find a set of K SNPs that minimize a goal 

function. The goal function can be one of the functions 

defined in equation 5-7.  The detail of our approach is 

summarized in Figure 1. 

 

 

Input: S is the total set of N SNPs,  ε is a predefined threshold value 

Output: C is the set of K chosen SNPs 

minRedundancySNP(S, C, ε) 

 Cluster the set 7 into K groups via customized hierarchical clustering 

 Form set G of K members where Gi is the i
th

 cluster 

 Form initial set C by randomly pick one SNP from each of the K clusters  

 while( a predefined maximum iteration is not reached) 

  Randomly pick a number n from 1 to K 

  Find a SNP x in Gn that minimizes MISUM/CHISUM/R2SUM 

  Replace Cn with x 

  Return C if the improvement of MISUM/CHISUM/R2SUM is less than ε 

 end 

              Return C  

 

Figure 1.  The pseudocode for finding the minimum redundancy SNP set via Gibbs sampling with pre-clustering. 
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2.4 Prediction of Non-tagging SNPs with 

Tagging SNPs 

Once the tagging SNP set is found, they can be used to 
predict the genotype values of the non-tagging SNPs. Many 
machine learning and statistical models can be used for this 
goal, including logistic regression [15], neural networks, 
support vector machines (SVM) [16], and random forest 
[17]. In this study, we conduct our experiments using logistic 
regression and SVM. We choose a K-fold cross validation to 
evaluate the effectiveness of our method. Our K-fold cross 
validation procedure is similar to the leave-one-out cross 
validation procedure for SNP prediction described in [1] 
where K  is equal to the number of observations in the 
original sample. 

3 Experimental Data 
The following datasets are used to validated our method. 
IBD 5q31: This data set is from an inflammatory bowel 

disease study of father-mother-child trios [18].  The original 
data set contained 103 SNPs in 387 subjects.  Using the 
PHASE 2.0.2 software to derive haplotypes resulted in 103 
non-singletons from 774 phased chromosomes.  

TRPM8: The phased haplotype data was downloaded 
from Hapmap Data release 24.  It contains 101 SNPs from 
119 phased chromosomes. 

4 Results and Discussion 

4.1 Effect of Pre-clustering on the 

Convergence of the Gibbs Sampling 

Process 

In order to test how fast the Gibbs sampling process 

converges, we obtained the convergence curve using all 

three measures introduced in Section 2.1 (i.e., the linkage 

disequilibrium measure, mutual information, and Chi-

squared statistic). Figure 2 shows the convergence process 

while attempting to find 10 tagging SNPs. 

In each case, the Gibbs sampling process converged 

within 100 iterations regardless of whether or not pre-

clustering was applied. However, the resulting set of SNPs 

had smaller redundancy measures when pre-clustering was 

used. Without pre-clustering, there is still some disturbance 

from local optima that affect the global minimum search 

process through Gibbs sampling. 

4.2 Tagging Results 

We conducted our experiments on the three distance 
measures to find tagging SNPs using the randomized 
algorithm mentioned above. The tagging results for IBD data 

set using  ��, Chi-squared statistic and mutual information 
are shown in Table I, II, III respectively. The tagging results 
for TRPM8 data set using �� , Chi-squared statistic and 
mutual information are shown in Table IV, V, VI 
respectively. 

For IBD data, pre-clustering is able to improve prediction 
performance. With pre-clustering, our 10-fold cross 
validation results are comparable with published leave-one-
out cross validation results obtained by He et al. [1] and 
better than the results obtained by FSFS [11]  (Table II, III). 
SVM and logistic regression show similar performance. 
Although our method does not present significant advantages 
over He's method [1], our method is simpler and does not 
rely on specific machine learning model to guide the 
selection process which is susceptible to over-fitting. In 
addition, the prediction based selection method SVM/STSA 
[1] requires calling SVM model during each stepwise 
selection process. This can be expensive due to the overhead 
of the prediction algorithm. 

Among the three distance measures, both Chi-squared 
statistic and mutual information performed better than �� 
measure. This proves both of them can be used to study SNP 
association, and they are particularly useful for genotype 
data that sometimes involve more than two alleles.   

 

 

 

(a) (b) (c) 

  

 

Figure 2.  Convergence curve for the Gibbs sampling process based on three redundancy measures. (a) minimization process of CHISUM (b) minimization 

process of MISUM (c) minimization process of R2SUM.
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For TRPM8, our ten-fold cross validation prediction 
performance is better than SVM/STSA when mutual 
information is used as correlation measure (Table V). 
Similar performances are observed between ��  measure 
and Chi-squared statistic. The pre-clustering does not 
improve the prediction performance significantly. This 
indicates that the disturbance from local optima in this data 
set is not as strong as in IBD data set.  

TABLE I.  TEN-FOLD CROSS VALIDATION EXPERIMENT RESULTS 

ON IBD DATA SET (CORRELATION IS MEASURED WITH ��
 MEASURE, K IS 

THE NUMBER OF TAGGING SNPS). 

 

K 

With Pre-clustering Without Pre-clustering 

SVM 
Logistic  

Regression 
SVM 

Logistic  

Regression 

3 81.1% 80.7% 76.6% 76.6% 

5 81.5% 81.2% 78.8% 77.4% 

10 93.5% 91.7% 77.4% 77.4% 

20 98.2% 97.8% 85.7% 86.0% 

30 98.5% 98.3% 93.5% 93.5% 

 

TABLE II.  TEN-FOLD CROSS VALIDATION EXPERIMENT RESULTS 

ON IBD DATA SET (CORRELATION IS MEASURED WITH CHI-SQUARED 

STATISTIC, K IS THE NUMBER OF TAGGING SNPS). 

 

K 

With Pre-clustering Without Pre-clustering 

SVM 
Logistic  

Regression 
SVM 

Logistic  

Regression 

3 85.6% 85.5% 79.3% 79.3% 

5 86.0% 85.1% 81.5% 81.1% 

10 95.0% 93.3% 94.4% 93.5% 

20 98.2% 97.9% 98.1% 97.5% 

30 98.5% 98.5% 97.8% 97.4% 

  

TABLE III.  TEN-FOLD CROSS VALIDATION EXPERIMENT RESULTS 

ON IBD DATA SET (CORRELATION IS MEASURED WITH MUTUAL 

INFORMATION, K IS THE NUMBER OF TAGGING SNPS). 

 

K 

With Pre-clustering Without Pre-clustering 

SVM 
Logistic  

Regression 
SVM 

Logistic  

Regression 

3 86.6% 86.5% 80.0% 79.9% 

5 87.3% 86.1% 79.8% 79.8% 

10 96.0% 95.0% 77.4% 77.3% 

20 98.2% 97.8% 89.8% 88.4% 

30 98.5% 98.3% 97.3% 96.4% 

 

TABLE IV.  TEN-FOLD CROSS VALIDATION EXPERIMENT RESULTS 

ON TRPM8 DATA SET (CORRELATION IS MEASURED WITH ��
 MEASURE, 

K IS THE NUMBER OF TAGGING SNPS). 

 

K 

With Pre-clustering Without Pre-clustering 

SVM 
Logistic  

Regression 
SVM 

Logistic  

Regression 

3 89.1% 87.9% 87.6% 81.3% 

5 88.9% 86.2% 87.5% 92.3% 

10 91.7% 91.3% 91.3% 92.4% 

20 99.5% 99.7% 99.2% 99.2% 

30 99.7% 99.7% 99.3% 99.7% 

TABLE V.  TEN-FOLD CROSS VALIDATION EXPERIMENT RESULTS 

ON TRPM8 DATA SET (CORRELATION IS MEASURED WITH CHI-SQUARED 

STATISTIC, K IS THE NUMBER OF TAGGING SNPS). 

 

K 

With Pre-clustering Without Pre-clustering 

SVM 
Logistic  

Regression 
SVM 

Logistic  

Regression 

3 89.1% 87.9% 87.6% 81.3% 

5 88.9% 86.2% 87.5% 92.3% 

10 91.7% 91.3% 91.3% 92.4% 

20 99.5% 99.6% 99.2% 98.6% 

30 99.7% 99.7% 99.3% 99.7% 

 

TABLE VI.  TEN-FOLD CROSS VALIDATION EXPERIMENT RESULTS 

ON TRPM8 DATA SET (CORRELATION IS MEASURED WITH MUTUAL 

INFORMATION, K IS THE NUMBER OF TAGGING SNPS). 

 

K 

With Pre-clustering Without Pre-clustering 

SVM 
Logistic  

Regression 
SVM 

Logistic  

Regression 

3 96.7% 90.1% 89.3% 81.8% 

5 97.3% 92.1% 96.3% 92.3% 

10 97.3% 92.3% 96.0% 92.2% 

20 99.7% 99.7% 97.4% 98.5% 

30 99.7% 99.7% 98.1% 99.7% 

 

4.3 Running Time Results 

The running time required to select different number of 
tagging SNPs using our Gibbs sampling procedure is 
shown in Table VII. Our Gibbs sampling code is 
implemented with R statistical programming language.  

The running time increases as the number of tagging 
SNPs increases. The running time results are similar 
between the Chi-squared statistic and mutual information. 
The program often ran a little faster with �� as correlation 
measure. Comparing with prediction guided SNP selection 
SVM/STSA [1] which takes up to 1 day to find 10 tagging 
SNPs for IBD data set, and 23 hours to find 10 tagging 
SNPs for TRPM8 data. It even took several hours to find 1 
tagging SNPs[1], our Gibbs sampling procedure runs 
much faster and usually completes within 5 minutes for up 
to 30 tagging SNPs.  

TABLE VII.  RUNNING TIME REQUIRED (SECONDS) TO SELECT 

TAGGING SNPS USING DIFFERENT CORRELATION MEASURES (K IS THE 

NUMBER OF TAGGING SNPS, ALL EXPERIMENTS ARE PERFORMED ON A 

COMPUTER WITH AMD ATHLON II X4 620, 2.61 GHZ PROCESSOR AND 2 

GB OF RAM) 

Data set IBD TRPM8 

K 
Correlation measure Correlation measure 

�� χ
2 MI �� χ

2 MI 

3 11.57 11.75 11.28 9.11 10.52 9.25 

5 20.68 19.83 23.11 16.62 10.86 21.32 

10 53.44 63.20 53.00 25.56 27.30 34.15 

20 94.22 136.23 120.62 80.38 107.73 91.69 

30 196.94 195.83 191.46 121.27 157.03 157.81 
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5 Conclusions 
We investigated a block-free stochastic global search 

heuristic to find a set of minimum redundancy tagging 
SNPs. It is a randomized search technique based on Gibbs 
sampling. We modified the basic Gibbs sampling 
procedure by adding a pre-clustering step to find a better 
starting set. In order to properly cluster the SNP data, we 
applied hierarchical clustering with a distance measure that 
is applicable for nominal data. The Gibbs sampling 
process typically converges faster and reaches lower 
minimum if a pre-clustering is used. Pre-clustering 
improves the tagging prediction accuracy if there is a 
disturbance from local optima. If there is little disturbance 
from local optima, pre-clustering at least does no harm.   

Although our tagging process is driven by a simple 
objective function that aims to minimize redundancy 
among a set of SNPs instead of being driven by a 
prediction method such as SVM, we are able to obtain 
comparable prediction results while running much faster 
than prediction based SNP selection method [1].  

We also proposed two correlation measures to study 
SNP association. They proved to be as effective as the 
commonly used �� measure. These two measures can be 
useful for genetic features (e.g. genotypes) that could have 
more than two alleles.  
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Abstract - Advances in DNA sequencing technology have 
significantly reduced the costs associated with sequencing an 
organism’s genome. However, the operating costs of 
hardware, software, and labor to analyze the sequence data 
are still too high for most users to process in house. 
Henceforth, most of the current bioinformatics applications 
used by bench scientists will be accessible through a Web 
environment. This paper presents GenSAS, the Genome 
Sequence Annotation Server, a JavaScript-based framework 
of gene prediction and comparative sequence similarity 
applications for structural and functional sequence 
annotation. Among other web-based genome annotation 
pipelines, GenSAS is unique in that it offers a one-stop website 
with a single graphical interface for running multiple 
structural and functional annotation tools, visualization and 
manual curation of genome. We present its functionality, the 
technology used in implementing each functionality, and 
software architecture of the overall implementation. 

Keywords: genomics tool, genome, sequencing, annotation, 
architecture 

 

1 Introduction 
  An important component of specialized genomic 
databases that serve a specific community is to provide useful 
online tools for researchers to conduct web-based sequence 
analysis. These web-based tools can include BLAST (Basic 
Local Alignment Search Tool) [1] and FASTA [2] servers for 
pair wise comparison of clade-specific datasets, sequence 
assembly tools to assemble EST transcripts and microsatellite 
detection and primer identification tools. With the advances 
of sequencing technology, more and more clade-specific 
databases have started to store and display whole genome 
sequences with automatic gene annotation data using graphic 
viewers such as GBrowse [3]. Automatic gene annotation 
often needs to be refined by further analysis. There are many 
gene prediction algorithms and pipelines available to help in 
gene identification, but there are no online tools that easily 
allow biologists to readily combine the evidence from several 
gene prediction tools and create curated gene models within 
the same graphic interface. We have implemented a flexible 
online tool called GenSAS (Genome Sequence Annotation 
Server, www.bioinfo.wsu.edu/gensas) for genome sequence 

annotation that can assist researchers in identifying genes in 
genomic sequences for the Rosaceae family. GenSAS is 
implemented in a modular way to allow it to be easily used 
with other genome annotation projects. 

 Tool development is one of the key areas in 
bioinformatics research, along with the analysis and 
interpretation of genome data. A tool can be developed from 
the ground up and fine tuned for specific applications, but 
such a tool often ends up only being used by its developers 
rather than being offered for wider community use.  In many 
cases, development of web-based systems has been ad hoc, 
lacking systematic approach, quality control and assurance 
procedures [4]. Such problems are inherent in most software 
development, but made worse in a Web environment due to 
the rapid growth of the Web, high demand for web-based 
applications, shorter time-to-market requirements, and 
relatively short history of the Web (less than 20 years). While 
not an exception for bioinformatics tool development, it is a 
challenge for bioinformatics tool developers to follow a 
disciplined engineering approach so that tools remain usable 
and stable against deviation from original assumptions about 
their optimal working condition. This paper does not attempt 
to provide a solution to all the problems mentioned. Instead, it 
shows one success story in bioinformatics tools development 
(GenSAS) and the approach taken to make the tool widely 
useful by researchers. GenSAS was developed with the 
following objectives: 

• To develop a computational pipeline incorporating 
multiple genome sequence annotation tools.  

• To develop a visualization tool to display the output 
from annotation tools graphically.  

• To develop intuitive web-based user interfaces to 
facilitate curation by biologists  

 We first examine, in section 2, the progress of Web 
application development and Web architecture in recent years. 
In section 3, general and specific activities involved in the 
gene annotation process are presented. In section 4, we 
introduce the implementation details for GenSAS and software 
components that GenSAS supports. After this, related work is 
discussed. This paper concludes with a summary and future 
work in section 6. 
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2 Progress in Web Application 
Development and Web Architecture 

 When the Web was created in early 1990s, most 
websites were simple and served static content. Most 
emphasis was on content layouts and overall look, and easy 
maneuvering of the site. Little programming was required and 
no rigorous software engineering were required to build such 
websites. The growth of online resources soon made it 
necessary to implement search engines on the Web and 
process the user provided input from the Web browser. CGI 
was the first mechanism that allowed Web clients to execute 
programs on a Web server and receive their output [5].  The 
further growth of the Internet and World Wide Web led to full 
blown software applications available on the Web, rapid 
uncontrolled growth, hastily written code and a lack of Web 
standards. All this contributed to what is known as the Web 
Crisis. The wide use of Web applications from all over the 
world made them only more vulnerable to failure. To remedy 
the crisis and support the development of quality Web 
applications, the field of Web Engineering emerged to provide 
scientific, engineering and management principles and 
disciplined and systematic approaches to the successful 
development, deployment and maintenance of high quality 
web-based systems and applications [4]. Web engineering 
shares some of its principles with traditional software 
engineering, but it also has unique requirements: shorter 
development time, content-oriented development, greater 
importance of visual look and feel, and a more diverse user 
demographics.  

 A key area in software engineering is Software 
Architecture which is defined as “The software architecture of 
a program or computing system is the structure of the system, 
which comprises software components, the externally visible 
properties of those components, and the relationship among 
them [6].” There are many different architectural styles used 
in software applications, and it is important to decide which 
architecture is the best fit for the software development.  The 
layered (or multi-tiered) architecture has many benefits: 
interoperability, flexibility, maintainability, and reusability, to 
name a few. The Communication Network protocol is an 
example of layered architecture. Structured Web applications 
also reveal multi layers where the presentation, the application 
processing, and the data management are logically separate 
processes, as shown in Figure 1. We will look at how GenSAS 
fits in this architecture in section 4. 

Client
Web browser

First Tier : 
Web Server

Tasks:
-  User Interface
-  Presentation

Second Tier : 
Application Server

Tasks:
-  Appl services
-  Business services

Third Tier : 
Database Server

Tasks:
-  Data services
-  File services

 
 

Figure 1. Multi-Tier Web Architecture 
 

3 Genome Annotation Process 
 After a genome has been sequenced and assembled, the 
process of genome annotation starts. The purpose of genome 
annotation is to understand the content of the genome through 
locating genes and other sequence features and determining 
gene putative function. The annotation process can be 
categorized into manual and automated annotations [7], and 
structural and functional annotations [8, 9].  

 While manual annotation tends to deliver higher quality 
results over automated annotation, it is time consuming and 
expensive process, particularly impractical for large-scale 
whole genome sequence data. In contrast, automated 
annotation is a relatively inexpensive and fast process, but the 
output is less reliable, typically ranging from 30-70% accuracy 
for predicting a relatively small sample of known genes [10]. 
Structural annotation focuses on identifying the genomic 
elements on a sequence. Genomic elements include regulatory 
motifs, repetitive sequences, gene structure and Open Reading 
Frames (ORFs). Gene identification (or prediction) tools are 
based on statistics (ab initio) or sequence similarity based 
methods. Because each approach has its own strengths and 
weaknesses, it is common for gene identification tools of both 
types (a hybrid approach) to be used in gene annotation. 
Statistics based methods do not use extra information for gene 
prediction. Instead, they identify genomic features based on 
statistical patterns inside and outside of gene regions as well 
as patterns typical of the gene boundaries. GENSCAN is one 
of the most widely used statistics-based gene prediction 
software for human and vertebrates [11]. Other statistics based 
tools in wide use are FGENESH [12], GlimmerM [13], and 
GeneMark [14]. They use algorithms based on Markov 
models [15] and dynamic programming [12]. 

 Systems have also been developed which integrate the 
results from several gene prediction tools and the evidence 
from cDNA/ESTs and protein alignments. JIGSAW, formally 
known as Combiner [17] is a gene prediction system that 
utilizes multiple sources of evidence to predict gene structure. 
A weight is assigned to each evidence source, and gene 
predictions are based on a weighted voting scheme, yielding 
the best consensus predictions. 

 Sequence similarity-based gene prediction methods are 
typically more reliable than statistics-based methods as 
experimental data are used to predict the genes. The target 
genome is searched for similar regions in existing sequences 
such as ESTs from the same species of known gene models 
from closely related species. The rationale behind this 
methodology is that homologous sequences from closely 
related organisms typically share evolutionarily conserved or 
common functions. However, sequence similarity-based tools 
are useful only if existing sequence data are available. For 
example, genes that are expressed at low levels or expressed 
in certain cell types, developmental stages, or growth 
conditions may not be adequately represented. To remedy the 
shortcomings of each approach, systems have been developed 
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to combine and integrate the results from several gene 
prediction tools, as in GenomeScan [16].  

 Functional annotation is the process of attaching 
biological information to the genomic elements identified 
during structural annotation. Such information includes, but is 
not limited to, biochemical function, biological function, 
physiological function, and Gene Ontology (GO) terms. A 
general approach for functional characterization of unknown 
genes is to infer protein functions based on significant 
sequence similarity to annotated proteins in sequence 
databases. Typically, a sequence of a gene with unknown 
function is compared against public databases such as Swiss-
Prot [18], TrEMBL [19] or NCBI [20] using the BLAST 
sequence similarity algorithm. 

 Each of the tools mentioned have their own attributes, 
for instance, certain annotation tools are more robust for 
certain species than others, having originally been developed 
for those species. Generally, statistics-based methods find 
genes with a full-length CDS (coding sequence) but they 
perform poorly on finding genes with partial CDS which can 
be annotated more correctly with sequence similarity-based 
methods. Thus, quality of the results generated from each tool 
is not regarded as equal; some results are more reliable than 
others, and the result varies in different circumstances. 
Therefore, it is unwise to rely on only one source of evidence 
but rather best to combine different types of results to draw 
conclusions. 

 Often computational annotation programs generate 
results in text formats. Thus, several visualization tools have 
been developed to display the text file data graphically so that 
researchers can view and interpret the results more easily. The 
Generic Genome Browser (GBrowse) [3] is one of the most 
widely used products developed through the Generic Model 
Organism Database (GMOD) project (http://gmod.org). As it 
is a web-based application, annotation data can be easily 
shared with other researchers. However, it does not allow 
users to dynamically edit the annotated genomic elements.  

 In summary, to effectively apply structural and 
functional annotations, researchers are required to understand 
the different attributes of annotations tools, and how to specify 
proper parameters for their genome of interest. Also, the need 
for visualization through setup and management of genome 
viewers can be overwhelming for some researchers. 
Researchers typically use several annotation tools and obtain 
results for DNA sequences of interest in text format. In some 
cases, researchers must wait for the result by email when the 
process is computationally intensive or the sequence is very 
large. Then, they need to convert the text result to a format 
specifically required by a specific genome viewer using 
scripting languages like Perl. Finally, researchers analyze and 

compare the annotation data from different sources of 
evidences on the viewing tracks provided by the program. As 
such, researchers have to go through many time-consuming 
steps before reaching the final analysis steps, and currently no 
one-stop website exists for researchers to access several gene 
prediction tools and have the integrated and optimized results 
returned to them for further analysis.  

4 GenSAS 
 GenSAS was developed to help researchers perform 
structural and functional gene annotations and provides 
visualization curation tools. The focus of the design was on 
usability and effectiveness for biologists, efficient 
maintenance and decreased cost for IT administrators and 
developers. Being a web-based tool rather than a standalone 
tool frees users from expending effort in installation, 
configuration, and upgrade. The tool was made simple to use 
by providing all gene annotation tasks in one Web interface.  

 Figure 2 shows the Web front end of GenSAS. The front 
page consists of five panels; User Information, Sequence 
Information, Task Information, Retrieve Saved Data, and Task 
Queue. These panels are designed to assist researchers to 
create various tasks intuitively and efficiently. To create a task 
in GenSAS, users upload a genomic sequence and select one 
or more annotation tools. Then, the newly created task is 
appended to the Task Queue panel. GenSAS currently 
supports nine annotation tools as listed in the Tool 
Information panel, but more will be added in the future.  

 GenSAS allows researchers to save four different types 
of results: Sequence, Task, Output and SVG. These results can 
be later retrieved to reduce redundancy in the task creation 
process. Clicking on the third column icon (SVG button) on 
the Task Queue panel will generate a report page. The 
reporting page in Figure 3 displays the results from nine tools 
and a custom track for notes as a curator manually evaluates 
the annotations. Genomic features from the results of gene 
prediction programs are colored distinctively and types of 
these features are identified in the legend table. The reporting 
page allows users to zoom in and out or set the zoom ratio, 
and scroll left and right to examine the genomic features in the 
desired location of the DNA sequence.  
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Figure 2: GenSAS Front Page 

 
Figure 3. GenSAS Reporting Page with legend 
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   Figure 4. Overall structure of GenSAS 

 Figure 4 shows the overall structure of GenSAS. The 
software architecture conforms to the three-tier architecture 
covered in section 2. The rounded rectangles represent 
running programs or processes, and the oval shapes represent 
data. The typical interactions between the client and server in 
gene annotation are: 

1. The user interacts with the GenSAS front page and 
creates tasks. 

2. The user sends annotation job to the server (by clicking 
the SVG button) and waits for the result. 

3. Asynchronous job requests are created and sent to the 
Web server running CGI/Perl (the dotted line indicates 
asynchronous communication). 

4. CGI/Perl engine parses the input and calls exec to execute 
UNIX commands to run the corresponding annotation 
server. 

5. The annotation tools execute the command and generate 
output in their own text formats. 

6. The parser reads the text data and converts to JSON data. 
7. The JSON data is sent back to the client machine. 
8. The parser on the client side converts the JSON data to 

DOM data. 
9. JavaScript works with SVG to render the data to be 

displayed on the Web browser. 

 The core technologies used in GenSAS are JavaScript, 
JSON, AJAX, SVG, PostgreSQL database, and CGI/Perl, all 
open-source and freely available tools. We now look at the 
details of each technology incorporated in GenSAS. 

 JavaScript is a scripting language commonly used in the 
development of client-side dynamic Web applications. It is 
embedded directly into HTML pages and can be readily used 
in most Web browsers without any further installation or 
configuration. It is most commonly used in creating dynamic 
contents into an HTML page. GenSAS uses JavaScript in 
various ways. It is used to manipulate HTML elements on a 
webpage via Document Object Model (DOM, 

http://www.w3.org/DOM). DOM is the primary data structure 
by which a Web browser represents an HTML page. It 
provides methods and properties to retrieve, modify, update, 
and delete elements of a HTML document. For example, 
JavaScript allows users to reorder annotation tracks by drag & 
drop.  JavaScript is also used for handling events. When an 
event takes place from mouse click or drag & drop, one or 
more corresponding JavaScript functions are called and 
executed to properly handle the event on the client machine. 
Instead of waiting for the server to respond to the user actions 
and reloading the entire browser page, JavaScript allows users 
to interact with the browser without disruption.  

 JSON (JavaScript Object Notation) is a common data 
exchange formant which provides a structure to data like XML 
(http://www.json.org). It is in human readable text format and 
easy for machines to parse and generate. It is a native data 
format for JavaScript and less complicated than XML to work 
with for most modern programming languages. Also, JSON 
data can be easily transmitted between client and server 
machines over the network. The format of the results from 
each annotation tool varies and these results need to be 
converted into one standard format before sent to the Client 
Web browser. Its portability makes JSON well suited for web-
based applications that intensively use JavaScript. JSON data 
can be easily converted to DOM format so that JavaScript can 
work with SVG to render the data to be displayed on the Web 
browser. With these reasons JSON is used as the standard text 
format in GenSAS; outputs from annotation tools as well as 
some of data types that users can save in their account in the 
database are formatted in JSON.  

 AJAX (Asynchronous JavaScript and XML) is a Web 
development technique that is used to create interactive Web 
applications on the client-side (http://www.ajax.org). AJAX is 
not a single technology but a combined technology of HTML, 
CSS, DOM, XML, and JavaScript. Traditionally, once a client 
request is sent to a server, the client has to wait for the 
response from the server without being able to do further work 
on the Web browser. When the response reaches to the client, 
the whole webpage needs to be refreshed to display the result, 
which results in disruption of user attention. Using AJAX, the 
client accesses the server asynchronously in the background 
without waiting for the response. Once the response arrives on 
the client machine, the Web browser displays the result 
without refreshing the whole page. AJAX is frequently used in 
GenSAS. All access requests to the database server are carried 
out in the background with AJAX. AJAX is also used to 
perform parallel processing on annotation tools on multi-
processor server. Parallel processing (or concurrent processing 
on single processor server) is crucial for this system as the 
processing time of annotation tools varies significantly. It 
avoids having to wait for the completion of a large process 
before viewing the results of other smaller processes.  

 SVG (Scalable Vector Graphics) is a vector graphics file 
format and Web development language based on XML 
(http://www.w3.org/TR/SVG). Raster graphics, sometimes 
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called bitmap, is based on pixels and it represents an image as 
an array of pixels. Some genome browsers like GBrowse use 
raster graphics and generate image files to be sent and 
displayed on the client Web browser. The size of raster 
graphics files are relatively large compared to vector graphics 
and it degrades the performance of GBrowse. Also, when 
zoomed in, the images lose the quality with jagged lines, while 
vector graphics easily scale up without degrading the quality. 
As images for genomic features are needed to be displayed 
distinctively when scaled up, vector graphics is well suitable 
for the annotation server. Most modern Web browsers support 
and render SVG markup either natively (in Firefox and Safari) 
or with plug-ins (in Internet Explorer 8) to view SVG images 
correctly on Web browser. Internet Explorer 9 will natively 
support and render SVG. SVG is the main force behind the 
reporting page. Together with JavaScript, interactive graphical 
Web applications can be efficiently developed. All graphic 
features on the page are drawn with SVG images either 
statically or dynamically. For example, when one of exon 
images is clicked, it triggers the script that pops up the dialog 
window which shows the information about the exon such as 
orientation, frame and, start and stop locations. SVG graphics 
is also used to create GUIs such as buttons and a slider with 
two thumbs on the reporting page. In general, GUIs created by 
HTML tags are relatively plain and simple, however, the 
appearances of these HTML GUI components vary based on 
types of platforms and browsers; the looks of the buttons on 
the same webpage viewed by Safari and IE, for example, 
become different. SVG graphics allows for developers to 
create any shape and color, and the appearances of these GUIs 
will not change across browsers or platforms. Because SVG is 
written in XML, SVG content can be easily manipulated from 
JavaScript with DOM API in GenSAS. 

 PostgreSQL is one of the most popular relational 
database management systems publically and freely available 
(http://www.postgresql.org). It is used as a database server 
residing in the background of the annotation server system. It 
manages information about user accounts as well as their data. 
The Perl script has a module called Database Interface (DBI). 
DBI offers the standard database interface, which is capable of 
conducting primitive database functions on various types of 
database systems. DBI allows the database server to efficiently 
perform database operations online. 

 CGI/Perl The Common Gateway Interface (CGI) is a 
mechanism that allows Web clients to execute programs on a 
Web server and to receive their output. CGI applications are 
often used to produce HTML pages on the fly and process the 
input from an HTML form [5]. While many programming 
languages like C/C++, Java, Visual Basic, and Perl can be 
used to implement CGI, Perl is most often used to 
write CGI scripts for Web servers due to its long history of 
usage in UNIX systems and its strength in text manipulation. It 
is optimized for scanning arbitrary text files, extracting 
information from those text files, and printing reports based on 
that information. A project called BioPerl is supported by 
Open Bioinformatics Foundation (http://www.open-bio.org), 

which further strengthens its popularity. In GenSAS, Perl 
script is used to build CGI pages and access the database 
server to manage users' data. In addition, Perl is used to 
execute annotation tools installed on the server using the exec 
functions. With this function together with the AJAX 
described above, various annotation tools can be 
simultaneously executed on the annotation server to perform 
parallel processing. 

5 Related Work 
 JIGSAW [17] integrates weighted outputs from multiple 
gene prediction tools to predict genes. Ergatis [21] enables 
workflow creation with multiple bioinformatics tools to 
perform automated gene annotations and comparative 
analysis. However, these tools do not provide a graphic viewer 
for further annotation. MAKER [22] is a genome annotation 
pipeline that produces annotation results that can be viewed by 
GMOD browsers like GBrowse. DNA subway 
(http://dnasubway.iplantcollaborative.org) allows users to use 
multiple gene prediction tools, edit the gene model using 
Apollo [23] and view the results in GBrowse. It is the most 
similar tools to GenSAS, but GenSAS has its own graphic 
viewer that allows users to edit and view the results in the 
same window. 

6 Conclusion and Future Work 
 GenSAS has been developed in close cooperation with 
biologist users. Interacting with users helped identify problems 
and issues in currently used gene annotation tools, and has 
brought forth new ideas for GenSAS features. Rather than 
developing from the ground up, GenSAS was developed with 
proven technologies and well supported standards-based tools. 
By conforming to the industry standard three-tier Web 
architecture, GenSAS can be easily managed and updated for 
future needs. The most important issues identified and put to 
work in GenSAS were the ease of use, prompt response, and 
effectiveness for the biologist user  
 
Ease of Use: GenSAS incorporates several different 
annotation tools together with available customized 
experimental data such as cDNA, ESTs and proteins, to 
provide researchers with faster processing and access to the 
various types of generated evidence without ever leaving the 
GenSAS browser page. User management through accounts is 
supported and users can store output results which can be later 
retrieved for further analysis. 
 
Prompt Response Time: AJAX allows easy implementation of 
concurrent and parallel processing on Web applications. 
GenSAS allows users to run multiple gene annotation tools, 
and by using asynchronous communication mechanisms in 
AJAX, the result will show up on the Web browser as soon as 
the corresponding annotation tool finishes its job. Also, AJAX 
allows users to continuously interact with the browser without 
having to wait for the server. 
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Effectiveness: The Web front end is very compact and the five 
panels of windows are well laid out for users to easily 
navigate. Any users with nominal experience of using gene 
annotation tools will be readily able to use GenSAS quite 
effectively. Different shapes and colors of icons with tooltip 
support further help users with easy navigation of the tool. 
Graphic features on a track can be customized with different 
colors, and they can be saved to the custom track for further 
evidence gathering. 
 
 Since its inception, GenSAS has been constantly 
improved and many issues have been suggested to further 
enhance its capability. One notable feature under development 
is support of multiple tracks for the same annotation tool run 
with different parameters. Allowing drag-and-drop for copying 
features onto the custom track is also being considered. 
GenSAS supports private and group user accounts for users to 
save and allow file sharing among group members, similar to 
UNIX file sharing, but more an advanced and versatile user 
account management system is desired. Utilizing a content 
management system like Drupal is one possibility. To further 
improve the performance, the annotation processes can be sent 
to high performance clusters or grids. We look forward to 
implementing these and additional features in future GenSAS 
versions.  
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Abstract— The advancement of bioinformatics is remark-
able after the analysis of human genome is completed. The
functions of the protein coded from the genome are compared
with the sequence of amino-acid of unknown proteins and
the sequence of the protein that is already known. It can
find the similar sequence, but the global relations among
the sequences cannot be extracted. Initially two protein se-
quences are taken one among which is the known amino acid
sequence(seq A) and the other one is the unknown amino
acid sequence(seq B). By Sequence mapping , comparison
is made between the two sets. This method searches for the
matched and the frequent set of unknown amino acid in the
known amino acid sequence. The algorithm takes protein
sequence as input and does the mapping. If there are zero
matches of seq B in seq A then there exists noise, which is
to be eliminated.

Keywords: Sequence Mapping, Amino-acid, Frequency Set, Se-
quence Search Hill Climbing Algorithm(SSHM)

1. Introduction

Proteins are made up of chains known as amino acids
which are bind together by the peptide bonds. Protein
structure is determined by the nucleotide sequence of that
protein. Amino acids are made up of carbon, hydrogen,
oxygen and nitrogen which will combine to form different
types of proteins which are required by the body. PHP is
a scripting language which is used for web development.
PHP can run on any existing platforms based on the same
code. Using PHP as the scripting language fastens the
execution, moreover it supports several database and HTTP
server interfaces. We implemented heuristic search based on
Hill Climbing Algorithm in PHP. Heuristic search method
is used to find the best solution in least possible time.
Hill Climbing Algorithm is an Iterative algorithm which
starts with a solution and then incrementally finds a better
solution by changing a single element of the solution. The
matched amino acid sequence is searched and frequency set
is generated.

2. Scripting Languages
Specialised scripting languages include: PHP (Hypertext

PreProcessor). It is popular scripting language which has
more than thousand inbuilt function support. And has nested,
associative arrays features.
Perl (Practical Extraction and Report Language). This is a
popular string processing language for writing small scripts
for system administrators and web site maintainers. Much
web development is now done using Perl. newline Hypertalk
is another example. It is the underlying scripting language
of HyperCard.
Lingo is the scripting language of Macromedia Director, an
authoring system for develop high-performance multimedia
content and applications for CDs, DVDs and the Internet.
AppleScript, a scripting language for the Macintosh allows
the user to send commands to the operating system to, for
example open applications, carry out complex data opera-
tions.
JavaScript, perhaps the most publicised and well-known
scripting language was initially developed by Netscape as
LiveScript to allow more functionality and enhancement to
web page authoring that raw HTML could not accommodate.
A standard version of JavaScript was later developed to
work in both Netscape and Microsoft’s Internet Explorer,
thus making the language to a large extent, universal. This
means that JavaScript code can run on any platform that has
a JavaScript interpreter.
VBScript, a cut-down version of Visual Basic, used to
enhance the features of web pages in Internet Explorer.

2.1 PHP scripting
PHP is an HTML-embedded scripting language. Much of

its syntax is borrowed from C, Java and Perl with a couple
of unique PHP-specific features thrown in. The goal of the
language is to allow web developers to write dynamically
generated pages quickly."
This is generally a good definition of PHP. However, it does
contain a lot of terms you may not be used to. Another way
to think of PHP is a powerful, behind the scenes scripting
language that your visitors won’t see!
When someone visits your PHP webpage, your web server
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processes the PHP code. It then sees which parts it needs
to show to visitors(content and pictures) and hides the other
stuff(file operations, math calculations, etc.) then translates
your PHP into HTML. After the translation into HTML, it
sends the webpage to your visitor’s web browser.

2.2 Advantages of PHP
PHP is an extremely popular scripting language. It was

originally created in 1995 and designed for the web. It is free
of charge and can be used on almost every operating system.
There are over 20 million websites and over 1 million web
servers running PHP and those numbers are growing every
day. The reason why PHP is so popular and it is continuously
growing is because it offers many advantages. These are:
Fast - PHP was created to develop dynamic Web Pages so
it is fast on websites. The PHP code is embedded in HTML
and the time it takes to process and load the browser with
HTML and create a full web page is very quick.
Free - PHP is released under the PHP License. This licence
is compatible with the GNU General Public License or GPL.
Thus making PHP free software. This means that anybody
can download it and use it 100
Easy - The syntax of PHP is very easy to use and learn. PHP
is usually mixed in with HTML and can be easily included
in HTML files.

3. Materials and Methods
The unknown protein sequence (Q08392) is given as input

to our algorithm .The known sequence which he used is
(1ML6). Our algorithm does the Heuristic Search and gen-
erates the frequency set. The frequency set gives the pattern
matches respective times. Algorithm is developed based on
Hill Climbing algorithm and implemented in PHP. It is
implemented in PHP script which generates the frequency
set. We used Docking Tool to predict the protein structure.

3.1 SEQUENCE SEARCH HILLCLIMBING
ALGORITHM (SSHM)

Step 1: Start
Step 2: Take Unknown Sequence Sk
Step 3:Take Known KSs Sequence set As a Search Space
Step 4:Apply Hill Climbing Technique to match Sk with
KSs

Sk[i,j](Intersection)KSs[i,j]>Sk[i,k](Intersection) KSs[i,k]
Then Sk[i,j] (Intersection) KSs[i,j] is the Result

Step 5:If Matches are not found with KSs Then Sk is New
Sequence
Step 6:Stop
Known Protein Sequence 1ML6:
AGKPVLHYFNARGRMECIRWLLAAAGVEFEEKFIQSPE
DLEKLKKDGNLMFDQVPMVEIDGMKLVQTRAILNYIA
TKYDLYGKDMKERALIDMYTEGILDLTEMIGQLVLCPP
DQREAKTALAKDRTKNRYLPAFEKVLKSHGQDYLVGN

RLTRVDVHLLELLLYVEELDASLLTPFPLLKAFKSRISSL
PNVKKFLQPGSQRKPPLDAKQIEEARKVFKF
Unknown Protein Sequence Q08392:
MSGKPVLHYANTRGRMESVRWLLAAAGVEFEEKFLEK
KEDLQKLKSDGSLLFQQVPMVEIDGMKMVQTRAILNY
IAGKYNLYGKDLKERALIDMYVEGLADLYELIMMNVV
QPADKKEEHLANALDKAANRYFPVFEKVLKDHGHDFL
VGNKLSRADVHLLETILAVEESKPDALAKFPLLQSFKAR
TSNIPNIKKFLQPGSQRKPRLEEKDIPRLMAIFH

SCRIPT:
<TABLE border=1>
<? php
$str1="AGKPVLHYFNARGRMECIRWLLAAAGVEFEEKFI
QSPEDLEKLKKDGNLMFDQVPMVEIDGMKLVQTRAIL
NYIATKYDLYGKDMKERALIDMYTEGILDLTEMIGQLV
LCPPDQREAKTALAKDRTKNRYLPAFEKVLKSHGQDY
LVGNRLTRVDVHLLELLLYVEELDASLLTPFPLLKAFK
SRISSLPNVKKFLQPGSQRKPPLDAKQIEEARKVFKF";
$str2="MSGKPVLHYANTRGRMESVRWLLAAAGVEFE
EKFLEKKEDLQKLKSDGSLLFQQVPMVEIDGMKMVQ
TRAILNYIAGKYNLYGKDLKERALIDMYVEGLADLYE
LIMMNVVQPADKKEEHLANALDKAANRYFPVFEKVL
KDHGHDFLVGNKLSRADVHLLETILAVEESKPDALAK
FPLLQSFKARTSNIPNIKKFLQPGSQRKPRLEEKDIPRL
MAIFH";
? >
<TR>
<TD>String length</TD>
<TD> <?php print_r(strlen($str1)); ?></TD>
<TD><?php print_r($str1); ?></TD>
</TR>
<TR>
<TD>String length</TD>
<TD><?php print_r(strlen($str2)); ?></TD>
<TD><?php print_r($str2); ?></TD>
</TR>
</table>
<table style="float:left" border=0>
<?php
$chars = array(”);
$chars1 = array();
$red= array();
$c=0;
$high=0;
for($l = 0; $l<=strlen($str2); $l++)
for($k = 0; $k<=strlen($str2)-$l; $k++)
$string = substr($str2,$l,$k);
//echo substr($str2,$l,$k). $l. ’->’. $k . "<br/>";
$chunk = substr($str2,$l,$k); if(strlen($chunk)>0)$cnt =
substr_count($str1,$chunk);
if($cnt>0)
if(isset($red[$string]))
$c++;
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if($cnt>$high)
$high=$cnt;
$red[$string]=$cnt;
}
}
}
}
}
foreach($red as $i => $value)
?>
<tr><td><b><?php print_r($i); ?></b></td>
<TD> <?php echo $red[$i]; ?> </TD>
<?php
echo " <TD >".(($red[$i]/sizeof($red))*100)."
for($j=0;$j<$red[$i];$j++)
echo " <TD bgcolor=’blue’>.</TD> ";
echo "</tr>";

?>
<tfoot></tfoot>
</table>
<?php
echo sizeof($red)."<span style=’float:left’><b>Total
match count is ".$c." with highest frequency as
".$high."</b></span>";
?>

4. Results
The important of this study relates to the importance of

dissimilar residues between any two proteins under study. In
this case Q08392 and 1ML6 consider to prepare frequency
table chart based on the designed algorithm. Owing to the
importance of this analysis, a amino acid frequency chart
representative of single and double amino acids are reported.
The below tabulated values gives percentage matches with
single and double amino acids matches.
From the above tables frequency of single amino acid residue
between Q08392 and 1ML6 reported to contain 51.66%
number of matches. The amino acid with highest frequency
was found to be "Leucine"(L) with 32 number of matches
(7.58%).Most of the percentage matches were in the range
1.42% to 2.6%.The basic amino acid "Histinde"(H) was at
0.71% .Considering the two amino acids matches ,most of
the observes matches between these two proteins are not
more than 2 to 3 matches with percentage number of matches
been 0.5%. The overall success rate with single amino acid
and double amino acid was 51.66% and 21.92% respectively.

5. Conclusions
The importance of this coding and subsequently results

from this study is to emphasis the crucial amino acid residues
responsible for functional attributes can be detected used
molecular docking technology. In other words the presence

Table 1: single and double amino acids matches with per-
centages

Amino Acid No. of matches % of matches
M 7 1.66
S 7 1.66
G 11 2.61
K 22 5.21
P 12 2.84
V 13 3.08
L 32 7.58
H 3 0.71
Y 8 1.91
A 16 3.79
N 6 1.42
T 8 1.90
R 13 3.08
E 17 4.03
F 10 3.77
D 14 3.72
Q 9 2.13
I 10 2.13

Success rate 51.66

of either single or double amino acids with in or nearer active
site region leads to gain insights towards the functional rele-
vance of Glutathione S transferase (GST).Hence a homology
modeling protein was undertaken to build the protein and
subsequently molecular docking studies are initiated.
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Abstract—Numerous retinopathies are related to the dysfunc-
tion of retinal vasculature, especially micro-vessels. Extensive
research in ophthalmology has singled out critical roles of
vascular morphology, and the functional dynamics of blood flow
in diseases. Advances in angiography has yielded a myriad of
applications for computational methods that design efficient tools
to complement retinal imaging and microscopy in analytic oph-
thalmology. In this paper, we propose a novel mathematical ap-
proach for the design of quantitative tools that enable researchers,
as well as automated vision-based systems, to perform pattern
recognition, and feature extraction in retinal vasculature. The
present feasibility-stage implementation of these new algorithms
demonstrates the power and versatility of the set of tools we
provide for the detection of morphological pathology, as well as
the theoretical study of retinal neurovasculature anatomy when
regarded as a complex (dynamic) system. In contrast to current
state-of-the-art methods that rely on bottom-up algorithms to
deal with noise and trace the vessels, we propose a top-down
scheme to overcome noise and capture morphological features
such as center-lines, radii, and the edge locations of circulatory
blood vessels. This approach is comprised of three components.
First, the algorithms for detection and measurement of the
vasculature morphological structures in two-dimensional fundus
images are implemented. These algorithms combine advanced
kernel-based methods to extract blood vessels, and are further
enhanced by variants of Canny Edge Detection algorithms.
Second, a fully automated approach is provided to identify
the optic disc in healthy/diseased fundus images, eliminating
current bottle-necks requiring extensive human expertise. Third,
we construct a hierarchical network of geometric (topological)
structures of the extracted vessels, rooted in the optic disc. A
notable application of our methods is to capture complex vas-
culature structures in noisy, blurred, and light-reflecting fundus
images. Another advantage of our approach is the automation
of in vivo quantification of complex phenotypic traits of retinal
neurovasculature, which are expected to play an important role in
emerging computational models for mapping genotype-phenotype
relations and personalized medicine.

I. INTRODUCTION

Analysis and quantifying medical images forms an essential
step in delineating practical issues in relation to the diagnoses

of systems. Extracting appropriate features to represent the
content and structure of an image by precisely capturing
anatomical and pathological features of the retinal tissue
is the goal of quantifying fundus images. Segmentation of
blood vessels and quantifying phenotypic traits, such as width,
length, and distinguishing between regions of lesions, plays an
important role in the diagnosis of vasculitis, malformations,
vein occlusion [12], exudates, diabetes [19], glaucoma [13],
and many other retinal diseases exhibiting a vascular pheno-
type.

Currently, almost every medical imaging technique (ultra-
sound, X-ray, MRI, CT, etc...) can be used to capture high
resolution, two- or three-dimensional, blood vessel images.
However, the complexity of the vasculature structure, un-
avoidable noise in the system, and faded images, challenges
scientists to come up with precise, efficient, and practical
approaches.

Decades of intensive research have brought a vast array of
tools and methods. Comprehensive reviews and comparison
of many of these accomplishments are mentioned [2], [3].
Li Wang [3] recently proposed a multi-resolution, Hermite
polynomial-based model to analyze two-dimensional images,
and construct a tree-type data structure of the blood vessels.

Using fuzzy methods is currently in vogue due to its ability
to achieve noise removal and ease of enhancement in combina-
tion with other probabilistic methods [4], [6]. Statistical and
kernel-based methods have also been proposed to overcome
uncertainty in images [7], [9]. Additionally, template matching
approaches have been examined [8], [10], [11]. Nonetheless,
greater advancements are needed to handle unaddressed pat-
terns of noise, reflection of light, and complex structural
arrangements in images. Extensive variation in vessel width
(especially in the case of arterial stenosis and aneurysms)
remains an obstacle for quantifying phenotypic traits. Experts
tend to have subjective variability in their identification of
subtle features, creating an urgency for the ability of automated
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methods to quantify phenotypic traits. Our own research [1],
high throughput in vivo phenotyping, is needed to collect the
time-series that encodes the dynamic variation of morpholo-
gies, and can predict the onset of angiogenesis in diabetic and
other high-risk patients.

In this paper, we propose a new top-down method in which
a kernel-based method was used to project the images to
a higher-dimensional space. Using this projection, we avoid
dealing with lesions, various types of noise, and reflected
light. Thereafter, we applied a local to global model to extract
the edges of the vessels and their bifurcated segments. A
Canny-type algorithm was applied to fill the gaps along the
longitudinal vessel, while closeness and varying widths of
vessels were considered. Through application of the Canny
based edge detection algorithm, we constructed a multi-
resolution topological structure from the vessels. Whereas
the blood vessels originate from the optic disc [5], we use
this topological structure to identify it. In addition to the
geometrical correlation between blood vessels and the optic
disc, the impact of the density of blood vessels to measure the
size of the optic disc and fovea has already been demonstrated
[19].

In the next section, we describe our methodology and
algorithms in detail. In the Identifying the Optic Disc section,
we evaluate our algorithms by comparing them with a current
standard.

II. METHODOLOGY

Measuring morphological traits of retinal blood vessels
plays an important role in the screening of numerous oc-
ular diseases. The mysterious structure of the retinal blood
vessels has motivated researchers to study this topic from a
computational point of view. The identification of fractals as
the mathematical structure underlying vasculature has opened
new branches of research [9], [10]. Utilizing fractals as a data
structure for storing vessels, to study their distribution, has
been examined and yielded promising results [11], [12], [13].
In this study, the method for storing vessels and finding the
density of their distribution (i.e. locating the optic disc) is
inspired by their fractal structure. The first part of this section
explains the algorithm for extracting the vessels and generating
the hierarchal structure rooted in the optic disc. The second
illustrates the ability of the hierarchical structure to identify
the optic disc.

A. Vasculature Structure

Using statistical learning and kernel machines in data
mining is a well known approach. Vapnik introduced a new
branch of data clustering approaches; whereby applying
kernel machines, complex data structures could be clustered
[16], [17]; ’Foundation of Analysis’. In this work we
used kernel methods to project complex data objects to
higher-dimensional spaces in order to efficiently distinguish
meaningful information (pixels) from noise [14], [15].

1) Kernel Mapping: A preliminary step towards extracting
the vasculature structures from the fundus images is to increase
their respective pixel contrast. Mapping the images, via a
kernel, allows us to individually project the color intensities
of the images’ respective pixels to higher and lower levels
of saturation, providing greater separation of pixel values
effectively ”sharpening” the images. Figure 1 compares an
original and kernel-mapped fundus image.

Fig. 1. The first column shows the original fundus image with its associated
color intensity histogram. The second column shows the image and its
histogram after adjusting the color indexes. As shown in the histograms,
the range of color indexes (x-axis) and their intensities (y-axis) provides a
quantifiable difference between the original and adjusted image.

2) Canny Edge Detection: Canny Edge Detection involves
pre-filtering the image through convolution with a simple
Gaussian filter to eliminate noise that might otherwise interfere
with the edge detection process. Selection of a small, versus
a large, filter window directly affects the observable and
statistical smoothing applied to the image, and helps to reduce
unavoidable noise from image acquisition. After smoothing,
standard kernels Gx and Gy are applied in both the x and y
directions of the image to determine edges by calculation of
the image’s gradient |G|.

Gx =

−1 0 1
−2 0 2
−1 0 1


Gy =

 1 2 1
0 0 0
−1 −2 −1


|G| =

√
G2

x +G2
y

θ = arctan(
|Gy|
|Gx|

)

The detection of the edges after applying the 3 x 3 kernels
to each pixel is determined by the angle θ and stored for
comparison to determine the ”strong” versus ”weak” edges of
the image, as specified by a double threshold intrinsic to the
image based on maximum and minimum pixel values.
For example:
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1) Round the θ value to the nearest multiple of 45 degrees,
corresponding to the directional choices for the pixel’s
eight adjacent pixels. (0 = right, 45 degrees = upper-right,
90 degrees = upper-center, 135 = upper-left, 180 = left,
etc. . .)

2) Compare the gradient value for each pixel based on the
positive and negative θ value to obtain the next piece of
the edge based on the gradient thresholding values.

3) If the pixel under examination, relative to its eight adja-
cent pixels, is largest within this threshold it is preserved
as a ”strong” edge. If it is ”weak”, as long as it is
connected to a ”strong” edge it is preserved. If it is neither
of these, it is marked for removal.

The Canny algorithm applies a double threshold to label edges
corresponding to ”strong” and ”weak”, by referencing the
value of the gradient as described in (3). It is these thresholds
which ultimately determine edges detected as ”strong” (i.e.
pixels in the neighborhood described in (1) referring to the
pixel of interest’s gradient value) or ”weak”. Figure 2 shows
the results of the edge detection algorithm with different
threshold values.

3) Dilation: Dilation is a set operation performed over a
discrete neighborhood of size n. The structuring element can
be thought of as a geometric shape that overlaps and extracts
the maximum pixel value lying within its boundaries; per-
forming this operation iteratively pixel by pixel and replacing
the pixel of interest with the maximum pixel value within the
neighborhood.

Dilating the detected edges by n = 1 extends them towards
filling the vessels and segmenting the vasculature structures
from surrounding regions. Figure 3 shows an example of
dilated edges in comparison with the original image.

B. Identifying the Optic Disc

Despite the optic disc being located in the observably blind
region of the eye, known as ”the blind spot”, studying discs
is important for diagnosing vascular disorders. The optic disc
is also the gateway between the nervous and visual systems
[18]. Since all blood vessels are directed towards the optic
disc, extracting the geometrical distribution of the vessels is
the first step towards the optic disk’s location [5]. Differences
in color indexes of an optic disc, relative to its surrounding
regions in fundus images, has motivated researchers to develop
color-index image analysis tools. However, since there is a
distinct similarity between color indexes of the optic disc
and exudative lesions, these color-index image analysis tools
are not appropriate for quantifying affected images. In this
study, we used a geometric-based algorithm to define a feasible
region for the location of the optic disc and to exclude exudate
regions from it. Moreover, we enhanced this algorithm, where
appropriate, with image analysis tools to improve its accuracy.

Figure 4 shows the color indexes of the two-dimensional
images. These graphs show the differences between the color
distributions in the optic discs relative to their surrounding
areas. Notice that the gradient of the surface around the optic

Fig. 2. Multi-resolution of vessel edges: the Canny Edge Detection algorithm
with different threshold values. The threshold values decrease generally, and
with respect to each other (i.e. upper versus lower threshold), left to right,
and top to bottom.

disc is zero. To further emphasize the importance of analyzing
color indexes, consider the contour plots of these images in
Figure 5.

Previously, some healthy fundus images were considered.
Next, let us consider some pathological subjects. Figure 6
shows four examples of affected fundus images and their
respective color intensity surfaces. As depicted by the color
intensity surfaces (second column), identifying the optic disc
based on the analysis of color indexes is insufficient. However,
analyzing the multi-resolution structure of the blood vessels
provides satisfactory results. The results of the analysis of
the multi-resolution structures are shown in the first column
of Figure 7, where in the second column one can observe a
strong correlation between these structures and the location of
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Fig. 3. The detected edges were dilated pixel by pixel over a neighborhood
of radius n = 1.

the optic disc.
To evaluate our methodology, we applied these algorithms to

two datasets: STructured Analysis of the Retina (STARE) [20],
and Digital Retinal Images for Vessel Extraction (DRIVE)
[21]. These datasets included fundus images of both healthy
and pathological subjects. We compared the results of our
algorithm with the manually extracted vessels provided by
Adam Hoover [22]. As mentioned previously, instead of
tracking vessels in our algorithm, the automated extraction
and measurement of morphological traits is emphasized.

A direct comparison of automated and segmented vascula-
ture structures to manually extracted vessels is shown in [23].
Moreover, some of the fundus images show different levels
of hierarchical vasculature structure. To evaluate the second
part of our methodology, we compared it to two well-known
applications for identifying optic discs [5], [6]. The results
from the application of our algorithm on the two datasets are
available at [23].

CONCLUSION

In this paper, we have presented a novel computational
method to quantify retinal blood vessels and identify optic
discs in two-dimensional fundus images. This methodology
consists of a kernel-based algorithm to extract vasculature
structures. Taking advantage of the Canny Edge Detection
algorithm, our methodology constructs a hierarchical structure
of the blood vessels. This algorithm accurately quantifies
vessel structure, length, and can capture dynamics in width by
precisely detecting the edges of vessels. Moreover, analyzing

Fig. 4. The x and y-axis form the xy-plane of the image. The z-axis shows
the color indexes of the image corresponding to its xy-coordinate. The optic
disc is the flat region on the surface and differentiation of the color densities
in these regions are zero in contrast with other parts of the image. This is an
important feature to identify the optic disc.

Fig. 5. These are the contour plots of the fundus images, left to right and
top to bottom correspond to the images in Figure 4. The optic disc regions
have the highest color indexes and are indicated by dark red. Other structures
have lower color indexes, indicated by their colder colors relative to the optic
disk.

this hierarchical structure, and appropriately using standard
image analysis tools, we can identify the optic disc. In this
manner, we have used two important biological features of
angiography to detect the optic disc: the intrinsic geometry of
the optic disc with respect to the vessels; and the differences
of color indexes of the optic disc relative to its surrounding
regions. This methodology precisely distinguishes between
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Fig. 6. These images are examples of affected retinal fundus angiography
from the STARE datasets.

closely located vessels and their longitudinal gaps. It also
separates the lesion regions from the optic disc. We evaluated
our methodology on two datasets, where the results showed
its robustness and accuracy on normal and pathological retinal
fundus images. Efficiency and precision of the algorithms
are demonstrated by comparing our results with manually
segmented fundus images [22] and comparing them with
current well-known algorithms for identifying optic discs [5],
[6].
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Abstract - Conventional optical coherence tomography 
(OCT) systems generally have a limited imaging range 
within a depth of only 1-2 mm and suffers from unwanted 
noise such as speckle, ghost or mirror noise. To overcome 
these limitations, we developed a motorized-stage-based 
OCT system with an extended imaging range, using a 
common-path Fourier-domain optical coherence 
tomography (CP-FD-OCT) configuration. Using this OCT 
systems, OCT image was obtained from an onion, and their 
subsurface structure were observed. The result showed that 
the OCT images obtained using our motorized-stage-based 
system had a significantly extended imaging range due to 
its real-time accurate depth tracking. Consequently, the 
devised CP-FD-OCT systems and algorithms have good 
potential for the further development of endoscopic OCT 
for microsurgery. 

Keywords: OCT, Common-path OCT,  FD-OCT, Tracking 
algorithm 

1 Introduction 
Optical coherence tomography (OCT), which is one of 

the various optical imaging modalities, is a novel imaging 
technology that provides high- resolution, subsurface depth 
profiling, and cross-sectional imaging in vivo with 
relatively simple optical arrangements and an inexpensive 
light source in a non-invasive manner. The concept of OCT 
and its application were first introduced by Fujimoto et al. 
in 1991 [1]. OCT imaging is somewhat analogous to the B-
scan imaging technique based on ultrasound, except that it 
uses light instead of sound.  

This technique typically makes use of a Michelson 
interferometer and allows a depth-profile to be obtained by 
measuring the optical pathlength or phase difference 
between the reflected or backscattered light beam and a 
reference one, when near infra-red light (wavelength: 600-

1,300 nm) is illuminated onto the sample. First, the light 
generated from the light source is divided into two arms, viz. 
the sample arm used for exploring the sample and the 
reference arm which is usually obtained using a mirror, via 
a beam splitter or optical coupler. Next, the combination of 
the reflected or backscattered light from the sample arm and 
reference light gives rise to an interference pattern. The 
more light that is reflected back from the reflective layer 
within the sample, the greater the intensity of the 
interference fringe. This reflectivity profile (A-scan) 
contains information about the spatial dimensions and 
location of the structures within the sample of interest and, 
thus, OCT images can be obtained by measuring the optical 
delay according to the depth within the sample, i.e. different 
reflective loci at different depths in the sample. Finally, a 
cross-sectional image (B-scan) may be achieved by laterally 
combining a series of these axial depth profiles. 

The OCT technique has several benefits for the non-
invasive, high-resolution and fast-acquisition tomography 
of the internal microstructure in biological systems and 
materials. First of all, it can provide much higher-resolution 
images (2-10 μm) than conventional imaging techniques, 
such as ultrasound (over 500 μm), MRI and CT (over 100 
μm), although its depth information is limited to a range of 
approximately 2-3 mm in turbid tissue [2]. Also, OCT has a 
faster scanning speed for acquisition and relatively wider 
dynamic range [3]. OCT can image with an acquisition rate 
of up to 20 frames per second, which should allow this 
technology to image surgical procedures in near real time. 
Moreover, the entire system is simple and portable and, thus, 
has the potential to enable OCT catheters to be incorporated 
into endoscopic instruments or bedside devices. Finally, 
since OCT is based on optics, it can be combined with other 
spectroscopic techniques to assess the optical and 
biochemical aspects of the tissue being imaged. 

Common-path OCT (CP-OCT) was proposed by 
Vakhtin et al. in 2003 [4]. In the CP-OCT configuration, the 
beam paths, which the sample signals backscattered from 
the sample and reference signals reflected from the 
reference plane follow, are commonly shared, thereby 
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eliminating the need for the reference arm in the 
interferometer. This modality can minimize the effect 
caused by the mismatch of the polarization and dispersion 
states between the optical elements in the interferometer 
and the sensitivity to vibration, and enhance the scanning 
speed, simplicity and system robustness. Consequently, this 
configuration has the potential to be used as a microsurgical 
tool. Some researchers have reported the feasibility of an 
endoscopic CP-OCT implementation based on the common-
path modality [5-7]. 

However, unfortunately, most OCT systems 
generally suffer from a limited imaging depth range of only 
1-3 mm, depending on the tissue type and, thus, this 
limitation restricts their clinical applications when the 
sample's topological variance is larger than the imaging 
depth range [8]. To overcome these limitations, some 
techniques such as the adaptive ranging technique based on 
depth tracking have been proposed in previous papers [9-
10]. In these methods, the coherence gate offset and range 
on the reference arm are adaptively adjusted by means of an 
active tracker consisting of various optical lenses and a 
galvanometer. Also, alternative techniques using an 
auxiliary spectral domain partial coherence interferometer 
[11], tunable endoscopic MEMS probe consisting of a 
pneumatically-actuated micro-lens and a GRIN lens [12], or 
dual reference arms and a high-speed fiber optic switch [13] 
were attempted. However, these techniques require the 
supplementary alignment of the various optical lenses or 
components and synchronization control and, thus, the 
composition and control procedure of the OCT system 
might become more onerous and complicated. Also, they 
compensate for the topological variance and motion by 
adjusting the optical pathlength on the reference arm and, 
therefore, this strategy might be inappropriate for the CP-
FD-OCT system constructed in this study, since CP-OCT 
uses the common beam path of the sample and reference 
signal instead of using the reference mirror used in the 
conventional OCT composition. Recently, Zhang et al. [14] 
reported a CP-FD-OCT system providing a surface 

topology and motion compensation technique in the axial 
direction by means of a 1-D erosion-based edge-searching 
algorithm, which makes use of the relatively simple signal 
processing of the A-scan data instead of the alignment of 
complex optical components.  

To assess the feasibility of the system described in this 
paper, an active compensation algorithm of the topological 
variance by means of a sample surface detection algorithm 
using a Savitzky-Golay smoothing filter and feedback 
control for adjusting continuously the position of the 
motorized stage was developed in the present study. This 
algorithm makes it possible to image a deeper range along 
the z-axis by keeping the distance between the end of the 
probe and the sample's surface constant, as compared to the 
conventional scanning strategies. 

2 FD-CP-OCT system 
2.1 Hardware Configuration 

To obtain high-resolution OCT images with an 
extended range of imaging depths, a motorized-stage-based 
OCT system was developed. It consists of a high-resolution 
spectrometer, actively controllable motorized-stage, 
actuators and control modules, as well as basic 
compositions such as a light source, 50/50 coupler, and 
single mode fiber-optic probe. Figure 1 shows the block 
diagram of the developed CP-FD-OCT system. A 
superluminescent diode (SLD) (SLD-351, Superlum Diode 
Ltd., Ireland) with a central wavelength of 860 nm and 
spectral full-width at half maximum (FWHM) of ~60 nm 
was used as the light source. A 50/50 coupler (FC850-40-
50-APC, Thorlabs Inc., U.S.) was used as the beam splitter, 
and only one branch on the right side was used as the 
common path for the signal and reference. The single mode 
fiber-optic probe constructed in this study was fixed on a 
standing vise, with A-scan (z-axis) and B-scan (x-axis). The 

 
Fig 1. Block diagram of the developed CP-FD-OCT 
system. 

 

Fig 2. Photograph of the developed CP-FD-OCT system. 
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two axes of the x and z directions were driven by a 
motorized stage (M-561D-XYZ, Newport Corp., U.S.) with 
two separate step motors (SE-SM243, N.T.C., Korea) 
installed on its lateral side. The reference signal came from 
the Fresnel reflection at the fiber probe end and the sample 
signal and the reference were received by a high-speed 
spectrometer (HR-4000, Ocean Optics, U.S.) with a charge-
coupled device detector array with 3648 pixels covering a 
range of 700-900 nm. This system make it possible to 
extend the imaging range, since the position of the probe 
can be adjusted actively and simultaneously according to 
the sample's topological variance, whereas the time needed 
for image acquisition is relatively longer. Figure 2 shows 
the photograph of the developed system. 

2.2 Software configuration 

To control the actuators and perform image processing 
in our motorized-stage-based CP-FD-OCT system, OCT 
acquisition software was developed using the LabVIEW 
language (ver. 8.6, National Instruments, U.S.) based on a 
graphic user interface (GUI) with buttons and graphs.  

Figure 3 shows the developed software. The 'New 
Reference' button is used for measuring the reference signal 
in the CP-OCT configuration. The 'B-scan' button is used 
for obtaining the B-scan OCT image, while 'Stop' is used 
for holding the B-scanning. The 'Reset' button is used for 
initializing variables such as the rotation speed and period 
of the actuator per step, B-scanning range, and set-up 
distance between the probe and sample's surface and so on. 
Also, the 'Save' and 'Load' buttons are used for storing the 
measured OCT image on the host PC and loading the OCT 
image file from the PC, respectively. 'Exit' is used to 
terminate the software.  

The lateral resolution, which means the lateral 
displacement per A-scan data, and total B-scan range are 
given by inputting the information into the combo ('Set step 
degree') and control boxes ('Distance') on the top left of the 

screen, respectively. Also, the position of the stage can be 
manually adjusted by repeatedly entering the keyboard keys, 
'△' (upward), '▽ ' (downward)', '▷ ' (forward), or '◁ ' 
(backward), and then the moving direction of the stage is 
instantly indicated by the corresponding LED at the bottom 
left of the screen. 

The instant spectral distribution and A-scan data 
measured during B-scanning are simultaneously displayed 
in the corresponding graphs of 'Signal' in the middle right 
and 'A-scan' in the bottom center, respectively. At the end 
of B-scanning, the final 2D OCT image is displayed on the 
'Intensity Graph' in the top center. 

2.3 Active surface tracking algorithm 

Figure 4 shows a flow chart of the active topological 
variance compensation algorithm during B-mode scanning 
in CP-FD-OCT, while the distance from the sample's 
surface exceeds the OCT imaging depth range or when the 
probe is too close to the sample. 

In 'Step-1', the A-scan data, a(z) is obtained from the 
probe (N is the total length of a(z), as shown in Figure 5(a).  

In 'Step-2', the distance (Dist) between the end of the 
probe and the sample's surface is determined, as follows; i) 
a(z) is smoothed by a 3rd-order Savitzky-Golay filter (its 

 
Fig 3. Photograph of the developed OCT acquisition 
software. 

 

Fig 4. Flow chart for active surface tracking algorithm. 
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window length is 9), as shown in Figure 5(b). The main 
advantage of the Savitzky-Golay filter used in this 
algorithm is that it can preserve the unique features of the 
distribution, such as the relative maxima, minima and width, 
which are usually flattened by other adjacent averaging 
techniques, such as a moving average or low-pass filter, as 
well as effectively reducing the unnecessary speckle noise 
[15], as shown in Figure 6. This attribute is quite useful for 
the more accurate detection of the edges from the A-scan 
data and, thus, over- or under-estimation of the distance can 
be effectively diminished compared to the other smoothing 
methods. ii) the smoothed A-scan data, asm(z), is processed 
using a certain threshold level (thre) to avoid the noise 
effect, as follows (Figure 5(c)); 







 >

=
othersthre

threzaza
a smsm

thre ,
)(),(

                    (1) 

iii) Dist is given by the first increment point of the 
differential of the post-thresholding data, as shown in 
Figure 5(d). 

In 'Step-3', the discrepancy (Diff) between the preset 
(setDist) and measured (Dist) distances is calculated, as 
follows; 

Diff = Dist – setDist                            (2) 

In 'Step-4', by using the Diff value obtained in 'Step-3', 
the control system sends the feedback control signal to the 
motorized stage. If the absolute value of Diff is outside of 
the preset acceptable range (AcptRng), the stage is moved 
either upward for a positive value of Diff or downward for a 
negative value of Diff. Subsequently, 'Step-1' is performed 
again until Diff is within AcptRng. On the other hand, if it 
is within AcptRng, the measured a(z) is rearranged and 
stored in memory. During recording, the values of a(z) are 
repeatedly obtained while maintaining a constant distance 

 

Fig 5. Active surface tracking algorithm. (a) Raw A-scan 
data, (b) A-scan data after Savitzky-Golay smoothing 
filter, (c) Thresholding of A-scan, and (d) First 
increment point detection for edge location. 

 

Fig 6. Comparison the raw A-scan data (dotted line) and 
smoothed one after Savitzky-Golay filter (solid line). 

 
(a) OCT image 

 
(b) Probe position at the start (left) and end times (right) 

of the lateral scan 

Fig 7. Image of an onion sample obtained by the 
conventional static stage on the z-axis with limited 
imaging depth. 
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between the end of the probe and the sample's surface and, 
thus, this a(z) can be rearranged by considering the 
practically moved height of the stage. The variable, dZ, is 
used for counting the relative displacement at the current 
position compared to that at the start of the B-scan (dZ=0) 
on the z-axis. For example, a positive value of dZ indicates 
that the probe has moved closer to the sample, so it implies 
that the practical depth of the OCT image might be 
relatively larger than that of the measured a(z), whereas a 
negative dZ means that the practical depth of the OCT 
image is relatively smaller than that of the measured a(z).  

In 'Step-5', the stage is moved laterally for one step, 
and 'Step-1' is performed again until the moved position of 
the stage is the end of the scan on the x-axis. 

3 Results and Discussions 
The performance of the active topology compensation 

algorithm was tested under static conditions using an onion 
sample with several layers of highly curved surfaces. At 
first, a B-scan 2-D OCT image was obtained by the 
conventional fixed-stage method, as shown in Figure7(a). 

The 860 nm CP-FD-OCT provided effective imaging in the 
range below 500 nm and the structure of some of the layers 
was very clear within this range. However, the OCT image 
fades away as the probe is moved further away from the 
sample's surface, due to the limited depth range, as shown 
in Figure 7 (b). 

Figure 8 (a) shows an improved OCT image obtained 
using the active topological variance compensation 
algorithm. By using our algorithm, the probe could actively 
track the sample surface variance, as shown in Figure 8 (b) 
and, consequently, the effective imaging depth was 
extended to the probe’s free-moving range. Also, the sub-
layers of the sample could be monitored more clearly, even 
if the distance between the probe and sample's surface was 
outside of the limited imaging range. 

4 CONCLUSION 
We developed CP-FD-OCT systems with an active 

surface tracking algorithm to extend the image range of 
OCT scanning. Consequently, the OCT images obtained 
using the motorized-stage-based system showed a 
significantly extended imaging range through real-time 
accurate depth tracking. These results demonstrate that our 
OCT system and algorithms have good potential to resolve 
several of the limitations of conventional OCT systems. 
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Registration of Confocal Fluorescence Endomicroscopy Images
Using Phase Correlation
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Abstract— The emerging confocal fluorescence endomicro-
scope is capable of imaging living tissues in a non-invasive
way using a probe to continuously scan the surface and sub-
surface tissue structures. Due to possible tissue movement
and tissue expansion/contraction, the acquired images con-
tain various noises and distortions. It is necessary to align
these images in order to obtain a better 3D reconstruction of
the tissue’s microstructure for clinicians. In this paper, we
present an automatic image registration method using the
phase correlation technique, which uses a fast frequency-
domain approach to estimate the relative transformation pa-
rameters between two consecutive endomicroscopy images.

Keywords: Confocal Fluorescence Endomicroscope, FFT, Phase
Correlation, Image Registration

1. Introduction
The confocal fluorescence endomicroscope (Fig. 1) is a

newly developed endoscopic tool that makes it possible
to carry out in vivo microscopic observations of living
subjects with about 1000-time magnification and subcellular
resolution [1], [2], [3]. An endomicroscope is more powerful
than a microscope or an endoscope which generally needs
biopsy and carries the risk of causing bleeding, infection,
perforation, or mechanical agitation that may lead to the
spread of tumor cells through the blood and lymphatic
vessels [4]. In addition, a microscope or an endoscope can
only see the surface layer without depth resolution.

As illustrated in Fig. 2, the endomicroscope operates
in a non-invasive way. By placing the probe on the sur-
face of the target subject, it enables direct observation of
molecular mechanisms by continuously scanning the surface
and subsurface tissue structures without removing tissues
from the body or sacrificing animals. The fluorescence
imaging parameters are optimised for a wide range of tissues
including brain, intestine, lungs, colon, kidneys, muscle,
heart, liver, and pancreas. Thus, molecular imaging of dif-
ferent types of tissues and diseases is becoming feasible,
and thus has the potential to facilitate early diagnosis of
cancers. Compared with other multi-million pounds imaging
instruments such as magnetic resonance imaging (MRI)
scanners [5], [6] and X-ray computed tomography (CT)

Fig. 1: The in vivo cellular imaging system using an en-
domicroscope.

scanners [7], [8], the endomicroscope is of much lower cost
(£100K). While MRI and CT are widely used in disease
diagnosis by acquiring global information from the scanned
subjects, the new technique of endomicroscopy can provide
complementary local information in detail for the clinicians,
thus further improving disease diagnosis accuracy. This will
provide profound health benefits to society. The technique
will also enable further advancement in the field of basic
cell biology, aid our understanding of the mechanism of
disease progression, and allow monitoring of drug effects
at the cellular level.

Before the imaging process is carried out, a fluorescence
dye is injected into the target subject. After half an hour,
the endomicroscope probe is placed on the subject’s surface.
The probe begins to scan an area of 475μm× 475μm (field
of view) from the surface layer. Once an image is acquired
and saved, it continues to scan the subsurface layer (4μm
below the surface) by adjusting the laser illumination within
the probe. This process continues until the laser light reaches
the deepest layer (250μm below the surface). Finally, a stack
of 60 slice images is obtained with a resolution as high as
1024 × 1024. Then the probe may be moved to a new site
to capture another image stack.

The acquired endomicroscopy images are quite different
from natural images in several aspects: (1) the images are
molecular imaging of the living tissues across a 475μm ×
475μm area, (2) they are usually magnified by 1000 times
by the microscopic probe, (3) the images are labelled with
photosensitisers that selectively accumulate within the tissue,
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Fig. 2: The endomicroscopy images of mouse brain microvasculature at different z-depths and its 3D reconstruction.

(4) the fluorescence images are much noisier due to low
signal to noise ratio, (5) the images are non-uniformly
illuminated, and (6) the images are translation-, rotation-,
and scale-variant. To reconstruct the 3D microstructure of
the living tissue, we need to first register/align consecutive
slice images. The challenges are twofold. On the one hand,
each of the arbitrarily taken slice images suffers from vari-
ous distortions due to possible tissue movement and tissue
expansion/contraction. On the other hand, beyond a certain
time frame, the 3D volumetric images may be different due
to physiological changes.

Image registration or image alignment algorithms can be
classified into two categories: spatial-domain methods and
frequency-domain methods. One of the images is referred
to as the reference and the second image is referred to as
the target. In this work, we present a phase correlation-
based image registration algorithm, which finds the trans-
formation parameters while working in the frequency do-
main. Applying the phase correlation method to a pair of
images produces a third image which contains a single
peak. The location of this peak corresponds to the rela-
tive translation between the images. Compared with the
spatial-domain algorithms such as intensity-based correla-
tion methods [9], feature-based methods [10], and graph-
theoretic methods [10], the phase correlation method is
resilient to noise, occlusions, and other defects typically in
the biomedical images. Additionally, the phase correlation
uses the fast Fourier transform (FFT) to compute the cross-
correlation between the two images, generally resulting in
large performance gains. The method can be extended to
determine rotation and scaling differences between two im-
ages by first converting the images to log-polar coordinates.
Due to properties of the Fourier transform, the rotation and
scaling parameters can be determined in a manner invariant
to translation.

2. Theoretical Analysis
Assume two images I1(x, y) and I2(x, y) with a displace-

ment (x0, y0), i.e., I2(x, y) = I1(x− x0, y − y0). Applying

the Fourier transform, we have,

I2(u, v) = e−j2π(ux0+vy0)I1(u, v). (1)

The cross-power spectrum of the two images is defined
as,

I1(u, v)I
∗
2 (u, v)

|I1(u, v)I∗2 (u, v)|
= ej2π(ux0+vy0), (2)

where I∗2 (u, v) is the complex conjugate of I2(u, v). The
Fourier shift theorem guarantees that the phase of the cross-
power spectrum is equivalent to the phase difference between
the images.

By applying the inverse Fourier transform to the above
phase difference, we have an impulse function r(x, y) =
δ(x−x0, y−y0). The location of its peak value corresponds
to the displacement that is needed to optimally register
the two images. Fig. 3 shows the flowchart of the phase
correlation technique.

The advantage of this method is that the discrete Fourier
transform and its inverse can be performed using the fast
Fourier transform, which is much faster than intensity-based
correlation for large images. In practice, it is more likely that
I2(x, y) will be a simple linear shift of I1(x, y), rather than
a circular shift as required. In such cases, r(x, y) may not
be a simple delta function, which can possibly reduce the
performance of the method. Therefore, a window function
such as the Hamming window [11] should be employed
during the Fourier transform to reduce edge effects, or the
images should be zero padded so that the edge effects can be
ignored. If the images consist of a flat background, with all
detail situated away from the edges, then a linear shift will
be equivalent to a circular shift, and the above derivation
will hold exactly. For periodic images such as a chessboard,
phase correlation may yield ambiguous results with several
peaks in the resulting output.

The method can be extended to determine the rotation and
scaling differences between two images by first converting
the images to the log-polar coordinates. Assume I2(x, y)
is a translated, rotated, and scaled replica of I1(x, y) with
displacement (x0, y0), rotation θ0, and scale s, according
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Fig. 3: The phase correlation technique.

to the Fourier translation, rotation, and scale properties, we
have,

I2(u, v) = e−j2π(u′x0+v′y0)I1(su
′ cos θ0 − sv′ sin θ0,

su′ sin θ0 + sv′ cos θ0). (3)

Assume F1(u
′, v′) = |I1(u′, v′)| and F2(u, v) =

|I2(u, v)| are their Fourier magnitude spectra, we have,

F2(u, v) = F1(su
′ cos θ0−sv′ sin θ0, su′ sin θ0+sv′ cos θ0),

(4)
i.e.,

u = s(u′ cos θ0 − v′ sin θ0),
v = s(u′ sin θ0 + v′ cos θ0). (5)

In the polar coordinate system, we have,

u = ρ cos θ,

v = ρ sin θ, (6)

and

u′ = ρ′ cos θ′,
v′ = ρ′ sin θ′, (7)

By combining Eqs. (5)-(7), we have,

u = s(ρ′ cos θ′ cos θ0 − ρ′ sin θ′ sin θ0),
= sρ′ cos(θ′ + θ0),

= ρ cos θ, (8)
v = s(ρ′ cos θ′ sin θ0 + ρ′ sin θ′ cos θ0),

= sρ′ sin(θ′ + θ0),

= ρ sin θ, (9)

i.e.,

ρ = sρ′ ⇒ ρ′ = ρ/s,

θ = θ′ + θ0 ⇒ θ′ = θ − θ0. (10)
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Fig. 4: The flowchart of the phase correlation-based image
registration.

Thus, the Fourier magnitude spectra F1(u
′, v′) and

F2(u, v) in the polar representation are related by,

F2(ρ, θ) = F1(ρ/s, θ − θ0). (11)

By converting the axes to logarithmic scale, we have,

F2(log ρ, θ) = F1(log ρ− log s, θ − θ0), (12)

i.e.,
F2(α, θ) = F1(α− β, θ − θ0), (13)

where α = log ρ, β = log s. Thus, the problem becomes one
with relative translation only. Applying the phase correlation
technique, we can find the scale s = eβ and rotation θ0.

After scaling and rotating I2(x, y) by the amounts of s
and θ0 respectively, the translation parameters x0 and y0
can then be obtained using the phase correlation technique.
Fig. 4 summarises the process of the phase correlation-based
image registration approach.

3. Experimental Results
To evaluate the performance of the algorithms, we perform

a series of experiments on several sets of confocal fluores-
cence endomicroscopy images. Note that all the images in
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Fig. 5: Mouse tongue images (1024×1024) with displace-
ment. (a) The original reference image and (b) the target
image.

Fig. 6: The Fourier spectrum of the original reference image
and the phase correlation image of the tongue images, where
the translation parameters is estimated as: x=1, y=49.

the following figures are largely reduced for display purpose.
First, we apply the phase correlation technique to a pair of
mouse tongue images, as shown in Fig. 5. Fig. 6 shows
the Fourier spectrum of the original reference image and the
inverse Fourier transform of the cross-power spectrum of the
tongue images. We can see a peak in the phase-correlation
image approximately at (1, 49). Theoretically, the peak value
should be equal to 1.0. However, the presence of dissimilar
parts and the noise in images reduce the peak value. The
aligned target image is illustrated in Fig. 7. Experimental
results conducted on a pair of mouth images are shown
in Fig. 8. From these results, we can see that the phase
correlation technique does not work without preprocessing
the endomicroscopy images.

In order to obtain a reasonable estimation of the trans-
lation parameters, we filter the original endomicroscopy
images by a Laplacian filter to remove high-frequency
components in the frequency domain. Fig. 9 shows the
Fourier spectrum of the reference tongue and mouth images
after applying the Laplacian filter and their aligned target
images. The improved results demonstrate that by applying
the Laplacian filter, the phase correlation is applicable to the
endomicroscopy images with displacement.

Fig. 10 shows registration results on the mouse tongue
(another pair) and mouse brain microvasculature images.

Fig. 7: The aligned mouse tongue images with white-pixel
padding.

Fig. 8: The mouth image pair (1024×1024) with displace-
ment. (a) The original reference image, (b) the target image,
(c) the phase correlation image with the estimated translation
parameters: x=2, y=159, and (d) the aligned tongue images
with white-pixel padding.

From these experimental results, we can see that the phase
correlation method is a robust approach for the estimation
of the transformation paraments, leading to good image
registration results.

4. Conclusions
In this work, we have developed a phase correlation-

based registration approach for estimation of the relative
transformations in the consecutive endomicroscopy images.
The experimental results conducted on different sets of
images reveal that the phase correlation-based alignment can
be performed in real time and is robust to noise, occlusions,
and other defects existing in the images. The good align-
ment between consecutive slice images will directly benefit
the subsequent 3D reconstruction and visualisation of the
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Fig. 9: The phase correlation results after applying the
Laplacian filter. (a) The Fourier spectrum of the filtered
reference tongue image, (b) the aligned tongue image using
the estimated translation parameters (x=36, y=27) by phase
correlation, (c) the Fourier spectrum of the filtered reference
mouth image, and (d) the aligned mouth image using the
estimated translation parameters (x=133, y=89).

living tissue’s microstructure. It will enable clinicians to
navigate within the living tissue freely, leading to a much
more clinician-friendly imaging tool, and more definitive
diagnostic results of various diseases including early-stage
cancers, in a non-invasive way. This will provide profound
health benefits to society.
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Fig. 10: The alignment results of mouse tongue and brain microvasculature images (1024×1024). (Left column) The original
reference images, (middle column) the target images, and (right column) the aligned images with white-pixel padding.
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Abstract - The Electrocardiogram (ECG) is a graphical 

recording of the electrical signals generated by the heart. 

The signals are generated when the cardiac muscles 

depolarize in response to electrical impulses generated by the 

pacemaker. In this work, we propose an efficient method to 

monitor and classify the ECG signals. The initial task carried 

out was to eliminate the noise, which involved extracting the 

required cardiac components by rejecting the background 

noise. The second task was to perform R peak detection, 

which was achieved by using the Windowed Short Time 

Fourier Transform (STFT). The Heart Rate Variability (HRV) 

was also found by calculating the difference between two 

simultaneous R-Peaks. The simulations were carried out in 

the MATLAB environment. The experiments were carried out 

using data from the MIT-BIH Database. This paper proposes 

an algorithm to monitor cardiac atrial fibrillation, which is 

an essential precursor to myocardial infarction. 

Keywords: Short Time Fourier Transform, Atrial 

Fibrillation, Teager Energy Operator (TEO), Empirical 

Mode Décomposition, Electrocardiogram 

 

1 Introduction 

  Bioelectrical signals express the electrical functionality 

of different organs in the human body. The ECG is an 

important signal amongst all bioelectrical signals. It reflects 

the performance and the properties of the human heart and 

conveys very important hidden information in its structure. 

This information has to be extracted and analyzed before any 

useful and meaningful interpretations can be made. 

Extracting or decoding this information or features from the 

ECG signal are found to be very helpful in explaining and 

identifying various pathological conditions. The second 

phase of this work comprises of extracting the features, 

which is accomplished in a straightforward manner by 

analyzing the ECG visually on paper or on screen. [1] 

However, the complexity and the duration of ECG signals 

are often quite considerable, making manual analysis a very 

time-consuming and limited solution. [3]. In addition, 

manual feature extraction is always proned to errors. 

Therefore, ECG signal processing has become an 

indispensable tool for extracting clinically significant 

information from ECG signals, thereby reducing the 

subjectivity of manual ECG signal analysis. The proposed 

system is a Wireless ECG Monitoring System which 

incorporates a Signal Processing Algorithm for pre-

processing and peak-detection of the ECG signal. Being a 

wireless system, it overcomes the mobility and environment 

problem. The system also gives out warning signals to the 

doctor about possible cardio-vascular disorders in patients 

who could be remotely located. Section II describes the 

related work. Section III explains the architecture and design 

of the proposed wireless ECG Monitoring System. Section IV 

describes the proposed algorithm. Section V describes the 

algorithm used to extract the features of the ECG using 

Daubechies 4-tap algorithm. Section VI describes the 

Implementation and Section VII describes the Conclusion. 

2 Related Work 

In [1], the authors described the difference between the 

original and the filtered ECG signal pattern. There was also a 

study conducted by the authors about the convergence time, 

the execution time and the relative statistics in time and 

frequency domain for the ECG signal. 

In [2], the authors described how wavelets could be used in 

combination with Neural Networks to model ECG signal. In 

this paper the authors make use of the multi-resolution nature 

of wavelets and the adaptive learning ability of Artificial 

Neural Networks which is trained by an algorithm that 

includes the Particle Swarm Optimization (or the PSO). 

In [3], the authors describe about foveation which modulates 

the coefficients of the Discrete Wavelet Transform (DWT) of 

an ECG record. This process is mainly used to select the 

major portions of interest in an ECG record by using a mask 

in the spatial domain. Also, they say foveation can be used 

for denoising and coefficient quantization. 

In [4], the authors described the usage of Hidden Markov 

models to classify the ECG waveform. The classification is 

done after the ECG is decomposed into three levels of 

decomposition using Wavelet Transforms. There are three 

types of classifications described based on the number of 

beats. They are Normal (N), Atrial Flutter (AF) which often 

acts as a precursor to myocardial infarction, and Normal 

Sinus Rhythm (NSR). 

In [5], the authors describe about a technique called Phase-

rectified signal averaging which is a method recently 

introduced in the field of signal processing to process quasi-
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periodic signals. Herein the authors use this approach to 

detect Atrial Fibrillation from the surface ECG components. 

The fibrillation components are highly contaminated 

ventricular complexes, and the cancellation of these 

components is never perfect. Hence, this method was adopted 

to cancel out these artifacts. 

In [6], the authors detect the QRS complexes using an 

operator known as Teager energy operator. This operator 

operates only on three adjacent samples of the ECG and 

requires only three arithmetic operations per time shift. This 

method adopted by the authors gives them 99.9% efficient 

results for the MIT-BIH database.  

In [7], the authors formulate an algorithm for robust QRS 

onset and offset detection. This algorithm developed was 

more efficient when tested on MIT-BIH database. The 

algorithm produced good results for QRS offset and onset 

detection. 

In [8], the authors have proposed an algorithm for ECG 

signal denoising using Hilbert-Huang transform. The authors 

use empirical decomposition method to decompose the noisy 

signal into Intrinsic Mode functions (IMF’s). Spectral 

analysis was conducted on the successive IMF’s to find out 

the boundary between the noise dominated IMF’s and ECG 

signal dominated IMF’s. The authors carry out simulation 

experiments and claim that this method is more efficient 

compared to wavelet denoising method.  

In [9], the authors use EMD method to decompose an ECG 

signal. Hilbert transform was used for spectral analysis. The 

authors claim that decomposing the signal into IMF’s is more 

suitable compared to wavelet denoising methods. 

In [10], the authors use an approach to detect the pacemaker 

pulses from the ECG. In order to realize this they proposed a 

fully digital approach that uses a two step filtering strategy 

which was then followed by a thresholding mechanism. The 

results obtained after the simulations were carried out were 

very significant and they claim that it outperforms all the 

results that were obtained from a well known patented 

algorithm. 

3 Architecture and design  

 The top overall architecture of the proposed system in 

depicted in Figure 1. The proposed system has a two tier 

architecture. 

 

Fig 1 : ECG Transmitting Unit 

 

Fig 2 : ECG Receiving Unit 

3.1 ECG Acquisition and Transmission Unit 

(EcgATU) 

 EcgATU is the module that has an interface with the 

patient. This module acquires the ECG signal from the 

patient, performs basic signal processing operations and 

wirelessly transmits to the ECG Receiving Unit otherwise 

known as (EcgRU). 

The EcgATU and EcgRU are the two modules shown above. 

The conditioned ECG signal was extracted from the patient. 

It was then given as an input to the ADC of the 

microcontroller to obtain its digital equivalent. The 

microcontroller used was placed on the NI-ELVIS MX kit. 

The specification of the PIC used in this context was 

PIC16F877A which is a 32-bit pin microcontroller. The 

program was loaded onto the PIC using a software known as 

WINPIC-800.The language used in this context was 

Embedded C. Since the language used was Embedded C, we 

are intentionally converting it to an embedded 

microcontroller. 

3.2 Procedure adopted to detect R-Peaks 

The ECG signal we have is uneven, thus our first step is to 

straighten it. To say in mathematical language, we should 

remove the low frequency component. To achieve this we 

applied Fast Fourier Transform (FFT), which restores the low 

frequency components and restores the ECG with the help of 

Inverse Fast Fourier Transform (IFFT). In the next step, we 

found out the local maxima, we achieved this using the 

windowed filter; that sees only the maximum in its window 

and ignores all the other values. Window of default size was 

used in this case. Next step is to remove all small values and 

preserve the significant ones. For this purpose, we used a 

threshold filter. In this case, the result is good in general 

case. But we can’t be sure that we have all the peaks. So the 

next step is to adjust the filter window size and repeat 

filtering. It is only after performing these operations we 

obtain the result. The signal processing algorithm used 

incorporates Short Time Fourier Transform (STFT) for 

spectral analysis. Below the continuous and discrete time 

versions of the Fourier Transform are shown in (1) and (2) 

[7].The block diagram for the spectral detection is as shown 

below: 
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Fig 3 : Block diagram for STFT and Spectral Detection 

 X(ω) =∫x(t)e(-jωt)dt (1) 

 X[n] =∑x[n]e(-jk2πn/N) (2) 

3.3 Heart rate calculator 

 Heart rate in general, can be calculated using several 

time domain and frequency domain methods. In our analysis, 

we used a signal length of N=64 for computing the heart 

rate. 

The formula used to compute the Heart Rate Variability is as 

follows: 

PNN25 = (NN25)/(N − 1)*100 (3) 

Where, PNN25 is the ratio of the number of successive 

difference of intervals which differ by more than 25ms to the 

total number of all RR intervals. 

4 Proposed algorithm 

 Condition 1: The algorithm proposed here checks for 

the normal and abnormal functioning of the heart. It does 

this by accepting an ECG signal as an input signal. The time 

interval of the ECG signal is checked for assertion case i.e. 

width of the signal should be between 0.023s and 0.1s, if the 

above condition validates, then R-R interval is estimated to 

be between 0.6 and 1.1s.If these two conditions satisfy, then 

we can say that the person is not suffering from any cardiac 

disorder. 

Condition 2: If the width of the signal is less than 0.023s and 

R-R is estimated to be greater than 1.1s, then too we can say 

that the person is not for any cardiac disorder. 

Condition 3: If condition1 and 2 do not validate, then we can 

corroborate that the heart is functioning in an abnormal 

manner. 

Condition 4: If none of these conditions satisfy, then we 

perform the iteration from the beginning.[6] 

The detection algorithm can further be elaborated by 

checking for Rough Peaks in the ECG signal. The method to 

be adopted is to first check for positive and negative slope 

threshold values to assist in the selection process.  

The following conditions should help in detecting the 

abnormal R-Peaks:[7-9] 

1. The slope must change polarity  i.e., from positive 

to negative. 

2. The magnitude difference between the peak 

candidate and the current bin’s magnitude 

component must exceed the threshold component. 

3. A new peak candidate search occurs only after 

there is a slope change from negative to positive, 

and when a threshold value is exceeds the normal 

threshold.  

Next, we can look for prominent peaks following the Rough-

Peak search method, it can be done in the following manner: 

1. The R-Peak with the maximum value is found. 

2. Relative to position of the R-Peak with maximum 

amplitude, peaks are analyzed moving towards the 

iso-electric line. 

3. Local maxima or R-Peaks are picked out using an 

adaptive threshold value that is reflective of all 

prominent R-Peaks and neighboring R-Peaks. 

The flowchart of the algorithm is as shown in Figure 4. 

 

Fig 4 : Flowchart for atrial fibrillation 

5 Implementation 

 As a first phase to the development and implementation 

of  the system, the ECG sample signals were obtained from 

the MIT-BIH Database and was further used as mat files. 

These mat files were used as input signals to the developed 

algorithm. 

The algorithm developed was for ECG-R peak detection in 

MATLAB environment. Two mat files were used and a 

comparison was drawn between two subjects for finding out 
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the Heart Rate Variability (HRV).The results obtained are as 

shown for subject 1 and subject2.The HRV obtained for the 

two samples were 52.13 bpm and 56.24 bpm respectively. 

Also, a Java Data Base Connectivity (JDBC) program was 

written to read the values of the ECG signal from the 

database which was subsequently plotted. The results 

indicated that the R-peaks exceeded the normal threshold. 

 

Fig 5 : Comparative R-Peak detection for Sample 1 

 

Fig 6 : Comparative R-Peak detection for Sample 2 

6 Conclusion 

 This paper proposes a design for monitoring and 

detection  of the ECG. The main advantage of this system is 

that remote monitoring and diagnosis is made easier. The 

system can further be enhanced in performing feature 

extraction and classification using neural networks. Also, it 

provides good feasibilty and good performance if the 

objective is to analyze and interpret the ECG in an efficient 

manner. The algorithm proposed in this paper for atrial 

fibrillation is less complex compared to the algorithms 

previously proposed. It reduces the complexity from O(n2) to 

O(nlogn). 
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Abstract - In multi-cells’ tracking of time-lapse image 
sequences imaged by optical microscope, problem of 
tracking active cells correctly is still unsolved. It affects 
tracking accuracy and speed whether an algorithm can 
predict the position of the active cells or not. The 
tracking strategy is guided by Kalman forecast in image 
Cartesian coordinates systems, which may search target 
cells via minimizing their cost function of characteristics 
and updating their state equations. Prediction and 
tracking results from six active cells in three image 
sequences show that the algorithm can track segmented 
active cells accurately. And the errors between the 
tracking estimate values and the practical observation 
values are no more than 10 pixels. 

Keywords: tracking; active cells; Kalman filter; neuron 
stem cells; image sequences 

1 Introduction 

Most of the cells in human body are unregenerate 
and suffer from various diseases. Some serious damage 
can't be repaired through natural processes. But with the 
development of the research in cytology, these damaged 
cells can be cured by cell therapy. So far, many 
researchers have made some achievements in the field. 
Whether to continue the experiments or not depends on 
correctly extracting some special stem cells for treatment. 
How to extract stem cells reliably? What internal 
mechanism may control stem cells growing and 
proliferating? What are the exact substances to induce 
their differentiation? How to find the more effective 
ways to solve these problems?  

Along with the development of computer 
technology and automatic system, more researchers are 
inspired in the research field. With the digital 
microscopic image developing, the imaging system can 
obtain ideal image sequences for the cells living in vitro 
during a period. Computer vision can establish 
mathematical models whether the cells in 2D or 3D 
environments. In this way researchers may find the 
solution of the above problems. 

To track cells in 2D image sequences, main 
methods are mostly based on overlapping[2,6], where 
man-machine interaction is usually added to eliminate 
some tracking errors due to segmentation problem. Mean 
shift is a directly tracking which tracks cells in original 
image sequences[1,3,4]. Active contour model[5], auction 
algorithm[7] and other improved algorithms have also 
been studied in cells’ tracking. However, all these 
algorithms are not very effective in tracking active cells. 
Although active cells are very few in one sequence, they 
have some significance in cells movement analysis. So 
far no papers have discussed the methods in tracking 
active cells specially. As the active cells are the cells 
locomotive distance above one average diameter of cells 
in two successive images, mean shift[1] which is based on 
fixed bandwidth is very difficult to find the active cells’ 
centroids. Xiaobo Zhou[10] has studied cancer cells’ cycle 
progression via Kalman filter. However, on Kalman 
prediction in the first several frames, whether it is 
artificially operation or automatic recognition, he has not 
stated in detail. Kalman filter is applied which is 
focusing on the prediction of the active cells in this 
paper.  

This paper is organized as follows: segmentation of 
level set combined with average gray threshold has been 
introduced firstly. In cells’ tracking part, all cells have 
been classified into two categories: inactive cells and 
active cells. The former is tracked by overlapping firstly. 
The latter is tracked by Kalman filter. Tracking results 
and conclusion have been given in the final part. 

2  Segmentation 

Level set is a particular contour evolution 
approaching which has good performance in 
segmentation. In this paper, segmentation of image 
sequences of neuron stem cells which have been imaged 
by confocal microscopy is based on level-set combined 
with local gray threshold[9]. The algorithm can not only 
solve the problem of focal shift but also separate 
adherent and clustered cells successfully as well as 
keeping cells’ shape and position.  
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3  Tracking 

3.1  Overlapping 

Overlapping being used for the inactive cells’ 
tracking is based on the overlap region between previous 
frame and current frame to ensure one cell having its 
own ID till last frame of the image sequence. We can 
track the inactive cells which moved distance is less than 
L between previous frame and current frame via 
overlapping, where L refer to the average diameter of all 
cells in the sequence. 

3.2  Identification of active cells 

To the active cells, the overlapping does not work. 
And in this paper if one of the following three criteria is 
satisfied, the cells is regarded as active cells.  

1. The cell’s moving distance is more than L in two 
adjacent frames;  

2. The cell moves in from any edge of an image;  
3. The cell emergence is due to over-segmentation. 

3.3 Kalman filter tracking 

Kalman filter[8] is an optimal recursive data 
processing algorithm which is extensively applied in 
tracking and navigation.  

In active cells tracking, position and velocity are 
parameters of motion state. Acceleration is the external 
input. Although cells’ locomotion is chaotic, as sampling 
interval of image sequences is 10 minutes, the changes of 
motion state may be very small between two adjacent 
frames. It is reasonable that the cells motion is uniformly 
accelerated in two adjacent frames. 

We denote the state vector 

( ) [ ]T
k k k kX k xs xv ys yv=  and the system external 

input vector ( ) [ ]T
k kU k xa ya= .We assume xs, xv, xa, 

ys, yv, ya are cells' position, velocity and acceleration on 
x axis and y axis respectively. Let the interval time of 
two adjacent frames is T. In T, state transition matrix 
A(k), system parameters B(k), and observation matrix 
H(k) are defined in equation (1)~(3). 
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If active cells, say C2, has been located in the (t-1) th 
frame, we track C2 in the tth, (t+1)th, (t+2)th frames using 
the following method. The searching area is defined as 
five times of the diameter of C2. If the cells are 
considered as elliptic shape, its long axis, short axis, 
angle between long axis and x-axis, which is called 
azimuth, eccentricity and centroid can be regarded as six 
parameters to describe itself. The cell having the smallest 
parameters changes is the matching cell of C2 in the next 
frame. After C2 has been tracked in the tth, (t+1)th, (t+2)th 
frames, we can calculate the initial value of P(0/0), 
ˆ (0 / 0)X and Z(1) in Kalman filter. After T>(t+2), the 

matching area is estimated via Kalman filter firstly, then 
local searching is used to save searching time. 

Kalman filter is to predict active cells’ location 
form the (t+3)th frame. Searching area is square. Those 
cells falling into the square are called candidate cells. 
The best matching one can be found by association 
operation. 

In association operation, we set up a cost function 
using the above six parameters to show the changes of 
cells’ movement. The smaller the cost function is, the 
higher probability confidence the matching has. 

We assume {Bj, j=1, 2, …, J} as the candidate cells’ 
centroids set in the tth frame. If A  is the best prediction 
of cell A, the cost function is in equation (4):  
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     α、β、γ、σ、λ and δ are the coefficients in cost 
function. And the sum of them equals to 1. Find the cell's 
centroid in candidate cells having the minimal cost 
function. Then the cell is considered as the best matching 
one of A in the next frame. Thus the observation vector 
and the external input vector can be obtained. Kalman 
filter can be iterated till target cells can not be found, it 
means the cell having moved out of observation vision or 
changing its locomotive characteristics. 

4  Simulation 

The presented algorithm has been tested in three 
image sequences. The image and cells’ information are 
listed in Table 1. M1 is the number of the cells which 
moving distance is greater than L between the adjacent 
image sequences. M2 is the number of the cells which 
move to the edge of image. M3 is the number of cells 
which moving distance is greater than L caused by over 
segmentation between the adjacent frames. M4 is the 
number of frames that the cells’ moving distance are 

greater than L. M5 is the number of the cells which 
moving distance are greater than L and frame number 
must be greater than 2. According to the identification 
conditions of active cells in 3.2, M6=M1-M2-M3-M4+M5 is 
the number of the active cells in the three image 
sequences. 

(1) From Table 1, we know that there are three 
active cells in sequence I. Because one of them exists 
only in five frames, and then moves out of the image 
sequences, we did not simulate it. We track the other two 
separately. In Fig.1 (a) ~ (e), it shows 1, 10, 20, 40 and 
60 frames in the image sequence I respectively, and the 
corresponding segmentation images. For active cell 1, it 
has moved out of the image in the 45th frame. So we can 
track the active cells between the 1st frame and the 44th 
frame. And it costs 10.625 seconds. For the active cell 2, 
it is moved into the image in the 46th frame, so we can 
track the active cells between 46th frame and the 70th 
frame.  

(2) In Fig. 2 (a) ~ (e), it shows 1, 10, 20, 40 and 60 
frames in the image sequence II, and the corresponding 
segmentation images respectively. For the only one 
active cell, it has moved in the image in the 4th frame. 
Therefore, we can track it between the 4th frame and the 
70th frame. It costs 13.985 seconds. 

Table1 Numbers of active cells in the image sequences 
Image sequences Image size and number of frames /(pix * pix * frame) M1 M2 M3 M4 M5 M6

I 127*127*70 60 34 18 7 2 3

II 184*169*70 36 12 16 8 1 1

III 256*256*50 152 20 119 5 2 10

       

       
(a)                (b)                (c)                (d)                (e) 

Fig.1 Segmentation of frame 1、10、20、40 and 60 in sequence I 
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 (a)               (b)              (c)              (d)              (e) 

Fig. 2 Segmentation of frame 1、10、20、40 and 60 in sequence II 

(3)There are clustered cells and under segmentation 
cells in image sequence III, which can lead to tracking 
error. From Table 1, we know that there are 10 active 
cells in it. As the majority of them results from under 
segmentation, 3 active cells should be tracked by Kalman 
filter actually. 

In Fig. 3 (a) ~ (e), it shows 1, 10, 20, 40 and 60 
frames in image sequence III respectively, and the 
corresponding segmentation images. To active cell 1, it 
has moved out of the image in the 31st frame. So we can 
track it from the 1st frame and the 30th frame. It costs 
17.125 seconds. For the active cell 2, we can track it 
from the 1st frame and the 50th frame. It costs 27.016 
seconds. For the active cell 3, we can track it from the 9th 
frame and the 50th frame. It costs 22.563 seconds. 

In Fig. 4(a), it shows the trajectory of active cell 1 
in image sequence I which is labeled in black "1" to 
represent its initial position in the first frame. "." 
represents its centroid. "-" represents its tracking 
trajectory. below is same. In Fig. 4 (b), it shows the 
trajectory of active cell 2 in the same sequence which is 
labeled in black "2" to represent its position in the 46th 
frame. In Fig. 4(c), it is the active cell's tracking 
trajectory in image sequence II. We use a white square to 
represent the cells’ starting position in the first frame. In 
Fig. 4(d), it is the three active cells' trajectories in image 
sequence III. We use black "1", "2" and "3" to label the 
cells’ starting positions in the 9th frame respectively. 

 

     

     
(a)               (b)               (c)               (d)               (e) 

Fig. 3 Segmentation of frame 1、10、20、40 and 60 in sequence III 
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.           
(a) active cell 1 in I       (b) active cell 2 in I       (c) the active cell in II      (d) the active cell in III 

Fig. 4 Cells’ trajectory in three image sequences 

5 Conclusions 

The curves shown in Fig. 5 are the best estimate in 
x and y directions of the active cells 1 and 2 in image 
sequence I via Kalman filters which are compared with 
the actual observation values of the two cells. Fig. 6 
shows the two pairs of comparison curves of active cells 
in the image sequence II. Fig. 7 shows the three pairs of 
curves of the active cell 1、2 and 3 in image sequence 
III. From Fig. 5-7, we can see that the differences 

between the best estimate values and the actual observed 
values are less than 10 pixels both in x and y directions, 
which satisfies the local search criteria. 

Aimed at tracking the active cells in confocal 
microscopy image sequences, this paper has proposed a 
tracking algorithm based on active cells’ characteristics 
via Kalman filter. The cost function may reflect 
individual differences among the active cells. The results 
show that Kalman filter can track the active cells if we 
preset some appropriate parameters in cost function. 

 
Fig. 5 Kalman filter estimating curve and the observing curve in image sequence I 

 
Fig. 6 Kalman filter estimating curve and the observing curve in image sequence II 
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Fig. 7 Kalman filter estimating curve and the observing curve 
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Abstract - One of the most pressing problems of the post 
genomic era is identifying protein functions. Clustering 
Protein-Protein-Interaction networks is a systems biological 
approach to this problem. Traditional Graph Clustering 
Methods are crisp, and allow only membership of each node 
in at most one cluster. However, most real world networks 
contain overlapping clusters. Recently the need for scalable, 
accurate and efficient overlapping graph clustering methods 
has been recognized and various soft (overlapping) graph 
clustering methods have been proposed. In this paper, an 
efficient, novel, and fast overlapping clustering method is 
proposed based on purifying and filtering the coupling matrix 
(PFC). PFC is tested on PPI networks. The experimental 
results show that PFC method outperforms many existing 
methods by a few orders of magnitude in terms of average 
statistical (hypergeometrical) confidence regarding 
biological enrichment of the identified clusters. 

Keywords: Protein-Protein Interaction networks; Graph 
Clustering; Overlapping functional modules; Coupling 
Matrix; Systems biology 

 

1 Introduction 
  Homology based approaches have been the traditional 
bioinformatics approach to the problem of protein function 
identification. Variations of tools like BLAST [1] and Clustal 
[2] and concepts like COGs (Clusters of orthologous Groups) 
[3] have been applied to infer the function of a protein or the 
encoding gene from the known a closely related gene or 
protein in a closely related species. Although very useful, this 
approach has some serious limitations. For many proteins, no 
characterized homologs exist. Furthermore, form does not 
always determine function, and the closest hit returned by 
heuristic oriented sequence alignment tools is not always the 
closest relative or the best functional counterpart. Phenomena 
like Horizontal Gene Transfer complicate matters 
additionally. Last but not least, most biological Functions are 
achieved by collaboration of many different proteins and a 
proteins function is often context sensitive, depending on 
presence or absence of certain interaction partners. 

 A Systems Biology Approach to the problem aims at 
identifying functional modules (groups of closely cooperating 
and physically interacting cellular components that achieve a 
common biological function) or protein complexes by 
identifying network communities (groups of densely 
connected nodes in PPI networks). This involves clustering of 
PPI-networks as a main step. Once communities are detected, 
a hypergeometrical p-value is computed for each cluster and 
each biological function to evaluate the biological relevance 
of the clusters. Research on network clustering has focused 
for the most part on crisp clustering. However, many real 
world functional modules overlap. The present paper 
introduces a new simple soft clustering method for which the 
biological enrichment of the identified clusters seem to have 
in average somewhat better confidence values than current 
soft clustering methods. 

2 Previous Work 
 Examples for crisp clustering methods include HCS [4], 
RNSC [5] and SPC [6]. More recently, soft or overlapping 
network clustering methods have evolved. The importance of 
soft clustering methods was first discussed in [7], the same 
group of authors also developed one of the first soft clustering 
algorithms for soft clustering, Clique Percolation Method or 
CPM [8]. An implementation of CPM , called CFinder [9] is 
available online. The CPM approach is basically based on the 
“defective cliques” idea and has received some much 
deserved attention. Another soft clustering tool is Chinese 
Whisper [10] with origins in Natural Language Processing. 
According to its author, CW can be seen as a special case of 
the Random Walks based method Markov-Chain-Clustering 
(MCL) [11] with an aggressive pruning strategy. 

Recently, some authors [12, 13] have proposed and 
implemented betweenness based [14] Clustering (NG) method, 
which makes NG’s divisive hierarchical approach capable of 
identifying overlapping clusters. NG’s method finds 
communities by edge removal. The modifications involve node 
removal or node splitting. The decisions about which edges to 
remove and which nodes to split, are based on iterated all pair 
shortest path calculations. 
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In this paper, we present a new approach, called PFC, 
which is based on the notion of Coupling matrix (or common 
neighbors). In the rest of the paper, we first describe PFC and 
compare its results with the best results achieved by the 
aforementioned soft approaches. The second part of this work 
aims to illustrate the biological relevance of soft methods by 
giving several examples of how the biological functions of 
overlap nodes relate to biological functions of respective 
clusters. 

3 PFC Method 
The method introduced here is based on the purification 

and filtering of coupling matrix, PFC. PFC is a soft graph 
clustering method that involves only a few matrix 
multiplications/ manipulation. Our experimental results show 
that it outperforms the above mentioned methods in terms of 
the p-values for MIPS functional enrichment [15] of the 
identified clusters. The PPI net works we used in the paper are 
yeast PPI networks (4873 proteins and 17200 interactions). 

3.1 Coupling Matrix 

 Bibliographical coupling is an idea from text 
classification: If two documents (for example two scientific 
papers) share a significant number of cited references, they 
are likely to deal with similar topics. A coupling matrix in a 
network describes the number of shared neighbors (or paths of 
length two) for each node pair. For undirected graphs like PPI 
networks, this matrix is symmetric and can be easily obtained 
from the original adjacency matrix A by: B = A * A. Notably, 
for second degree neighbors, the entry in coupling matrix is 
nonzero, even if there is no edge between the nodes. The 
importance of second degree neighbors in PPI networks has 
been emphasized before in the literature. For example: [16] 
note that “A substantial number of proteins are observed to 
share functions with level-2 neighbors but not with level-1 
neighbors.” 

3.2 Purification of the Coupling Matrix 

 Adjacency matrices of biological networks are in 
general very sparse. The coupling matrix described above is 
slightly denser. However, not all nonzero-values are equally 
valuable. In the purification step, we determine the number of 
nonzero values (in unweighted graphs like PPI-Networks, this 
corresponds to the row sum), the maximum entry and the 
minimum non-zero value for each line of the coupling matrix. 
Rows in which the minimum nonzero entry and the maximum 
value are relatively close are considered homogenous and left 
unchanged. For other rows, we delete nonzero entries that 
don’t make a significant contribution to the row sum. The 
Purification Process is summarized below: 

 

 

This purification step is robust in regard to choice of values 
for its parameters. In particular in our experiment with a yeast 
PPI network, the results for α = 0.8 and β = 1.2 did not differ 
from those for α = 0.7 and β = 1.3 . 

3.3 Filtering of the purified coupling matrix 

The set of nonzero entries in each line of the Purified 
Coupling matrix can be considered as a candidate cluster. For 
a network of _ nodes, this generally means _ candidate 
clusters. However, not all rows are equally interesting. The set 
of nonzero entries (the information content) of many rows is 
likely to be very similar to, or contained largely within the 
sets of nonzero entries of other rows. This means that many 
rows are likely to represent spurious or redundant clusters. In 
the filtering step, we address this problem and try to select the 
most relevant and interesting rows of the purified coupling 
matrix. The set of nonzero entries in each of the selected lines 
of the purified coupling matrix represent our final clusters. 
The filtering step of PFC is a flexible step. Two alternative 
filtering approaches are discussed below. 

3.4 Filtering by Simple, Local Criteria 

 The first Filtering approach is motivated by 
assumptions about the nature of the data and size of the target 
clusters. PPI data are for the most part results of high 
throughput experiments like yeast two hybrid and are known 
to contain many false positive and many false negative entries. 
For certain, more thoroughly studied parts of the network, 
additional data might be available from small scale, more 
accurate experiments. In PFC, the emphasis lies on common 
second degree neighbors and this can magnify the effects of 
noise. Under the assumption that Nodes with low degree 
belong in general to the less thoroughly examined parts of the 
network, it is conceivable that the current data for the graph 
around these low nodes contains many missing links. Missing 
links in these areas can have dramatic effects on the 
constellation of second degree neighbors. This means the 
Coupling data for low degree nodes is particularly unreliable. 
On the other hand, many extremely well connected nodes are 
known to be central hubs that in general help to connect many 
nodes of very different functionality with each other, hence, 
their second degree neighbors compromise huge sets that are 
less likely to be all functionally related. Additionally, it has 
been shown that most functional modules are meso-scale [6]. 
There are also some fundamental physical constrains on the 
size and shape of a protein complex that make very large 
modules unlikely. Taking these considerations into account, a 
filter is easily constructed by the following rules: 
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Discard all clusters (rows of purified coupling matrix) where 
the labeling node (the _th node in the _th row) has a 
particularly low (< 14) or particularly high (>30) degree. 
Discard all clusters where the module size is too small (<35) 
or particularly large (>65). 

The selected minimum and maximum values for degree 
of labeling nodes and module size are heuristically motivated. 
The intervals can be easily changed to obtain or discard more 
clusters, but the enrichment results for these intervals seem 
reasonably good. The peak log value for the enrichment of 
selected clusters is at -91.00 and the average lies at -18.99. 
Using this filter, by clustering yeast PPI networks, PFC yields 
151 clusters from 52 different Functional categories. Figure 1 
gives an example. 

 

Figure 1 This Figure shows the community for the row 
labeled “YKL173w” in the purified coupling matrix of yeat 
PPI network. It is one of the clustered selected by PFC1. Out 
of the 63 proteins in this community, 58 belong to MIPS 
Funcat 11.04.03.01.  

4 Experimental Results and Discussions 
The results of the PFC are compared with results 

obtained by other soft clustering methods. A PPI network of 
yeast with 4873 Nodes and 17200 edges is used as the test 
data set. The other methods are an in-house implementation of 
Pinney and Westhead‘s Betweenness Based proposal [12], 
Chinese Whisper [10], CPM as implemented in C-Finder [9]. 
Whenever other methods needed additional input parameters, 
we tried to choose parameters that gave the best values. The 
results from different methods are summarized in Table 1. 

 

 

4.1 Biological Functions of Overlap Nodes 

The hypergeometric evaluation of individual clusters is 
the main pillar in assessing the quality of crisp clustering 

methods. For soft clustering methods, further interesting 
questions arise that deal with relationships between clusters. A 
possible conceptual disadvantage, production of widely 
overlapping, redundant clusters was addressed in previous 
sections. Figure 2 is a clustering results of the PFC. The result 
demonstrates an important advantage of soft methods against 
crisp ones: They show how soft clustering can adequately 
mirror the fact that many proteins have context dependent 
functions, and how in some cases overlap nodes can act as 
functional bridges between different modules. 

Table 1 Comparison of results from different methods 
Method Cluster 

Count 
Average 
Cluster 
Size 

Average 
Enrichment 

Network 
Coverage 

Diversity 

Betweenness 
based 

20 302.70 -15.11 0.58 19/20 

Chinese 
Whisper 

38 23.45 -12.11 0.17 32/38 

C Finder 68 14.50 -15.70 0.19 48/68 
PFC  183 44.76 -19.35 0.31 55/183 

 

 

Figure 2. result #1: There is a relatively large overlap (yellow 
nodes). All 10 overlap nodes are involved in “nuclear mRNA 
splicing, via spliceosome-A”. The sameis true for ca.25% (12 
out of 45) of the green nodes to the left and 68% (17 out of 
25) of the green nodes to the right of the overlap. 
Furthermore, two of the overlap nodes are also involved in 
spliceosome assembly the total number of such nodes in the 
entire network is 19. 

5 Conclusions 
 This paper introduced PFC, a new clustering concept 

based on purification and filtering of a coupling (common 
neighbor) matrix. It discussed a very different filtering 
method. PFC consists of only a few matrix multiplications and 
manipulations and is therefore very efficient. The PFC 
outperforms current soft clustering methods on PPI networks 
by a few orders of magnitude in terms of average statistical 
confidence on biological enrichment of the identified clusters. 
The paper illustrated the importance of soft clustering 
methods in systems biology by giving a few concrete 
examples of how the biological function of the overlap nodes 
relates to the functions of the respective clusters. 
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Abstract - Using the difference of dielectric constant between 

malignant tumor tissue and normal breast tissue, 

BRATUMASS (Breast tumor microwave sensor system [1]) 

can determine the detected target properties by analyzing the 

properties of target tissue back wave obtained by near-field 

microwave radiation. The practical experiments show that the 

target space and records of antenna corresponding position 

displacement when the antenna close contact with skin tissue 

will be changed, which might lower the quality of the 

inversion imaging of result. So, the target space characteristic 

data is introduced in order to eliminate the effect of the 

displacement. This paper presents a method of antenna 

relative position placement optimization using genetic 

algorithm and performs its feasibility with optimized 

examples. 

Keywords: BRATUMASS, Genetic Algorithm, Pauta 

criterion, Antenna placing position 

 

1 Introduction 

  A microwave reflecting interface will be formed 

between malignant and normal breast tissue for their different 

dielectric constants. BRATUMASS can use this property to 

locate the position of reflecting interface and the character of 

two tissues by analyzing the back wave[2]. During the process 

of BRATUMASS, displacement position of the antenna will 

directly affect the measurement results, thus antenna 

positioning will directly affect the location accuracy and 

characteristics of the target. We use a simple genetic 

algorithm to search the position of antenna, and give the 

optimizing result of example data with the consistency of 

statistical data. 

2 BRATUMSS detecting principle and 

boundary adjusting 

Detection target space of BRATUMSS is a special space. 

Detecting antenna distributes in the margin area of breast 

shape to capture the testing data. Breast shape is not fixed for 

different individuals, persons have different breast boundaries. 

This will lead to biggish error in locating area of cancerous 

tissue. 

Using typical radar correlation detection technology, 

BRATUMASS extracts frequency difference between back 

wave signal and transmitting signal to ensure the distance 

from reflecting interface to antenna. BRATUMASS signal 

is defined as: 

 
tc

dHKcfcpiA ))(22cos(
1

     (1) 

where, )()(  sawtoothH  is the triangular pulse. 

The different dielectric constants between cancerous 

tissue and normal tissue will form a dielectric constant 

mutation layer. The incident signals will produce 

backscattering in the layer. The backscattering signal received 

by BRATUMASS with transmitting signal directly seeks 

difference frequency. The intermediate frequency beat signal 

is the propagation delay from receiving antenna surface to 

different tissues interfaces. We can calculate the distance with 

propagation delay and the different dielectric constants 
[3]

. 

 
Figure 1. The schematic diagram of transmitting signal, received 

signal and beat signal 

The propagation delay is relative to the position of the 

antenna. The delay can be converted into distance, which 

regards the position of the antenna instant position as the 

reference center. If the center moves, the whole test data will 

be changed, as shown in Figure 2. 
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Figure2.  The BRATUMASS detecting schematic diagram 

The point P(x,y) is a target, the characteristic data
[4]

 

fi(x,y) and fj(x,y) are obtained in the position i and position j, 

respectively. Suppose the characteristic value at point P is an 

invariant. A set of characteristic values at point P will be 

obtained from several measurements after sampling N times at 

the boundary. According to the pauta criterion of measurement 

error theory, repeated measurement data should satisfy: 

)...1(,3),(),( Niyxfyxfi                              (2) 

Where,  is the variance of measurement data. 

When the change of the i-th antenna position make the 

whole i-th data exceeding the range of (2), the current antenna 

position should be adjusted to update the space target data. 

There must have one antenna position which makes all spatial 

units corresponding with (2) for the calculation over the whole 

space.  

3 Antenna position optimization with 

Genetic algorithm 

The traditional method, we usually scalarize the multiple 

objectives into a single objective by averaging the objectives 

with a certain weight vector in solving multi-objective 

optimization problem. In these cases, the obtained solution is 

highly sensitive to the weight vector used in the scalarization 

process. Moreover, the user should have knowledge about the 

underlying problem. Designers may be interested in a set of 

Pareto-optimal points instead of a single point. Since genetic 

algorithms work on a population of points, it is natural to be 

used in multi-objective optimization problems to capture a 

number of solutions simultaneously. 

Let the initial position of each antenna is the initial value, 

the shape deformation of breast is 10 mm. The change of i-th 

point is denoted by δi, and the change of the corresponding 

coordinate (xi,yi) is (xi+Δxi, yi+Δyi). 

3.1 Encoding 

Each change of coordinates is regarded as an encoded 

object whose code length is 10. The sampling number of cycle 

boundary is N, and the change of each coordinates are 

ix and iy  which need to be encoded. So, the length of 

chromosome is 2N. 

 NkNkikikkkkkk yxyxyxyxp  ......2211  (3) 

3.2 Selection 

The judgment basis of coordinate position is (2). Let 

gk(x,y) be the objective function of the k-th chromosome 

corresponding to P(x,y). 
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Where, fi(P) is the characteristic value at point P obtained 

from the antenna at the i-th position. The variance is σ(·) and 

the mean is E(·). 
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Where, 
k

i is the change of antenna position at the i-th 

position which has ),( k

i

k

i

k

i yx  . 

The objective function of the k-th chromosome 

corresponding to the whole space is )(kg . 




 dxdyyxgg kk ),()(                                 (6) 

The fitness function is fitk(Ω)=1/ gk(Ω) when gk(Ω) is 

minimum. 

3.3 Mutation 

First, randomly select chromosome’s individual. Second, 

randomly select several bits from the 2N chromosomes. Then 

carry out mutation to these selected chromosome bit according 

to mutation probability 

3.4 Program flow  

○1 Population initialization: Initial population is 

composed of N chromosomes which are randomly generated 

according to (3). 

○2 Initialization parameters: Let Pm be the mutation 

probability, fitness goals and the maximum number of 

iterations. 

○3 Solution space transform:  Each chromosome  

represents  the approximate  solution, [-1, 1]
1×2N

 is mapped 

into the parameters space [-10,10]
1×2N

 . 

○4 Determine the fitness function and calculation. 

Calculate each chromosome’s objective function according to 

(5) and then calculate fitness function. 

○5 Assigning fitness to each chromosome and progressing 

genetic operation 

○6 In accordance with the mutation probability, one 

chromosome are selected randomly from the population. 

Progress the selected chromosome mutation according to 

supposed probability. 

○7 Check the number of iteration. End the process if 

iteration exceed, else return to step ○4 . 
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4 Experiments and results 

As shown in Figure 3(a), a rectangle plate, with size 0.2 

mm*20 mm*40 mm, was placed into a piece of boneless pork 

with size 94 mm*80 mm*50 mm. The objective spatial 

characteristic at the beginning is illustrated in Figure 3(b). 

Figure 3(c) illustrates the objective spatial characteristic after 

1000 times’ genetic operation. Figure 3(d) demonstrates the 

trend of objective function in the 1000 times genetic process. 

In figure 3(a) (b) (c), the red mark points are the initial 

placement position of the antenna. And, in Figure 3(b), the 

black points are randomly assigned positions, in figure 3(c), 

the black points are searched positions of the antenna after GA 

optimization processing result. 

For different materials which placed in the pork, we can 

gain the similar results which are shown in Figure 4. 

 
                                           (a) 

 
(b) 

 
                                (c) 

 
                      (d) 

Figure3. (a) Experimental object diagram.  (b)The objective spatial 

characteristic at the beginning is shown, Scales are in mm.  The 

objective spatial characteristic after 1000 times’ genetic operation is 

shown in (c), Scales are in mm. The trend of objective function in the 

1000 times’ genetic process is shown in (d). 

 

 
(a) 

 

 
(b) 

 
Figure4. It is the objective spatial characteristic placing different 

objects. Place a plastic plate (0.5mm*20 mm*40 mm) and a metal 

plate (0.2 mm*20 mm*40 mm) in (a) and (b) respectively. The 

placing position is shown in figure 3(a). Scales are in mm. 

 

5 Conclusion  

In general measurement, it is very difficult to process for 

the unknown antenna changing rules. Therefore, we use a 

simple genetic algorithm to reduce the impact of inversion 

imaging caused by uncertain of antenna's position. Experiment 

results showed that the simple genetic algorithm plays an 

important role in optimizing antenna’s location in accurately 

and improve imaging effects. The simple genetic algorithm is 

time consuming to optimize the antenna position in real-time 

measurement process. Hence, it is employed to ensure the true 

antenna position offline, and it is essential for improving the 

imaging precision. Furthermore, the simple genetic algorithm 

can guide the placement region of the antenna position to 

obtain more information of imaging in practical detection 

process with BRATUMASS. 
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Abstract - In this paper, we present a quarter iterative of 

FRFT algorithm to solve the problem, which is the extraction 

of weak signal from the back wave in BRATUMASS. [1] The 

energy of the same frequency in back wave add together and 

to discard the signal phase. The energy of the modulus as 

leading evolution function, the weak back signal in 

BRATUMASS can be separated out. Experiments showed that 

the quarter iterative of FRFT algorithm plays a bigger role in 

the extraction of the weak back signal. 

Keywords: BRATUMASS, quarter iterative of FRFT,  

extraction of the weak back signal 

 

1 Introduction 

  As an active microwave imaging system, BRATUMASS 

can image the breast tissues for their dielectric constants 

which have the obviously different between malignant tissue 

and normal tissue. The transceiver antenna is placed on the 

breast surface and transmits microwave to breast internal. 

Backscatter will be happened and the back wave signals will 

be produce when microwave signals meet different breast 

tissues. The properties of the detecting target can be obtained 

by analyzing the back wave. Thus, the main problem, for 

gaining the target characteristic and reconstructing of 

detecting space, lies in the extracting of the back wave. The 

antenna will receive two main kinds of signals: one is the back 

wave signal radiated from the antenna main lobe to the target; 

the other is radiated directly from the antenna side lobe to the 

receiver. In addition, the energy amplitude of the latter is 

larger than the former. That will make the BRATUMASS, a 

frequency related system, create abundant problems of fuzzy 

object and interference in receiver. Usually, clutter can be 

eliminated by filter; however, the filters inevitably reduce the 

useful information component, and also made a few small 

targets back wave loss. We propose a quarter iterative of 

FRFT to solve this problem. Experiments show that the 

method can effectively extract the small target from the weak 

back signal in BRATUMASS. 

2 The signals of BRATUMASS 

Detecting points are located in the surface of breast. The 

system uses transceiver antenna, which are shown in Figure 1D. 

Side lobe signal of the transceiver antenna is fp(t). The system 

noise is N(t). The position of the detecting points and the 

structure of the antenna are shown in Figure 1
[2]

. 

 
Figure1. The position of the detecting points and the structure 

of the antenna,   (a)The structure of breast.  (b)The schematic 

of BRATUMASS detecting position, Red point is the position 

of antenna and green point is the position of metal slice in (a) 

and (b).(c) The schematic of transceiver antenna. A is 

Transmitting Antenna, B is Receiving Antenna and C is 

Center Clapboard. (d) The photo of transceiver antenna. 

 

The transmitting signal of BRATUMASS is: 









 ]
2

1
[2exp)()( 2

0 kttfj
T

t
recttS         (1) 

Where, rect(t) is rectangular envelope; f0 is initial frequency; T 

is time width; k is frequency modulation slope.  
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Side lobe signal of the transceiver antenna fp(t) 

is: 
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Where, tp is the transmission delay of side lobe signal. 

The signal obtained by receiver antenna chiefly includes 

two parts: N(t) and fp(t). Figure 2 illustrates the structure of 

frequency mixing. Sf(t) is the output of mixer, Sf(n) is obtained 

from A/D sampler. 

 
Figure2. The structure of frequency mixing of BRATUMASS  

 

The output of the mixer can be expressed as: 

)()()( tStStS Lrf                              （3） 

Where, Sr(t) is receiving signal from transceiver antenna.  

SL(t) is coupling signal from transmitting antenna which 

satisfy the requirements of frequency mixing of zero IF. 

Suppose γ is a coupling coefficient, τ0 is coupling delay. The 

SL(t) is: 

  )()( 0tStSL                             （4） 

The state, which has no target in the detecting space, is 

S0, so the receiving signals include side lobe fp(t) and noise 
N(t). The state, which only has one target in detecting space, is 

S1, so the receiving signals obtain side lobe fp(t), noise N(t) 

and the back wave of the single target. By analogy, Sn 

represents the state which has N target in the detecting space.  

In the state S0, equation (4) is substituted into equation 

(3): 

 )()()()( 00
tNtftStS psf           (5) 

0
)( sf tS  is abbreviated to )(0 tS f . 

After Fourier transform, Equation (5) is changed to: 

))()(()()(0  NFSAS pf             (6) 

Where, )exp(
2

0



jA  , S(ω), Fp(ω) and N(ω) is the 

Fourier transform of S(t), fp(t) and N(t), respectively.  

The sampling data of clinical case obtained by 

BRATUMASS is showed in Figure 3
[3]

. The positions of 

detecting points are illustrated in Figure 1(b). The actual 

measure distance is about 150~170mm, for patient posture is 

not perpendicular between mental slice and base circle.  

 
(a) Time-domain sampling data Sf

0(n). 

 
(b) Time-domain sampling data Sf

1(n).  

 
(c) Frequency-domain graph Sf

0(ω). 

 
(d) Frequency-domain graph Sf

1(ω) 

Figure 3. Sampling data of clinical case obtained by 

BRATUMASS.   (a) The time-domain sampling data Sf
0
(n) 

when mental slice wasn’t placed.   (b) The time-domain 

sampling data Sf
1
(n) when breast surface placed a mental slice 

with radius 1cm. The abscissa is the sampling ordinal, and the 

ordinate is the voltage level in (a) and (b).   (c) The frequency-

domain graph Sf
0
(ω) corresponding to Sf

0
(n).   (d) The 

frequency-domain graph Sf
1
(ω) corresponding to Sf

1
(n). The 

abscissa is the frequency, and the ordinate is the normalized 

amplitude in (c) and (d).  

According to the above graphs, we can see that frequency 

spectrum Sf
0
(ω) is similar to Sf

1
(ω). In Figure 3(d), the 

position of mental slice is marked（ x:221.3/y:0.0204） , 

221.3Hz corresponding to the distance 169.5 mm. The 

efficient information of the mental slice couldn’t directly 

extract from the spectrum. 

Theoretically, there are no any targets of back wave 

information in the state of S0. However, spectral lines about 

105.7Hz and 210.6Hz always exist in the actual measurement. 

Their amplitude is higher than target of back wave signal and 

they also have the corresponding change with the change of 

objective and environment. Thus, elimination interference by 

filter is not properly. Consider the frequency characteristic of 

Sf
0
(ω) in (6)，quarter iteration of FRFT algorithm is presented 

to enlarge amplitude of object spectrum distribution in this 

paper. 

 

3 Quarter of iteration of FRFT algorithm 

and the signal processing  

3.1 Quarter of iteration of FRFT algorithm 

g(t) and G(ω) as a Fourier transform pair, the relationship 

can be written by 






 dtetgG tj


 )(

2

1
)(                          (7) 
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Following, brief write down for G = F( g(t)). 

)())(())((( 2 tgtgFtgFF  ; 

)())((4 tgtgF  . F
n
 indicates that operator is used N 

times.  

F(ω) is the Fourier transform of f(t), It has the following 

properties: ))(()( tfF  ; 

)())((())(( tftfF   . So repeat four times is 

periodic repeat. 

From the perspective of nonlinear dynamics, the iteration 

of Fourier transom is an iterated function with period 4. Use 

the modular  as iterative evolution function, for 

accumulating the same frequency during iterative evolution 

and discard the phase of signal. Then, 

 

)))((()( tfF                              (9) 

)))))((((()2( tfF                  (10) 

)))))))((((((()3( tfF            (11) 

……. 

)))))))))...((((((((...()( tfF n    

(12) 

After iterate N times, sorting frequency spectrum is 

obtained. Difference spectrum can be given as: 
)()1(

di

nFFF                                  (13) 

3.2 The influences to sinusoidal signal 

structure by quarter iteration of FRFT 

Consider a signal f(t) = A sin(ωt +θ), where ω = 

1.575GHz, θ takes random value between -π and π. A might as 

well be valued 100， sampling frequency is 10 × ω and 

iteration number n = 4. 

Fig.4 shows the processing of quarter iteration of FRFT. The 

iterative result in N=4 is the high order spectrum of signal. 

Consequently, the location of high order frequency in the 

spectrum is given. 

3.3 Processing results comparison between 

Sf0(n) and Sf1(n)   

Compare fig.3 Sf
0
(ω) and Sf

1(ω), Figure 5 demonstrates 

the processing result using the quarter iteration of FRFT 

algorithm. For the sake of convenience, the abscissa is 

transformed into distance which is corresponding to 

frequency, with unit mm. The ordinate is normalized 

amplitude. Figure 5(a) illustrates spectrum of the algorithm 

processing on signal S
0
. Form (b), the back wave is saw 

clearly at 150~170 mm, which is corresponded to frequency 

221.3Hz. 

 
(A) Time-domain signal f(t) stimulation 

 
(B)  The spectrum of general Fourier transform. 

 
(C) The spectrum after four iterations.  

 
(D) the spectrum of 

)4()1( FFFdi  . 

Figure4. Sinusoidal signal structure by quarter iteration of 

FRFT    (a) The simulation signal f(t). Its sampling depth is 

4096.  (b) The spectrum of normal Fourier transform, with 

N=1.  (c) The spectrum after four iterations, with N=4.     (d) 

The spectrum of )4()1( FFFdi  , the abscissa is frequency 

and the ordinate is normalized amplitude. 

 
(A) The spectrum of S0  

 
(B) The spectrum of S1  

Figure5.  The result using quarter iteration of FRFT algorithm 

(a) and (b) are the spectrums of S
0 

and S
1
 after separating by 

quarter iteration of FRFT algorithm, respectively. 

 

4 Conclusions 

The back wave spectrum amplitude is very small (see 

Figure 3(d)) in BRATUMASS. The amplitude of the back 

wave of the mental slice is only 0.0204, which is couldn’t 

extract from the back wave. Nevertheless, invalid signal 

amplitude is high. (The system noise N(t) and side lobe signal 

fp(t) are related to the frequency 105Hz and 210Hz, 

respectively. The amplitude of this two spectral lines is 

relatively large, and the amplitude of 105Hz spectral line even 

have verge on 1). According to signal characteristics, we 

proposed a method of weak signal separation in this paper. 

The amplitude of weak signal could be enhanced under the 
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condition of reducing the loss of frequency as much as 

possible. In Figure 5(b), the amplitude of metal slice back 

wave is change from 0.0204 to 0.207(10dB). This algorithm is 

only one of the methods of the weak signal extraction in the 

preprocessing on BRATUMASS. For determine breast tissue 

properties completely, energy information extraction from 

back wave have to be further researched. Furthermore, target 

tissue properties are acquired. The problem on how to get 

character distribution in detection space by combining 

information, namely space image inversion 
[4]

 will be proposed 

in the following articles. 
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ABSTRACT

Arrhythmias (i.e., irregular cardiac beat) classification in elec-
trocardiogram (ECG) signals consists in an important issue
for heart disease diagnosis due to the non-invasive nature of
the ECG exam. In this paper, we present an X-ray, a generic
view, on methods aiming at arrhythmia classification in ECG
signals, which starts with signal preprocessing, and then seg-
mentation of each heartbeat and so before classification, the
feature extraction step. We also analyze and criticize the re-
sults of some arrhythmia classification methods present in the
literature in terms of how the samples are chosen for train/test
the classifier and the impact of this choice in their accura-
cies/sensitivities.

1. INTRODUCTION

The electrocardiogram (ECG) is the most widely used non-
invasive technique in heart disease diagnoses. It can be de-
scribed as a record of the electrical phenomena originated
from cardiac activity. Fig. 1 shows a schematic record of a
normal heartbeat. The ECG is frequently used to detect car-
diac rhythm abnormalities, otherwise known as, arrhythmias.
Arrhythmias can be defined in two ways: as a unique irregu-
lar cardiac beat or as a set of irregular beats. Arrhythmias can
be rare and harmless, but may also result in serious cardiac
issues.

There are several methods proposed in the literature for
the purpose of automatic arrhythmia classification in ECG
signals and a complete system for such an aim can be divided
into four subsequent categories (as shown in Fig. 2): prepro-
cessing, segmentation, feature extraction, and classification.

The most widely used database for evaluation of the ac-
curacy/sensitivity/specificity (from now on performance) of
arrhythmia classification systems is the MIT-BIH Arrhyth-
mia Database [1]. This database was the first available for
such a purpose and it has gone through several improvements
over the years to encompass the broadest possible range of
waveforms [2]. The Association for the Advancement of
Medical Instrumentation (AAMI) also recommends the use
of the MIT-BIH Arrhythmia Database for performance eval-

Fig. 1. A normal heartbeat ECG signal

uation of arrhythmia systems. The AAMI has developed a
standard for testing and reporting performance results of al-
gorithms aiming at arrhythmia classification (ANSI/AAMI
EC57:1998/(R)2008). According to [3, 4] few researchers
have used the AAMI recommendations and standards, leading
to clinically unreliable results since several methods in the lit-
erature are favored by a biased dataset (i.e., where heartbeats
from the same patient are used for both training and testing
the classifiers, which makes a fair comparison among meth-
ods difficult).

The aiming of this work is twofold. First to summarize
recent techniques aiming at arrhythmia classification. And,
second, analyzing the results obtained by different designs of
automatic classification system using two ways for choosing
samples for training/testing the performance of these systems
- one following the AAMI recommendations and another one
which disregard such recommendations.

The remainder of this work is organized as follows. In
Section 2, we briefly describe each category of an arrhythmia
classification system presenting the most relevant works, in
our point of view, proposed so far. The methods used in our
analysis are cited and grouped in Section 3. Finally, discus-
sion of the results reported in those works and conclusions are
pointed out in Section 4 and 5, respectively.
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Fig. 2. A diagram of a classification system of arrhythmia

2. ARRHYTHMIA CLASSIFICATION SYSTEM

In this section, we present methods proposed for building a
complete system for arrhythmia classification. The system
can be divided into four subsequent categories, which starts
with signal preprocessing, and then segmentation of each
heartbeat and so before classification, the feature extraction
step.

2.1. Preprocessing

The preprocessing consists mainly in detecting and attenuat-
ing frequencies of the ECG signal related to artifacts. Those
artifacts can be from a biological source, like muscular ac-
tivity, or can be originated from an external source, such as
50/60Hz from electrical network. It is also desired, in the
preprocessing, to perform a signal normalization and complex
QRS enhancement, in order to help the segmentation process.

Many methods have been proposed to reduce noise in the
ECG signal. The most simple and fairly used is the implemen-
tation of digital filters [5]. Other architectures, like adaptive
filters [6], have also been used to attenuate noise in ECG sig-
nal. Most sophisticated methods like adaptive filters based in
neural network [7] have brought a significative improvement
in noise attenuation process and then raised the effectiveness
of segmentation and classification methods.

Statistics techniques, such as principal component analy-
sis (PCA) [8] and independent component analysis (ICA) [9]
are also powerful tools for noise attenuation in ECG signal,
due to the fact that they allow one extraction of noises repre-

sented by frequencies very related or near to the ones of the
ECG signal.

Nowadays, methods based in the wavelet transform are
widely used. Due to a more accurate filtering process, they
preserve the ECG signal, avoiding the loss of important phys-
iological details [10, 11].

Other methods have also presented interesting results. In
[12], a non-linear Bayesian filter is proposed to reduce the
noise in ECG signal. In [13], a new algorithm based on ex-
tended Kalman filter structure incorporates the ECG dynam-
ical model to attenuate noise and data compression of ECG
signal. This approach has brought a significative improve-
ment on noise suppression and overcome the most effective
methods so far.

2.2. Segmentation

Regarding ECG signals analysis, segmentation consists in de-
limitating the part of the signal of more interest, the QRS
complex, since it reflects the electrical activity of the heart
(see Fig. 1). Once the segmentation of QRS complex is done
one can obtain many physiological information, such as car-
diac frequency, and so the techniques to extract features from
the signal can be applied.

Several algorithms have been proposed in the literature for
ECG beat segmentation. The problem faced by researches are
many, since the ECG beat morphology can be vary for both
inter- and intra-patient. A common approach for ECG signal
segmentation, i.e., the heartbeat detection, is based on digi-
tal filters for preprocessing, linear transformation for R peak
enhancement, and adaptive thresholds for heartbeat recogni-
tion [14].

QRS detection methods have been proposed over three
decades [14, 15, 16] and the evolution of those algorithms re-
flects the evolution of processing power of computers. Nowa-
days, more advanced methods are used and the most popu-
lar methods are based in neural network [17], genetic algo-
rithm [15], wavelet transform [18], filter banks [19], and sup-
port vector machines [16].

2.3. Feature extraction

Feature extraction is the key point for the final classification
performance. Features can be extracted directly from ECG
wave morphology in time or frequency domain. More so-
phisticated methods have been used in order to find features
less sensitive to noise, such as the autoregressive model co-
efficients, higher-order cumulant (higher order statistics) [20]
and variations of wavelet transform. Researchers claim that
wavelet transform is the most promissing technique to extract
features from the ECG signal [20, 21, 22]. However, in [23],
the author argues that methods based on wavelet transform
may have some limitations and its use should depend on the
application.
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Table 1. Mapping the MIT-BIH Arrhythmia types to the AAMI Classes
The AAMI heartbeat class N SVEB VEB F Q

Description Any heartbeat not
in the S, V, F, or Q

class

Supraventricular
ectopic beat

Ventricular ectopic
beat

Fusion beat Unknown beat

normal beat (N) atrial premature
beat (A)

premature
ventricular

contraction (V)

fusion of
ventricular and
normal beat (F)

paced beat (P)

left bundle branch
block beat (L)

aberrated atrial
premature beat (a)

ventricular escape
beat (E)

fusion of paced
and normal beat (f)

MIT-BIH heartbeat types
(code)

right bundle branch
block beat (R)

nodal (junctional)
premature beat (J)

unclassified beat
(U)

atrial escape beat
(e)

supraventricular
premature beat (S)

nodal (junctional)
escape beat (j)

The authors [24] claim that using techniques to reduce the
dimension of feature space, such as PCA or linear discrimi-
nant analysis (LDA), can offer advantages such as reducing
of time and amount of data required for training the classi-
fier. According to them, the usage of techniques for reducing
the feature space can worth the loss on accuracy. In [16],
for a SVM classifier, the usage of LDA for reducing the fea-
ture dimension has shown greater accuracy than the usage of
PCA. Moreover, those authors point out that the accuracy of
the SVM classifier with reduced feature space using LDA is
greater even than the accuracy with the original feature set.

2.4. Classifiers

In order to accurately detect cardiac frequency, it is necessary
to consider sporadic arrhythmias occur. An accurate arrhyth-
mia classification is also desirable to correctly diagnose car-
diac issues and in some cases, the early detection can save
lives. With that motivation in mind, researches keep the ef-
forts to develop better and better methods.

Artificial neural networks (ANN) are widely used to ar-
rhythmias classification in ECG signals [25], and the multi-
layer perception (MLP), the most popular ANN, is often used
for that purpose [20].

The conventional MLP has shown high accuracy in clas-
sification of arrhythmias. Nevertheless it suffers from slow
local convergence, global minimum localization and random
initial weights. These drawbacks could make it inappropriate
to clinical usage [24]. To overcome this issues, hybrid sys-
tems, combining MLP with another ANN are normally indis-
pensable [26]. In those kind of systems, the first level of net-
works are responsible to initially classify the heartbeats and
also build models generating new feature inputs. The MLP
completes the second task of multi-classification [27]. With

that approach, many weakness of MLP are surmounted.
In [27] and [20], a method based on higher order statistics

to extract features, and a hybrid neuro-fuzzy method for clas-
sification [28], which uses type-2 fuzzy c-means algorithm
to improve the accuracy of the neural network, have reached
higher accuracies than conventional MLP methods.

SVM has also been widely used to classify arrhythmias.
In [29], a comparison of different methods using SVM and
ANN has shown that SVM methods should be choose when
training time matters. Otherwise ANN methods have demon-
strated better results. In [16], the authors have used linear
discriminant analysis (LDA) in order to reduce the size of the
feature space, and despite that fact a high accuracy has been
shown.

In [30], it is proposed a method with fast learning rates
and high accuracy (% 98.72), using morphology filtering,
principal component analysis (PCA) and extreme learning
machine (ELM). The algorithm is used to detect six types
of arrhythmias and the results have shown that the method
is faster than others like MLP and SVM.

3. METHODS

We chose eight methods to analyze their performances. Three
of them, in our consideration, are state-of-the-art methods,
since its authors have followed the AAMI recommenda-
tions [3, 4, 31]. In the remaining five methods, the authors did
not follow the AAMI recommendations [32, 33, 25, 34, 35].
However they report performance in average near to 100% as
shown in Table 2.

The MIT-BIH arrhythmia database contain 48 half-hour
records, sampled at 360Hz, and eighteen types of heartbeats
were classified and labeled. To comply with the AAMI
recommendations, only 44 records of MIT-BIH arrhythmia
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Table 2. Classification performance of methods using random selection of samples (heartbeats) - biased selection
Method Accuracy Sensitivities (%)

N L R A V P a ! F x j f E J e
Ye et al. [32] 99.91 99.95 100 99.99 99.65 99.26 100 92.86 100 99.73 100 100 100 100 97.06 100

Yu & Chen [25] 99.65 99.97 99.33 99.54 99.76 99.04 100 - - - - - - - - -
Yu & Chou [33] 98.71 99.65 96.25 99.15 98.40 98.45 99.37 - 90.12 - - - - 91.53 - -

Korürek & Nizam [34] - 95.49 - 97.56 86.78 93.33 - - - 74.51 - - 84.06 - - -
Tsipouras et al. [35] 96.43 93.89 - 98.65 - 91.35 - - 97.74 - - - - - - -

database should be used for evaluation of arrhythmia classi-
fication methods, excluding the 4 records that contain paced
beats. The ANSI/AAMI EC57:1998/(R)2008 standards rec-
ommends to group those heartbeats into five classes: 1) nor-
mal beat; 2) ventricular ectopic beat (VEB); 3) supraventric-
ular ectopic beat (SVEB); 4) fusion of a VEB and a normal
beat; and 5) unknown beat type (see Table 1). Moreover, the
AAMI standards also recommends to divide the recordings
into two datasets, one for training and another for testing,
such that heartbeats from one recording (patient) are not used
simultaneously for both training and testing the classifier.

The methods which do not follow the AAMI standards
for building the arrhythmia classifiers create randomly their
datasets for training and testing, in such a manner that un-
avoidably heartbeats from one recording are present in both
sets. This practice, i.e., to put data from the same patient in
both sets, should be avoided as already stated in [3].

There is also a lack of standard regarding classes of heart-
beats to be analyzed. In some cases, the classifiers are de-
sign to classify a specific number of classes, e.g., 2, 3, 10.
In other cases, the authors present the performance of meth-
ods for non standard classes (i.e., non beat annotation codes),
such as Ventricular Flutter Wave (!) and Non-Conducted P-
wave (x) [32, 33].

4. DISCUSSIONS

In order to analyze the classification performance, two mea-
sures are used, i.e. accuracy and sensitivity. Accuracy is de-
fined as the ratio of total beats correctly classified and the
number of total beats, i.e.,

Accuracy =
beats correctly classified

number of total beats
. (1)

Sensitivity stands for the ratio of correctly classified beats
of one class and the total beats classified as that class, includ-
ing the miss classification beats, i.e.,

Sensitivity =
true negatives

true negatives + false positives
. (2)

Sensitivity1 is the most important measure for our anal-
ysis, since the number of heartbeats for each class in the

1together with specificity, which is not used in this study due to the lack
of these data in the studied works.

Table 3. Classification performance of methods following the
AAMI recommendations

Method Accuracy Sensitivities (%)
N SVEB VEB F Q

Chazal et al. [3] 85.9 86.86 75.93 77.73 89.43 0
Ince et al. [4] 93.6 97.04 62.11 88.39 61.36 0

Jiang & Kong [31] 94.5 98.73 50.58 86.61 35.78 0

Table 4. Classification performance of methods which do not
follow the AAMI recommendations. The classes and method
presented in Table 2 are grouped according to Table 1, to com-
ply with the AAMI recommended classes

Method Accuracy Sensitivities (%)
N SVEB VEB F Q

Ye et al. [32] 99.91 99.96 98.48 99.83 99.21 99.96
Yu & Chen [25] 99.65 99.67 99.53 99.22 - 100
Yu & Chou [33] 98.71 99.81 98.50 97.74 - 100

Korürek & Nizam [34] - 95.51 86.78 - 74.51 84.06
Tsipouras et al. [35] 96.43 93.90 - 91.35 - -

MIT-BIH arrhythmia database is very imbalanced and a single
class (e.g., the normal beats) could represent most of the total
accuracy, while the sensitivity and specificity directly depend
on the number of samples for each class.

Comparing the results achieved by methods using the
AAMI recommendations for designing the arrhythmia clas-
sification systems and the ones which do not follow them
(Tables 3 and 4), respectively, we can observe a significant
difference in terms of the sensitivities reported. This remark
can be extended to the accuracy figures.

For both measures, the methods which do not follow the
AAMI recommendations present higher values. It is notice-
able that all methods analyzed in this work are consistent and
use advanced techniques to solve the arrhythmia classification
problem. Thus, we suggest that this significant difference in
the performances are mostly related to datasets used for train-
ing and testing the classifiers. The use of a dataset for training
a classifier and then testing it with samples (heartbeats) from
the same patients helps the classifier to yield better classifica-
tion results, since it is specialized in those data.

Besides the fact that heartbeats from same recording, used
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both for training and testing, can favor the classifier, there is
another practice that can lead to biased conclusions as well.
Several methods do not use the complete data from the MIT-
BIH arrhythmia database as done in [25] and [33], where only
23200 and 9800 heartbeats are used, respectively. In those ap-
proaches, the heartbeats were randomly chosen and the clas-
sifiers can be favored by eventually easily heartbeat patterns.

Moreover, according to [4], only a few of the methods pre-
sented in the literature have, in fact, used the AAMI standards.
This statement suggest that the results of several methods in
literature are unreliable and should not be taken into account
clinically before a robust performance test can be performed.

5. CONCLUSIONS

In this work, we presented an X-ray, a generic view, on meth-
ods aiming at arrhythmia classification in ECG signals. More-
over, we showed that the challenges to properly classify ar-
rhythmias in ECG signal are many.

Researchers have been working on improvements, and
many of them have shown remarkable results. Nonetheless,
few authors have considered the impact on the performance
of the classifiers caused by the way the samples (heartbeats)
were selected for building the dataset used for training and
testing the classifiers. This work have cited methods that may
use heartbeats from same patients for training and testing a
classifier which could favor their results in terms of perfor-
mance. However, those reported performances are not realis-
tic, since those methods will classify “never seen” heartbeats
(e.g., a new patient), and in these situations, the performance
obtained by the method can be quite small.

Thus, the choice of unbiased dataset, such as recom-
mended by the AAMI, should be used for arrhythmia classifi-
cation methods in order to obtain more reliable results. Hav-
ing this fact in mind, several methods in the literature can be
re-run using unbiased datasets. These results should be used
for report new prediction values for these methods, establish-
ing a new state-of-the-art method in terms of performance.
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Abstract - Genetic algorithms, as kind of fast, simply and 

highly fault-tolerant algorithms for near-field microwave 

detection of breast cancer; are useful processing method. For 

the image has not been dealt with high demands, which can 

quickly detect the interested area, and by bypassing the non-

line Inversion of the problem brought about difficulties. The 

article mechanism to the imaging reflecting from analyzing a 

microwave starts off, analyses principle and process applying 

the Genetic algorithm detecting targets. 

Keywords: Microwave reflection; genetic algorithm; Image 

inversion 

 

1 Introduction 

  Microwave imaging sounding is an emerging breast 

cancer detection research method. This method might present 

a safe, convenient and cost-effective supplement to traditional 

BC imaging diagnoses methods. Different tissues can be 

imaged, which is based on a very high dielectric contrast 

between normal tissue and malignant tissue. It is known that 

the dielectric properties of tissues with high (tumor) and low 

(normal tissue) water content are significantly different. 

Reflection and refraction will occur and consequently the 

electromagnetic wave propagation path will be change, when 

the electromagnetic wave encounters all sorts of medium layer 

in process of propagation, such as skin, fat, breast lobules and 

tissue etc. Based on this property, we can detect and locate the 

breast tumor by detecting the microwaves reflect signal 

energy in different dielectric contrast mediums interface. The 

reflect signal energy also can convert into the transmitting 

waves propagation distance. In this paper, we start from 

analyzing the mechanism of microwave reflection imaging, 

and then using the genetic algorithm 
[1, 2]

 to optimize the 

inversion image. It has been found that this method can 

increase the detectable rate of breast cancer.  

2 Breast Cancer Detection Microwave 

Imaging  

Assumed microwave reflectivity function of the cross 

section of the imaged object is f(x, y). The coordinate is fixed 

on the imaged object, and the non-directional transceiver 

antenna is located in the point (x0, y0). The antenna can only 

be rattling around the imaged object in a circle of radius R, 

whose moving can change the azimuth angle φ between the 

microwave beam and the imaged object. The reflect signal 

wave p(ρ, φ) received by the transceiver antenna represents 

line integral of  f(r, θ) along a concentric circle arc s which the 

center is (x0, y0) (Shown in Figure 1).  

 
Figure1. It gives the geometric scheme of microwave imaging. 

The microwave reflectivity function is f(x, y). The transceiver 

is located in point (x0, y0), and it can only be rattling around 

the imaged object in a circle of radius R. the tumor is located 

in point (r, θ). The angle between the microwave beam and the 

imaged object is φ. 

The projection is expressed as follow. 
2
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Where δ(d-ρ) is δ-function. We can get the equation (3) by the 

Fourier transform of projection S(ω,φ) and paraxial 

approximation. 
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We can use Fourier transform to rebuild the profile 

distribution f(x, y) of the target by detecting the backscattering 

field (projection) p(ρ, φ). It can be ignored such as F(1)(u, v) 

and F(2)(u, v), when R is very big, and f(x, y) is limited band 

function. Then equation (1) can be seen as Fourier slice theory 

of CT imaging. The theory shows that the value can be given 

by the one-dimensional Fourier transform of the signal p(ρ, φ), 

which is the two-dimensional Fourier transform of the function 

f(x, y) in spatial frequency.  u equals to ωcosφ, v equals to 

ωsinφ. We could get the function f(x, y) of detection space 

after inversing above process. 

 

3 principle of breast cancer detection  

The function f(x, y), which is the distribution function of 

reflection coefficient for each point in the detection space can 

be obtained from inversion. According to microwave 

propagation principle, f(x, y) can be calculated by equation 

(4). 
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Where ε1(x, y) and ε2(x, y) are the dielectric constant of 

two sides of the interface, respectively. Through calculation, 

the echo coefficient of cancerous tissue is greater than 0.49, 

the echo coefficient of lobules and gland tissue is between 

0.2018 and 0.49 and the echo coefficient of blood vessels 

tissue is between 0.15 and 0.2018. Detecting breast cancer can 

be transformed into detecting some particular value 

distribution of f(x, y) in reflection space. So, cancerous tissue 

target is located in those points which echo coefficient is 

greater than 0.49. 

 

4 Genetic algorithm process and results 

The goal of the microwave breast tumor detection is to 

separate cancerous target from inversion image f(x, y). So the 

function f(x, y) can be divided into two categories: one 

belongs to the cancerous target distribution C1 which the 

image intensity is greater than M; Another kind does not 

belong to the cancerous target distribution C2 which the image 

intensity is less than or equal to M. Considering actual 

inversion image grey levels of 256, the threshold value of the 

gray-level image coding for an 8 bits binary code string. 

Fitness function is shown in equation (5).  
2

2121 )]()([*)(*)()( MuMuMwMwMf        (5) 

Where w1 (M) is pixel number of C1, w2 (M)  is pixel 

number of C2,  u1 (M) is the average gray value in C1,  u2 (M) 

is the average gray value in C2.  

Following is the genetic algorithm processing function 
[3,4]

 of MATLAB code, which used genetic algorithm tool box 

developed by the University of Sheffield. 

function  C= Segmentation_GA (X, downth, upth); 

% input:  X is waiting process image matrix,  

%       downth and upth is the threshold value of detection 

target 

% output: C is the marked image 

NIND=40;        % Individual number                           

NVAR=1;        % variable number 

MAXGEN=50;    % Maximum number of generations 

PRECI=8；       % bit number of variable  

GGAP=0.9;       % generation gap 

FielD=[8*NVAR;downth;upth;1;0;1;1];  % Establishment of 

regional described device 

Chrom=crtbp(NIND,PRECI*NVAR);   % Establish initial 

population 

gen=0; 

phen=bs2rv(Chrom,FielD);    % The initial population decimal 

conversion 

ObjV=target(X,phen);     % Calculate population fitting 

function 

while gen<MAXGEN 

  FitnV=ranking(ObjV);    % Distribution fitness value 

  SelCh=select('sus',Chrom,FitnV,GGAP); % Select 

  SelCh=recombin('xovsp',SelCh,0.7);    % Recombine 

  SelCh=mut(SelCh);                 % Mutation 

phenSel=bs2rv(SelCh,FielD);    % Offspring decimal 

conversion 

ObjVSel=target(X,phenSel);  

[Chrom,ObjV]=reins(Chrom,SelCh,1,1,ObjV,ObjVSel);   % 

Reinsert 

  gen=gen+1; 

end 

[Y,I]=max(ObjV); 

M=bs2rv(Chrom(I,:),FielD);    % Estimate threshold 

[m,n]=size(X); 

for i=1:m 

    for j=1:n 

        if X(i,j)>M 
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            X(i,j)=upth;     % Using maximum mark 

        end            

    end 

end 

C=X;                     % Output marked image 

 

5 Results 

With the genetic algorithm method, we have succeeded in 

target enhancement. Figure 2 is simulation results of the data 

inversion when the microwave transceiver is located in 

circumference sampling uniformity of eight sampling test 

points. Form figure 2, we can see that the breast cancer is 

obviously enhanced after fifty iterations, and the background 

is smoother than ahead two imaging.  

 

 
                                         (a) 

               
                                        (b) 

 
                            (c) 

Figure2. It is inversion images of eight sampling test points. 

The distribution of the original detection space, the inversion 

detection space and the detection space processed after fifty 

iterations by the genetic algorithm is shown in (a), (b) and (c), 

respectively.  

 

6 Conclusion 

In this study, we analyzed the microwave imaging theory 

and the microwave breast cancer detection theory. Then we 

use the simple genetic algorithm into microwave breast cancer 

detection to enhance tumor emerging area. As is a rapid, easy 

and fault-tolerance strong robust algorithm, the simple genetic 

algorithm can very good solve the nonlinear inversion 

problem in detection. A great deal of further research effort is 

needed to elucidate certain aspects of the genetic algorithm 

application to stability and target detection error. 
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Vitreous imaging system
New method for medical diagnosis

Dr. Boucherit Taieb,
Privet Laboratory, 12 impasse de Venise, Oran, Algeria
Privet Laboratory, Dr. Boucherit Taieb, Oran, Algeria

Abstract - The Importance of “vitreous imagery system”
it is a discovery in the field of the medical imagery and of the
diagnosis, the “vitreous imagery system” gives a completely
remarkable new approach for the medical diagnosis it is
precise, without passing by the traditional way which is, long,
tiring method and sometimes dangerous for the patient, “the
vitreous imaging system” puts all the capacities of the
computer at the service of the patient.

1 Introduction
I always thought that the process to make a traditional

medical diagnosis is a very long and complicated process,
Hard & tiring for the patient, but especially unreliable.

Taking this into consideration, part of my research work is
concerned with trying to find a means of making the diagnosis
quickly and accurate

With this new method “vitreous imaging system”. I
discovered that we can make a quickly diagnosis without
going through the classical process, the “vitreous imagery
system" visualizes in images the pathological organs, these
images contain an infinite data thus enabling us to have
anatomical, histological, anatomopathologic, microscopic and
ultra microscopic information.

I show you these images obtained by "the vitreous imagery
system", you can see by yourself the quality and the precision
of these images

2 Material & Methods

2.1 Materials

The material is very simple; it consists of a camera &
computer,

2.2 Methods

 Photo of the eye.
 Front view photo of the eye
 Camera without flash

 Environment slightly enlightened without important
source of light

 The “vitreous imagery system” makes it possible to
visualize the images of the patient’s organs in the
vitreous humor , these images are laid out in bulk,
with sometimes the repetition more than one
organ,same organ with different view.

 We resize each image of organs obtained in the humor
vitreous to isolate each image.

2.3 Theory & explanation

The images is formed on the retina, which converted it
into nerve impulse and transmits it to the brain and since each
eye receives an image a little different from the observed
object, the brain compares the information coming from each
eye and reconstitutes the image in three dimensions.

The human eye is a window open on the outside world, it
receives the images from the outside environment and
transmits to the brain to be analyzed and treated according to
the corresponding answers. The image is formed on the retina,
which converted it into nerve impulse and transmits it to the
brain and since each eye receives an image a little different
from the observed object, the brain compares the information
coming from each eye and reconstitutes the image in three
dimensions.

2.4 Anatomical composition of the eye

The eyeball of a grow- up measures 2.5 cm this little
volume regroups nervous cells, muscles and transparent
surroundings.
Muscles: these are the cilliary bodies, which modify the
curvature of crystalline lens during accommodation

Cornea: is a transparent membrane made up of several layers
which are directly in contact with the ambient air.

Aqueous humor: is a transparent watery fluid that is
permanently, filtered and renewed in order to keep the eyeball
in proper and good condition.

Iris: is a diaphragm that regulates the amount of light that the
enters through the pupil.
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Crystalline lens: is a simple convergent lens, that is held by
ligaments which are tied to muscles (ciliairy bodies) they
modify in this way the curvature of the crystalline lens and
make possible focusing.

Vitreous humor: is a transparent gelatinous and translucent
substance whose function is to keep the retina against the inner
lining of the eye it defines the form the eye and represents
90% of its volume.

Retina: is a nervous membrane forming the inner lining of the
posterior wall of the eye, it is a few tens millimeters thick with
a global surface of 2.5cm x 2.5cm, it consists of 130 million
nerve cells (125 million retinal rods and 5 million retinal
cones). It transforms light into electric signals which are
conveyed to the brain.

Sclerotic: is the firm that forms the outer covering of the
eyeball, its anterior covering is the cornea; the sclera is
perceptible from the outside and constitutes the whites of the
eyes.

This is the classical theory of today.
this theory is inadequate for it cannot explain the complexity

of the eye : you notice that the major part of the eye (90%) is
the vitreous humor whose only function is to maintain the
shape of the eye , while the retina, a membrane of 2.5 cm² and
few ten millimeters thick consists of 130 million nerve cells,
each one , has a very precise function, a plant that is so
complex and fitted with such technology that only 10% of its
volume works, while 90% are for aesthetical reasons.
I looked into the problem and realized that the function of the
vitreous humor is actually much more important than it seems.
Chemical composition of the vitreous humor: 99,6% of water,
vitamin C, glucose, lactic acid, NA ,CL, hyluronic acid,
complete absence of vascularization.
My research enables me to prove that the images are
materialized in the vitreous humor; it is its chief function. The
functions of maintenance, the nutritious function are of a
minor importance.

2.5 The eye has two functions

 An open window on the outside word
 An open window on the inside body

it is a movie, camera which is recording in both way, the
image is recorded and formed in “energetic image” in the
vitreous humor, the retina that consists of cone cells and rod
cells digitizes the image and transmits it to the brain through
the optic nerve, the digitization is carried out in “energetic
language”

The numeric language uses a mathematical algorithm whose
basis is 0 and1.

Energetic language uses energetic algorithm whose source are
colors and shapes.

Numeric image is the resultant between the observed image
and the approximate image in the data bank of the computer;
actually, numeric image is not a real one.
Energetic image is real, it is itself image data bank, that is to
say it contains endless images, that is why the image is
multidimensional and not three-dimensional wich is
transmitted to the brain.
I am doing my research on this particular field and I noticed
that when an organ or several ones are affected, the image of
that organ appears in the vitreous humor these enlarged and
processed images of organs offer anatomical, histological
images with an accuracy defying any radiological,
scanographical,or microscopic equipment.

2.6 Example patient

 Female patient 20 years age:

Painful joints : wrist, elbow, pelvis , leg patient hospitalized
in different hospitals of France and Belgium .

Diagnosis changing according to the hospital :
Still disease, lupus…

Vitreous imaging system diagnosis:

img 1 img 2

img 3 img 4

img 5
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Vitreous humor
Img 1 : right eye photo of the patient
Img 2 : resize up image eye of the patient
Img 3, Img 4, Img 5, : images organs in the vitreous humor

2.6.1 The affected organs appears in the vitreous humor

img(a) img(b) img(c) img(d)

img(e) img(f) img(g)

2.6.2 Images processing by computer:

img(a)

img(a) img(a1) img(a2)

img(b)

img(b) img(b1) img(b2)
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img(c)

img(c) img(c1) img(c2)

img(d)

img(d) img(d1) img(d2)

img(e)

img(e) img(e1) img(e2)

img(f)

img(f) img(f1) img(f2)

img(g)

img(g) img(g1) img(g2)

After processing images by computer we result:

a. heart image (a , a1, a2)
b. cervical vertebra image view face (b, b1, b2,)
c. lung image (c, c1, c3, c4)
d. cervical vertebra image view profile (d, d1, d2)
e. kidney image (e, e1, e2)
f. iliac bones image (f, f1, f2, f3, f4,f5, f6))
g. apparatus genital (uterus, ovary and vagina) (g, g1, g2,g3,
g4)
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2.6.3 Diagram

2.6.4 The mechanism explanation

Reception zone of encrypted image
zone of decoding
zone of Response

- Outside the eye towards the brain

The image is received by the eye is digitized and transmitted
in nerve impulse by the optical nerve to the brain (occipital
zone or surface number 8 in charge of the vision). The visual
surface is dividing in three zones, the first zone is the zone of
the reception of the nerve impulse, the second zone is
responsible for the analysis of received information and the
third is responsible for the response.
The image on the eye is digitized by the cells in cones and
sticks in the form of electrical signal and is transmitted to the
brain, in the zone number 1 receives coding information
which is transmitted to the zone number 2 that converts this
signal in real image.
The language of the brain is an energy language the brain
receives a signal in the form of colors and shapes, which are
decoded into real and comprehensible image.

- Interior of the body towards the brain

The affected organ sends its image by nerve impulse to the
brain on the zone of reception of information, in codified
“colors and shapes”. This information goes into zone number
two in order to be converted into real images
But as the image is in contact with the equipment which
transmits the image of opposite towards the interior, the image
will be returned in the other direction, go towards and it is
visible in the humor vitreous thanks to the effect of opposite
mirrors.

2.7 The germ identification

The traditional identification is made by: “direct
examination” by “culture”, “search for antigen”… but, the
identification by “vitreous imaging system” is done by
imaging, we directly have the images of the germ.
(h; photo of the eye, h1:h2, h3, h4, h5, h6)
not number any pages in your paper and do not reference

page numbers in the text.

h1 h2

h3 h4

h5

h6: Borrelia-germ
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The identification of this germ is Borrelia germ, so the
disease is Lyme disease.

2.8 The Chromosome & DNA identification

By the “vitreous imaging system” we can obtain the
images of chromosom directly.

img (m)

images of Chromosom’s

imag(n) Chromosom X

img(p) img(p1)

img(q) img(q1) img(l)

img(m) : visualization of chromosomal
img(n) : image of the chromosomal X
img(p) : chromosomal X
imag(p1), img(q); img(q1): part of chromosomal.
imag(l) : DNA

3 Conclusions
The “Vitreous imaging system” is the most precise

technique and most complete to take a diagnosis without
mistake, with a maximum of safety for the patient.

The “Vitreous imaging system” will bring a giant jump in the
field of the medical imaging and diagnosis namely:

 The great effectiveness for diagnosis
 Duration of examination ( few minutes)
 Diagnosis in imaging in a few minutes
 Great safety for the patient and doctors
 No product of contrast or radiation in order to obtain

the images.
 Exact localization of the pathological lesion, the images

of diseased organs appear automatically in the
«vitreous humor”.

The “Vitreous imaging system” makes it possible to take a
diagnosis, to follow the evolution of the disease, the
evolution of the treatment.
We explained that the images of the “vitreous imaging system”
give an infinity of information’s , the spectrum investigation is
very large , and offers to us information’s in others fields
namely : genetics , cartography , and others disciplines .
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A Network of Hidden Markov Models and Its Analysis

Liqing Zhang1, Layne T. Watson2, and Lenwood S. Heath1

1Departments of Computer Science, Virginia Tech, Blacksburg, VA, USA
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Abstract— The Structural Classification of Proteins (SCOP)
database uses a large number of hidden Markov models
(HMMs) to represent families and superfamilies composed of
proteins that presumably share the same evolutionary origin.
However, how the HMMs are related to one another has not
been examined before. In this work, taking into account the
processes used to build the HMMs, we propose a working
hypothesis to examine the relationships between HMMs and
the families and superfamilies that they represent. Specifi-
cally, we perform an all-against-all HMM comparison using
the HHsearch program and construct a network where the
nodes are HMMs and the edges connect similar HMMs.
We hypothesize that the HMMs in a connected component
belong to the same family or superfamily more often than
expected under a random network connection model. Results
show a pattern consistent with this working hypothesis.
Moreover, the HMM network possesses features distinctly
different from previously documented biological networks,
exemplified by the exceptionally high clustering coefficient
and the large number of connected components. The current
finding may provide guidance in devising computational
methods to reduce the degree of overlaps between the HMMs
representing the same superfamilies, which may in turn
enable more efficient large-scale sequence searches against
the database of HMMs.

Keywords: hidden Markov models, network, centrality, clustering
coefficient, tree

1. Introduction
The Structural Classification of Proteins (SCOP) database

is a comprehensive protein database that organizes and
classifies proteins based on their evolutionary and structural
relationships [1], [7], [8]. It is organized into four hier-
archical levels: family, superfamily, fold, and classes. At
the lowest level (family), individual proteins are clustered
into families based on some criteria that may indicate their
common evolutionary origin, such as having a pairwise
sequence similarity of more than 30% or lower sequence
similarity but similar functions and structures. A good ex-
ample of the latter is seen in globin proteins whose pairwise
sequence similarities are much lower than 30% but which
have similar protein functions. Next, families are grouped
into superfamilies if their structures and/or function features
indicate a possible common evolutionary origin. Then su-
perfamilies are clustered into folds if superfamilies share

major secondary structures with the same topological ar-
rangements. Finally, different folds are grouped into classes
based on their secondary structural compositions. Unlike the
other levels, a class might not necessarily imply common
evolutionary origins and exists more for convenience than
for actual biological implications.

Apart from the hierarchical classification and organization
of proteins, the SCOP database employs hidden Markov
models (HMMs) to represent superfamilies [4], [5]. The
basic procedure of building an HMM for a particular su-
perfamily starts with a seed protein and performs sequence
search in a database to obtain other proteins that have
sequence similarities above a set threshold. The newly
obtained sequences are used to iterate the search for some
number of times to obtain additional proteins. Finally, all
sequences are aligned and an HMM is constructed for the
multiple sequence alignment [4], [5]. It has been shown
that different seed proteins might produce HMMs that cover
different members of the superfamily [4], [5]. Thus, in
order to represent the full set of proteins in a superfamily,
multiple HMMs are built for the superfamily using multiple
seed proteins. For example, the beta-beta-alpha zinc fingers
superfamily has altogether 91 HMMs representing it, and
the P-loop containing nucleoside triphosphate hydrolases
superfamily has 406 HMMs representing it.

Because each superfamily might be represented by mul-
tiple HMMs, there may be a high degree of overlap and
redundancy among the models. However, there have not been
any studies examining this issue systematically. To under-
stand how the HMMs in the SCOP database are related to
one another and the degree of overlap or redundancy among
HMMs from either the same or different superfamilies, we
perform a detailed analysis of the HMMs in SCOP for
their similarity and relationships using a network approach.
Specifically, we perform an all-against-all HHsearch for the
library of HMMs in the SCOP database. HHsearch is similar
to BLAST, except that instead of matching a sequence
against a database of sequences, it uses a query HMM
or sequence to match against a database of HMMs and
identifies the HMMs significantly homologous to the query
HMM or sequence [10]. We then construct a network of
HMMs, where the link between two HMMs is based on their
similarity, and examine some commonly evaluated network
properties. We compare the current network with previously
documented networks and outline some questions for future
research.
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2. Methods
The SCOP library of HMMs was downloaded from

the SCP website (http://scop.mrc-lmb.cam.ac.uk), where the
SCOP version was filtered to 70% maximum pairwise
sequence identity. The library contains a total of 13,730
HMMs, from seven classesa,b,c,d,e,f,g, where classa con-
tains onlyα (i.e., α helix) proteins, classb contains only
β (i.e., β sheet) proteins, classc containsα andβ proteins
(mainly parallelβ sheets (beta−alpha−beta units)), classd
containsα andβ proteins (mainly antiparallelβ sheets, i.e.,
segregatedα andβ regions), classe contains multi-domain
proteins (i.e., folds consisting of two or more domains
belonging to different classes), classf contains membrane
and cell surface proteins, and classg contains small proteins.
It is useful to mention that the SCOP domain classification
ID specifies the entire hierarchy, e.g. c.1.1.1, the first field is
for the classc, second for the fold, third for the superfamily,
and the last for the family.

HHsearch [10] was performed for all-against-all HMMs
with the default parameters. HHsearch, similar to BLAST,
uses a query that can be either a protein sequence or an
HMM to search a database of sequences or HMMs and iden-
tify homology between the query and sequences and HMM
models in the databases that is above a given threshold. In
the current study, the e-value, a measurement of homology
similar to BLAST’s e-value, was set to 0.001. This e-value
cutoff has also been used by Pfam to identify a Pfam clan [2],
which is essentially equivalent to the superfamily hierarchy.
A total of 13,547 HMMs have matches that met the criterion,
with 1,618 having no other matches except themselves.
Thus, 11,929 HMMs were used for the subsequent network
analysis.

To study the relationship of the HMMs, an undirected
networkG = (V, E) was constructed, where the verticesV
are HMMs, and there is an edge inE between two HMMs
if their e-value is below the threshold. General network
statistics were computed, and a quadratic function was fitted
to the log-log degree distribution. Three common vertex
centrality measurements, degree centrality, betweenness cen-
trality, and closeness centrality, were computed to evaluate
the importance of vertices in the network. The degree of a
vertexa is the number of edges incident ona. Betweenness
for a vertexa,

b(a) =
∑

s,t∈V
s6=a
t6=a

σ(s, t | a)

σ(s, t)
, (1)

introduced in Freeman [3], measures roughly the number
of shortest paths going througha. σ(s, t) is the number of
shortest paths between verticess and t, and σ(s, t | a) is
the number of shortest paths between verticess and t that
go througha. Thus, the higher the betweenness of a vertex,
the more central/important the vertex is. In a fully connected

network, the betweenness of all vertices is 0.
The closeness centrality measures the number of steps

required to access every other vertex from a given vertex,
specifically, the closeness of a vertexa, c(a), is computed
by

c(a) =
|V | − 1
∑

i∈V
i6=a

da,i

, (2)

whereda,i is the length of the shortest path between vertex
a and vertexi. Closeness ranges from 0 (does not reach 0) to
1; the higher it is for a vertex, the more “central” the vertex
is. These centrality measurements have different motivations
and show different aspects for the importance of vertices in
a network.

The network clustering coefficient, C, also known as
transitivity, measured by the ratio between the number of
triangles and the number of connected triplets, was computed
for the entire network. The number of connected components
that are trees, where there areN vertices but onlyN − 1
edges between the vertices, was computed for the entire
network as well.

To systematically study the consistency between the e-
value cutoffs for the prediction of whether or not HMMs
belong to the same hierarchical level and classification of
the SCOP database, we examined the Receiver Operating
Characteristic (ROC) curves for the prediction of the hier-
archical categories of two HMMs provided by different e-
value cutoffs. The ROC curve shows how the true positive
rate changes with the false positive rate for a classification.
Specifically, for example, at the family level, if a sample
of two HMMs were classified to the same family by the
SCOP database, the prediction based on a specific e-value
cutoff is considered to be a false negative (FN) if the e-
value similarity of the two HMMs is worse/higher than the
e-value cutoff, a true positive (TP) if the e-value is better
(i.e., lower) than the cutoff; if the two HMMs were not
classified to the same family by the SCOP database, the
prediction based on the specific e-value cutoff is considered
to be a true negative (TN) if the e-value similarity of the
two HMMs is worse/higher than the e-value cutoff, a false
positive (FP) if their e-value is better (i.e., lower) than the
cutoff. Similar rules were applied to classify each pair of
HMMs into the four categories (TP, FP, FN, and TN), for the
four hierarchies, class, fold, superfamily, and family. True
positive rate (i.e., sensitivity) was calculated as

TPR =
TP

TP + FN
, (3)

and false positive rate (i.e.,1− specificity) as

FPR =
FP

FP + TN
. (4)

An ROC curve was plotted for the four levels (i.e., class,
fold, superfamily, and family) with different e-value cutoffs
ranging from10−20 to 10−3.
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Table 1: The general statistics of the HMMs
Class Number Number Number Number

of HMMs of folds of superfamilies of families
a 1975 157 262 506
b 2590 109 231 485
c 3391 120 194 686
d 2932 223 328 683
e 199 34 34 51
f 145 29 44 50
g 697 49 70 112
All 11929 721 1163 2573

Fig. 1: The HMM network

3. Results
The working hypothesis. Taking into account the pro-

cesses that built the HMMs and the hierarchical classification
of the HMMs in the SCOP database, we hypothesize that
the network should reflect this process, i.e.,the HMMs in a
connected component belong to the same family or super-
family more often than expected under a random network
connection model.

General statistics of the HMMs and their network. A
general description of the HMMs used to construct the
network is shown in Table 1. There are seven classes
in the collection of HMMs, falling into 721 folds, 1163
superfamilies, and 2573 families. Classc has the highest
number of HMMs (3391) and classf the fewest (145).

The entire HMM network is shown in Figure 1, where
the e-value cutoff is 0.001. There are altogether 151,461
edges for the 11,929 vertices. A significant property shown
in Figure 1 is that the entire network is highly disconnected,
with many much smaller connected components. In fact,
there are altogether 1524 connected components (CCs). The
smallest CC contains two vertices, the largest 590 vertices,
566/1524 = 37% contain only two vertices and about 73%
contain five or fewer vertices. The median CC size is 3 and
the mean 7.8. The top 20 largest CCs are listed in Table 2.

Table 2: The 20 largest CCs and their densities
Size rank Number of vertices Density
1 590 0.12
2 349 0.21
3 277 0.65
4 155 0.15
5 141 0.38
6 121 0.33
7 120 0.19
8 106 0.72
9 99 0.84
10 90 0.95
11 86 0.99
12 85 0.89
13 81 0.32
14 80 0.83
15 74 0.66
16 73 0.65
17 72 0.16
18 70 1.00
19 69 0.97
20 66 0.40
All 11929 0.002

2 4 6 8
logHdegreeL

-10

-8

-6

-4

logHfrequencyL

Fig. 2: Log-log degree distribution. The base is 2. The best
fitting quadratic curve is3.2481−0.176557x−0.133088x2.

Degree distribution. The degree of the HMM network
ranges from 1 to 268, with the average of 26 and median
of 10. The log-log degree distribution is shown in Figure 2.
It is evident that a power law distribution does not fit the
data. The best fitting quadratic curve is also plotted with the
data. It provides a relatively good fit for the smaller values
of log(degree), and then towards the larger degrees, the fit
is not so good.

Network Density. Density, computed as the number of
edges over the number of all possible edges (in a fully
connected graph), provides some quantitative evaluation on
the connectivity of a network. The density of the entire
network is low, only0.002 = 151461/

(

11929

2

)

. In contrast,
individual CCs tend to have high densities, with more than
82.5% of CCs having density greater than0.95. 1236 CCs
are fully connected, i.e., cliques, with the largest clique of
size 70.

Thus, individual CCs tend to have very high connectivity,
whereas the entire network is not well connected. The
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Table 3: The 20 HMMs with highest degree
Rank HMM ID SCOP ID Degree
1 d1n26a1 b.1.1.4 268
2 d1f2qa1 b.1.1.4 265
3 d1qz1a3 b.1.1.4 265
4 d1biha1 b.1.1.4 264
5 d1rhfa1 b.1.1.1 263
6 d1tnna_ b.1.1.4 263
7 d2aw2a1 b.1.1.1 262
8 d1nbqa1 b.1.1.1 262
9 d1x44a1 b.1.1.4 262
10 d1biha3 b.1.1.4 262
11 d1cs6a3 b.1.1.4 262
12 d1f2qa2 b.1.1.4 261
13 d2avga1 b.1.1.4 261
14 d1epfa1 b.1.1.4 261
15 d3b5ha1 b.1.1.4 261
16 d1cs6a2 b.1.1.4 261
17 d1f97a2 b.1.1.4 261
18 d1epfa2 b.1.1.4 260
19 d2dava1 b.1.1.4 260
20 d1f97a1 b.1.1.1 260

density of the 20 largest CCs is shown in Table 2. The
largest CC with 590 vertices has the lowest density, and the
18th largest CC with 70 vertices has a density of 1, and is
therefore a fully connected component. There is a significant
negative correlation between CC size and density (Kendall’s
rank correlationτ = −0.43, p-value< 2.2 · 10−16 for CC
size> 2).

Vertex centrality. Two centrality metrics, degree and
betweenness, were computed for the vertices in the entire
HMM network. Table 3 shows the top 20 HMMs that have
the highest degrees. These 20 HMMs all belong to the same
superfamily, b.1.1, Immunoglobulin, and also to the third
largest CC that has 277 vertices. Thus, these 20 HMMs are
connected with almost all other HMMs in the third CC. The
HMM d1n26a1 (SCOP ID b.1.1.4, (A:1-93)) has the highest
degree, 268, belonging to the Interleukin-6 receptor alpha
chain, N-terminal domain (Homo sapiens).

Table 4 shows the top 20 HMMs that have the highest
betweenness. Thirteen of the 20 HMMs belong to the su-
perfamily c.2.1 (NAD(P)-binding Rossmann-fold domains),
two to the superfamily b35.1.2, and two to the superfamily
c.37.1. Eighteen of the 20 HMMs belong to the largest
CC and the two remaining (c.37.1.14 and c.37.1.11) to the
second largest. The HMM d1bg6a2 (SCOP ID c.2.1.6, (A:4-
187)) has the highest betweenness, 14916, belonging to N-
(1-D-carboxylethyl)-L-norvaline dehydrogenase (Arthrobac-
ter, strain 1c). Interestingly, there is no overlap of HMMs
that have the highest of both degree and betweenness.

Network diameter. The diameter of the largest CC (con-
taining 590 vertices) is 9. The average distance between
the vertices is 2.94. We also measured the diameters of all
the CCs to see how they change as a function of CC size.
Figure 3 shows that larger CCs tend to have larger diameters.
However, smaller CCs can have large diameters as well. For

Table 4: The 20 HMMs with largest betweenness
Rank HMM ID SCOP ID Betweenness
1 d1bg6a2 c.2.1.6 14915.8
2 d1o8ca2 c.2.1.1 14665.7
3 d1e5qa1 c.2.1.3 14504.0
4 d2bzga1 c.66.1.36 9557.9
5 d3bswa1 b.81.1.8 9168.0
6 d1vj0a2 c.2.1.1 8211.0
7 d1ks9a2 c.2.1.6 7469.9
8 d2bmfa2 c.37.1.14 7439.8
9 d2dt5a2 c.2.1.12 7410.7
10 d1pjca1 c.2.1.4 7325.1
11 d1gtea4 c.4.1.1 7165.3
12 d1gu7a1 b.35.1.2 6768.0
13 d1tt7a1 b.35.1.2 6768.0
14 d2f1ka2 c.2.1.6 5985.2
15 d1ebfa1 c.2.1.3 5959.8
16 d1jqba2 c.2.1.1 5313.1
17 d1gr0a1 c.2.1.3 5220.0
18 d1ye8a1 c.37.1.11 5207.7
19 d1piwa2 c.2.1.1 4556.8
20 d1hdoa_ c.2.1.2 4403.8
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Fig. 3: Boxplot for the diameter of CCs as a function of
CC size. The box marks the lower and upper quantile of
CC sizes with the same diameter, the dark line marks the
median, the whiskers mark the border of lower and upper
outliers with the dots outside denoting the outliers.

example, a CC of size 32 has diameter seven, the same as a
CC of size 155; a CC size of 16 has diameter six, the same
as a CC of size 121. There are 1236 CCs with diameter 1,
corresponding to the number of cliques.

CCs and hierarchy. Within the CCs, we examined
whether the HMM members are from the same family,
superfamily, fold, or class. There are altogether 1178 CCs
whose members have the same SCOP domain classification
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Fig. 4: The ROC curves for family, superfamily, fold, and
class with different e-value cutoffs. For each curve, the data
points from left to right correspond to the FPR and TPR for
the e-value cutoffs from10−20 to 10−3.

(conserved at all hierarchical levels), 271 CCs whose HMMs
belong to the same superfamily but to different families, 24
whose members belong to the same fold, but to different su-
perfamilies, 18 whose members belong to the same class but
have different folds, and the remaining 33 whose members
are from different classes.

The consistency between the prediction of HMM member-
ships at different hierarchical levels in the SCOP database
based on the e-value cutoffs and the classification of the
SCOP database was evaluated by ROC curves, shown in
Figure 4. We make several observations. First, for all four
levels of the hierarchy, the higher the e-value cutoff, the
higher the sensitivity (true positive rate), so is the false
positive rate, which is expected because higher e-value
means a less stringent prediction criterion that in turn leads
to a higher number of true positive predictions, and also a
higher number of false positive predictions. Meanwhile, the
rate of increase in sensitivity outpaces the rate of increase in
the false negative rate as the e-value becomes more stringent,
suggesting that beyond a certain e-value cutoff, the HMMs
belonging to the same hierarchical levels also tend to have
high similarity, which make them robust to the e-value cutoff
change. Second, the curves for the prediction of fold and
superfamily are very similar to each other, indicating that
for the same e-value cutoff, the predictions for whether two
HMMs belong to the same fold or superfamily are similar.
In fact, for the same e-value cutoff, the difference in true
positive rate (sensitivity) between the fold and superfamily
ROC curves is either 0 or 0.01, and the difference in false
positive rate (1-specificity) falls within the narrow range
[0.01 − 0.04]. Third, the prediction quality is the worst
for class as compared to the other three levels, with worst
sensitivity and specificity for the same e-value cutoffs. This
might not be so surprising as classification at the class level

is more for convenience than for biological reasons.

4. Discussion
The important HMMs. In this work, we used three

centrality measurements to evaluate the importance of an
HMM. The results show that from the entire network, the
vertices with the highest degrees do not necessarily have the
highest betweenness, and vice versa. Degree measures how
many immediate neighbors one HMM has, and therefore,
the more it has, the more central it is. The vertices with
the 20 largest degrees are all from the third largest CC,
and are connected to about94% of its vertices. The vertices
with the 20 largest betweenness values are from either the
largest CC or the second largest CC. Since betweenness
reflects how essential one vertex is to the connection of any
other two vertices in the graph, in the case of HMMs, it
may reflect the possibility that one HMM is thehybrid of
two HMMs, that is, between the two HMMs, there is no
significant similarity, but through the one HMM, the HMMs
can be linked. Biologically, this idea seems to reflect hybrid
or mosaic proteins where one protein contains domains from
multiple proteins. To our knowledge, the idea of hybrid
HMMs has not been discussed previously and deserves more
research attention. Moreover, we hypothesize that the HMMs
with high centrality measurements may be better able to pick
up the sequences that belong to the superfamily than the
more peripheral HMMs. Future studies can be directed to
test this hypothesis.

Comparison with other networks. The largest CC (590
vertices) of the current network has a diameter of 9 and
the average distance between its vertices is 2.94. This bears
some similarity to the protein interaction network [6], whose
largest CC (containing 5,128 vertices) also has the same
diameter of 9, but a larger average distance of 3.68. Thus,
the protein interaction network seems to have more vertices
that are a bit more spread out, which contributes to a larger
average distance. To this point, it is very interesting that
despite the big difference in the sizes of the two CCs of the
two networks, the diameters are the same.

It is evident that the HMM network is highly clustered. In
fact, its clustering coefficient is 0.85, which, to our knowl-
edge, is the highest among the biological networks that have
been studied so far. As shown by Newman [9], the undirected
networks that tend to have high clustering coefficients are
social networks. For example, the film directors network has
a clustering coefficient of 0.20 and coauthorship networks
for math, physics, and biology disciplines are 0.15, 0.45,
and 0.088, respectively, whereas biological networks such as
metabolic network and protein interaction network have only
a clustering coefficient of 0.09 and 0.07, respectively. The
comparison indicates that the current network has distinct
features from the previously characterized real-world net-
works. Also, consistent with its high clustering coefficient,
the network has altogether 585 trees (i.e., the CCs of sizen
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with n− 1 edges), most of which (566) are of size 2, 15 of
size 3, and four of size 4.

Testing the working hypothesis. The results show strong
evidence that HMMs in a connected component tend to
represent the same family or superfamily. Among the total
1524 CCs, more than 77% have only members from the
same family; more than 95% have only members from the
same superfamily. Thus, there is overwhelming evidence
supporting our working hypothesis that HMMs belonging
to the same family or superfamilies tend to cluster together
in the network. However, to formally evaluate this and
provide some statistical support, we also simulated 10000
random networks while preserving the degree distribution
and the number of connected components. Among the 10000
simulated random networks, the highest proportions of CCs
having only members from the same family and superfamily
are as low as0.5% and0.7%. This shows that in the observed
network, the HMMs from the same family or superfamily do
have a strong tendency to cluster, agreeing with our working
hypothesis.

5. Conclusion
In this paper, we examined the properties of the network

constructed for HMM models in the SCOP protein structural
classification database. A number of questions remain to be
addressed in future research. For example, can we devise
a computational method to measure or evaluate the degree
of redundancy or overlap between HMM models that are
used to represent the same superfamily? This research is
meaningful given the ever increasing number of large-scale
genomic sequences (thereof more protein sequences). Given
that we can measure the redundancy of the HMMs of a
superfamily, the logical question becomes, can we com-
putationally reduce the redundancy of the HMM library,
e.g., possibly by constructing super-HMMs, each of which
represents a collection of redundant HMMs, so that a pro-
tein sequence is scanned against a reduced set of HMMs
(super-HMMs) rather than the entire set of HMMs that
have overlaps and redundancies? Finally, because the HMM
network shows distinct properties from many documented
networks as discussed above, can we propose a theoretical
model to better account for the observations in the current
network? Moreover, as our HMM network is also weighted,
with edges quantifying the similarity between two HMMs,
future proposed models can also consider the incorporation
of weighted edges into the network.
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Abstract 

 

Neuraminidases are viral coat glycoproteins that 

facilitate the transmission of influenza from cell 

to cell.  Characterizing the evolution  of the 

neuraminidases is essential to effective 

development and deployment of neuraminidase-

inhibitor therapeutics.  Here, I describe a linear 

regression of patristic distance in Influenza 

A/H1N1 neuraminidase-encoding segments on 

the nominal specimen-collection date contained 

in the label field of the neuraminidase genomic 

sequence descriptors; the regression predicts an 

average mutation rate of ~1 bp/year (implying, 

on average,  ~0.1 mutations  in the 

neuraminidase active site per year). 

 
Keywords: Influenza, H1N1, neuraminidase 

 

 

1.0  Introduction 
 
     The most widely used anti-influenza 

therapeutic, oseltamivir (Tamiflu, [4]), a 

neuraminidase inhibitor, was decreasingly 

effective against the dominant influenza 

strain (an Influenza A/H1N1 mutant) in the 

US in the 2009 "Spring/Fall" pandemic 

([10]).   Characterizing the evolution of the 

neuraminidases is essential to effective 

development and deployment of 

neuraminidase-inhibitor therapeutics.   

     Influenza type A is divided into nine 

sero-subtypes, and these subtypes 

correspond at least roughly to differences in 

the active-site structures of the 

corresponding neuraminidases. The subtypes 

fall into two groups ([3]): group-1 contains 

the subtypes N1, N4, N5 and N8, whereas 

group-2 contains the subtypes N2, N3, N6, 

N7 and N9.  Oseltamivir was designed to 

target the group-2 neuraminidases. 

     The known molecular structures of the 

neuraminidases are broadly consistent with 

this sero-taxonomic characterization.  The 

available crystal structures of the group-1 

N1, N4 and N8 neuraminidases ([1]) reveal 

that the active sites of these enzymes have a 

very different three-dimensional structure 

from that of group-2 enzymes. The 

differences lie in a loop of amino acids 

known as the "150-loop", which in the 

group-1 neuraminidases has a conformation 

that opens a cavity not present in the group-

2 neuraminidases. The 150-loop contains an 

amino acid designated Asp 151; the side 

chain of this amino acid has a carboxylic 

acid that, in group-1 enzymes, points away 

from the active site as a result of the 'open' 

conformation of the 150-loop. The side 

chain of another active-site amino acid, Glu 

119, also has a different conformation in 

group-1 enzymes compared with the group-

2 neuraminidases ([13]). 

     The Asp 151 and Glu 119 amino-acid 

side chains form critical interactions 

with neuraminidase inhibitors. For 

neuraminidase subtypes with the “open 

conformation” 150-loop, the side chains 

of these amino acids might not have the 

precise alignment required to bind 

inhibitors tightly ([13]).   

     The difference in the active-site 

conformations of  the two groups of 
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neuraminidases may also be caused by 

differences in amino acids that lie 

outside the active site. This means that 

an enzyme inhibitor for one target will 

not necessarily have the same activity 

against another with the same active-site 

amino acids and the same overall three-

dimensional structure ([17]).    
     A first-principles theory of 

neuraminidase evolution is highly desirable 

but currently beyond the state of the art.  

First-principles computational methods such 

as molecular dynamics could provide insight 

into relevant drug-site free-energetics, but  

such methods are often computationally 

expensive and in the case of the 

neuraminidases, would require an initial, 

realistic specification of the in situ 

environment.  Relatively few H1N1 

neuraminidase structures are available at 

present, and none address the effect of the 

molecules' environment  on their active 

sites.   In contrast, phylogenetic comparisons 

of the genomic encoding of the 

neuraminidases might, by translational 

proxy, provide insight; some phylogenetic 

methods, furthermore, are computationally 

inexpensive.  ~6800 neuraminidase-

encoding (NA) segments of the viral 

genomes are available for A/H1N1 ([7]).  

 

2.0  Method 
 

     The general method of this study has four 

steps: downloading H1N1 NA segment 

descriptors, aligning the descriptors, 

computing the patristic distances among the 

segments, and analyzing the correlation of 

segment patristic distance with segment 

collection-date.  Unless otherwise noted, all 

processing described in this section was 

performed on a Dell Inspiron 545 with an  

Intel Core2 Quad CPU Q8200 (clocked @ 

2.33 GHz) and 8.00 GB RAM, running 

under the Windows Vista Home Premium 

(SP2) operating environment, connected by 

a 1.5 Mbit/s DSL link to the Internet. 

     Because typical influenza neuraminidases 

are  ~400-mers, ~1200 base-pairs (bp, 3 bp 

per mer) are required to encode them in the 

viral genome.  Influenza H1N1 NA 

segments of length at least 1000 bp were 

downloaded from the Influenza Research 

Database ([7])  on 13 January 2011.  The 

query/download parameters are shown in 

Figure 1. 

 

______________________________________________________________________________ 

 

 
   Query parameters: 

 

 Select Segments: 6 (NA) 

 Subtype: H1N1 

 Date Range: 1915 to 2011 

 Geographic Grouping:  All 

 Host: All 

 Data to Return: Segment/Nucleotide 

  

 Advanced Options: 

  Minimum segment length:  (Segment 6)  1000 

  Display Fields:  Sequence Accession, Date 

 

 Display:  sort on (increasing) date 

 

 

   Download parameters: 

 Select: All segments 

 Select Download Type:  Segment FASTA 

 Label Sequence By:  Custom -- Accession Number, Date 
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Figure 1.  Influenza Research Database ([7]) query/download parameters for the Influenza 

A/H1N1 NA segment descriptors used in this study. 

______________________________________________________________________________ 

 

 

     The "Label" fields in the FASTA-

formatted sequence descriptors obtained 

from the previous step were edited in Word 

2007 so that each had the form 

"GenBank_accession_ID-yyyy", where 

yyyy is the year represented in the Label.    

(In this paper, that year is called the 

"collection date".  It should be noted that 

such a date is merely part of a free-text field; 

thus, that "date" could be, and mean, 

anything.  It is relatively common practice, 

however, for such a date to represent the 

date on which the organism from which the 

sequence was derived was collected.) Any 

sequence descriptor that did not contain year 

information was subsequently deleted using 

Word 2007. 

     The file resulting from the previous step 

was edited in BioEdit  v7.0.5.3 ([9]) to 

remove any sequences  longer than 1450 bp.  

The BioEdit navigation for this filtering was 
 

   Sequence --> Filter Out 

Sequences Containing Certain 

Characters --> Delete them  -->  

are >x long (x = 1450) --> File  

--> Save as (type = Fasta, 

filename = ten.fasta) 

 

     If fewer than 10 sequences for a given 

year were in the resulting file, all sequence 

descriptors for that year were saved.  Else, 

only the first 10 sequence descriptors in 

each year were saved.  (This helps to reduce 

time bias in the sample, some of which, due 

to the scarcity of specimens collected before 

1930,  is unavoidable).    The result was a 

collection of FASTA-formatted sequence 

descriptors 1000-1450 bp long.  BioEdit was 

then used to save the descriptor Labels to a 

separate file. 

     The FASTA-formatted sequences from 

the previous step were aligned using 

MAFFT  v6.847b-win32 ([5]), invoked from 

a Vista Command Prompt window.  The 

parameters for the alignment were 

 
 Order: input 

 Output format: clustal 

 Strategy:FFT-NS-i 

           (Standard) 

     Iterative refinement 

       (Maximum of 2 iterations) 

      All other parameters: 

          defaulted 

 

     The resulting CLUSTAL-formatted 

([16]) file was edited in Word 2007 to 

remove blank lines and lines containing 

asterisks. 

     A PAUP ([12]) neighbor-joining (NJ, 

[18]) script was built in Notepad, 

incorporating the descriptor labels and 

aligned sequences obtained in previous 

steps.  Hyphens in the descriptor labels were 

replaced by underscores.  The template for 

the PAUP script is shown in Figure 2. 

 

______________________________________________________________________________ 

 

 
   #NEXUS 

   begin taxa; 

    dimensions ntax=385; 

    taxlabels 

       [descriptor labels go here (not shown)] 

   ; 

   end; 
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   begin characters; 

    dimensions nchar=1477; 

    format missing=? gap=- matchchar=. interleave datatype=dna; 

    matrix 

       [aligned data goes here (not shown)] 

   ; 

   end; 

 

   begin paup; 

      [1]  log start file=H1N1_NA_nj_patdist.log replace; 

      [2]  nj; 

      [3]  savedist file=tenpatdist.txt format=oneColumn; 

   end; 

 

Figure 2.  Template of PAUP script used to obtain the patristic distances used in this study. 

 

_____________________________________________________________________________ 

 

 

     Patristic distances from a 1918 

"reference" segment (AF250356  in [7]), and 

corresponding label-times expressed as 

years-since-1918, were extracted using the 

get_pats software ([11]) running under 

Cygwin (in turn running under Vista) from 

the patristic distance file produced by 

PAUP. The output of get_pats is a comma-

separated file.  This file was converted to a 

space-separated file using Notepad.  A linear 

regression of patristic distance on time was 

performed by the Mathematica ([8] script  

shown in Figure 3 ([14]). 

 

 
_________________________________________________________________ 

 

   

 patdistimedata = ReadList[ToFileName[{"C:",  

     "BIOCOMP2011",   "Influenza", "Branch_and_age"},  

       "tenpatdistime.txt"], {Number, Number}]; 

 

   model=LinearModelFit[patdistimedata,x,x] 

 

   model["BestFit"] 

 

   Show[ListPlot[patdistimedata, AxesOrigin -> {0,0},  

      AxesLabel -> {"Years After 1918", "Patristic Distance from 

         AF250356"}], Plot[model["BestFit"], {x, 0, 100}]] 

 

   model["ParameterTable"] 

 

   model["RSquared"]  

 

   model["AdjustedRSquared"] 

 

 

Figure 3.  Mathematica script used for  linear regression in this study. 

_____________________________________________________________ 
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3.0  Results 
 
     6816 sequences were produced by the 

Influenza Research Database 

query/download described in Section 2.0.  

23 sequence descriptors in this file had no 

identifiable date information and were 

deleted, netting a file containing 6793 

sequence descriptors. 

     The time-debiasing step in BioEdit  

yielded 385 FASTA-formatted sequences. 

     The MAFFT alignment step described in 

Section 2.0 yielded 385 CLUSTAL-

formatted sequence descriptors with 1477 

characters per sequence.  384 patristic-

distance/time pairs were produced by the  

patristic-distance/time extraction (via get-

pats) from the patristic distance file 

produced by PAUP. 

     The linear regression computed by 

Mathematica was  

 
   

patristic_distance_from_AF250356 

  = 0.00113267*years_since_1918 

  +  0.0497421                                                     

 

 

A scatterplot and the best linear fit to that 

data is shown in Figure 4. 

 
_________________________________________________________________ 

 

 

  
  

Figure 4.  Scatterplot and best linear fit of patristic-distance/time data used in this study. 

 

___________________________________________________________ 

 

Some parameter statistics for this regression are: 

 
  Parm    Estimate Standard Error t Statistic  P-Value 

  b     0.0497421 0.00211585       23.5092  3.16958*10-76 

  m     0.00113267 0.0000301765 37.535  3.17033*10
-130

 

 

where b is the intercept on the patristic-distance axis, and m is the slope of the regression.  The 

regression coefficient, r
2 
, is 0.786696; the adjusted r

2
, 0.786138. 
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4.0  Discussion 

 
     The method described in Section 2.0 and 

the results of Section 3.0 motivate several 

observations: 

     1.  The slope of the regression line 

suggests that the typical Influenza A/H1N1 

NA segment experiences, on average, 

~0.001 change per year.  Since an NA 

segment has length ~1000 bp, we would, 

based on the regression formula in Section 

3.0, expect  (~1000 bp x ~0.001 = )  ~1 bp 

change per year.  Such a change would be 

sufficient to alter at least one amide in the 

active site of the  neuraminidase encoded by 

the segment about every 7 years, if we 

assume the active site is determined by ~50 

bp  and that  mutations are uniformly 

distributed across the molecule.  This rate is 

consistent with the nominal mutation rate 

suggested by other considerations  ([15]). 

     In general, we could not expect 

"collection date" to provide any information 

about mutation rate.  However, if specimens 

are collected at a rate that is comparable to 

the mutation rate (as is the case with flu 

genomic segments),  collection dates will 

tend to exhibit a strong correlation with 

mutation rates. 

     2. The regression reported in Section 3.0  

has robust significance statistics, strongly 

suggesting that current flu genomic segment 

sampling and sequencing practices are 

sufficient to characterize  the average 

mutation rate of the H1N1 NA segments. 

     3.  The sequence-descriptor sampling 

protocol described in Section 2.0  is 

intended to help mitigate time-biasing in the 

sample by restricting the number of 

sequence descriptors sampled per year to no 

more than 10.   The results aren't perfect: for 

some years, [7] contains fewer than 10 (for 

some years, no) sequence descriptors.  Other 

protocols are of course possible, but the one 

used in this study is a practical compromise 

between under-, or over-, sampling any 

given year, given the data available in [7]. 
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Abstract – Glyceraldehyde 3-phosphate dehydrogenase 
(GAPDH), the glycolytic housekeeping enzyme, exists as an 
asymmetric tetramer. We previously observed that GAPDH 
can appear as a dimer and in higher order structures which 
we proposed may be a decamer. The monomeric subunit 
contains two rather distinct domains, which are referred to as 
the nucleotide-binding domain and the catalytic domain. 
These two domains occupy the N- and C-termini, respectively. 
We examined the denaturation of GAPDH in the presence of 
low concentrations of the chemical denaturant, guanidine-
HCl (0.5-1.5M GdnHCl). Full denaturation of proteins 
typically require approximately 6M GdnHCl. At various 
concentrations of denaturant, UV absorbance spectra were 
obtained. The GdnHCl-dependent changes in the descending 
slope of the UV absorbance spectra were further examined by 
computing first derivatives of this region and monitoring 
changes in first derivative spectral peak and trough as a 
function of GdnHCl concentration. The observations of 
multiphasic changes are consistent with a model that suggests 
subunit separation is followed by domain-domain separation 
prior to domain unfolding. 

Keywords: glyceraldehyde 3-phosphate dehydrogenase, UV 
absorbance spectra, guanidine-HCl, denaturation. 

 

1 Introduction 
  Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) 
is an indispensible protein that plays a pivotal role in 
glycolysis, a vital energy-generating pathway in all human 
cells. The glycolytic pathway consists of two stages. The first 
stage coverts 1mol glucose to 2mols D-glyceraldehyde 3-
phosphate (Glyc3P) in five enzymatic steps. Net energy is not 
generated until stage two, where 1mol Glyc3P is converted to 
1mol pyruvate. The first enzymatic step of the second stage of 
glycolysis is catalyzed by GAPDH. The substrates are 
Glyc3P, inorganic phosphate (Pi) and NAD+, and the 
products are 2,3BPG and NADH. The reaction is an oxidative 
phosphorylation and involves a covalent intermediate between 
the substrate Glyc3P and an active site cysteine residue. The 
next reaction is catalyzed by phosphoglycerate kinase (PGK) 
that converts ADP to ATP, in which a phosphoryl transfer 
occurs from 2,3BPG to ADP. Therefore in the first two 

reactions of the second stage of glycolysis, both NADH and 
ATP are made and become available for cellular processes. 
Increasingly, this general event has become understood as 
having specific purposes. For example, synaptic vesicles are 
equiped to load neurotransmitter, but in order to do this the 
vesicles are first acidified by the activity of a proton pump. 
This proton gradient drives the uptake of neurotransmitter 
into the vesicle. The proton pump is a vesicular ATPase 
which derives its ATP efficiently from a GAPDH-PGK 
complex [1]. The nature by which a cytosolic soluble protein 
like GAPDH becomes membrane bound is unknown. We 
recently proposed that GAPDH, which is typically described 
as an asymmetric tetramer, can appear as a dimer and in 
higher order structures which we propose may be a decamer 
[2]. Interestingly, the presence of inhaled anesthetics, such as 
isoflurane, shifts the equilbirum of the oligomer states 
towards the decamer [2], presumably through modulation of 
NAD+/NADH binding [3]. GAPDH is rather unstable, 
forming turbid solutions over time and is easily denatured 
upon heat exposure, showing a Tm (temperature at which 
50% of the proteins are denatured) of 54.7C [4]. This 
intrinsic tendency towards disorder may enable GAPDH to 
achieve diverse interactions with binding partners and thereby 
participate in alternate functions, such as interactions with 
vesicles, receptors and cytoskeletal components [5,6]. In order 
to develop a better understanding of the dynamic properties of 
GAPDH, we examined the changes in folded states of 
GAPDH at low concentrations of a chaotropic agent, 
guanidine (GdnHCl). By focusing on the descending slope of 
the UV absorbance spectra, we were able to use a 
computational approach to understanding the early steps of 
protein unfolding in GAPDH. 
 
2 Materials and methods 
Materials. Glyceraldehyde 3-phosphate dehydrogenase 
(GAPDH) from rabbit muscle [EC 1.2.1.12] was obtained 
from Sigma-Aldrich (G2267) and dissolved in a 50mM 
sodium phosphate, pH = 7.4, buffer containing 0.3mM EDTA 
that was prepared with deionized (Milli Q; 18.2 M) water 
and passed through a 0.2m nylon filter (Millipore Millex-
GN) prior to analysis. Concentration was determined by 
absorbance at 280nm using the molar aborbance coefficient of 
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149mM-1cm-1 [7]. Guandine hydrochloride (GdnHCl) was 
also from Sigma-Aldrich (G4505) and freshly prepared prior 
to each experiment. 
 
Treatment of GAPDH with GdnHCl. Incubations were done at 
room temperature as follows: samples (0.6mL) of GAPDH 
(10M) were mixed carefully with 0, 0.5, 0.75, 1.0, 1.25 and 
1.5M GdnHCl directly in quartz cuvettes. Final buffer 
concentrations were 30mM sodium phosphate, pH = 7.4, and 
0.2mM EDTA. After thorough mixing, samples were assayed 
immediately. 
 
UV Absorption Spectroscopy. Absorbance spectra (240-
340nm; bandwidth 2.0nm; interval 0.5nm; lamp change at 
325nm; scan speed 145nm/min) were obtained for the 
samples using a GE Healthcare Ultrospec 4000 
spectrophotometer.  The deuterium lamp had less than 100hrs 
of use. A reference sample that contained identical buffer 
without GAPDH was used before each scan. Spreadsheet data 
of the spectra were transferred to SigmaPlot 11.0 for further 
analysis 
 
Computational Analysis. Difference spectra were first 
determined and compared. Absorbances from the 
experimental samples (GAPDH treated with GdnHCl) were 
subtracted from the control spectra to generate difference 
spectra. The downslope of the 280nm peak of the original 
spectra was closely examined. The descending component of 
the spectra from 283nm to 310nm was used to get first 
derivatives. Since the data was acquired at intervals of 0.5nm, 
regression lines were computed using 3 contiguous data 
points successively. With one data point shifts, the regression 
lines were overlapping and progressed from 283nm to 310nm, 
using SigmaPlot 11.0 to obtain slopes, which represented the 
tangent first derivatives. Since this component of the spectra 
is a downslope, all regressions were negative. To simplify 
analysis, absolute values were used and multipled by 100, 
thus keeping all values positive. The resulting first derivatives 
were plotted against wavelength. The plots presented spectra 
that exhibit maxima and minima that were reliable 
observations. In the range of 286-300nm, a single trough was 
seen followed by a single peak. In order to determine the 
exact points that represent the maximum and minimum, we 
used the equation for computing the center of spectral mass 
(CSM), by integrating over the range that pertained to the 
peak and trough, respectively. 
 

 CSM =  (Ai) di /  Ai di       (1) 
(i = 0.5nm)  

    
where  is the wavelength (nm) and A is the absorbance at 
that wavelength. The CSM for the spectral nadirs (or troughs) 
and zeniths (or peaks) changed as a function of GdnHCl 
concentration. These values were then plotted against 
concentration of chaotropic agent to assess phasic response 
and transitons over this range of agent. 
 

3 Results 

The UV absorbance spectrum for control GAPDH 
showed a pattern typically seen for globular proteins, 
exhibiting a peak at approximately 280nm (Figure 1A) 
representing the aromatic residues. The absorbance below 
240nm was ignored in this study. The absorbance in the 
280nm range is in part due to the contribution of the 
microenvironment surrounding the aromatic residues, 
particularly tyrosines and tryptophans. Upon addition of 
GdnHCl, the change in protein architecture affects the 
micorenvironment around these residues, altering the spectra 
as seen in Figure 1A. The spectral changes were slight but 
very reproducible.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 1: Spectral changes due to the chaotropic 
agent, GdnHCl. GAPDH (10M) was incubated 
with various concentrations of GdnHCl. A. UV 
absorbance spectra in the 240 to 320nm range 
showing the effects of GdnHCl on the descending 
slope of the 280nm peak. B. The difference spectrum 
of control and GdnHCl(1.5M)-treated GAPDH. 

 
 Difference spectra were computed. Figure 1B presents 
the difference spectrum of control GAPDH and GAPDH-
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treated with 1.5M GdnHCl. In this difference spectrum, we 
see the expected pattern of a trough with values below zero in 
the 260-270nm range and a peak (here, seen as a doublet) in 
the 285-295nm range. 

 The difference spectrum  as shown in Figure 1B 
certainly provides information that is more readily visible 
than that found in the original spectra (Figure 1A). In fact, 
most studies that follow denaturation by absorption 
spectroscopy present difference spectra [8]. We extended this 
analysis to include an alternate approach, which involved 
examining first derivative conversions of the data. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: First derivative analysis of the 
descending slope of the 280nm peak. The data from 
Figure 1A were used to generate first derivatives. 
Control spectrum of untreated GAPDH was re-drawn 
in (A), showing the first derivatives over the 286-
300nm region (inset, A), computed as described in 
Materials and methods. B. First derivatives were 
plotted as a function of wavelength for control and 
GdnHCl(1.5M)-treated GAPDH. 
 
 

 To pursue this aim of using an alternate approach to 
studying  the effects of GdnHCl, we focused on the 
downward slope of the prominent  280nm peak from the 
original UV absorbance spectra. The first derivative spectrum 

in this range is juxtaposed to the original control spectrum in 
Figure 2A. The first derivative spectrum reveals a trough (or 
nadir) followed by a peak (or zenith). Control first derivative 
spectra were then compared with those of GdnHCl-treated 
samples. Figure 2B presents the data from control GAPDH 
against the spectra of GdnHCl(1.5M)-treated GAPDH.  

 Visibly one notices a shift in the spectra. Since a single 
spectrum includes a nadir and zenith, both can be quantified 
as a value ( min and  max, respectively). These values can 
be tracked as a function of GdnHCl treatment. The 
wavelength at which the peak or trough actually reaches its 
exact center point was determined mathematically using 
center of mass (CSM) calculation, with correction of the data 
around the trough to invert the tracing, making calculations 
feasible.  
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Figure 3: First derivative maxima and minima 
as a function of chaotropic agent, GdnHCl. First 
derivatives were initally computed for the 
downslope of the UV spectra; then the 
wavelengths representing zeniths (A) and nadirs 
(B)  ( max and  min, respectively) were plotted 
as a function of GdnHCl concentration. 

 
 The wavelengths that represent the zeniths from the first 
derivative spectra were then examined as a function of 
concentration of chaotropic agent. The resulting plot (Figure 
3A) exhibited two transition points: one at 0.5M and the other 
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at approximately 1.0M GdnHCl. We also observed that the 
nadir wavelengths plotted as a function of GdnHCl 
concentration showed three phases, an observation that was 
consistent with the computational data on wavelengths 
associated with the zenith.   

 Changes in secondary structure, which are indicative of 
domain unfolding, typically occurs at higher concentration of 
denaturant. For example, transferrin begins unfolding at 
approximately 1.6M GdnHCl [9]. The changes observed in 
this study, which looked at denaturant concentrations below 
1.5M, were likely due to quartenary and tertiary changes that 
would occur prior to domain unfolding. It was previously 
shown that GdnHCl-induced dissociation and unfolding of a 
tetrameric enzyme exibits multiple phases over a 0.5 to 5M 
GdnHCl concentration range [10]. 
 
4 Discussion 
 In looking at the conformational effects of chemical 
chaotropic agents, a difference spectrum, such as Figure 1B, 
provides discrete information that is readily visible and 
potentially quantifiable as compared with the slight 
differences found in the original spectra (Figure 1A). In fact, 
most of the studies in the literature on chemical denaturation 
and absorption spectroscopy presents the results as difference 
spectra [8]. The intention of this study, on the contrary, was to 
use an alternate approach to improve data analysis of the 
original UV absorbance spectra. Converting the downslope of 
the spectra to first derivatives does increase the information 
found within the original data and reveals definable transition 
points that are seen as nadir and zenith values that reliably 
shift in response to low levels of chaotropic agent. 

 
 Previous studies show changes that occur prior to 
domain unfolding, which may be attributed to subunit and 
domain interfacial disruption. Using circular dichroism (CD) 
measurements of porcine serum transferrin at various 
concentrations of GdnHCl, two conformational transitions are 
evident [9], one at 1.6M and the other at 3.4M. Additionally, 
Fe2+-binding is completely lost by 1.7M GdnHCl. There was a 
transition at approximately 1.2M, showing a slow trajectory 
of iron-binding loss from 0 to 1.2M GdnHCl followed by a 
faster trajectory from 1.2 to 1.7M GdnHCl. In this case, 
unfolding of secondary structure occurs above the CD-
observable transition at 1.6M GdnHCl. Transferrin is a 
homodimer linked via a disulfide bond [11]. Each subunit 
consists of two domains, the N-lobe and the C-lobe with each 
lobe capable of binding a Fe2+ atom [12]. Each lobe is 
comprised of two subdomains. Upon more careful analysis of 
the authors’ presentation of the iron binding data, we 
recognized that the process of iron-binding loss appeared to 
be multiphasic. The authors identified two phases that they 
attributed to sequential release of the two iron atoms. We 
think that the data shows three phases and that these phases 
represent changes in protein architecture that occurs at low 
GdnHCl concentrations. We propose that these architectural 

changes would correspond to iron binding loss. Their data 
(fig. 4b, in [9]) suggests that there are no changes to iron 
bound to transferrin from 0 to 0.2M GdnHCl, a rapid change 
from 0.2 to 0.5M, a then slower change from 0.5 to 1.2M, and 
then again a fast change from 1.2 to 1.7M, as visually 
inspected by us in the present study with acknowledgment 
that these values are estimates. First derivatives were 
calculated and were approximated to be 0.008 
Abs460/GdnHCl(M), 0.004 and 0.008, respectively. These 
data may indicate that GdnHCl may be acting on disengaging 
the dimeric subunits first followed by separation of domains 
and then disruption of subdomain to subdomain interaction. 
While this is rather speculative and a re-analysis of existing 
data, the current study examined this proposed mechanism of 
the initial stages of denaturation using GAPDH. The term 
denaturation in this regard may be inappropriate, as these 
events likely do not alter the secondary structure given that 
the concentration of the denaturant is low. We think that the 
subunit-subunit interface, as well as the domain-domain 
interface, may represent an entry point for regulatory 
molecules that can alter the biological properties of GAPDH 
and providing its diversity of function. We recently proposed 
that GAPDH, an asymmetric tetramer, may dissociate to a 
dimer or reconfigure to higher order structures that may 
include a decamer [2]. Interestingly, inhaled anesthetics 
appear to shift the equilbirum away from the tetramer towards 
a dimer that may proceed to a decamer [2]. We think that 
these interfacial events may involve modulation of association 
with its cofactor [3]. The present study revealed that 
GAPDH’s oligomeric structure may be labile.  
 
 The folding of proteins are considered to be based on 
the principle of a domain being the functional unit of folding 
[13], and that contiguous folding regions may be separated by 
linker regions [14]. Subdomains without extensive linker 
regions may likewise involve a heirarchical process of folding 
[15]. The mechanisms of unfolding likely proceed with these 
same principles. GAPDH is a multimeric protein, where each 
subunit is composed of two distinct domains. We proposed 
that using GdnHCl at low concentrations would differentiate 
the heirarchical levels of unfolding. Similar to these effects, 
we think that low levels of endogenous chaotropic 
compounds may modulate quartenary and perhaps even 
tertiary structure affecting biological function. Just as inhaled 
anesthetics appear to act at interfacial areas, GdnHCl’s 
primary interaction may involve disruption of interfacial 
contacts. 
 
 The first derivative spectra reveal a trough (nadir) and 
peak (zenith) that may provide insight to changes in the 
microenvironments of the aromatic residues, differentiating 
the contribution by tyrosine and tryptophan residues. Our lab 
will continue to explore this possiblity. We intend to also 
explore the advantage of using second through fourth 
derivatives as was previously applied [16]. 
 
 We observed that the wavelengths (that represent the 
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zeniths from the first derivative spectra of the downslope) 
decreased as a function of concentration of chaotropic agent. 
The resulting plot (Figure 3A) exhibited two transition points: 
one at 0.5M and the other at 1.0M GdnHCl, dividing the 
process into several phases. The first phase may involve 
separation of subunits from one another. This event would be 
initiated as GdnHCl was raised to 0.5M. The second phase 
from 0.5-1.0M GdnHCl may represent the separation of the 
domains from one another within the subunit structure. Above 
approximately 1.0M GdnHCl may involve secondary 
structure changes that are not as recognizable by these 
computational parameters. The shift of the zenith value 
appears to lessen and reach a limit value asymtotically. The 
nadir wavelengths plotted as a function of GdnHCl 
concentration also showed three phases, which was consistent 
with the zenith data.   

 
5 Conclusion 
 The approach described in this study involved close 
inspection of the descending slope of the UV absorbance 
spectra, particularly examining the 283 to 310nm region, 
during exposure to low concentrations of GdnHCl. Molar 
concentrations of the chaotropic agent, such as 6M GdnHCl, 
completely unfolds most proteins. The effects of GdnHCl at 
concentrations below 1.0M remain poorly understood. Given 
the dynamic nature of GAPDH particularly that it exhibits 
multiple cellular functions with diverse binding partners, we 
proposed that subunit-subunit interfacial dynamics play a 
crucial role in GAPDH structure and function. Therefore, 
analysis of spectroscopic changes at low GdnHCl may reveal 
useful information regarding this dynamic feature. 
Conversion of UV spectra to first derivatives allows one to 
study the reliably appearing trough and peaks that exhibit 
quantal shifts. Our findings suggest that the GAPDH structure 
is easily perturbed and this intrinsic disorder, which likely 
resides at the interfacial regions, may contribute to functional 
diversity.  
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Abstract—Among the many contributions made by 

information technologies to Bioinformatics, the techniques of 
intelligent data analysis combined with optimization techniques 
are the main application field nowadays. Many researches 
focused on DNA microarray field have proposed different 
approaches trying to obtain new undiscovered knowledge of 
diseases such cancer. All these researches can be represented as 
a standard unique process. Thus, this paper presents an 
overview of a common biological and computational process of 
DNA microarray data analysis that include these types of 
researches, based on the known CRISP-DM model. 

I. INTRODUCTION 
Nowadays, around 60 people die of diseases such as 

cancer every minute. The value is even more concerning if 
instead of thinking in minutes, we do it in hours or days. It 
is, therefore, a problem of high social impact that must be 
solved as quickly as possible. Finding a cure for diseases 
such as cancer would translate into a much higher life 
expectancy. In the scientific field, expert biologists are 
devoted to the study of possible solutions to these kinds of 
diseases. Among the many approaches, the DNA microarray 
technology will be the focus of this paper. 

A DNA microarray is a large set of hybridized DNA 
molecules arranged on a solid (silicon or plastic) surface, 
called biochip. These types of experiments allow relative 
levels of mRNA abundance to be determined in a set of 
tissues or cell populations for thousand of genes 
simultaneously. A complete review of the methods used in 
the processing and analysis of gene expression for data 
generated by DNA microarrays experiments [11]. 

Many computer resources are needed in the work routine 
of an expert molecular biologist while studying DNA 
microarray data. That is why bioinformatics has been so 
important to meet the scientists’ needs. The evolution of this 
new specialization was originally promoted by the biologists 
themselves and the needs they had at work. Nowadays, 
researchers from information technologies are beginning to 
work on this field, contributing on the data management and 
processing with their background of new tools and 
technology. We must bear in mind that we are talking of 

rather complex information for non-biologists; therefore an 
intrinsic collaboration with the experts is absolutely 
essential. 
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Among the many contributions made by information 
technologies to bioinformatics, the techniques of intelligent 
data analysis combined with optimization techniques are the 
main application field nowadays. Many researchers 
contribute to improve, using these techniques, the results 
obtained with simple statistical studies. All researches that 
use Data Mining and Knowledge Discovery techniques to 
apply them on DNA microarray analysis are more or less 
supported on the same scheme or methodology. However, 
there is no any methodological process that describes all the 
possible Data Mining steps to analyze this kind of data.  

Thus, this paper proposes an overview of a common 
biological and computational methodological process that 
includes practically all these types of researches. It is 
important to mention that the Computational Process is 
instanced and adapted of a known KDD model used by 
many Data Mining experts, which is called CRISP-DM. 

 
The structure of the paper is as follows: The next section 

describes briefly the DNA Microarray technology. Section 3 
presents the Biological process of DNA Microarray analysis, 
while section 4 describes the Computational process of these 
types of analysis and also analyzes each one of the steps of 
this process. Finally, all conclusions are presented in the last 
section (5). 

II. DNA MICROARRAY TECHNOLOGY 
 
DNA microarrays [17,27,31,11] are a relatively new and 

complex technology used in molecular biology and 
medicine. Microarrays present unique opportunities in 
analyzing gene expression and regulation in an overall 
cellular context. This technology has been applied in diverse 
areas ranging from genetic and drug discovery to disciplines 
such as virology, microbiology, immunology, endocrinology 
and neurobiology. Microarray technology is the most widely 
used technology for the large-scale analysis of gene 
expression because it provides a simultaneous study of 
thousands of genes by single experiment. 

A DNA microarray consists of an arrayed series of 
thousands of microscopic spots of DNA oligonucleotides 
(shorts molecules consisting of several linked nucleotides, 
between 10 and 60, chained together and attached by 
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covalent bonds), called Expressed Sequence Tags (ESTs), 
each containing several molecules of a specific DNA 
sequence. This can be a short section of a gene or other 
DNA element. 

 

III. BIOLOGICAL PROCESS OF DNA MICROARRAY ANALYSIS 
 
There are several steps [28,21] in the design and 

implementation of a DNA microarray experiment (figure 1). 
Many strategies have been researched in each of these steps. 

 
Fig. 1.  Biological process of DNA Microarray analysis. Image from Gibson 
& Muse 2002 

ntity) and the 

hy, pipette, drop-touch, piezoelectric 

e and labelled 

leic acids into a single molecule

or is proportional to 

udied as a 
computational process in next section. 

Fig   Hybridization process. Image from http://universe-review.ca/ 

perimental design possible, the 
ty alization, etc. 

 

IV. COMPUTATIONAL PROCESS OF DNA MICROARRAY 
ANALYSIS 

is model 
di inguishes six main phases of a KDD process:  

preliminary plan 

 subsets 

 
• Probe: First of all, the sample is obtained. The DNA 

type (cDNA/oligo with known ide
organism must be chosen in this step. 

• Chip manufacture: The probes are placed on a 
surface. In standard microarrays, the information is 
attached to a solid surface by a covalent bond. The 
solid surface can be glass or silicon, in which case 
they are commonly known as gene chip or biochip. 
Here, several techniques have been used: 
Photolithograp
(ink-jet), etc.  

• Sample preparation: In this step the samples have 
been prepared. cDNA transcripts are prepared and 
labelled with a red fluorescent dye. A control library 
is constructed from an untreated sourc
with a different fluorescent green dye. 

• Assay: All information is hybridized (figure 2). 
Hybridization [28] is the process of combining 
single-stranded nuc  

 
•

to the microarray. 
• Redaout: Dual-channel laser excitation excites the 

corresponding dye, whose fluorescence is 
proportional to the degree of hybridization that has 
occurred. Relative gene expression is measured as the 
ratio of the two fluorescences: up-regulation of the 
experimental transcriptome relative to the control will 

be visualized as a red pseudo-color, down-regulation 
show as green, and constitutive expression as a 
neutral black. The intensity of col
the expression differential. 

• Informatics: In this final step, where new information 
and values are obtained from the fluorescence 
intensities using different computer techniques such 
as Robotics control, image processing [1], DBMS, 
etc. This step does not include data mining 
techniques, which have been st

 
. 2.
 
Nowadays, there are companies that create tools for 

analyzing complex genetic information such as DNA 
microarrays. Companies such as Affymetrix [7], Celera, 
Gene Logic, Xenometrix … have built commercial 
platforms to carry out microarray experiments. Each 
platform obtains results using different methods (as 
Fluorescence, Mass spectrometry, Radioisotope, etc.) at 
each step of the microarray experiment. The use of platform 
determines the type of ex

pe of norm

 
Once Biological process is finished, the Computational 

process starts. Trying to obtain any standard methodological 
process that englobes all published researches, we propose 
to instance the CRISP-DM model [41]. Th

st

 Business Understanding: This initial phase focuses on 
understanding the objectives and requirements from a 
business perspective, then converting this knowledge 
into a problem definition and a 
designed to achieve the objectives.  

• Data Understanding: The data understanding phase 
starts with an initial data collection and proceeds with 
activities in order to become familiar with the data, to 
identify data quality problems, to discover first 
insights into the data or to detect interesting
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to form hypotheses for hidden information.  
• Data Preparation: The data preparation phase covers 

all activities for constructing the final dataset (data 
that will be fed into the modelling tool(s)) from the 
initial raw data. Data preparation tasks are likely to 
be performed many times and not in any prescribed 
order. Tasks include record and feature selection as 
well as transformation and cleaning of data for 

ack to the data preparation 

decision on the 

will need to be presented in a way 
that can be used.   

 

Fig  The phases of the CRISP-DM process model  

w, often 
more focused questions to be answer by biologists. 

 

Fig. 4: Computational process of DNA Microarray analysis 
 

mputational process is described and 
analyzed briefly. 

 and possible classification of diseases, labels or 
outcomes. 

essary to be able to access 
and compare correctly the data. 

modelling tools. 
• Modelling: In this phase, various modelling techniques 

are selected and applied and their parameters are 
calibrated to optimal values. Typically, there are 
several techniques for the same problem type. Some 
techniques have specific requirements for the form of 
data. Therefore, stepping b
phase is often necessary.  

• Evaluation: Before proceeding to final deployment of 
the model, it is important thoroughly to evaluate the 
model and review the steps executed to construct the 
model in order to be certain it properly achieves the 
objectives. A key objective is to determine if there is 
some important issue that has not been sufficiently 
considered. At the end of this phase, a 
use of the results should be reached.  

• Deployment: Creation of the model is generally not the 
end of the project. Even if the purpose of the model is 
simply to increase knowledge of the data, the 
knowledge gained 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
.3.
 
Adapting this model to the microarray analysis process, 

the computational process of Microarray analysis is 
obtained. The Figure 4 shows a standard computational 
process with each phase. The life cycle of a computational 
process of DNA microarray analysis study consists of five 
phases. The sequence of the phases is not strict, moving 
back and forward between different phases is almost 
required, passing always on the Interpretation phase. It is 
because all decisions, results and objectives of each phase 

have to be assessed and approved by expert biologists 
(biological interpretation). It is possible that an objective 
obtained in any phase has not a possible interpretation or is 
not a correct objective for the biologists. This can be 
produced, for instance, due to it is needed another 
Understanding iteration to understand the real objective. The 
lessons learned during the any phase can trigger ne

A large number of data mining experiments with DNA 
microarray data can be represented with this methodological 
process, using all or not all phases, depending on the 
specific problem to be solved. In the next subsections each 
phase of the co

 

A. Understanding 

This initial phase focuses on understanding the research 
objectives and requirements from the expert biologists, and 
then converting this knowledge into a data mining problem 
definition. The biologists define and comment one specific 
problem. They provide a microarray expression dataset with 
descriptions, headers, gene identifications, patient 
information

 

B. Data Survey 

In this phase all data is studied and prepared. Figure 3 
defines the Data Survey tasks, Normalization and Pre-
processing algorithms, both nec

 
a) Normalization: After the hybridizing and microarray 

image processing to obtain Cy5 and Cy3 fluorescency 
intensities (explained in section 3), it is needed to 
normalize [26,37,40] the data from each of the two 
scanned channels. There can be differences in labelling 
and detection efficiencies for the fluorescent labels and 
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differences in the quantity of the initial values from the 
two samples examined in the assay. These problems can 
cause a shift in the average ratio of the fluorescence 
intensities, so they must be re-scaled before an 
experiment can be properly analyzed. The normalization 
factor is used to adjust the data to compensate for 
experimental variability and to balance the fluorescen

NA microarray experiments, can 
remove this dependency. 

ta. The most commonly used algori

(features) th

80% of missing gene values can be 

weighted nearest neighbor impute algorithm. 

ase is divided in 
tw  possible tasks to obtain these features. 

stic 
egression to make a dimension reduction [32]. 

hose features that are not relevant 

ch includes supervised and non-
supervised learning. 

ta mining 
al thms) or the final objective of the process. 

), to enrich knowledge 

d patients 
simultaneously) to obtain better knowledge. 

ce  
b) Feature Selection: Trying to compare Feature Subset 

Selection (FSS) and Dimension Reduction, the first one 
selects only the best features from the data and the 
second one discards t

signals from the two samples. 
There are many approaches for normalizing the gene 

expression. Some, such as total intensity normalization, are 
based on the assumption that the quantity of the initial RNA 
is the same for both labelled samples, so that consequently 
the total integrated intensity computed for all the elements in 
the array should be the same in both channels. Under this 
assumption, a normalization factor can be calculated and 
used to re-scale the intensity for each gene in the array. In 
addition to total intensity normalization, there are a number 
of alternative approaches for normalizing expressions, 
including linear regression analysis, log centering, rank 
invariant methods and Chen’s ratio statistics (normalization 
using ratiostatistics), among others[26]. However, none of 
these approaches takes into account systematic biases that 
may appear in the data: dependence between intensity and 
ratio expression. Locally weighted linear regression 
(LOWESS) analysis [27], the most commonly used 
normalization method in D

 
b) Preprocess: Obviously real data have a lot of 

redundancy, as well as incorrect or missing values, 
depending on some factors. Thus, usually it is needed 
some preprocessing algorithms in order to clean up and 
prepare the da thms 

D. Multistrategy Learning 

This phase is divided in two possible tasks (figure 3), 
unsupervised and supervised learning. Both tasks are used to 
obtain new knowledge (using different da

[17,8,38] are: 
• Replicate handling or genes at are  

a) Unsupervised Learning: In DNA microarray 
technology, genes (features) classification is one of the 
typical final objective, although patients (rows) can be 
classified too. This classification can be obtained using 
different methods [18,25,34], such as Hierarchical 
cluster, EM, K-Means, QT, etc. Furthermore, it is 
interesting to obtain a patient classification (using the 
same methods) to later use this new information on the 
next task (supervised learning

replicated can be discarded. 
• Missing value handling or patients (rows) that had 

more than 
discarded. 

• Imputing missing values can be estimated using 
different algorithms. The most known is the k-

 

C. Selection 

In this phase a selection of the principal features is made 
in order to improve the understanding of the problem and its 
possible solution. In figure 3, Selection ph

o
 

a) Dimension Reduction: Here a feature reduction task can 
be applied to the data. This task is used to discard 
features that are not relevant for the study or can 
produce noise. Among all the dimension reduction 
algorithms [4], the most broadly used ones in 

microarray data [6] are based on Principal Components 
Analysis (PCA), Partial Least Squares (PLS) or even 
discarding variables with low internal variance or with 
low Pearson correlation with outcome. Other approach 
presents an algorithm based on Penalized Logi
R

for the study. 
FSS can be used as a simple task to obtain the best 
features to later obtain the best new knowledge using 
these features. For that, simple FSS algorithms based on 
statistics are proposed and compared in DNA 
microarray field [14], such as Fold Change, ANOVA, 
Rank Products, etc. However, FSS is a so important 
task in DNA microarray data that sometimes is the final 
objective of many researches, that is to obtain the 
Biomarkers. FSS in Bioinformatics are reviewed by 
Saeys [30]. These techniques use wrapper and filter 
mechanisms with supervised and non-supervised 
algorithms. Thus, although the final objective is Feature 
Selection, it is needed to execute a Multistrategy 
Learning phase whi

 

gori

and improve possible learners. 
In Unsupervised Learning task, several studies obtain a 
Feature Subset Selection using wrapper mechanisms 
and unsupervised classification algorithm, such as EM 
or K-Means, to identify relationship between gene 
expressions [9,16]. Other researches [33] have proposed 
the use of biclustering technique (genes an

 
b) Supervised Learning: Usually in this task it is used a 

simple supervised learning using any supervised 
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classification method. Larrañaga [18] mentions the most 
used supervised classification methods in 

istic regression 

lgorithms [19] with supervi
classification methods. 

ally validated. This validation is based on

l sample classifi

e and comparing obtained result

work or using gene databases, such as GO or KEGG. 

in a 
result and/or objective in the microarray analysis. 

 

V. CONCLUSIONS 
 

te and execut
one of the steps proposed in this paper. 

 

Bioinformatics, such as SVM, KNN, NaiveBayes, etc. 
However, this task can be something more complicated 
as a simple supervised classification algorithm. The 
same as Unsupervised Learning task, in Supervised 
Learning it is possible to make a FSS using wrapper [5] 
and filter mechanisms and different supervised 
classification algorithm, such as log
[39,36], KNN, C4.5, NaiveBayes [12]. 
Furthermore, several researches use evolutionary 
algorithms, such as genetic algorithms [24], EDAs [29], 
or hybrid evolutionary a sed 

[1]  P. Bajcsy. An overview of dna microarray image requirements for 
automated processing. In CVPR ’05, page 147, Washington, DC, 
USA, 2005. IEEE Computer Society. 

 

E. Validation 

Both Unsupervised and Supervised Learning tasks have to 
be extern  three [4] Miguel Carreira. A review of dimension reduction techniques. 

Technical Report CS–96–09, Dept. of Computer Science, University 
of Sheffield, January 1997. aspects: 

• data mining external validation, using a validation 
technique (depending on the classifier) and a external 
dataset. For supervised classification, cross-validation 
and bootstrap [3] have been the most commonly used 
validation methods, but [13] comments that these 
methods are unreliable in smal cation. [7] D. D. Dalma-Weiszhausz, J. Warrington, E. Y. Tanimoto, and C. G. 

Miyada. The affymetrix genechip platform: an overview. Methods in 
enzymology, 410:3–28, 2006. For unsupervised classification, 

• using literatur s with [8] S. Durinck. Pre-processing of microarray data and analysis of 
differential expression. Methods in molecular biology, 452:89–110, 
2008. 

other results. 
• using biological experiments validations for validate our [

 

F. Interpretation 

All interpretations, decisions, processes, feature selections 
and relations between genes or patients must be assessed 
and approved by expert biologists in order to obta valid [11] Wolfgang Huber, Anja Von Heydebreck, and Martin Vingron. 

Analysis of microarray gene expression data. In in Handbook of 
Statistical Genetics, 2nd edn. Wiley, 2003. 

A complete standard biological and computational 
process of DNA microarray analysis is proposed. Mention 
that image processing techniques have been studied out of 
the computational process. Approaches, such as 
[35,15,20,23], etc., use each one of these phases, creating an 
overall computational process as the proposed. Other 
approaches fit with the proposed process in several phases. 
Applications, such as Bioconductor [10], GAMS [22], 
Knime [2], Weka, etc., allow us to crea e each [17] S. Knudsen. A biologist’s guide to Analysis of DNA microarray data. 

JohnWilley and Sons, 2002. 
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Abstract—Metabolic networks summarize and represent an-
abolic and catabolic processes that are driven by the enzymes in
every organism. It has been shown that the metabolic networks
of the three domains of life (Archae, Bacteria, and Eukaryota)
have certain properties in common. However, we could previously
demonstrate that it is still possible to find domain-specific
attributes in the corresponding networks, that allow for a good
inter-domain classification performance. In this paper we aim at
finding domain dependent differences based on distances between
vertices in the networks. We apply three different distance-based
topological network descriptors using Shannon’s Entropy. Our
results show that a clear distinction between the three domains
of life fails when using the employed network descriptors. This
indicates that certain distance-related properties are common to
all organisms in this study. We expect this to be a sign of the
evolutionary optimization of the information spread within these
networks.
Keywords: Network biology, metabolic pathways, topological
network descriptors, machine learning

I. BACKGROUND

Catabolic and anabolic processes can be represented by
metabolic networks, as they represent the interlinkage of
metabolic processes that make up the human metabolism
[Alberts et al., 2007]. By studying how these processes are
organized in pathways it is possible to derive knowledge
about the underlying functions. Jeong et al. systematically
investigated the organization and structure of metabolic
networks from 43 organisms that were representing the
three domains of life [Jeong et al., 2000]. One of their main
results was, that despite the evolutionary distance, properties
related to the network diameter were found to be highly
conserved [Jeong et al., 2000]. However, in recent work
we demonstrated that it is possible to still discriminate
between the three domains of life [Mueller et al., 2011]. The
main goal of this paper is to analyze path distance-based
properties in the networks by Jeong et al., in order to
detect domain-specific effects. We aim at detecting distance-
based effects, that may hint at evolutionary differences
between the domains of life. To tackle this problem
we utilize entropy-based topological network descriptors
[Dehmer and Mowshowitz, 2011]. The structure of a network
also reflects its function [Strogatz, 2001]. Thus, applying

topological network descriptors might be useful for the
analysis of complex networks, as they allow transforming
structural information about a graph into a numeric value
[Emmert-Streib and Dehmer, 2011]. Topological network
descriptors have been employed in chemoinformatics,
e.g. for predicting toxicity [Feng et al., 2003] or
mutagenicity [Votano et al., 2004]. Recently, they have
also been proven useful for analyzing biological networks
[Mueller et al., 2010], [Emmert-Streib and Dehmer, 2011].

Jeong et al. first described the relatedness of metabolic
networks, when they explored degree distributions and
average path lengths [Jeong et al., 2000]. Later, Wagner
and Fell found the metabolic network of E. coli to exhibit
the small-world property for a slightly different set-up
[Wagner and Fell, 2001]. Ma and Zeng analyzed the core
networks and clustering properties of different organisms
in their work [Ma and Zeng, 2003]. They also investigated
the average path lengths of the largest subnetwork and the
whole network for 65 organisms [Ma and Zeng, 2003]. A
set of topological network descriptors was employed by Zhu
and Qin to find differences in various single cell organisms
[Zhu and Qin, 2005]. They found the average clustering
coefficient and the average betweenness to differ between
six Bacteria and four Arachaea [Zhu and Qin, 2005]. In the
current paper we focus on topological network descriptors
that are based on inferring distances between vertices. We
hypothesize that the analysis of these distances might reveal
knowledge about the spread of information within these
networks.

This paper is structured as follows: After providing
background information in this Section, we describe the
employed data set and the methods in Section II. Thereafter,
we illustrate the results in Section III, which are discussed in
IV. This paper finishes with a final summary and conclusion
in section V.
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Fig. 1. The distribution of σ(v) for the 43 organisms. Each of the three domains is depicted in a different color.

II. MATERIAL AND METHODS

Metabolic Networks

For the analysis of domain-specific effects we re-analyze
the metabolic networks that have originally been studied by
Jeong et al. [Jeong et al., 2000]. In their study they analyzed
43 organisms from the three domains of life (nArchaea = 6,
nBacteria = 32, and nEukaryota = 5). After we construct the
networks, we extract the largest connected component, which
represents the largest connected subgraph, for each organism.
This results in a network G for every organism, where V is
the set of labeled vertices and E is the set of directed edges.
Overall, we then have 43 labeled and directed networks for
the further analysis.
The eccentricity σ(v) of a vertex v is an important feature
within a network [Hage and Harary, 1995]. It gives the
maximum of the distances from one vertex to all other
connected vertices. In biological networks, small distances
may indicate short communication processes, which allow for
an organism to rapidly react to disturbances. To illustrate the
distribution of σ(v) for each of the 43 networks we plot it in
Fig. 1.

Network Descriptors using Distances

Topological network descriptors represent the
complexity of a network by a numeric value
[Emmert-Streib and Dehmer, 2011]. Early applications
of network descriptors date back to the work of Wiener
[Wiener, 1947]. He utilized the sum of the distance
matrix for predicting paraffin boiling points. Other well-
known indices are the Balaban J index [Balaban, 1982],
the Zagreb group indices [Diudea et al., 2001] or the
Randić connectivity index [Li and Gutman, 2006]. Later,
methods for quantifying the information content of a
network were established [Bonchev and Rouvray, 2005],

[Mowshowitz, 1968], [Rashewsky, 1955], [Trucco, 1956].
Note, that many of these descriptors are correlated. Bonchev
and Trinajstić introduced an information index that captures
molecular branching [Bonchev and Trinajstic, 1977]. Many
other real-world applications are also based on problems of
relational structures, e.g. transportation or communication
networks [Kolaczyk, 2009]. Networks and topological
descriptors have been extensively used in the social sciences
[Wasserman and Faust, 1994], e.g. for identifying opinion-
leaders or the spread of information in societies.

In the present work we put an emphasis on i) descriptors,
that can be used to evaluate the information spread in
a network. ii) Descriptors that calculate the information-
content of a network. We select entropy-based network
descriptors since they were shown in previous work to posses
good classification performance when capturing domain-
specific effects [Mueller et al., 2011]. For a comprehensive
overview on entropy-based network descriptors see e.g.
[Dehmer and Mowshowitz, 2011]. We focus on studying the
information-spread as we are interested in finding structural
differences that present themselves in the way information is
spread within the metabolic networks. Our hypothesis is, that
we might find structural differences that can be clearly linked
to a domain-specific origin.

It has been shown that it is possible to quantify the
information-content of a network by applying special function-
als to the vertices of the network and using Shannon’s Entropy
[Dehmer, 2008]. Dehmer presented a vertex functional that is
based on the j-spheres [Dehmer, 2008]:

fV (vi) := c1|S1(vi, G)|+ c2|S2(vi, G)|+
· · ·+ cρ(G)|Sρ(G)(vi, G)|,
ck > 0, 1 ≤ k ≤ ρ(G).

(1)
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Sj(vi, G) is the set of vertices with distance j from vertex
vi ∈ V . Note, that ck represents a weighting factor. In our
case, we modeled it to follow a exponential function. So ck =
ρ(G)ek for k = 0, 1, . . . , ρ(G) − 1. This allows emphasizing
on vertices that are close to vi. The structural information
content of a graph G with respect to fV (vi) is then defined
by [Dehmer, 2008]:

IfV (G) =

|V |∑
i=1

fV (vi)∑|V |
j=1 f

V (vj)
log2

fV (vi)∑|V |
j=1 f

V (vj)
. (2)

fV (vi) can be seen as a function that represents the spread of
information from vi, so If (G) is a model for the information
spread in G [Dehmer, 2008].

Bonchev et al. introduced a descriptor that is based on
the eccentricity σ(vi) and the mean information content
[Bonchev et al., 1980]. The radial centric information index
is defined by [Bonchev et al., 1980]:

ĪVC (G) =

|V |∑
j=1

nj
|V |

log2

nj
|V |

. (3)

Here, nj gives the number of vertices with eccentricity
σ(vi) = j. It is common to assume that small σ(vi), vi ∈ V
indicate the possibility to spread information rapidly within
G. So, ĪVC (G) should give an insight into how information is
spread in G. If our hypothesis holds, organisms from different
domains may exhibit systematic differences with respect to
ĪVC (G).

It is possible to define information measures using local
features of graphs, e.g. by quantifying the entropy of single
vertices [Dehmer and Mowshowitz, 2011]. Konstantinova and
Paleev introduced a measure that represents the vertex com-
plexity by [Konstantinova and Paleev, 1990]:

ID(vi) = −
|V |∑
j=1

d(vi, vj)

d(vi)
log2

(
d(vi, vj)

d(vi)

)
, (4)

where d(vi) gives the sum of distances from vertex vi to
all other vertices in G. The entropy of G is then given as
[Konstantinova and Paleev, 1990]:

ID(G) =

|V |∑
i=1

ID(vi). (5)

Here, we use ID(G) to model the heterogeneity of the vertices
of a graph G with respect to the distances between the vertices.
Based on our hypothesis we should see a domain-specific
effect in this heterogeneity.

Univariate Analysis

After we calculate the three topological network descriptors
for each of the 43 metabolic networks we proceed with the
succeeding data analysis. First, we test for the presence of a
domain-specific effect in at least one group by performing a

one way ANOVA [Chambers and Hastie, 1991].

Unsupervised Machine Learning

We use hierarchical clustering in order to explore the
groups that are formed by the employed distance measures.
Our clustering is based on the Euclidean distance between
features [Murtagh, 1985].

Supervised Machine Learning

For supervised machine learning we make use of support
vector machines [Vapnik and Lerner, 1963], with a radial
basis kernel. To optimize the outcome we set the cost
parameter to 100. We then calculate the accuracy and the
f-score for the classification of the domains of life based on
our set of topological network descriptors.

III. RESULTS

Distance-Based Network Descriptors

For each of the 43 species we calculate the three presented
descriptors with the programming language R (http://www.r-
project.org). The results are listed in Table I and illustrated as
boxplots in Fig. 2.

Univariate Analysis

The results for the ANOVA are listed in Table II. To adjust
for multiple testing we correct with the method by Bonfer-
roni. However, even before the multiple testing correction no
descriptor detects a significant effect in a single domain.

Unsupervised Machine Learning

The heatmap in Fig. 3 illustrates the results of the hier-
archical clustering. The rows contain the 43 organisms and
the columns represent the three employed topological network
descriptors. We mark each domain in a specific color. We
observe no meaningful clustering with respect to the three
domains of life.

Supervised Machine Learning

The classification accuracy is 63%. While we reach a
precision of 0.86 we only score a recall of 0.33. This leads
to an overall f-score of 0.48.

IV. DISCUSSION

In the present study our goal was to detect differences and
characteristics for the three domains of life by making use
of their metabolic networks. Therefore, we reused a set of
43 organisms that have originally been investigated by Jeong
et al. [Jeong et al., 2000]. Here, we focused on analyzing
potential differences in the distances between vertices in the
metabolic networks. We employed a broad range of different
approaches to this problem, which all failed to detect any
domain-specific effects.
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Fig. 2. For each of the 43 species we calculate three entropy-based network descriptors: (a) IfV , (b) ĪVC , (c) ID .

Fig. 3. We perform a hierarchical clustering for the 43 metabolic networks
(rows) and the three employed network descriptors (columns). The three
domains of live are depicted in three different colors.

In the original work by Jeong et al. they discovered several
interesting aspects that were common to all networks.
All the degree distributions of the networks were found
to be scale-free and follow a power-law distribution
[Jeong et al., 2000]. Moreover, the network diameters ρ(G)
were found to be relatively constant across all three domains
of life [Jeong et al., 2000]. The similarity in the large-scale
organization of the metabolic networks is also discussed
in [Podani et al., 2001]. These observations indicate that

core properties of the metabolic processes are common to
all species and are to a certain degree not influenced by
evolutionary processes. However, in recent work we could
demonstrate that it is still possible to distinguish between
Archaea, Bacteria, and Eukaryota based on topological
properties of their metabolic networks [Mueller et al., 2011].
In that previous study we applied a set of supervised machine
learning algorithms to 33 network descriptors that were
calculated for the same data, and came up with a reasonable
classification performance (Accuracy: 88.4%, weighted
F-score: 0.88). Such a result has not been reached in the
present study. However, in contrast to this previous work
we now considered directed graphs for our analysis. This
hardens a direct comparison of the previous results with the
current ones. Interestingly, when we ignored the directional
information, two measures that are related to path length
and the spheres turned out to be significantly different in
at least one group [Mueller et al., 2011]. This is a striking
observation that will need to be verified and interpreted in
future studies.

Considering that Jeong et al. observed highly conserved
distance properties in their original study and that we focused
our analysis on these network invariants the observed results
come to no surprise. We conclude that this highlights the
fact that metabolic networks are likely to have evolved in a
way that allows spreading information efficiently, and that
this design is common to most organisms in the present set
of networks. Our results are to a certain degree coherent
with other, related observations. In a similar study, clear
differences between Bacteria and Archaea were found for the
average clustering coefficient and the average betweenness,
but not so much for the average path length and the diameter
[Zhu and Qin, 2005]. These latter two are mainly related to
distance between vertices, which was also the graph invariant
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TABLE I
HERE, WE LIST THE RESULTS FOR THE 43 ORGANISMS AND THE THREE

EMPLOYED TOPOLOGICAL NETWORK DESCRIPTORS.

Organism If ĪVC ID Domain
AP 9.665084 1.704296 10040.587666 Archaea
AG 9.564147 1.662454 9225.599594 Archae
TH 9.888839 1.803817 12382.120096 Archae
MJ 8.600314 1.63313 4206.884867 Archae
PF 9.025969 2.02442 6037.409112 Archae
PH 8.2133 1.74309 3060.56127 Archae
AA 10.658253 1.762958 23348.495827 Bacteria
CQ 9.938537 1.675467 12776.953312 Bacteria
CT 9.787773 1.887457 11276.072509 Bacteria
CY 9.505232 1.715802 8762.273987 Bacteria
PG 9.435009 1.804038 8489.037187 Bacteria
MB 8.136314 2.191041 2940.192524 Bacteria
ML 8.362968 1.837814 3543.299666 Bacteria
MT 10.070713 1.717556 14174.900512 Bacteria
BS 10.700696 1.678981 24103.108553 Bacteria
EF 10.736119 1.553148 24075.776966 Bacteria
CA 9.586382 1.701106 9517.179245 Bacteria
MG 9.416086 1.974329 8301.183302 Bacteria
MP 10.047548 1.615207 13779.564647 Bacteria
PN 9.523945 1.673842 8863.919547 Bacteria
ST 9.580282 1.792999 9745.236084 Bacteria
CL 8.350742 1.993873 3805.079281 Bacteria
RC 9.669622 1.924546 10291.659579 Bacteria
RP 9.615696 1.730073 9890.367254 Bacteria
NG 8.326707 1.783241 3343.943011 Bacteria
NM 10.142384 1.720369 15237.759713 Bacteria
CJ 9.657014 1.650279 9902.713247 Bacteria
HP 9.556632 1.711279 9098.264346 Bacteria
EC 8.964342 2.070491 5795.615593 Bacteria
TY 10.491932 1.71284 20399.468024 Bacteria
YP 9.154839 1.735033 6777.224163 Bacteria
AB 9.524078 1.806462 9364.071385 Bacteria
HI 9.174159 1.695162 6988.915709 Bacteria
PA 9.678677 1.709062 10192.080149 Bacteria
TP 10.341138 1.751982 18038.2337 Bacteria
BB 8.446315 2.123614 3699.92756 Bacteria
TM 10.171566 1.705844 15249.575415 Bacteria
DR 9.640121 1.647044 9901.92116 Bacteria
EN 9.724915 1.701616 10642.447537 Eukaryota
SC 9.320128 1.732907 7586.420683 Eukaryota
CE 8.499299 1.825795 3867.729448 Eukaryota
OS 10.776499 1.60026 25122.661425 Eukaryota
AT 10.059327 1.733995 14349.913609 Eukaryota

TABLE II
THE RESULTS FOR THE ANOVA TESTING. pBonf IS THE P-VALUES AFTER

THE BONFERRONI CORRECTION.

If ĪVC ID(vi)
p 0.384 0.638 0.342
pBonf 1.000 1.000 1.000

of interest in our study. All three utilized topological network
descriptors were quantifying the information-content of the
networks. In recent work we were able to demonstrate that
this family of descriptors is powerful for detecting differences
related to the three domains of life when using this set of
data [Mueller et al., 2011]. In the present work, the low
power in finding domain-specific differences is caused by
the underlying graph invariant. We hypothesize that in order
to find domain-specific differences in the topology of the

networks in this set it is better to focus on other graph
invariants, e.g. vertex degrees or centralities.

V. SUMMARY AND CONCLUSION

Finding specific properties in groups of biological networks
is a major goal in network analysis. Here, we wanted to
detect topological properties responsible for the spread
of information within a network and specific for the three
domains of life (Archaea, Bacteria, and Eukaryota). Therefore,
we employed a set of three network descriptors that capture
properties related to distances within a graph. We calculated
each of these three descriptors on a set of 43 metabolic
networks from different organisms. To analyze the according
data we utilized univariate methods as well as supervised
and unsupervised machine learning procedures. However,
with none of the applied approaches could we detect any
meaningful discrimination or characterization of the three
domains of life. Since we could demonstrate in previous work
that is possible to discriminate between the three domains
of life based on the present data, we conclude that the
information-spread as captured by the employed measured
fails to capture domain-specific properties for this set of
directed networks. It will be part of future work to analyze
what groups of topological network descriptors are best fitted
to solve this undertaking. This could then give insights into
evolutionary differences between the domains.
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Abstract – The recent large scale advances in science and 

technology has resulted in accumulation of large amount of 

biological pathways data. Any metabolic pathway contains 

large number of enzymes, metabolites and reactions. To 

make sense of diverse data available on a system, one needs 

to correlate and analyze them as a whole. Motivated by the 

potential benefits of graph theory and its applications in 

biological data, we discuss the automated reconstruction and 

analysis of metabolite network of Arabidopsis thaliana using 

concepts of graph theory. A.thaliana metabolite network was 

reconstructed and the analysis of the global properties of its 

metabolite-centric graph shows that the network is small-

world and scale-free in nature. The investigation of nodes 

with high centrality values like high degree and high 

betweeness in this network help in identifying important 

metabolites, reactions, etc. Newman’s modularity-based 

approach has been used in the analysis of the metabolite 

network of A. thaliana to identify pathway clusters, isolated 

pathways, and orphan metabolites or products. Our analysis 

on network representations helps in understanding the 

relationship between the metabolites, enzymes and reactions 

of metabolic pathways in A. thaliana. 

 

Keywords: metabolic pathways; graph theory; metabolite 

network; modularity; centrality measures 

 
 

1 Introduction 
In recent decades, a large number of complete and draft 

genomes have been sequenced very rapidly. In spite of 

enormous metabolic reaction data, the accurate prediction of 

metabolite phenotypes remains difficult. Pathway 

reconstruction is an approach to corroborate the experimental 

data and to widen its utilities. Oldest and dynamic method of 

pathway reconstruction is the kinetic metabolic modeling [1]. 

It is based on rate laws of participating reactions and 

corresponding kinetic parameters. Despite the utilities, kinetic 

approach is not handy because, the determination and 

interpretation of concentrations and rate reactions are much 

difficult. On the other hand, pathway reconstruction using 

graph theory becomes advantageous since only very less 

information is required to construct the metabolite network of 

the entire pathways in the organism. In depth functional 

analysis of metabolic pathways is succeeded by decomposition 

of this network. 

 

A complete graph can be constructed using the existing 

knowledge of metabolites, enzymes and reactions from the 

metabolic pathway databases. The undirected metabolite 

network was constructed by considering each substrate as a 

node and an edge drawn between two substrates sharing the 

same reaction [2]. Even though the utility of pathway 

reconstruction is very high in plants, only a very few plant 

metabolic pathways have been reconstructed. We have chosen 

Arabidopsis thaliana for the study since it is a model organism 

which has significant metabolic pathways with remarkable 

functionalities like defense against pathogens and herbivores, 

UV protection, resistance against oxidative stress and Auxin 

transport. 

 

Here, we have used an automated and efficient metabolite 

pathway reconstruction of A.thaliana using data set extracted 

from Kyoto Encyclopedia of Genes and Genomes (KEGG) 

Release 50.0, April 1, 2009 [3]. The XML file in the KEGG 

FTP contains reactions grouped under pathways of a specific 

organism. The XML file does not contain currency 

metabolites like ATP, H20 etc. List of edges and arcs that 

capture the biological relationship was computed. This file 

was visualized using open source visualization tools, such as 

Pajek and Centibin that help in plotting distributions, 

navigation within the network and calculating centralities of 

the biological networks. 

 

The degree of a node in a network is the number of 

connections or edges the node has with other nodes. The 

degree distribution of the A.thaliana metabolite network 

shows that a few nodes have high degree and most of the 

nodes have low degree revealing the scale free nature [4]. 

Construction of a random network with the same number of 

nodes and edges as the A.thaliana metabolite network 

exhibited similar path length but smaller clustering coefficient 

compared to the A.thaliana metabolite network suggesting its 

small world nature. Correlation between high degree and high 

betweeness of the network shows that there are many nodes 

with high betweeness and low degree. These nodes connect 

pathways or two groups of reactions and are important to be 

analyzed. 

 

We analyzed the robustness of the network by random and 

targeted removal of nodes in both the metabolite network and 

its random counterpart. Targeted removal was performed on 

nodes exhibiting high centrality values (degree and 

betweeness). When under attack by nodes with high degrees, 

the random network does not show any difference whether the 

nodes are selected randomly or based on the decreasing values 
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of degree, whereas the metabolite network shows a drastic 

change in diameter when the nodes are targeted for removal. 

The community detection analysis of A.thaliana metabolite 

network suggests its modular nature. Modularity analysis 

(using Newman’s algorithm) of the network showed 

hierarchical architecture and also helped in identifying isolated 

and orphan metabolites. 

 

2 Materials and Methods 
In KEGG metabolic pathway database, the pathway maps are 

validated, manually drawn and updated frequently and the 

enzymes are cross-referenced to other relevant databases like 

GenBank, PDB, etc. [9]. Hence for reconstruction of 

metabolic network of A.thaliana, we have used the Kyoto 

Encyclopedia of Genes and Genomes database 

(http://www.genome.jp/kegg). 

 

2.1 Dataset 
 KEGG FTP contains metabolic pathways as XML files for 

each listed organisms. In KEGG one hundred metabolic 

pathways, listed for A.thaliana, have been downloaded as 

XML files for analysis 

(ftp://ftp.genome.jp/pub/kegg/xml/kgml/metabolic/organisms/a

th/). 

 

2.2  Substrate Centric Graph 
The KEGG XML file has unique reaction id for each 

reaction in the pathway followed by the unique ids for the 

reactants and products. These files are incomplete without 

detailed information of secondary metabolites in reactants and 

products.  Using  perl  scripts,  the reaction  id  are  matched  

with  KEGG  entire  reaction  list  which  has  complete  

reaction information  and  the  missing  information  are  made  

complete.  Since the network we constructed is undirected and 

does not contain currency metabolites, the information on the 

direction of the reactions and the currency metabolites are 

neglected. Reactants and products of the same reaction are 

connected by edges. Each reactant and the product becomes 

each node in the  network,  the reaction  id  is  assigned  to  the  

edge  connecting  two  nodes.  Edge list is computed by listing 

the connected edges and their corresponding reaction ids. The 

edge list captures the network property and this file is used for 

the network analysis. 

 

3 Results and Discussion 
The metabolite network constructed has metabolites as nodes 

and the corresponding reactions they take part as edges. The 

metabolite network we generated for A.thaliana has 2801 

unique metabolites.  

 

The network does not contain the common small molecules or 

currency metabolites such as ATP, NADH, water etc. There 

are 3639 unique reactions in the network. The diameter of the 

network, which is the largest distance between two nodes is 56. 

To know how our network differs from similar networks, we 

compare the properties of our metabolite network with the 

random network constructed with same number of nodes and 

edges and with the Radrich’s Arabidopsis metabolite network 

model (Table1). 

 
Table 1: Global properties of metabolite network, random network and 

the metabolic network by Radrich in A.thaliana network construction 

 

The random network has low clustering coefficient compared 

to the metabolite network constructed by us. Radrich’s semi 

automated genome-scale reconstruction network on 

Arabidopsis by integration of metabolic databases [6] uses 

current metabolites and pathway data that were common in 

both KEGG and AraCyc. There are more edges in Radrich 

model due to the currency metabolites. The diameter of the 

metabolite network is very high compared to that of random 

network with same number of nodes and edges and Radrich 

network. The larger diameter  in  our  network reveals  that  

the information  flow is  between  metabolites  of  two 

completely unrelated pathways leading to larger path lengths 

between those nodes. The lower clustering  coefficient  of  a  

random  network  compared  to  A.thaliana  metabolite  

network explains occurrence of meaningful clustering in 

biological network. In metabolite network, we see the average 

path length depends on the system size but does not change 

drastically with it. 

 

3.1 Arabidopsis thaliana Metabolite Network is 

Scale free and Small world 
The degree of a node in a network is the number of 

connections or edges the node has to other nodes. The degree 

distribution P(k) gives the fraction of nodes that have degree k 

and is obtained by counting the number of nodes N(k) that 

have k = 1, 2, 3… edges and dividing it by the total number of 

nodes N. From Fig.1a, degree distribution graph, we see that it 

follows the power law which appears as a straight line on a 

logarithmic plot (Fig 1.b) and hence proving metabolite 

network follows ‘scale free nature’[2]. Using this function P(k) 

it is evident that there is a high diversity in the degree of the 

nodes (Fig.1).  

 

This nature becomes more evident by comparing it with a 

random graph with the same number of edges and arcs. We 

constructed a random graph, using the Erdoes Renyi model 

that assumes each pair of nodes in the network is connected 

randomly with probability p.  This graph reflects the expected 

properties of a network which is random with respect to the 

node’s position and their interaction  compared to a metabolite 

network of the same size [3]. Random network have a bell-

  Metabolite 

Network 

Random 

Network 

Radrich 

Network 

Nodes 2801 2801 2288 

Edges 3639 3639 6547 

Diameter 56 8 10 

Clustering Coeff. 0.215 0.001 0.186 

Avg. Path length 3.486 4.642 3.286 
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shaped degree distribution (Fig.1c), indicating that the 

majority of nodes have a degree close to the average degree 

<k>. The average clustering coefficient of a random graph 

equals <k>/N and thus is very small for large N [7]. We 

compare the degree distribution of the metabolite network with 

random network containing same number of nodes (Fig 1). 

 

 
Fig. 1a: Metabolite graph in linear scale 
 

 

 

 
Fig. 1b: Metabolite graph in logarithmic scale 
 

 

 

 
Fig. 1c: Random graph in linear scale 

 
Fig. 1d: Random graph in logarithmic scale 
 
Fig. 1: Comparison between the degree distribution of (a) Random graph 

having the same number of nodes and edges as the Arabidopsis 

metabolite network Arabidopsis thaliana metabolite network and for 

clarity the same two distributions are plotted both on a linear and 

logarithmic scale for all the networks. The bell-shaped degree 

distribution of random graphs peaks at the average degree and decreases 

fast for both smaller and larger degrees, indicating that these graphs are 

statistically homogeneous. By contrast, the degree distribution of the 

scale-free network follows the power law P (k) = Ak–3, which appears as 

a straight line on a logarithmic plot. 

 

We compare the metabolite network with random network. 

Another observation by comparing the metabolite network 

with and random network is that the average clustering 

coefficient of the random network is much smaller than that of 

A.thaliana metabolite network and the average path length was 

closer in the random graph, justifying the small world nature of 

the metabolite network [7]. 

 

3.2 Error and Attack Tolerance nature 
The nodes in A.thaliana metabolite network are capable of 

staying interconnected and communicate even by 

unrealistically high failure rates.  However, most networks 

become extremely vulnerable to attacks on selected nodes that 

bridge highly interconnected nodes in the network. We tested 

the error and attack tolerance nature of A.thaliana network 

comparing random and scale free networks. 

 

Attack vulnerability shows a decreased performance of a 

network due to the selected removal of nodes or edges [8]. 

Here, it means the prevention of a metabolic reaction to take 

place due to the removal of an enzyme or primary substrate. 

Studying the attack vulnerability of networks is very important 

for identifying the weak or strong ‘links’ in the network [1]. 

Subsequently, this knowledge can be used to protect the 

network from outside attacks. In order to  study  the  attack  

tolerance,  we  removed  a  fraction  of  nodes  from  both  

random  and A.thaliana metabolite networks and studied the 

effect of this removal on the diameter and clustering 

coefficient. 

 

We randomly removed 5, 10, 15, 20, 25 percentage of nodes 

from the A.thaliana metabolite network. In random network, 

due to the homogeneity all nodes contribute equally to the 

diameter, so the removal of each node caused the same effect 
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(Table 2a, 2b). But in case of metabolite network (scale free) 

due to the extremely inhomogeneous degree distribution, many 

nodes have only a few links. The nodes with small connectivity 

will be selected with a much higher probability and these 

removals changed the diameter in a small scale [4]. During 

attack on high degrees nodes, the random network does not 

show any difference irrespective of selection with random or 

descending degree nodes [4].  In scale-free metabolite 

network, targeted removal (Table 3a, 3b) show drastic change 

in diameter due to small number of nodes with very high 

connectivity.  The diameter almost doubles when 5% of the 

nodes were removed. 

 
Table 2a: Random Removal of Nodes from the Metabolite Network 

Nodes Clustering Coefficient Diameter 

90 0.045 56 

180 0.045 51 

270 0.045 39 

360 0.046 37 

450 0.048 34 

 
Table 2b: Random Removal of Nodes from the Random Network 

Nodes Clustering Coefficient Diameter 

90 0.001 9 

180 0.001 10 

270 0.001 10 

360 0.001 10 

450 0.001 11 

 
Table3a: Targeted Removal of Nodes from the Metabolite network 

Nodes Clustering Coefficient Diameter 

90 0.01853 53 

180 0.0123 30 

270 0.00525 25 

360 0.00225 25 

450 0.002 25 

540 0.002 11 

 

Table 3b: Targeted Removal of Nodes from the Random Network 

 

 

 

 

 

 

 

 

 
 

 

3.3 Betweeness vs. Degree Distribution 
In  order  to  understand  the  relation  between  high  degree  

and  high  betweeness,  the betweeness is plotted as a function 

of connectivity (Fig. 2). The metabolite network shows that 

most metabolites have low neighborhood connectivity but very 

high betweeness. This shows that many metabolites typically 

connect pathways and are potentially important metabolites. 

These results suggest that the network has modular 

organization with the high-betweenness and low-connectivity 

nodes as important links between these modules. The selected 

nodes with high degree and betweeness centrality are hubs and 

they are important nodes that control the overall network 

interaction. Hub metabolites include Pyruvate, Gibberelin, 

Stemmadine, Anthracene cis-1,2-dihydrodiol which have been 

investigated to important in A.thaliana. 

 

 
Fig. 2: Betweenness (B) is plotted as a function of connectivity (k) for 

metabolite network 

 

3.4 Modularity 
Modularity can be defined as a cellular functionality which can 

be seamlessly partitioned into a collection of modules. Each 

module is a discrete entity of several elementary components 

and performs an identifiable task, separable from the functions 

of other modules.  

 

We used the Newman and Girvan edge-betweenness method to 

calculate the number of clusters available in the network. This 

algorithm identifies edges in a network that falls between 

communities and then removes them, leaving behind just the 

communities themselves [6]. We have utilized the Radatools 

[9] to apply the algorithm and the input files were the .NET 

files of the network. 

 

Community detection   using   Newman’s   algorithm [10]   

detects   101   communities   in metabolite network.  The 

largest community had 506 metabolites that had the highest 

interaction within the group and lower interaction outside the 

group (Table 4a). Metabolites taking part in similar functional 

type of reactions will share common properties. 

 

 

 

Nodes Clustering Coefficient Diameter 

90 0.001 8 

180 0.001 9 

270 0.001 9 

360 0.001 11 

450 0.001 12 
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Table 4a: The Communities in A.thaliana Substrate graph and the 

number of Nodes in each Community  

 

Number of Community Number of Nodes 

1 506 

2 399 

3 375 

4 337 

5 295 

6 250 

7 37 

8 36 

9 36 

10 18 

11 16 

12 15 

12 14 

14 14 

15 13 

16 12 

17 12 

18 12 

19 11 

20 10 

21 10 

22-24 9 

25-28 7 

29-32 6 

33-37 5 

38-46 4 

47-51 3 

52-72 2 

 
 

Table 4b: Pathways corresponding to the single node communities in the 

metabolite centric graph 

  Isolated Pathways 

1 Steroid hormone biosynthesis 

2 Tyrosine metabolism 

3 Monoterpenoid biosynthesis 

4 Arachidonic acid metabolism 

5 Indole alkaloid biosynthesis 

6 Glycine, serine and threonine metabolism 

7 Porphyrin and chlorophyll metabolism 

8 Fructose and mannose metabolism 

Table 4c: The Pathways corresponding to Nodes in largest 

Community(1) with 506 Nodes 

 

These metabolites were further traced back to the pathways 

(Table 4c) that contained these metabolites and the list of 

pathways for the largest community was collected. They 

mainly constituted the amino acid metabolism pathways. There 

were 27 communities with only one metabolite called isolated 

metabolites (Table 4b). They produce similar intermediate 

compound and hence have interacted more closely. The 

pathways in the highest cluster were the amino acid 

metabolism pathways and the chlorophyll metabolism 

pathways. 

 

4 Conclusion 
Using earlier proposed methods we designed an automated 

method of metabolite network construction with KEGG 

metabolic pathway data.  Analysis of this network gives us a 

complete idea of interaction between enzymes, reactions, and 

metabolites. The substrate centric graph helps in finding the 

conserved metabolites and reactions. This construction and 

analysis procedures  can  be  further  applied  to  an  enzyme  

network  and  the  enzyme  evolution studies in A.thaliana. 
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ABSTRACT 
 
The demand for health informatics professionals is a 
response to the growing medical data bases resulting 
from governmental initiatives, as well as globalization 
of geographical information systems.  This is 
compounded by the diversity of professions at all levels 
of health care.  Health informatics goal is to develop 
integrated information systems for the exchange of data 
within the health care system, while ensuring security, 
confidentiality, and privacy.  This paper proposes a 
Professional Master Degree in Health Informatics, 
which considers the multidisciplinary aspects of health 
care, recognizes the need for standardized assessment to 
ensure quality, and moves toward fulfillment of the 
demands placed on informatics in the health care forum. 
 
Key Words 
 
Health Informatics, Professional Science Master, 
Curriculum Design, Program Assessment, Program 
Outcomes 

I. INTRODUCTION 

 
Health informatics is the science of systematically 
processing data, information, and knowledge in 
medicine and clinical research [6].  The term “health” 
encompasses the multiple professions involved in the 
delivery of health care.  These professions not only 
involve individuals considered to be at the forefront of 
delivery, such as medical doctors, dentists, physician 
assistants, nurse practitioners, and nurses; but also 
include laboratory and imagery technicians, 
pharmacists, social scientists, librarians, financial and 
budget managers, and public health and clinical 
researchers.  Informatics has become a critical 
component in the management and effective use of 
ever-changing and continuously-growing data generated 
in clinical care and research. [3], [6], [8], [10].  As the 
medical field technologically advances and grows, 
demands for the organization and management of 

information increase in complexity.  Challenges facing 
health informatics in response to these demands include 
the development of coherent and integrated information 
systems, consideration of the high degree of information 
exchange resulting from the multidiscipline nature of 
health care and research, and  security associated with 
confidentiality, privacy, and propriety issues [6], [16].  
 
In the forum of public health, health informatics 
includes applications of knowledge from 
computer/information science, management, 
organizational theory, psychology, political science, 
communications, epidemiology, toxicology, 
microbiology, and law [4], [7], [16].  Its varied 
applications focus on health trends within populations, 
rather than clinical settings.   Demand for proficiency in 
health informatics at the patient and population level is 
expected to grow, and to match medical advancement 
and increased health care accessibility.  Professionals 
educated in health informatics are needed to meet these 
challenges, resulting in the improvement in the quality 
and efficiency of health care [4], [6], [8], [10]. 
 
The call for an electronic medical record for all 
Americans by 2014, which was made by President Bush 
in his 2004 State of the Union Address, recognized the 
demands and challenges of health informatics.  
President Obama continued this pledge, as well as 
called for digitized medical records within five years 
and passed the American Recovery and Reinvestment 
Act [ARRA] with Congress [12].   This Act provided 
significant momentum to health care reform through 
informatics technology [12].  In order to fulfill this 
pledge it is estimated that 50,000 health informatics 
professionals will be required [7].  The Canadian 
government is also committed to universal electronic 
medical records for its citizens by 2016 [14].  The 
overall goal of governmental incentives is the 
promotion of health within populations, prevention of 
disease with regard to effectiveness, expediency, cost, 
and acceptability, and direct governmental 
responsiveness to health issues [12] [16].  In order to 
meet the 2014 goal, the ARRA has provided funding for 
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the development of health informatics curriculum, 
degree programs, and competency certification to train 
and increase the workforce in response to health care 
reform [12].  
 
Projected workforce needs are also being addressed by 
the American Medical Informatics Association’s 10 x10 
initiative program.  The goal of this initiative was to 
train 10,000 health care professions in the field of health 
informatics by 2010 [7].  Likewise, medical schools and 
health care systems in the United States, France, 
Germany, and the Netherlands have incorporated health 
informatics into their medical curricula and training. 
However, many nations are lagging behind despite the 
impending flood of universal electronic medical records 
their governments are calling for and the dire need of 
health informatics professionals [5], [6], [14].  Such 
projection-based goals are feasible in developed 
countries; however, the health informatics work force 
needs of developing countries are unknown, yet 
anticipated to exceed that of developed countries [7].   
 
On national and global levels, geographical information 
system technology and its entry into industry resulted in 
the generation of numerous data sets.  [11].  These data 
sets were created independently and therefore lack a 
common structure, as well as a reluctance of their 
creators to share this information.  Many more data sets 
are not documented.  These issues call for the continued 
improvement and implementation of support 
mechanisms, and development of guidelines for 
geoportal technologies.  Geoportals and repositories for 
data can provide the infrastructure to support the 
management of data and open its accessibility to the 
public for research, industry, academia, and public 
health policy [11].  Global consideration of health 
informatics still needs to encompass work force profiles, 
cultural and language variations, and recruitment and 
training across various and non-compatible systems [7] 
 
Library science and informatics share the same 
objective, that being the management, sorting, and 
delivery of information: however the professional 
boundary between the two disciplines is becoming less 
distinctive [13].  Library science is typically seen as a 
sub-discipline of informatics that focuses on the user’s 
need and the purpose of information.  This focus has 
become less the domain of a “traditional library”, but 
has transcended its physical confinement through digital 
media and network infrastructures.  As the focus of 
library science broadens it overlaps with the broader 
focus of informatics.  Both engage in information 
management and the development of its delivery, with 
librarians contributing to the former and informaticians 
contributing to the latter.  Librarians, as expert 
searchers, have the training in data base organization 

and understand the “architecture” of search systems, 
which allows them to provide relevant and high impact 
information despite lacking expertise in specific subject 
matter [15]. This complementary relationship benefits 
the developing field of health informatics as the 
repositories of information with their reservoir of data 
digitally coexisting with research and medical 
institutions.  This symbiotic relationship is integral in 
the development and implementation of medical 
knowledge bases. 
 
 
Because all health care professionals will be confronted 
with health informatics as global data sets consolidate 
and medical knowledge bases grow due to nations’ 
conversion to electronic medical records, professionals 
will be exposed to informatics education within their 
professional studies and during career development.  
The variety of professions and their specific needs 
within health care require different modes of education 
methodologies, and require qualified educators that 
demonstrate competence in health informatics.  The 
overarching outcome for informatics users in health care 
is to enable health care professionals to efficiently and 
responsibly use information processing methodology 
and technology; whereas, graduates specializing in 
informatics must be prepared for careers in health 
informatics in academic, health care, or industrial 
settings [3], [8], [10]. 
 
Master and higher graduate degrees provide the skills 
and knowledge for researchers, system developers, and 
educators.  Most health informatics programs are at the 
graduate level and either share curricula with related 
programs or have a separate tract. Of 177 surveyed 
programs, 91gradaute level degrees fall within the 
bioinformatics area [1].  Those outside of bioinformatics 
are in the focused areas of nursing, dentistry, and 
Cheminformatics.  Likewise, the housing of health 
informatics programs is also variable, with graduate 
programs affiliated with health science (31%), medical 
(25%), public health (16%), and computer science 
(16%) schools.  Within these schools 37% of the health 
informatics programs are interdepartmental, and the 
remainder housed in biology (21%) and 
computer/information science [13%] departments, and 
medical schools (10%), [9].   Survey of admissions into 
the Health Informatics program at the University of 
Victoria indicated most students entered the program 
directly upon completion of their bachelor degree and 
have at least five years of work experience.  
Approximately half of their graduates intend to enter 
academia [2].  This reflects the general trend of Health 
Informatics programs, which are typically oriented 
towards primary health providers from various 
disciplines with the goal of producing educators and 
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researchers.  Development of contemporary health 
informatics programs must recognize the need for health 
informatics professionals at all levels of healthcare, and 
adopt a broader focus if the ARRA goal of universal 
electronic health record is to be attained, developed, and 
managed. 
 
The aim of this paper is to propose a curriculum design 
for a Professional Science Master in Health Informatics 
to contribute to meeting the enormous demand for 
health informatics professionals.  The Professional 
Science Master will prepare leaders, researchers, 
entrepreneurs, and educators in the Health Informatics 
field.   
 
II. Health Informatics Tasks 
 
As health informatics continues to develop, priorities 
and goals need to be identified.  The following is a 
tentative composition for the design of a Professional 
Master Degree Program [1], [9], [12], [16]. 
 
 Interdisciplinary professionals required for business 

practice, healthcare delivery and medical research 
require re-engineering of information systems, so 
that information can be shared. 

 Facilitate the electronic gathering, storing, and 
interchange of patient data for analysis in a 
collaborative manner. 

 Synergize health informatics with evidence-based 
medicine and its implementation through the 
development of clinical guide lines. 

 Educate and train healthcare providers to use health 
informatics and its accompanying technology 
effectively. 

 Improve security for patient confidentiality in 
regards to diagnostic reporting, use of patient 
clinical records for research, or finances. 

 Create an informed patient environment through 
linking educational systems that involve prevention, 
diagnosis, and treatment to electronic patient records 
and distance care.  

 Identify new technologic opportunities for their use 
in healthcare, such as bioinformatics. 

 Enhance the fields of epidemiology and public 
health. 

 Support transducers and mobile devices that report a 
patient’s physiologic status. 

 Contribute to good practice decision-making 
policies in the management and financial aspects of 
healthcare and public health. 

 Reduce health care disparities within populations. 

III. HEALTH INFORMATICS APPLICATIONS 

Health informatics has many critical real life 
applications.  Examples of its applications include: [1], 
[4], [9], [11], [12], [16]. 

 
 Development of patient-oriented interactive 

computer-based programs that provide information, 
support, patient status, and decision-making formats 
for underserved populations and high risk patients. 

 
 Conversion of medical records into electronic 

formats to be shared amongst the various 
professional levels within the health care system. 

 
 

 Re-engineer processes to maintain quality of health 
at permissible costs. 

 
 Surveillance of disease incidence and vaccination 

patterns to identify trends, make predictions, and 
improve efficiency.   

 
 Development of e-health (electronic accessible) and 

m-health (mobile phone accessible) applications in 
underserved populations. 

 
 Create health spatial data infrastructures supported 

by geoportals, such as the OneGeology Portal, 
which delivers environmental data for medical  
research 

II. GRANTS SUPPORTING BODIES 

A number of organizations provide support for health 
informatics research and educational programs.  Among 
these are the following: 
 

 National Institute of Health 
 

 National Library of Medicine 
 

 Strategic Health IT Advanced Research 
Projects [SHARP] 

 
 Informatics Training for Global Health 

Program 
 

 International Medical Informatics Association  
 

 Beacon Community Program 
 

 Robert Wood Johnson Foundation  
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III. PROFESSIONAL SCIENCE MASTER 

A. Program Objectives 

1) Develop within graduates the level of Health 
Informatics proficiency needed for the professional 
practice. 

2) Instill within graduates the ability to effectively 
communicate ideas and outcomes, both orally and in 
writing, in a logical manner. 

3) Develop within graduates the appreciation for and 
an understanding of the need to maintain high 
ethical standards. 

4) Instill within graduates the ability to demonstrate 
effective leadership and entrepreneurial thinking. 

5) Prepare graduates for pursuing a doctoral degree in 
Health Informatics. 

B. Program Outcomes  

Students should be able to: 

1. Students will be able to demonstrate proficiency in 
storing, retrieving, and interpreting health-related 
data sets in computer systems, and an awareness of 
their limitations. 

2. Students will be aware of the need to communicate 
effectively to recognize the specific informational 
needs of different professionals in health care such 
as researchers, physicians, nurses, health 
economists, laboratory technicians, and librarians. 

3. Students will be able to understand the role of 
information systems in the development and 
implementation of interactive programs that 
monitor patient physiology or provide supportive 
services. 

4. Students will be able to recognize the various types 
of data, and effectively filter information and adopt 
new methods of searching information. 

5. Students will be able to assess the quality of data as 
it pertains to specific health care areas and ensure 
its accuracy. 

6. Students will be able to define and implement the 
principles of data protection, confidentiality, and 
privacy rights as they pertain to health care. 

7. Students will be able to comprehend the supportive 
role of informatics in research, diagnostics, health 
management, public health, and decision making 
processes. 

8. Students will be able to value ethical principles as 
they apply to patient rights and the data 
management. 

9. Students will be able to demonstrate knowledge of 
leadership effectiveness in various health 
informatics fields, and innovational thinking, as 
well as functioning in teams. 

C. Admission Requirements 

In order to be admitted to the program, the applicant: 
 
1. Must hold a bachelor’s degree [or equivalent] with 

a minimum GPA of 3.0.    
2. Must have a bachelor degree in health informatics, 

computer science/informatics, health science, health 
administration, biology, or public health. 

3. Must have taken courses in a programming 
language (such as C++, Java, or Perl), Data 
Structures, Machine Organization, Calculus and 
Discrete Mathematics.   

4. Must make up for deficiencies in undergraduate 
preparation by taking some prerequisite courses. 

5. May have courses waived after passing a 
department test with a grade of at least a “B”, if 
applicants have academic or work experience 
equivalent to any of the courses mentioned above. 
 

D. Degree Requirements 

 
The Professional Science Master in Health Informatics 
consists of 45 credits of coursework.  Students must 
complete a 3-month internship in a health care industry, 
or a healthcare research institution.  The 45 credits are 
distributed as follows: 
 
 
 Health Informatics  Core        12 cr. 
 Health Informatics Elective      03cr. 
 Leadership and Entrepreneurship    12 cr. 
 Computing Core          12 cr. 
 Computing Elective         03 cr. 
 Research              03-06 cr. 
 

 

E. Course Requirements  

Courses representing each of the above areas are 
provided in Tables I - VI below.  If a thesis is pursued, 
only one course of the list of classes in Tables II and 
V below is needed. 

 
TABLE I 

 
HEALTH INFORMATICS CORE 

Course Title    Credits 

Introduction to Health Informatics 3 
Clinical Informatics 3
Consumer Health Informatics 3 
Public Health Informatics 3 
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TABLE II 
HEALTH INFORMATICS ELECTIVES 

Course Title Credits 

Electronic Health Care Records 3 
Clinical Decision Support   3
Telemedicine 3 
E-Heath Systems  3 
Legal and Business Issues   3 
Health Systems Simulation 3 
Advanced Topics  3 
  

 
 
 
 

TABLE III 
LEADERSHIP AND ENTREPRENEURSHIP CORE 

Course Title Credits 

Healthcare Management 3
Healthcare IT Project Management  3 
Health Informatics Entrepreneurship 3 
Health Informatics Internship 3 
  

 
 
 
 

TABLE IV 
COMPUTING CORE 

Course Title Credits 

Software Engineering  3
Web Technology  3 
Security and Privacy 3 
Data Mining 3 
  

 
 

 
TABLE V 

COMPUTING ELECTIVES  

Course Title Credits 

Geographic Information Systems 3 
Database Design  3
Systems Design   3 
Software Requirements Engineering 3 
Knowledge Management   3 
Human Computer Interface 3 
Quantitative Methods 3 
  

TABLE VI 
RESEARCH  

Course Title Credits 

Health Informatics Design Project 3 
Health Informatics Thesis 6
  

 

F. Degree Assessment 

 
Many Health Informatics programs are customized to 
the suit the students professional needs in healthcare.  
As a result programs can become informal and self-
directed [2].  The following assessment measures are 
recommended to assure overall program quality: 

 
1) Individual course assessment to ensure that each 

course is achieving its learning outcomes and 
supporting the program outcomes. 

2) A comprehensive program self study will be 
prepared for the purposes of any program review. 

3) A Graduate Survey will be employed to measure 
students’ satisfaction with individual courses and 
the program as a whole. 

4) A survey for the students taking the Health 
Informatics Design Project course or Thesis will be 
provided to measure the extent to which the 
program will achieve its learning outcomes and 
how well their learning experience matches the 
program objectives.  

5) A Comprehensive Test will be devised to measure 
how well students are prepared to meet the learning 
objectives.  This test will be offered as part of a 
capstone course with a weight of 30% and focus on 
the course requirements for the general knowledge 
areas recommended above 

6) An Exit Survey will be offered to students 
completing the program to solicit their feedback on 
the program and on how to improve it. 

7) An Alumni Survey will be used to discover how 
well our graduates feel they were prepared for their 
current position.  

8) An Employer Survey will be prepared to obtain the 
feedback of employers on how well our graduates 
are prepared for their positions. 

9) An Internship Survey will be used to measure 
students’ performance in prospective organizations. 

IV. CONCLUSION 

 
The growing demand for health informatics 
professionals is a direct result of developed countries 
moving forward with universal electronic medical 
records for their citizens in an effort to efficiently 
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provide a higher quality and more cost effective health 
care system.  As medical knowledge bases grow in size 
and complexity, the demand for their organization and 
management grows.  The projected work force in health 
informatics required to manage this growth is in the ten 
of thousands for the immediate future, and is expected 
to increase with the development of geoportals 
supporting spatial data infrastructures.  The former will 
facilitate the exchange of data amongst health and 
research institutions across state and national 
boundaries.    
 
Professional Science Master Degree program design, 
proposed in this paper, is in direct response to the 
demand for health informatics professionals and 
encompasses the multidisciplinary aspect of heath care. 
Program objectives emphasize the basic knowledge 
areas of informatics, while program outcomes account 
for the professional diversity an informatician would 
encounter.  Admission requirements and degree 
assessment ensure overall program quality, a necessity 
in face of the “specifically professionalized” trend 
health informatics programs tend to follow.  Because of 
the professional diversity inherit in health care, housing 
of the program can occur in multiple departments or 
schools; however, most health informatics programs are 
found in health science, medical, and public health 
schools, or biology and computer /information science 
departments. 
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Abstract: 
Background: The dismissal of David Kinnebrook as an 
astronomical laborer in 1796 has afforded him a 
special position in the history of experimental 
psychology: “a martyr of science.” This is because he 
was “ushered away” from his work at the Royal 
Greenwich Observatory through no fault of his own. 
Here, using data available in the literature and insights 
from a new understanding in laterality of motor control 
(i.e. one-way callosal traffic circuitry) it is shown that 
Kinnebrook, though right handed, was wired as a left 
handed person would be; with delayed reaction times 
in noticing events arising from his right hemispace 
(delayed saccades to the right).  
 
Keywords: Neurology, handedness, 1-way callosal 
traffic theory, reaction time, brain anatomy 

1 Introduction	
“In the 18th and early 19th centuries, 

astronomers were required to make difficult 
judgments, based on a combination of auditory and 
visual cues, in order to time stellar transits. A well-
known story from the history of science is the firing in 
1796 of Kinnebrook, an assistant to Maskelyne, the 
Astronomer Royal of England.  

Kinnebrook was relieved of his job for giving 
inaccurate readings of stellar transits. Although he had 
provided readings in agreement with Maskelyne’s 18 
months prior to his dismissal, the hapless Kinnebrook 

by August 1795 had begun to give times that differed 
from Maskelyne’s by one-half second. Subsequently, 
Kinnebrook‘s readings grew even more discrepant, so 
by the time of his firing they were almost a second 
later than Maskelyne’s. This matter might not have 
attracted much interest had not Maskelyne recorded it 
in Astronomical Observations at Greenwich. 
Seventeen years later, in a history of Greenwich 
Observatory published in German, Kinnebrook‘s 
tribulation came to the attention of Bessel, an 
astronomer at Konigsberg. Bessel conducted a series 
of studies culminating in the notion of the personal 
equation [reaction time], the name given the 
systematic difference in recording times found to 
characterize the stellar transits of almost any pair of 
astronomers. From the perspective of reliability theory, 
the personal equation [reaction time] itself was not a 
highly significant discovery, for it refers to systematic 
error, not the random error treated by reliability theory. 
What interests us, instead, is Bessel’s finding that the 
personal equation [reaction time] itself is a variable 
quantity, one that differs from one pair of astronomers 
to another. This variation suggests random or 
accidental errors in observations, errors that, if neither 
controllable nor amenable to elimination, at the least 
demand an explanation grounded in a theory or a 
scientific law.” 1 

2 Methods	and	Results	
In many of the accounts of the subject, David 

Kinnebrook is considered a “martyr of science” 
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because of the role of his dismissal in inaugurating 
experimental psychology as a scientific discipline. 2, 3 
As an assistant astronomer, Kinnebrook was 
constantly and regularly late (by 500-800 milliseconds) 
in marking down the transits of stars as they crossed 
the meridian; but only in his second year of 
employment and beyond. In the citation above, Traub 
asks for an explanation (scientific law) of the delay as 
shown by Kinnebrook as well as an explanation for the 
time line of its occurrence. The latter undertaking, 
however, has never been done before. 

Based on time resolved anatomical data 
supporting 1-way callosal traffic theory4,5, the present 
article provides an explanation for the widening of the 
gap between the performance of Kinnebrook and that 
of his superior Nevil Maskelyne (the royal astronomer) 
in the years of his employment as an assistant to 
Maskelyne.  

From the neurological perspective, the key to 
explaining Kinnebrook’s performance is the direction of 
motion of the stars monitored by the contestants and 
the number of such observations in each direction over 
the period under scrutiny. However, to my knowledge 
there are no published reports concerning the issue. 
We know that the procedure followed by observers in 
calibrating the clock called for single or multiple 
saccades in the direction of the appearance of the star 
(s) (right or left of the observer). According to the 
information available, Kinnebrook’s performance 
variability over the two years of employment was 
contrary to the performance of other assistants 
working in the same observatory, as documented by a 
later Astronomer Royal (Sir Spencer Jones).6 
Spencer-Jones also recorded that two of his six 
assistants (R.C. & W.D) consistently lagged behind a 
“standard observer” in reacting to transiting stars as 
they watched a list of the so-called “clock stars.” 
Clearly, therefore, we are not dealing with a very rare 
phenomenon though the physiological nature of the 
phenomenon has remained obscure thus far. 
Remarkably, this occurred despite the fact that 
astronomers had already discovered that “direction of 
star’s motion could introduce a change in the personal 
equation.”7,8 Thus, while comparing his own reaction 
times with those of a colleague while using a 
chronograph in an observatory in Madras, a certain 
officer, named W.M. Campbell, became aware of his 
own tardiness in catching a glimpse of the objects 
appearing to his right compared to that of his 
colleague who clocked them that same way. In the 
words of Campbell, “Captain Heaviside observing in 
advance of me [by 64 milliseconds].” 8  

This latter experiment performed in 1877 is 
equivalent to that of visual half-field paradigm 
conducted in today’s laboratory, employing the so-
called Poffenberger paradigm. 4  

To summarize, according to the 1-way callosal 
traffic circuitry (see below for details), by recording the 
fact that he was delayed in observing objects moving 
from right to left, Captain Campbell was documenting 
his own status as a neural left hander compared to his 
comrade in arms, Captain Heaviside, who was faster 
responding to the events appearing on his right side.  

3 Discussion	
The generally accepted view that each 

hemisphere controls the movement of the contralateral 
side has been questioned recently. There is 
overwhelming evidence that our handedness is a 
reflection of the fact that only one hemisphere houses 
the command center with the nondominant 
hemisphere engaged in carrying out the commands 
issued by the dominant for movements planned for the 
nondominant side of the body.  

According to 1-way callosal traffic circuitry,4,5 it 
is the directionality of callosal traffic (i.e. whether 
signals move from left to right hemisphere or the 
reverse) that determines the status of one hemisphere 
as that of action hemisphere (the command center, 
dominant hemisphere), where all commands are 
issued for movements occurring on either side of the 
body. According to this understanding, a person’s 
behavioral (avowed) handedness is only a guide to his 
or her directionality of callosal traffic (i.e. neural 
handedness); the neural and behavioral handedness 
in an individual subject are in agreement in only ~ 80 
percent of the population. In the remaining 20 percent 
of individuals display an avowed (behavioral) 
handedness opposite for which they are truly wired 
(see below for further explanation).  

The above estimates as to the laterality of 
command center are derived from a variety of clinical 
sources. Thus, since the action hemisphere is the 
same as the speech hemisphere, the incidence of 
crossed aphasia and crossed nonaphasia in 
penetrating brain injuries does provide an estimate of 
the incongruities under consideration; 9 as do 
anomalous occurrences of neglect in lesions affecting 
the left hemisphere in ostensibly right handed 
subjects,10 occurrences of aphasia after removal of 
supratentorial tumors of the right hemisphere in right 
handed subjects,11  as well as occurrences of alien 
hand syndrome on the ostensibly dominant side of the 
subject following lesions affecting the minor 
hemisphere or its afferent callosal connection.12,13 
Experimentally, persons incongruous in neural and 
behavioral handedness display a faster manual 
reaction time to stimuli on their (ostensibly) 
nondominant side, or a negative crossed uncrossed 
differential (negative CUD) in applications of 
Poffenberger paradigm.4,14  
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According to 1-way callosal traffic circuitry, all 
actions originate in the major hemisphere, including 
those of moving the eyes to the side (saccades) and 
swallowing, with the command traversing the corpus 
callosum to activate the minor hemisphere which in 
turn moves the nondominant side of the body once it 
receives the command.5,15 Electrophysiologically, the 
abovementioned callosally mediated delay has been 
repeatedly documented in bimanual “simultaneous” 
movements recorded with different techniques, 
indicating precedence of the neurally dominant side in 
moving when a simultaneous movement was 
intended.16-18 For the saccades, a similar ratio of faster 
response to the stimuli from the left hemispace was 
found in two of the twelve (presumably) right handed 
subjects described by Honda,19 confirming an earlier 
study by Hamers and Lambert in a lexical decision 
task on 15 right handed subjects (wherein three of the 
participants responded faster to stimuli from the left 
side). 20 Elsewhere, I have provided detailed 
explanation regarding the subjects reported by 
Honda.4 To the above may be added the reports on 
those ostensible right handers who drew longer lines 
or larger geometrical designs with their nondominant 
hands, while drawing simultaneously with both 
hands21,22 and the three of seventeen right handers 
who showed higher refractory cue-cost for their 
ostensibly dominant right hand (instead of the left) in a 
study by Buckingham et al.23 

Since movements of the eyes to the sides is 
governed by the same circuitry that underpins hand 
movements, moving the eyes to the neurally dominant 
side occurs at a faster speed than moving them to the 
opposite direction; by an amount equal to the 
interhemispheric transfer time (IHTT, i.e. the time 
needed for transfer of the command signals issued in 
the action hemisphere for movements occurring on the 
nondominant side of the body). It has been shown that 
such commands are implemented by the minor 
hemisphere upon receiving the same via corpus 
callosum and anterior commissure.4,5,22,24  

According to the above sketched circuitry, 
David Kinnebrook must have been a member of the 
above described neural-left but behavioral-right 
handers who saw the objects arising from his right 
hemifield at a significant delay compared to a real 
(neuro-behavioral congruent) right hander (such as 
Maskelyne). For objects arising from his left 
hemispace, however, Kinnebrook would have reacted 
faster than his superior Maskelyne. This provides a 
plausible explanation for his acceptable performance 
in his first year of employment at Greenwich. 
Accordingly, vast majority of transit trials performed by 
Kinnebrook in the years 1795 and 1796 must have 
been instances in which the transiting stars were 
moving from right to left, resulting in his ever 

worsening performance compared to Maskelyne as 
the time went on (leading to his eventual dismissal).  

The validity of 1-way callosal traffic circuitry 
has been confirmed in several recent studies. 24-28 The 
criticism raised by Goble, 29 is based on a failure to 
fully understand the import of the circuitry, i.e. that the 
“critical” issue as to dominance of one limb over its 
counterpart is the comparative speed with which the 
two arms move, regardless of the subject’s claim as to 
his/her own handedness. Thus, in addressing the 
problems of classification of handedness by employing 
a dexterity evaluation method (i.e. the speed of 
performance), Satz et al 30 found that “roughly 69 per 
cent of the left-handers showed superior performance 
on the left hand, and 75 per cent of the dextrals 
showed superior right hand performance. In this study, 
“self-classified right-handers displayed less variable 
and better performance with their preferred right 
hand.” In the same vain, Wyke in an experiment 
involving speed of performance concluded that 
“handedness influences the speed of arm movements, 
and the results are in line with previous observations 
showing that tests of rapid repetitive movements of the 
arms might provide a more critical index of 
handedness than is obtained from observations of 
non-repetitive arm movements.”31 The above 
described motor asymmetry is reflected as an 
asymmetry in perceptual span in experiments involving 
the oculomotor system; and as a wider excursion of 
the neurally dominant side of the body in bimanual 
simultaneous drawing test (a simple paper and pencil 
test for determining the laterality of motor control in 
those able to hold a pen in each hand and draw a line 
simultaneously with both).32,33          

Finally, the clinical import (validity) of the 
above mentioned time-resolved observations in the 
motor realm is corroborated by the hitherto ignored 
observation that only one-half of the 35 supratentorial 
cases of cerebral herniation described by Kernohan 
and Woltman in their 1929 article displayed (false 
localizing) pyramidal signs ipsilateral to the tumor; 
corroborating the fact that callosal interhemispheric 
transfers are one-way in directionality and excitatory in 
nature (i.e. form the major to the minor hemisphere).34  
 

4 Conclusion	
Approximately one in five people in society displays a 
handedness for which he or she is wired in the 
opposite direction. The dismissal of Kinnebrook by 
Astronomer Royal of England was based on an 
assumption that all right handers are created equal. 
Kinnebrook was in fact wired as a left hander. 
Bimanual simultaneous drawing task, an inexpensive 
and very accurate method, based on the existence of 
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laterality in motor control, has shown quantitatively that 
this assumption has been flawed. Similarly flawed was 
Maskelyne’s methodology, i.e. failure to control for the 
direction of motion of objects that the two observers 
were tracking at the time; thus the sad outcome for the 
“hapless” David Kinnebrook.    
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Abstract - In this paper we determine the risk degree of 
malignancy in  tumors  that have been diagnosed as 
benign. To do this we compute the proximity measure 
between corresponding morphological and densitometrical 
indexes of digital images of interphase nuclei of buccal 
epithelium in patients with benign tumors, malignant 
tumors and individuals that are practically healthy 
(without tumors).  

Keywords: Breast Cancer, Diagnosis, Proximity Measure 

 

1 Introduction 
  The development of a neo-plastic process in an 
organism is usually accompanied by changes in the 
functional interrelations between its organs [1]. In a series 
of investigations [2-4],  it was proved that changes in oral 
mucosa are an early indicator of some pathological 
processes in an organism. Hence, it is possible to use 
buccal epithelium for the investigation of changes which 
are going on in epitheliocytes of oral mucosa in patients 
with oncological pathology. Such changes are called MAC 
– malignancy associated changes. Since violation in the 
function of organs and systems in an organism are related 
to  changes in the functional state of a cell genome, the 
morphometric and densitometric parameters of 
epitheliocytes in buccal epithelium may be used as a 
criterion of MAC [5]. The use of quantitative automatic 
image analysis  opened the possibility of estimating the 
content of DNA in the nuclei and compactness of the 
chromatin, which characterizes the functional state of cells 
in various pathological processes, including tumors [6].  

2 Materials 
 We consider three groups of patients: 1G  – patients 
suffering from breast cancer (38 cases), 2G – patients 
suffering from fibroadenomatosis (44 cases) and 3G  – 
group of practically healthy women (33 cases). Smears 

from various depths of the spinous layer were obtained 
(conventionally they were denoted as median and deep), 
after gargling and removing the superficial cell layer of 
the buccal mucous. The DNA content stained by Feulgen 
was estimated using the Olympus computer analyzer, 
consisting of the Olympus BX microscope, Camedia C-
5050 digital zoom camera  and a computer. We 
investigated from 40 to 60 nuclei in each preparation. The 
DNA-fuchsine content in the nuclei of the epitheliocytes 
was defined as a green component of a RGB-value. 

3 Methods 
3.1 Proximity measure 
 Let  1,..., nx x x G   and  1 ,..., mx x x G      be 
samples from general populations G  and G  , and 

(1) ( )... nx x   and  (1) ( )... mx x    be their order statistics. 
We test the hypothesis on the identity of absolutely 
continuous distribution functions ( )GF u  and ( )GF u  of the 
general populations G  and G  . Suppose that 

( )GF u = ( )GF u . Denote by ( )k
ijA , 1,2,...,k m , a random 

event  that kx  lies in the interval  ( ) ( ),i jx x : 

  ( )
( ) ( ),k

ij k i jA x x x  , ( )i j . 

 The probability of this event is determined by the 
formula [7, p. 126]: 

  ( ) ( )
( ) ( )( ) ,

1
k n

ij k i j ij
j iP A P x x x p
n
   


. 

Let 
( ) 2 ( ) ( ) 2

(1)
2

( ) 2 ( ) ( ) 2
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2

2 (1 ) 4
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2 (1 ) 4
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n n n
ij ij ij
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n n n
ij ij ij
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h m g g h h m g
p

m g

h m g g h h m g
p

m g

   




   




 

where ( )n
ijh  is the relative frequency of the event ( )k

ijA  in m  
trials and g = 3. 
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 Denote by N the number of all confidence intervals 
 ( , ) (1) (2),n m

ij ij ijI p p ,  ( 1) 2N n n   and by L  the 

number of intervals ( , )n m
ijI  containing probabilities ( )n

ijp . 
Then we get the  p-statistics: 

 ( , ) ,n m Lh x x
N

   .  

 Letting ( ) ( , ) ,n n m
ijh h m N  , 3g  , we get the 

confidence interval for the p-statistics ( , )n mh : 

( , ) 2 ( , ) ( , ) 2
(1)

2
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2 (1 ) 4
.

n m n m n m

n m n m n m

h N g g h h N g
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3.2 Averaging of proximity measure 
 Let 1 2( , ,..., )nx x x x  be a sample from the general 

population G , which is obtained by simple random 
sampling. Let 

1

(1) (1)
1 1( ,..., )ny y y , …, 

( ) ( )
1( ,..., )

K

K K
K ny y y  be similar samples, which are 

obtained from general populations 1,..., KG G   accordingly. 

Let *G  be a group which consists of the  populations 

1,..., KG G  : 

 *
1,..., KG G G  . 

 Based on  the obtained statistics,  let us calculate the 
p-statistics ( , )ix y  [7]   and  define the quantity  

*

1

1( , ) ( , )
K

i
i

x G x y
K

 


  ,         (1) 

 The value *( , )x G  is called the averaged p-
statistics between the sample x and the group of general 
population  *

1,..., KG G G  . 

3.3 Method of diagnostics 
 Let P be a patient with uknown diagnosis: breast 

cancer or fibroadenomatosis. Let 1,..., nx x  be the sample 
which consists of the areas of interphase nucleus of buccal 
epithelium of some patient P. We'll denote 1,..., nx x  as a 
sample x. The group G* is a teaching sample, which 
consists of similar indexes of patients (1) (1)

1 ,..., KP P   with 

breast cancer, or  patients (2) (2)
1 ,..., mP P  with  

fibroadenomatosis. 
Consequently, the  teaching sample with indexes of 

patients with cancer is 

 * (1) (1)
1 1 ,..., KG G G , 

and the teaching sample with indexes of patients with 
fibroadenomatosis is 

 * (2) (2)
2 1 ,..., mG G G . 

The criterion for the diagnostics of breast cancer 
consists of two parts. First, patients with cancer and their 
averaged  p-statistics in group *

1G  and their averaged p-

statistics in group *
2G  are considered.  

Thus, the first patient (1) *
1 1P G  is considered. After 

excluding (1)
1P  from group *

1G  we compute the averaged 

p-statistics between (1)
1P  and the  group  

 (1) * (1) (1) (1)
1 1 1 2\ ,..., KG G P P P  : (1) (1)

1 1( , )P G  . 

Then,  patient (1)
2P  is excluded from group *

1G  and in 

this way the group (1)
2G  is obtained: 

(1) * (1)
2 1 2\G G P . 

 After that, the averaged p-statistics (1) (1)
2 2( , )P G  is 

computed. Then the next patient is excluded and the 
averaged p-statistics is computed, and so on. This method  
is called «one-out». The results of the computations  are in 
table 1.  
 In the same way,  computations of the averaged p-
statistics for patients (1)

iP , ( 1,..., )i K  and group *
2G  are 

done. The obtained values (1) *
2( , )iP G  are  given in 

table1. 

Table 1. Averaged p-statistics between patients with breast 
cancer and patients with fibroadenomatosis  

№  Averaged p-statistics between patients with 
breast cancer and 

 patients from group 
with breast cancer 

patients from group 
with 

fibroadenomatosis 
101 0,85 0,47 
130 0,86 0,48 
132 0,79 0,45 
135 0,88 0,49 
139 0,7 0,43 
154 0,78 0,46 
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155 0,8 0,46 
156 0,84 0,48 
157 0,87 0,48 
159 0,7 0,42 
160 0,67 0,42 
161 0,83 0,48 
165 0,86 0,48 
170 0,89 0,47 
180 0,79 0,45 
183 0,83 0,48 
185 0,84 0,47 
191 0,86 0,48 
194 0,89 0,49 
196 0,8 0,46 
197 0,71 0,44 
198 0,78 0,45 
200 0,77 0,45 
201 0,79 0,47 
204 0,87 0,48 
208 0,77 0,46 
209 0,87 0,49 
210 0,86 0,48 
212 0,65 0,43 
34 0,79 0,45 
36 0,82 0,46 
37 0,69 0,43 
39 0,75 0,45 
41 0,86 0,48 
43 0,8 0,45 
46 0,79 0,46 
54 0,77 0,45 
87 0,74 0,44 

 Analysis of  table 1 shows that all values of the 
averaged p-statistics between patients with cancer and the 
group of patients with fibroadenomatosis are situated  
between (1) 0,649x  and ( ) 0,887nx  ,  and all values of 

the averaged  p-statistics between patients with cancer and 
group of patients with fibroadenomatosis are situated 
between (1) 0,415x  and ( ) 0,493nx  .  

From the above it follows that the diagnosis of 
patients with breast cancer was made without error. Let H 
denote the hypothesis that a patient has cancer and let  
H be the  alternative hypothesis that a patient has 
fibroadenomatosis. Then the  probability of type I error is 
equal to zero: ( / ) 0P H H  . So for all patients with 
breast cancer the diagnosis is correct. 

For the diagnostics of patients with fibroadenomatosis 
we used averaged p-statistics between patients with 
fibroadenomatosis and group *

1G , as well as the averaged 
p-statistics between patients with fibroadenomatosis and 
group *

2G . The results of the computation are given in  
table 2. 

 
Table 2. Averaged p-statistics between patients with 
fibroadenomatosis and patients from the group with breast 
cancer and the group with fibroadenomatosis  

  Averaged p-statistics between patients with 
fibroadenomatosis and 

 patients from group 
with breast cancer 

patients from group 
with 

fibroadenomatosis 
158 0,81 0,46 
162 0,82 0,47 
17 0,83 0,48 
1 0,84 0,47 

203 0,82 0,47 
33 0,76 0,45 

401 0,32 0,34 
402 0,33 0,34 
403 0,32 0,34 
406 0,32 0,34 
407 0,33 0,34 
418 0,33 0,34 
419 0,32 0,33 
422 0,33 0,34 
423 0,33 0,34 
424 0,33 0,34 
434 0,32 0,34 
435 0,33 0,34 
440 0,32 0,34 
443 0,33 0,34 
459 0,33 0,34 
460 0,33 0,34 
464 0,33 0,34 
472 0,33 0,34 
473 0,33 0,34 
478 0,32 0,34 
47 0,82 0,47 

486 0,32 0,34 
490 0,33 0,34 
491 0,32 0,34 
494 0,32 0,33 
496 0,32 0,34 
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498 0,32 0,33 
499 0,32 0,34 
500 0,32 0,34 
501 0,33 0,34 
506 0,33 0,35 
507 0,33 0,34 
509 0,33 0,34 
510 0,33 0,35 
57 0,8 0,47 
59 0,69 0,43 
61 0,87 0,49 
63 0,84 0,48 

Analysis of the data in the first column of table 2, 
using confidence interval (0,649;0,887)I    constructed 
by order statistics (1) 0,649x   and ( ) 0,887nx  , shows 
that 11 patients with fibroadenomatosis were diagnosed as 
having cancer. Indexes of patients numbered 58, 162, 17, 
1, 203, 33, 47, 57, 59, 61, 63  belong to the confidence 
interval (0,649;0,887)I  . The rest of the patients (33 
persons) were diagnosed correctly. 

Hence, the error is equal to 25%. The same results 
were obtained using the second cofidence interval 

(0,415;0,493)I   and the second column from table 2 

with averaged p-statistics (2) (2)( , )i iP G  . In this case the 
same patients were diagnosed incorrectly. 

In order to decrease this error we apply the second 
part of the diagnostics. Thus, to increase the accuracy of 
the criterion we consider the data of the group of  
practically healthy women.  

We compute the averaged p-statistics 2  between 

patients with fibroadenomatosis and group *
2G , as well as 

averaged p-statistics 2  between patients with 

fibroadenomatosis and group *
3G . Then we calculate the 

ratio of the obtained averaged p-statistics 2  and 2 . 
This ratio is denoted as 2 : 

2
2

2




 . 

The results of the computations are given in table 3.  
 
Table 3. Ratio of averaged p-statistics 2 2 2/    for 
patients with fibroadenomatosis 

  Ratio of averaged p-statistics γ2 

158 0,755 

162 1,18 
17 1,074 
1 1,015 

203 1,263 
33 0,706 

401 1,17 
402 1,173 
403 1,171 
406 1,203 
407 1,173 
418 1,171 
419 1,169 
422 1,179 
423 1,175 
424 1,16 
434 1,16 
435 1,176 
440 1,178 
443 1,203 
459 1,149 
460 1,179 
464 1,158 
472 1,175 
473 1,171 
478 1,17 
47 0,882 

486 1,206 
490 1,169 
491 1,181 
494 1,167 
496 1,209 
498 1,158 
499 1,181 
500 1,172 
501 1,204 
506 1,175 
507 1,162 
509 1,167 
510 1,166 
57 1,366 
59 0,567 
61 1,066 
63 1,2 

Similarly, we obtain the ratio between 1  and 1 , 
where 1  is the averaged p-statistics between all breast 
cancer  patients and the group of women patients with 
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breast cancer,  and *
1  is averaged p-statistics between all 

breast cancer patients and the group of practically healthy 
women:  

1
1

1




 . 

The results of the computations  is given in table 4. 

Table 4. Ratio of averaged p-statistics 1 1 1/    for the 
patients with breast cancer 

  Ratio of averaged p-statistics 
γ1 

101 1,719 
130 1,469 
132 1,473 
135 1,833 
139 0,945 
154 1,644 
155 1,473 
156 1,628 
157 1,651 
159 0,96 
160 0,794 
161 1,721 
165 2,182 
170 1,686 
180 1,2 
183 2,26 
185 1,565 
191 1,677 
194 2,002 
196 2,291 
197 2,167 
198 1,115 
200 2,251 
201 1,906 
204 1,97 
208 2,104 
209 1,927 
210 2,09 
212 2,204 
34 1,273 
36 2,089 
37 2,098 
39 1,99 
41 1,097 
43 2,025 

46 1,1 
54 1,1 
87 0,963 

Analysis of table 4  shows that the ratio 1  is situated 
between minimal (1) 0,794x   and maximal 2,291 order 

statistics. So, the confidence interval (0,794;2,291)I   
covers the  main distributed mass of the general population 
for 1 .  

On the other hand, the data from table 3 shows that 
the ratio of the averaged p-statistics 2 , of  patients with 
indexes 158, 33 and 59, does not belong to the confidence 
interval I . So, these patients are diagnosed as patients with 
fibroadenomatosis. Hence, only 8 patient are diagnosed  
incorrectly. After applying the second part of the criterion, 
the type II error is equal to 18,18%.  
 Let 0H H  denote the  hypothesis that a patient 

has breast cancer and let 1H H  be the  hypothesis  that 

a patient  has fibroadenomatosis. Then ( / ) 0P H H  , 

( / ) 0,1818P H H  .  

4 Conclusions 
 Let us formulate the main conclusions based on the 
obtained results:  

1) If after applying the criterion we diagnose 
fibroadenomatosis, then the probability of such event is 
close to one. The probability of the event that these patients 
have breast cancer is practically  zero. The  results are 
unexpected,  since according  to medical statistics the error 
in the diagnosis of  fibroadenomatosis is approximately 
20%. 

2) If after applying the criterion we diagnose breast 
cancer, then the probability of such event is equal to 
81,8%.  The  probability of  not detecting a patient 
suffering from breast cancer  is equal to zero.  
In order to the increase the accuracy of detecting cancer, 
one can use another method [8, 9] in conjunction with the 
method discussed above.  In that case  all patients with 
fibroadenomatosis are diagnosed correctly, and patients 
with breast cancer  are diagnosed with an error of  7,9%. 
The application of  the two methods together gives an 
accuracy of 92% and sensitivity of 100% . 
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Abstract— Disaster mitigation planning must rely on an
analysis of available data. However, the vast amounts and
different types of data make this data analysis intractable
without the use of computational tools. The RE-PLAN Re-
sponse Plan Analysis framework was designed to create the
computational tools needed for these analyses. Although the
methodology it employs was originally designed to facilitate
validation of mitigation plans for biological emergencies
arising from a release of hazardous biological substances,
the RE-PLAN framework has been generalized to serve as a
launching point for the development of a wide variety of dis-
aster mitigation and evacuation planning scenarios. A tool
using the RE-PLAN framework for feasibility analysis of ad
hoc clinics for treating the population following a biological
emergency event has been created. This paper focuses on the
design and implementation of the RE-PLAN framework and
how it has been used to address the hazardous biological
substance release mitigation data analysis problem.

Keywords: biological emergencies, disaster mitigation planning,
emergency response, evacuation planning, POD throughput, public
health preparedness

1. Introduction
The RE-PLAN Response Plan Analysis framework was

designed to facilitate the construction of computational tools
for the analysis and development of disaster mitigation and
evacuation plans. Although this framework was originally
designed around a specific disaster mitigation problem, its
modules are generalized and may be used in the context
of a wide variety of disaster and evacuation situations.
Additional modules may be added to the framework in order
to address concerns peculiar to specific disaster or evacuation
situations. However, the existing framework comprises a
significant set of analysis techniques relevant to a wide
variety of different situations.

The RE-PLAN framework emerged from a methodology
developed for analyzing the feasibility of ad hoc facilities
for treating populations following a release of hazardous
biological substances [1][2]. A set of facilities is considered
feasible if its operational efficiency [3] is capable of meeting
service requirements (e.g. specific time frames for service
completion or proportions of populations to be served)
without exceeding available resources (e.g. transportation
network capacities or limitations of facility infrastructure).

This paper will highlight the following main architectural
components of the RE-PLAN framework and the modules
designed to implement them:

• Facility selection and service area determination - Sets
of facilities in existing plans may be analyzed or sets of
feasible facilities may be generated with respect to the
populations’ geographic distributions. This component
is primarily responsible for the selection of facilities
and generation of service areas.

• Logistics calculator - Calculates how the population
utilizes the transportation network to travel to the
facilities. These calculations facilitate the analysis of
conditions on the transportation network resulting from
response plan implementation.

• Facility requirement and traffic analysis - Population
distribution among the facilities can be examined to
facilitate resource distribution, and parking lot entry and
exit rates at each facility are determined. Parameters
may be modified to increase or decrease the number
of individuals each facility is capable of serving per
day. Traffic conditions resulting from the placement of
facilities may be analyzed using geographic population
data, road network data, and traffic count observation
data. Parameters such as people per car, time of day, and
day of week may be modified to facilitate mitigation
planning.

Computational models of biological emergency events
show the importance of a policy of aggressive mass treatment
[4][5], and delays in this treatment can lead to increased
numbers of casualties [6]. Routing and scheduling for timely
delivery of medications to treatment facilities have been ex-
amined in [7], and strategies regarding medication distribu-
tion among the facilities have been explored in [8]. However,
the distribution of medications to the population remains a
challenging problem [9]. To aid larger cities in planning for
these contingencies, the United States Department of Health
and Human Services instituted the Cities Readiness Initiative
(CRI) in 2004 [10]. An initial evaluation of CRI indicates
that the initiative has improved mass treatment preparedness
[11]. Studies have been conducted regarding shortcomings
and optimization strategies inside service facilities during a
biological emergency [12][13]. However, less attention has
been paid to how the population will be delivered to facilities
for treatment during response plan implementation.
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Surveillance systems, such as the BioSense system created
by the Centers for Disease Control and Prevention [10], use
data from disparate sources to facilitate early detection of
biological emergency events. The World Health Organization
endorses the use of public health surveillance systems,
referring to them as being, “the cornerstone of public health
security.” [14] A wide variety of different data sources
such as over-the-counter drug sales [15][16], internet search
query patterns [17][18], and personal web log (blog) data
[19] have been explored to detect public health events.
However, further exploration of available data sources to
allow decision makers to develop and analyze their response
plans is needed [12].

Disaster mitigation and evacuation planning must rely
on an analysis of quantitative data [20]. However, the vast
amounts and different types of data make this analysis
intractable without the use of computational tools. A set
of generalized modules was designed around data analysis
problems relevant to a variety of disaster mitigation and
evacuation planning and analysis. These modules, which
facilitate the analyses of many different types of geographic,
spatio-temporal, and demographic data, comprise the RE-
PLAN Response Plan Analysis framework.

2. Plan Analysis Problems
A feasible response plan must be able to accomplish its

assigned tasks without exceeding the available resources.
The assigned task of facilities hosting ad-hoc clinics in
a biological emergency is to serve the entire population
within specific time frames. This facility throughput problem
may be affected by geographic population distribution and
facility location, constraints of the transportation network,
limitations of the facilities, and the availability of personnel
and supplies. All of these factors can be separated into two
groups: problems that may occur at the facilities themselves,
and problems that may occur in each facility’s service area.

2.1 Problems at the Facilities
The primary question to be answered when analyzing

problems that may occur at a facility is, “Can the facility
serve the number of people in its assigned population under
the given time constraints?” To answer this question, the
service area of each facility must be determined. Once the
service areas have been determined, the population of each
service area may be analyzed to estimate the requirements
of each facility. These requirements lead to further questions
such as:

• “Can the parking lot at each facility support the number
of cars which must enter and exit under the time
constraints?”

• “How long will it take for each facility to serve its
assigned population?”

• “Based on the assigned population of each facility, are
there any special requirements for the facilities?”

2.2 Problems in the Service Areas
The population in each service area is unlikely to be

uniformly distributed. Further, transportation network infras-
tructure is likely to be irregularly distributed across the
service areas. Therefore, the locations of the facilities in
relation to population distribution and transportation network
resources must be examined. A facility may be capable of
serving its assigned population under the time constraints.
However, if the transportation network is incapable of deliv-
ering individuals to the facility in a timely manner, resources
at the facility may be under-utilized. This motivates the
question, “How will the implementation of the facilities in
a given plan affect the traffic situation on the transportation
network?”

3. Methodology
The methodology employed by the RE-PLAN Framework

was designed to analyze plan feasibility using large amounts
of quantitative data from disparate sources. These data
include population data, transportation network data, and
traffic count observation data. Combined with assumptions
from public health officials, this methodology is used to
create a model which facilitates the analysis of conditions
resulting from the implementation of response plans. Further,
the model allows public health officials to experiment with
alternate plan scenarios while exploring the data underlying
the computational model.

3.1 Facility Selection and Service Area Deter-
mination

A variety of facility selection and service area deter-
mination methods have been developed. The most simple
method allows users to select facility locations directly and
then uses these locations as a basis for determining service
areas. A variation on this method allows the user to select
a set of facility locations and to set the number of desired
facilities. The most feasible of the selected facility locations
are then automatically determined, and service areas are
created based on the locations of these facilities. Yet another
method creates uniform service areas based on selected
demographic variables. Once the service areas have been
created, the facility locations are selected within them.

3.2 Service Facility Analysis
Once service areas have been determined for each facility,

the population assigned to each is also known. Each facility’s
requirements and feasibility can then be analyzed with
respect to the population it is assigned to serve. Depending
on the outcome of this analysis, users may choose to
redistribute personnel and resources among the facilities or
to modify their response plans. Methods for analyzing the
set of facilities include examining the distribution of the
population among them, calculating the amount of time it
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will take for each to serve its assigned population, and
estimating the traffic situation in each’s parking lot.

Decisions regarding the distribution of personnel and
supplies among the facilities requires an analysis of the
distribution of the load (in this case, the population) across
the set of facilities. Facilities assigned a greater load must be
assigned more personnel and resources to adequately handle
this load. Those assigned drastically smaller or larger loads
can be identified, allowing public health officials to adjust
their response plans accordingly. Once the distribution of
load across the set of facilities is acceptable, and personnel
and resource distributions have been determined, analysis
can continue.

The estimated service time Ti required for each facility
i to serve its assigned population pi can be calculated by
Ti = pis

wi
, where s is the amount of time it would take to

serve a single individual and wi is the number of individuals
who may be served at facility i in parallel. Any facility
whose estimated service time is close to or exceeds the
mandated time constraints may be infeasible. The feasibility
of a particular facility may be improved by increasing the
number of individuals whom it may serve in parallel, by
decreasing the assigned population, or by shortening the
amount of time it would take to serve a single individual.

The total number of cars ai which must visit each facility
i can be calculated by ai = pi

f , where f is the average
number of people who will travel in each car. This average
is determined by public health officials and may be based
upon such factors as demographic data or familiarity with the
population to be served. The rate ri at which cars must enter
and exit the parking lot at each facility i can be calculated
by ri = Ti

ai
. Further, the rate ρi at which cars must enter and

exit each parking lot in order to meet the time constraints ω
can be calculated by ρi = ω

ai
.

3.3 Traffic Analysis
If the transportation network of a service area is incapable

of delivering the population to the facility in a timely
manner, the facility will be under-utilized, causing it to
be infeasible. Therefore, the traffic situation resulting from
implementation of specific response plans must be analyzed.
To accomplish this task, a model of how the population
travels inside each service area must be used. This model
must combine geographic population distribution data with
transportation network data into a context which facilitates
the analysis of traffic conditions at specific points inside each
service area.

If each service area is divided into rings around the facility
as shown in Figure 1, the population of the outer rings must
travel through the inner rings to arrive at the facility as shown
in Figure 2. Further, it must also travel back through these
inner rings to return to its origin. Each ring of the service
area may then be divided further into a series of segments
around links in the transportation network which connect

Fig. 1: Breaking a service area into rings of proximity to the
facility

Fig. 2: How the population travels through the rings of
proximity to the facility

them as shown in Figure 3. The population of the outer rings
may then be modeled crossing from segment to segment on
its way towards the facility. The links on the road network,
shown in Figure 4, where the population crosses from ring
to ring may be examined with respect to the number of
individuals who must cross these links.

The population crossing each link may be divided by the
average number of individuals per car to determine the load
on each link caused by the implementation of the plan under
the time constraints. The constraints of the transportation
network are likely to vary. Therefore, the load caused by
the implementation of the plan at a specific point must be
analyzed with respect to the properties of the transportation
network at that point (e.g. speed limit, number of lanes,
functional class, or maximum physical capacity).

Fig. 3: Using only three rings of proximity, dividing rings
into segments to model population flow across roads
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Fig. 4: Using only three rings of proximity, links in road
network where population must cross from one ring to
another are examined.

Disasters do not occur in a vacuum. Traffic to the facilities
will not be the only load on the transportation network. This
necessitates the analysis of normal “business as usual” base
traffic side-by-side with traffic to the facilities. To accom-
plish this task, traffic count observation data must be used
with other properties of the transportation network to project
the load of base traffic across the network. Further, time-of-
day and day-of-week become important considerations when
dealing with base traffic to adequately represent peak and
off-peak traffic periods.

4. RE-PLAN Framework
The RE-PLAN Architectural Framework consists of the

Plan Designer, Plan Analysis Tools, and the Logistics Cal-
culator. These three main architectural components commu-
nicate with the RE-PLAN Database to facilitate plan creation
and analysis. Each component consists of a series of modules
which may be redesigned, augmented, or replaced in order
to change the underlying model being used. The work flow
diagram in Figure 5 shows an overview of how the modules
are used in each of the architectural components to design
plans, calculate logistics, and perform analysis.

4.1 Plan Designer
The Plan Designer allows the user to create a response

plan consisting of a set of facilities and assigned service
areas. Figure 5 shows three different example paths through
the modules of the Plan Designer. Each of these paths results
in a set of facilities and service areas being stored on the
RE-PLAN Database. The flexibility of these modules lies in
the specific tasks they were chosen to perform.

The Facility Editor module allows users to create, edit,
delete, import, and export facilities. All of these functions are
accomplished through a point-and-click graphical interface.
This module modifies the RE-PLAN Database as the user

modifies the facilities in a plan. The information regarding
each facility which currently affects the plan analysis cal-
culations are the facility’s longitude, latitude, type, status,
and width. The longitude and latitude are used to specify a
facility’s geographic location. A facility’s type may be used
to modify how a facility affects logistical calculations or
analysis of a plan. A facility’s status reflects whether it is
on or off. Only facilities which are on are included in the
logistic and analysis calculations. The width of a facility
is the number of individuals which may be treated at this
facility in parallel. Additional information (such as name,
address, and comments) may be stored with each facility to
assist officials in their planning, but this information is not
used in the logistic or analysis calculations.

The Automatic Facility Selector module chooses locations
for a user-specified number of facilities. If a list of facilities
has already been chosen, this module selects the number of
facilities from them. Once facilities have been selected, the
Creator of Service Areas for Facilities module breaks down
the area of interest such that every point in the area of interest
is assigned to exactly one facility. Once these facilities and
service areas have been determined, they are stored in the
RE-PLAN Database.

The Creator of Uniform Service Areas module breaks
down the area of interest into uniform service areas based
on the demographic characteristics of the area’s population.
After the service areas have been created, feasible facility
locations are selected for each service area. Once the service
areas and facilities have been determined, they are stored in
the RE-PLAN Database.

The POD Analysis problem was examined and broken
down into a series of modules which comprise the RE-PLAN
tool. Together with the RE-PLAN database, these modules
facilitate the analysis of POD-based biological emergency
response plans.

4.2 Logistics Calculator
Once a plan has been created by the Plan Designer and

stored in the RE-PLAN Database, the Logistics Calculator
prepares this plan for analysis. Each facility’s service area
is dissolved into rings of proximity. Each ring is dissolved
into a series of segments around crossing points where links
in the transportation network connect the rings, and the
population of each segment is calculated. The population
is then cascaded across the crossing points leading to the
facility such that the number of individuals who must
traverse each crossing point to reach the facility is known.
The crossing points are stored in the RE-PLAN Database
with their corresponding loads (in numbers of individuals).

4.3 Plan Analysis Tools
The Plan Analysis Tools facilitate analysis of response

plans at the facility and on the transportation network.
The Facility Requirement Analyzer module uses data from
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Fig. 5: RE-PLAN Framework Architectural Components and Work flow Diagram

Fig. 6: Facility Requirement Analyzer graphical display

the RE-PLAN Database created by the Plan Designer to
explore the expected situation at each facility. The Traffic
Analysis Toolbox module uses data from the RE-PLAN
Database calculated by the Logistics Calculator to facilitate
exploration of traffic conditions resulting from response plan
implementation. Although these modules are functionally
separate, they comprise the set of analysis tools available
in the RE-PLAN Framework.

4.3.1 Facility Requirement Analyzer
The Facility Requirement Analyzer module facilitates the

analysis of response plan data created by the Plan Designer
through a series of four tabs shown in Figure 6. Graphical
representations of population load distribution among the
facilities are created, allowing public health officials to easily

analyze personnel and supply distribution requirements of
the facilities. Further, the population load on each facility
is combined with user-specified assumptions regarding the
width of each facility, the average number of people who
will travel to the facility in each car, and the amount
of time required to serve each person to create graphical
representations for the analysis of each facility.

The first of the four tabs provides a written report for
the entire plan and for each individual facility. The second
tab includes two different graphical representations of the
population distribution. The third tab shows the time required
for each facility to serve its population under the current
assumptions. Facilities which are capable of serving their
populations within the mandated time constraints may be
considered feasible and are shown in green while their
infeasible counterparts are shown in red. The fourth tab
shows estimates of the situation in each facility’s parking
lot under the mandated time constraints as well as under the
total amount of time required for each facility to serve its
assigned population.

4.3.2 Traffic Analysis Toolbox
The Traffic Analysis Toolbox module combines geo-

graphic population data with transportation data in the
context of the response plan logistics data. Traffic conditions
at specific points may be examined with respect to the
physical properties of the transportation network and the
load on these points resulting from “business as usual” base
traffic, traffic caused by implementation of the response
plans, or a combination of both. Traffic conditions at each
point are classified into one of six different classes which
represent the ratio of load to the maximum physical capacity.
Figure 7 shows how these classes are visually represented on
a map to facilitate analysis of traffic conditions by personnel
without the need for Geographic Information Systems (GIS)
or computer programming expertise.
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Fig. 7: Screen capture of traffic analysis using RE-PLAN
hazardous biological substance release mitigation plan ana-
lyzer tool

Fig. 8: Traffic toolbox interface for analysis of Point of Dis-
pensing (POD) facilities for hazardous biological substance
release mitigation plans

The Traffic Toolbox graphical interface in Figure 8 allows
users to easily change analysis parameters through a point-
and-click interface. Traffic resulting from implementation
of response plans and base traffic may be toggled on
or off independently. Parameters which affect base traffic
projections such as weekday versus weekend traffic and time
of day may be adjusted. Assumptions which affect response
plan traffic such as people per car and time constraints may
also be adjusted.

4.4 RE-PLAN Database
The RE-PLAN Database stores all information about the

response plans. It is also the primary way data is shared
among the different architectural components of the RE-
PLAN Framework. Three main categories of data are stored
on the RE-PLAN Database: data concerning the area of
interest, data which comprises response plans, and other
data which facilitates the user experience and collaboration
among users.

Data concerning the area of interest must be loaded into
the RE-PLAN Database before plan creation or analysis
begins. This includes spatial demographic and population
data, spatial transportation network data, and traffic count
observation data. If traffic count observation data is unavail-
able for the area of interest, data from another area may
be loaded and used to train the Traffic Analysis Toolbox
module. Data for multiple areas may be loaded into the RE-
PLAN Database, and users may adjust parameters to choose
a specific area of interest among them.

The RE-PLAN Database also stores all data resulting
from the creation and analysis of individual response plans.
The set of facilities, their service areas, and the load dis-
tributed across the transportation network are all stored in
the database. For each facility, the facility’s name, location,
address, city, zip code, status, type, and other comments are
stored in the database. If the Logistics Calculator has been
used on a response plan, the dissolved service areas and
population load on the transportation network are also stored
in the database. Notes about each plan may also be stored
with each plan in the database.

Each plan is owned by a specific user, and this associ-
ation is stored in the RE-PLAN Database. This facilitates
collaboration among users who may share their plans. Data
concerning the currency of response plans is stored for
the purpose of automatically deleting temporary database
tables. Further data regarding the analysis progress of each
response plan is also saved to enable RE-PLAN tools to open
saved plans with the correct options and features enabled.
For example, if a plan was saved before the Logistics
Calculator was executed, when the plan is reloaded, the
Traffic Analysis Toolbox should not be available to the user
until the Logistics Calculator is executed.

5. Implementation

The RE-PLAN framework employs a client-server model.
Client-side modules are written in Java for portability, and a
PostgreSQL database with PostGIS is used on the RE-PLAN
server for flexibility. This model facilitates collaboration
among users whose client programs connect to the same
server, thus allowing users to access each other’s mitigation
plans. Further, the client programs have minimal system
requirements since most of the complex calculations are
executed on the server. As a result, new hardware may not
have to be deployed to execute the client programs.

Modules in the framework have been designed to be
interoperable by incorporating import and export features.
Sets of facilities may be imported or exported as Comma
Separated Values (CSV) files. Many software packages com-
monly used in public health, disaster management, and city
planning are capable of importing and exporting data as
CSV files. Therefore, existing data may be imported into
tools created with the RE-PLAN Framework and exported
to other commonly used software packages.

Functionality to export entire plans as standard ESRI
shapefiles allows data to be shared and further analyzed by
those with GIS expertise. These plans may be published by
creating maps in software packages such as ArcGIS or may
be used to create online, interactive maps using OpenMap,
Google Maps, or Microsoft Bing Maps. Therefore, the RE-
PLAN Framework facilitates not only plan analysis, but plan
distribution and implementation as well.
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6. Discussion
The hazardous biological substance release mitigation tool

created using the RE-PLAN Framework answers important
questions regarding the implementation of specific response
plans. The tool harnesses large amounts of quantitative data
to estimate conditions at and requirements for each facility
during implementation of specific mitigation plans. These
conditions and requirements include the projected traffic
situation at each facility’s parking lot, the amount of time
each facility requires to serve its assigned population, and the
infrastructure needed by each facility to serve its assigned
population. Further, the tool facilitates the analysis of the
traffic situation on the transportation network resulting from
the implementation of specific response plans.

The RE-PLAN Framework was developed in collaboration
with public health officials. Their suggestions and comments
were included in the methodology and implementation.
Graphical interfaces were incorporated into the framework
to allow use without the need for GIS or computer program-
ming expertise. Although large amounts of quantitative data
are used and may be accessed through the Framework, the
design of graphical displays focused on specific aspects of
the response plan analysis methodology. Therefore, while the
data underlying the computational model may be accessed
through the graphical interface, it is hidden by default to
avoid clutter and confusion.

A version of the hazardous biological substance release
mitigation tool has been created and deployed at a local
county public health department. County public health offi-
cials have been trained to use this tool for analyzing their
mitigation plans. Analysis performed at the county using this
tool has lead to the revision and modification of response
plans. Local stakeholders have been trained regarding the
modified plans, and preparations to implement these plans
are underway.

The RE-PLAN Framework is comprised of a set of
generalized modules. These modules may be used together
in different contexts to address different response or evacu-
ation scenarios. The methodology used may be adjusted by
modifying existing modules, and additional modules may be
created to address problems peculiar to specific scenarios.
Further, the existing framework may be used to create tools
with a web interface, thus enabling widespread distribution
of RE-PLAN tools.

7. Limitations
As with all computational models, fidelity is limited by

the accuracy and availability of underlying data sets. The
RE-PLAN Framework uses several sets of data for which
availability or currency may be problems. Examples of these
data sets are population data, transportation network data,
and traffic count observation data. Nonetheless, the RE-
PLAN Framework has been developed to be as flexible as
possible in accepting alternate data sets.

Geographic population distribution data is available in the
United States from the U.S. Census Bureau. However, a
full census is only conducted once every decade, leading
to the use of potentially out-of-date data. If more accurate
or current population distribution data is available from other
sources, the RE-PLAN Framework is capable of incorporat-
ing this data into the model. The only limitation regarding
which population distribution data may be used is that the
framework is only designed to incorporate vector (not raster)
data sets. However, raster data can easily be transformed into
vector data using a wide variety of available tools.

Transportation network data may be incomplete or out-of-
date for certain areas. Smaller neighborhood roads may be
excluded from available data sets. However, these smaller
roads do not greatly affect traffic analysis. Although newer
links on the transportation network may not be included in
available data, local public health officials who are using
the tool will likely be familiar with the roads in their
area. Attributes available for each link of the transportation
network may differ from location to location. To address this
problem, a variety of methods have been developed to use
the framework with the available attributes.

Traffic count observation data may be unavailable for the
vast majority of links in the transportation network. The
RE-PLAN Framework addresses this sparse data problem
by classifying the links in the transportation network and
assigning links of the same class the same traffic loads.
Traffic count observation data may contain inaccuracies
due to the methods used in the collection of this data. If
this data is too sparse or entirely unavailable for an area,
the RE-PLAN Framework may be trained on data from
a similar, but different, area. Nonetheless, it may not be
difficult to accurately determine whether a specific traffic
count represents conditions of high traffic speed and low
traffic density, or of low traffic speed and high traffic density.
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Abstract— We investigate numerically which properties of
the human brain cause Diffuse Axonal Injuries (DAI) to
appear in a scattered and pointwise manner near the
gray/white matter boundary, mostly in the white matter.
These simulations are based on our dually-nonlinear, vis-
coelastic, fluid Traumatic Brain Injury model, which includes
a nonlinear stress/strain relation. We simulate rotational
accelerations and decelerations of a human head that repli-
cate realistic traumatic scenarios. The rotational loads are
quantified by our Brain Injury Criterion, which extends
the translational Head Injury Criterion to arbitrary head
motions. Our simulations show that: (i) DAI occurrences
near the gray/white matter boundary can be explained by the
difference in the gray and the white matter’s shear modulus
values, (ii) the scattered/pointwise DAI character can be
attributed to the nonlinear fluid aspect of the brain tissue,
and (iii) the scattering of DAI deeper in the white matter
appears to be caused by the complicated shape of the brain.
Our results also show that the nonlinear stress/strain relation
plays a secondary role in shaping basic DAI features.

Keywords: computer modeling, diffuse brain injury, nonuniform
shear modulus, nonlinearity

1. Introduction
The most ‘mysterious’ kind of Traumatic Brain Injuries

(TBI) are Diffuse Axonal Injuries (DAI). DAI predominantly
appear during abrupt head rotations [1], [2]. However, de-
spite many experimental and numerical studies, the way DAI
are created in the brain matter is still not well understood. In
particular, the following main characteristics of DAI require
explanation [3]:

• The injuries are highly localized, i.e., some neurons are
affected while their close neighbors are not.

• The injuries are randomly scattered, mostly in the white
matter along its boundary with the gray matter.

In his initial studies with a nonlinear fluid TBI model, one
of the co-authors investigated implications of the difference
in the shear moduli between the gray matter and the white
matter on the propagation of shear waves in human brain
tissue. The results of a simulatedidealized instantmotion

of two-layer brain tissue indicated that the different shear
moduli could explain some features of DAI [4]. More recent
studies have shown that the nonlinear stress/strain relation in
brain tissue should also be taken into account when modeling
scenarios leading to brain trauma [5].

In this paper, we present results of a systematic study
of possible mechanism of DAI. The computer simulations
are based on our new viscoelastic dually-nonlinear TBI
model that includes a nonlinear fluid term as well as a
nonlinear stress/strain relation derived from experimental
data. Our new model uses a brain facsimile that reflects
the realistic general shapeof a human brain. The gray
matter and the meninges are represented as thin layers that
follow the skull’s shape. We focus on simulating rotational
accelerations and decelerations of a human head that recreate
realistic dynamic conditions leading to severe brain trauma,
e.g., a forceful helmet-to-helmet hit during a football game.

2. Dually-nonlinear TBI model
Our computational TBI model is rooted in the biophysical

approach that describes the brain dynamics based on the
viscoelasticity theory—the brain is injured when the strain
field, created in the brain by shear waves due to the head
motion, assumes sufficiently high values. To model the
dynamic evolution of this strain field, we use the following
system of nonlinear Partial Differential Equations (PDEs):

Dv
Dt

= −∇p̃+4(s2u+ν v),
Du
Dt

= v, ∇·v = 0. (1)

Here, D/Dt ≡ ∂/∂t+(v ·∇) is the nonlinear Lie (ma-
terial) derivative, wherev(x,t)≡ (v1(x,t),v2(x, t),v3(x, t))
with x ≡ (x1, x2, x3) denotes the brain matter velocity
vector field evaluated at timet in an external coordinate
system; u(x, t) is the corresponding displacement vector
field; p̃(x, t) denotes the generalized pressure term consist-
ing of the density normalized pressure and the hydrostatic
compression term;s(x, t) describes the brain’s shear wave
phase velocity; andν is the brain’s kinematic viscosity.

PDE system (1) generalizes the linear solid Kelvin-Voigt
(K-V) model (successfully used to develop a DAI criterion
[6]) by introducing two nonlinear termss(x, t) and v · ∇,
and the term̃p(x, t) that is necessary in such a case cf. [4].
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The material derivative allows us to model the nonlinear
fluid (gel-like) aspect of the brain tissue, whereass(x, t)
describes how the brain matter stiffens under larger defor-
mations, i.e., how the shear wave velocity increases with the
strain. Experiments imply that this relation is linear only for
small strains [5], [7] and that it can be approximated by an
exponential function for larger strains [8].

Thus, we model the stress/strain relation bys(x, t) ≡
c(x) exp(qP (x, t))), wherec(x)≡

√
G(x)/δ(x) denotes the

basic shear wave velocity in the absence of strain (G(x)
and δ(x) are the brain matter shear modulus and density,
respectively), andP (x, t) describes the time evolution of
the spatial distribution of the maximum strain. For strains
larger than 50%, we assume thats(x, t) smoothly becomes
proportional to the basic shear wave velocityc(x).

Experiments, cf. [5], [8]-[10], imply that:

• the basic wave velocity in the white matter iscw ≈1m/s
and cg in the gray matter is up to 4 times larger,

• the coefficientq determining the stress/strain relation is
within the range0.4 ≤ q ≤ 2.5, and

• the brain’s viscosityν equals approximately 0.013m2/s.

3. Simulation setup and display method
We simulate sideways head rotations about a fixed vertical

axis through the brain’s center of mass and forward or
backward head rotations about horizontal axes located at the
brain’s center of mass, the neck, and the abdomen. Keeping
the axes fixed allows us to solve PDEs in separate horizontal
or sagittal 2D brain cross sections, which simplifies the
analysis and presentation of the results.

We show the effects of head rotations in a form of time
snapshots presenting (in horizontal and sagittal brain cross
sections) the distribution of:

• the vector field V(x, t) describing the brain matter
velocity relative to the skull,

• this relative velocity’s magnitude|V(x, t)|,
• and the valuesP (x, t) of the maximum strain in the

white and the gray matter as well as in the meninges.

To better present the character of the brain matter os-
cillations, we depict the vector fieldV in form of curved
vectors [11]. The dark to light shading of the curved vectors
indicates the motion’s direction. Animated ‘movies’ built
from the snapshots of various head rotations are available
at our website: http://www.funiosoft.com/brain/.

The average (around the skull’s perimeter) tangential
acceleration loads we apply are quantified by the value of
our universal Brain Injury CriterionBIC1000T , whereT is
the load’s duration [12]. It means that the average power per
unit mass transmitted from the skull to the vicinity of the
considered 2D brain cross section is equal to the average
power transmitted to this vicinity under the translational

load corresponding to the Head Injury CriterionHIC1000T

successfully used by the automotive industry to determine
critical loads [13], [14].

The results presented are obtained using the following
triangularly shaped acceleration/deceleration load character-
ized by the critical valueBIC36=1000:

Under this tangential load, the sideways rotations of about
110o replicate, e.g., a blow to a boxer’s head, whereas similar
forward or backward rotations simulate a head motion, e.g.,
during a car accident.

4. The role of a nonuniform shear modu-
lus and brain geometry

We have previously shown that the brain’s geometry
influences the character of traumatic brain oscillations [11],
[15]. To separate the role played by the brain geometry in
shaping DAI features from the role of the difference in the
gray and white matter shear moduli and the role of the
brain’s nonlinear properties, we first simulate rotations of
the brain with a uniform or nonuniform shear modulus using
the linear K-V TBI model.

Fig. 1 (resp. 2) shows the velocity and the maximum
strain distributions at timet = 0.025s in a horizontal brain
cross section (separated by the falx cerebri) with a uni-
form (resp. nonuniform) shear modulus during a counter-
clockwise sideways rotation of the head.

In a case of a uniform shear modulus withcg = cw = 1m/s,
the velocity magnitude|V| is distributed quite smoothly with
|V|max ≈ 0.6m/s, Fig. 1 left panel, even where the skull’s
shape creates (at the top and bottom of the cross section)
secondary vortices with ‘opposite’ oscillations than those
appearing in the major two vortices, Fig. 1 middle panel.
Consequently, high strain magnitudes appear only in the
meninges, where the transfer of energy between the skull
and the brain takes place, Fig. 1 right panel.

In a case of a nonuniform shear modulus withcg = 1.75m/s
and cw = 1m/s, the gray matter tends to oscillate along the
skull and the falx cerebri in the opposite direction than
the white matter, Fig. 2 middle panel. This leads to very
steep changes in magnitudes|V| at the gray/white matter
boundary, Fig. 2 left panel, and hence to high strain values
there, Fig. 2 right panel. The largest strain values exceed
30%, which suffices to severely damage neurons [6], [16]-
[18], most likely due to a chemical imbalance [19], [20].
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|V(x, 0.025s)| V(x, 0.025s) P (x, 0.025s)

Fig. 1

RELATIVE VELOCITY AND MAXIMUM STRAIN IN A HORIZONTAL CROSS SECTION DURING SIDEWAYS ROTATION ABOUT THE CENTER OF MASS;

LINEAR KELVIN -VOIGT MODEL; UNIFORM SHEAR MODULUS: cg = cw = 1M/S.

|V(x, 0.025s)| V(x, 0.025s) P (x, 0.025s)

Fig. 2

RELATIVE VELOCITY AND MAXIMUM STRAIN IN A HORIZONTAL CROSS SECTION DURING SIDEWAYS ROTATION ABOUT THE CENTER OF MASS;

LINEAR KELVIN -VOIGT MODEL; NONUNIFORM SHEAR MODULUS: cg = 1.75M/S, cw = 1M/S. NOTE THE HIGH VALUES OF|V| AT THE GRAY/WHITE

MATTER BOUNDARY IN THE LEFT PANEL, WHICH ARE THE RESULT OF THE‘ OPPOSITE’ OSCILLATIONS OF THE GRAY MATTER ALONG THE SKULL AND

THE FALX CEREBRI WHENcg >cw , MIDDLE PANEL. CONSEQUENTLY, HIGH STRAIN MAGNITUDES APPEAR ALONG THIS BOUNDARY, RIGHT PANEL,

WHICH ARE NOT PRESENT INFIG. 1.

Our simulation results of forward and backward head
rotations further show that the brain’s shape plays a major
role in the localization of oscillatory vortices within the gray
and the white matter.

Fig. 3 (resp. 4) on the next page depicts the relative
velocity and the maximum strain distributions predicted by
the linear K-V model in a sagittal cross section with a
uniform (resp. nonuniform) shear modulus when the head
is rotated forward about the neck.

In both cases, the shape and the position of the major
oscillatory vortex reflects the general semi-circular shape of
the upper part of the brain and the fact that the rotational
axis is substantially lower than the brain’s center of mass,
Figs. 3 and 4 middle panels.

A head rotation about an axis located at the abdomen (not
shown here) shifts the major vortex towards the top of the
brain whereas a head rotation about the brain’s center of
mass pushes the position of the major vortex down.
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|V(x, 0.025s)| V(x, 0.025s) P (x, 0.025s)

Fig. 3

RELATIVE VELOCITY AND MAXIMUM STRAIN IN A SAGITTAL CROSS SECTION DURING FORWARD ROTATION ABOUT THE NECK; LINEAR

KELVIN -VOIGT MODEL; UNIFORM SHEAR MODULUS: cg = cw = 1M/S.

|V(x, 0.025s)| V(x, 0.025s) P (x, 0.025s)

Fig. 4

RELATIVE VELOCITY AND MAXIMUM STRAIN IN A SAGITTAL CROSS SECTION DURING FORWARD ROTATION ABOUT THE NECK; LINEAR

KELVIN -VOIGT MODEL; NONUNIFORM SHEAR MODULUS: cg = 1.75M/S, cw = 1M/S. NOTE THE HIGH VALUES OF|V| AT THE GRAY/WHITE MATTER

BOUNDARY IN THE LEFT PANEL, WHICH ARE THE RESULT OF THE‘ OPPOSITE’ OSCILLATIONS OF THE GRAY MATTER ALONG THE SKULL WHEN

cg >cw , MIDDLE PANEL. CONSEQUENTLY, HIGH STRAIN MAGNITUDES APPEAR ALONG THE GRAY/WHITE MATTER BOUNDARY, RIGHT PANEL, WHICH

ARE NOT PRESENT INFIG. 3.

The secondary oscillatory vortices at the bottom of the
sagittal cross section, Figs. 3 and 4 middle panels, appear
regardless of whether the head is rotated about an axis lo-
cated at the brain’s center of mass, the neck, or the abdomen,
i.e., they are created mainly due to the brain’s geometry. The
specific character of these oscillations changes essentially
when the head is rotated backwards, which again highlights
the role of the brain’s geometry in the distribution of the
strain values.

Similar to what we observed in sideways head rotations,
in forward head rotations under the linear K-V model neither
the major nor the secondary oscillatory vortices create very
steep changes in the values of|V| in the brain interior and
consequently they do not lead to high strain values there,
Figs. 3 and 4 left and right panels.

When forward or backward head rotations are simulated
assuming a nonuniform shear modulus, the results near
the gray/white matter boundary are also similar to those
obtained during sideways head rotations—the gray matter
tends to oscillate in the opposite direction than the white
matter, Fig. 4 middle panel. Hence, very steep changes
in the velocity magnitudes are created near the gray/white
matter boundary, Fig. 4 left panel, that result in high strain
magnitudes there, Fig. 4 right panel.

Although, according to the K-V model, the brain geometry
substantially influences the character of the brain oscilla-
tions, it does not change the maximum velocity magnitude
|V|max and the largest maximum strain values, which are
very similar during sideways, forward and backward rota-
tions under the same load.
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|V(x, 0.025s)| V(x, 0.025s) P (x, 0.025s)

Fig. 5

RELATIVE VELOCITY AND MAXIMUM STRAIN IN A HORIZONTAL CROSS SECTION DURING SIDEWAYS ROTATION ABOUT THE CENTER OF MASS;

NONLINEAR FLUID MODEL; UNIFORM SHEAR MODULUS: cg = cw = 1M/S. NOTE THAT THE ASYMMETRIC OSCILLATIONS, MIDDLE PANEL, LEAD TO AN

ASYMMETRIC SCATTERING OF THE HIGH STRAIN VALUES ALONG THE BRAIN’ S PERIMETER, RIGHT PANEL.

|V(x, 0.025s)| V(x, 0.025s) P (x, 0.025s)

Fig. 6

RELATIVE VELOCITY AND MAXIMUM STRAIN IN A SAGITTAL CROSS SECTION DURING FORWARD ROTATION ABOUT THE NECK; NONLINEAR FLUID

MODEL; UNIFORM SHEAR MODULUS: cg = cw = 1M/S. NOTE THE RANDOM SCATTERING OF OSCILLATORY VORTICES, MIDDLE PANEL, AND OF HIGH

STRAIN VALUES, RIGHT PANEL, DUE TO THE BRAIN’ S GEOMETRY.

5. The role of the brain’s fluidity
Replacing the linear temporal derivative in the Kelvin-

Voigt model with the nonlinear material derivative allows us
to reflect the fluid (gel-like) nature of the brain. This nonlin-
ear fluid (N-F) model predicts more complicated oscillatory
patterns than the linear K-V model, even when a uniform
shear modulus is assumed, cf. middle panels of Figs. 1 and
5 as well as of Figs. 3 and 6.

In particular, the sideways rotations under the N-F model
create asymmetric oscillatory patterns in the brain hemi-
spheres, Fig. 5 middle panel, which is not the case under the
K-V model. Thus, the localization of injuries can strongly
depend on the rotational direction.

Similarly, the forward head rotations under the N-F model
create multiple localized vortices in the back and the bottom
of the brain, Fig. 6 middle panel, which are not predicted
by the K-V model. The number of these vortices increases
when the rotational axis is moved down to the abdomen and
decreases when it is moved up to the brain’s center of mass.

Moreover, under the N-F model with a uniform shear
modulus, the value of|V|max is up to three times higher
than in the K-V model, and steep changes in the velocity
magnitudes appear also at the brain’s perimeter, Figs. 5 and
6 left panels. This leads to scattered high strain magnitudes
near the brain’s perimeter, which are not predicted by the
K-V model, Figs. 5 and 6 right panels.
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|V(x, 0.025s)| V(x, 0.025s) P (x, 0.025s)

Fig. 7

RELATIVE VELOCITY AND MAXIMUM STRAIN IN A HORIZONTAL CROSS SECTION DURING SIDEWAYS ROTATION ABOUT THE CENTER OF MASS;

NONLINEAR FLUID MODEL; NONUNIFORM SHEAR MODULUS: cg = 1.75M/S, cw = 1M/S.

|V(x, 0.025s)| V(x, 0.025s) P (x, 0.025s)

Fig. 8

RELATIVE VELOCITY AND MAXIMUM STRAIN IN A SAGITTAL CROSS SECTION DURING FORWARD ROTATION ABOUT THE NECK; NONLINEAR FLUID

MODEL; NONUNIFORM SHEAR MODULUS: cg = 1.75M/S, cw = 1M/S.

The introduction of a nonuniform shear modulus into our
N-F model allows us to satisfactorily explain why Diffuse
Axonal Injuries are highly localized and randomly scattered,
mostly in the white matter along the boundary with the
gray matter. Indeed, introducing a nonuniform shear modulus
results in multiple oscillatory vortices that:

• are characterized by 1/3 higher values of the maximum
velocity magnitudes|V|max than in the case of a
uniform shear modulus,

• create steep changes in|V| along the gray/white matter
boundary as well as deeper in some regions of the white
matter near this boundary, Figs. 7 and 8 left panels,

• are quite randomly scattered along the boundary be-
tween the gray and the white matter, Figs. 7 and 8
middle panels, and

• lead to localized very high strain magnitudesP that are
also quite randomly scattered near the gray/white matter
boundary as well as deeper inside the white matter,
Figs. 7 and 8 right panels.

According to both the K-V and N-F models, the local-
ization of high strain values depends essentially on whether
the head is rotated forward or sideways. This outcome is
consistent with results obtained by means of one of the most
advanced finite element brain injury simulators SIMon [21].

However, the results of our simulations also imply that
a specific type of traumatic head motion strongly influences
the localization of high strain values. Thus, DAI localization
can be quite different when the head is rotated forward or
backward, about the brain’s center of mass, the neck, or the
abdomen, and counter-clockwise or clockwise.
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6. The role of a nonlinear stress/strain
relation

We have shown in our previous studies that including
a nonlinear stress/strain relation with a high value of the
parameterq into the K-V model with a uniform shear
modulus has the following consequences [15]:

• during head rotations, it reduces strain magnitudes,
especially near the skull, and

• after the forcing stops, it creates relatively higher strain
magnitudes scattered within the white matter.

Our new simulations lead to similar results under the
dually-nonlinear fluid (D-N-F) model with a nonlinear
stress/strain relation and both uniform and nonuniform shear
moduli. However, the increased strain magnitudes within the
white matter due to the nonlinear stress/strain relation are
smaller than the critical strain magnitudes appearing due to
the nonuniform shear modulus and the brain geometry.

In fact, under the D-N-F model, a nonlinear stress/strain
relation only slightly changes the spatial distribution of
critical strain magnitudes appearing during head rotations
and moderately increases the scattering of high strain magni-
tudes after the forcing stops. Thus, the nonlinear stress/strain
relation seems to play a secondary role in shaping DAI
features.

7. Conclusions
Simulations based on our dually nonlinear Traumatic

Brain Injury model show that:

• the difference between the values of shear moduli in the
gray and in the white matter can explain why Diffuse
Axonal Injuries are primarily localized at the gray/white
matter boundary,

• the nonlinear gel-like nature of the brain matter together
with the complicated shape of the brain can explain the
scattered random distribution and pointwise character
of DAI, and

• the brain matter’s nonlinear relation between stress and
strain and the specific position of a fixed rotational axis
influence DAI localization and may enhance the random
scattered nature of neuronal injuries.

Because the brain’sgeneral shape and its fluidity already
‘scatter’ high strain values, one can expect theconvoluted
folding of the brain to cause further scattering of the lo-
calized high strain magnitudes along the gray/white matter
boundary.

Moreover, since the position of the fixed rotational axis
and the rotational direction significantly influence the lo-
calization of potential injury points, it is likely that a
complicated head rotation about avarying axis will further
‘randomize’ the distribution of axonal injuries.
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Abstract - The copious volumes of biomedical literature 

being generated have created a need for the development of 

text mining algorithms to identify and extract and pertinent 

biological information.  This pilot study demonstrates a 

computational linguistics approach to identifying genes, 

proteins, and other biological factors that are associated with 

the development and progression of lung cancer. 
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1 Introduction 

     Over the course of the last couple of decades the 

biomedical sciences have undergone an explosion in the 

amount of biomedical literature that is published, with 

indexes of biomedical literature,  such as Pubmed, housing 

over 20 million articles (as of March 2011).  While the 

massive amount of information available in such a large 

corpus of literature is of clear benefit to researchers, the sheer 

numbers of documents that can match any given query often 

makes the task of finding needed pieces of information a 

difficult one.  For this reason, researchers in the biomedical 

sciences are continually turning toward the development of 

computational tools to perform data mining tasks, ranging 

from the identification of genes that play a role in certain 

biological outcome [1-3] and the identification of mutations 

[4] to the identification of high quality Web resources [5], 

and many areas in between. 

 

 Current methodologies for text mining the biomedical 

literature include techniques such as regular expression 

based pattern matching [6], the development and use of 

biological concept ontologies [7], and the development of 

specialized parsers designed to perform Natural Language 

Processing (NLP) of the biomedical literature [3, 8].  This 

study seeks to expand upon the current methodological 

approaches by developing a simplistic yet robust 

methodology for the identification of genes, proteins, and 

other biological factors that contribute to a disease of interest 

or other biological state.  The developed methodology makes 

use of commonly used computational linguistics techniques, 

by first requiring the establishment of a corpus of biological 

literature pertaining to the disease or biological state of 

interest and then performing a word frequency analysis on 

the corpus to identify all of the unique words in the corpus.  

A pruning technique is then applied to the listing of unique 

words in order to remove all English language and 

biomedical specific jargon words, leaving a resultant list 

which primarily contains the names of genes and proteins 

that contribute to the disease or biological state of interest.  

The technique was tested via the identification of biological 

factors that contribute to or are associated with the 

development and metastasis of lung cancer. 

2 Methods 

2.1 Establishment of a Lung Cancer Corpus 

 A corpus of text pertaining to lung cancer was 

developed via the modification of the PREP.pl perl script [6, 

9], which was designed to retrieve Pubmed abstracts and 

perform regular expression based pattern matching against 

them.  The script was modified to retrieve all Pubmed 

abstracts pertaining to the keyword query “lung cancer” and 

save the title and text of each abstract to the corpus.  Only 

the titles and text were added to the corpus since other 

abstract data such as journal name abbreviations and author 

names would add additional “words” to the corpus that 

would not be valid biological factors and would be very 

difficult to prune out during later processing of the data.  

Execution of this script resulted in a corpus consisting of 186 

MB of text. 

 

2.2 Processing of the Corpus 

  A word frequency analysis of the corpus was performed 

that identified every unique word in the system as well as 

how often each unique word appears in the system.  This 

analysis was performed via a Perl script which identified 

words as being unique if they were separated by 1 or more 

non-alphanumeric characters (i.e. \W+).  This analysis 
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resulted in over 177,000 unique words ranging from the most 

popular word “of”, which occurred 1,338,203 times, to words 

like “Gp96” (a heat shock protein), which only occurred a 

single time.   

 

 Upon completion of the word identification via the 

word frequency analysis, the list of unique words was pruned 

by comparing the identified word to a dictionary of words to 

remove all words that would not be the names of genes, 

proteins, or other biological factors that could play a 

potential role in lung cancer, such as English language 

words.  Initial testing of the technique made use of the 

words.txt dictionary file that comes standard with any Linux 

distribution as a basis for identifying English language 

words, but this lead to a high false positive rate, since the 

dictionary did not contain much of the biomedical jargon and 

terminology that appears is the biomedical literature, but is 

not a gene/protein name.  Thus, the dictionary was expanded 

to include such jargon and biomedical terminologies (e.g. 

“mesenchyme”), in order to better prune the list of biological 

factor candidates.  Other common false positive candidates, 

include common non-gene/protein name acronyms, such as 

NSCLC (non-small cell lung carcinoma) or NK (natural 

killer), cancer drugs being tested within the published 

literature, such as cisplatin, and tumor cells types, such as 

A549.  Further improvements to the false positive rate are 

made possible by incorporation of these words into the 

dictionary as well.  Adding in common misspellings and 

typographical errors would be a way to further prune the list 

of potential biological factors. 

3 Results and Discussion 

      The newly established methodology does provide a 

means of successfully identifying genes, proteins, and other 

biological factors that can contribute to diseases such as lung 

cancer, as illustrated by the results in Table 1, which 

demonstrates the top eighteen most frequent biological 

factors that are associated with the development and 

progression of lung cancer.  Among the listings in Table 1 

are many well characterized tumor suppressors (e.g. p53) and 

oncogenes (e.g. myc), as well as other biological factors 

crucial to the progression of cancer such as VEGF.  In some 

cases in Table 1, the factors identified may be very broad 

(e.g. kinase and cyclin), but more specific instances of these 

categories are usually identified at lower frequencies, such as 

PKC (occurred 1068 times), a type of kinase identified by the 

technique.   

 

 

 

 

 

 

 

 

Table 1: The top 18 most frequently appearing biological 

factors associated with lung cancer. 

 

 

Biological 

Factor 

Number of 

Appearances 

Sample 

Reference 

p53 16028 [10] 

EGFR 14055 [11] 

kinase 10274 [12] 

VEGF 6168 [13] 

CEA 5800 [14] 

IFN 4287 [15] 

TGF 4255 [16] 

MMP 4002 [17] 

RR  3235 [18] 

TNF 3182 [19] 

COX 2838 [20] 

cyclin 2614 [21] 

caspase 2498 [22] 

NNK 2464 [23] 

IGF 2426 [24] 

Bcl 2285 [25] 

myc 2279 [26] 

EGF 2140 [27] 

 

 

      This ability for specificity is also demonstrated when 

one considers that the technique has the capacity to pick up 

biological factors that may only have few or even singular 

occurrences in the corpus, as illustrated in Table 2, which 

contains a sampling of factor names that only occurred 1-2 

times in the corpus.  While the entries in Table 2 serve to 

illustrate the specificity of the technique, however, they do 

demonstrate one limitation of the current implementation in 

that the word frequency analysis does not correlate multiple 

possible spellings of the same name as being identical.  For 

example, even though “IRS1” only occurred twice (as 

written), there were alternative matches in the corpus such as 

“IRS-1”.  These spelling variants are currently recognized as 

unique, but future iterations of the word frequency analysis 

software will be modified to treat them as the same.  This 

spelling issue also applies to ATF6, ELAV3, Dnmt3a, and 

Gp96 as well.   It is notable, however, that relatively few 

publications currently explore these genes/proteins regardless 

of spelling.  For example, Gp96 is a heat shock protein 

associated with lung cancer in less than 5 English abstracts 

[28-30]. 
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Table 2: A sample of biological factor names that appeared as 

written only 1-2 times. 

 

 

Biological 

Factor 

Number of 

Appearances 

Sample 

Reference 

IRS1 2 [31] 

ELAV3 1 [32] 

ATF6 1 [33] 

Dnmt3a 1 [34] 

Gp96 1 [29] 

 

 

4 Conclusion 

 

      In all, this pilot study demonstrates the potential for 

using word frequency analysis as a means of identifying the 

names of genes, proteins, and other biological factors that 

could play a role in the development of lung cancer or other 

biological conditions.  The utility of the developed 

methodology, however, is dependent on the use of a robust 

dictionary of words and terms to be excluded from 

consideration, although it is hypothesized that the 

development of such a dictionary is broadly applicable to 

performing such an analysis across a diversity of biological 

contexts.  It is the contention of the author that the continued 

expansion of such a dictionary of exclusion terms, would 

result in a technique that could lead to the rapid identification 

of candidate genes with a minimal amount of human data 

curation.   
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Abstract - In this paper we find the relation between the risk 
factors and the symptoms of diabetes among adults using 
Fuzzy Relational Maps. Diabetes is a problem with the body's 
fuel system. It is caused by lack of insulin, a hormone made 
in the pancreas that is essential for getting energy from food. 
There are two kinds of diabetes: type 1  and type 2. Type 2 
diabetes accounts for 90% of all diabetes cases. In this 
research paper we examine the adults experiencing diabetes 
using fuzzy relational maps. We have arrived at interesting 
conclusions. This paper has four sections. In section one we 
recall the definition of fuzzy relational maps. Section two is 
devoted to the description of the problem. Section three is 
devoted to the   adaptation of the fuzzy relation maps to the 
Diabetic problem. In section four we give the conclusions 
based on our study. 

Keywords: Fuzzy Relational Maps (FRM), Risk factors, 
Symptoms , Type2 Diabetic, Adult,  Urban, rural. 

1. Introduction:  

  The new notion called Fuzzy Relational Maps (FRMs) 
was introduced by Dr. W.B.Vasantha and Yasmin Sultana in 
the year 2000. In FRMs we divide the very casual 
associations into two disjoint units, like for example the 
relation between a teacher and a student or relation; between 
an employee and an employer or a relation; between the 
parent and the child in the case of school dropouts and so on. 
In these situations we see that we can bring out the casual 
relations existing between an employee and employer or 
parent and child and so on. Thus for us to define a FRM we 
need a domain space and a range space which are disjoint in 
the sense of concepts. We further assume no intermediate 
relations exist within the domain and the range space. The 
number of elements in the range space need not in general 
be equal to the number of elements in the domain space. 

1.1. Fuzzy Relational Maps (FRMs) 

In our discussion the elements of the domain space are taken 
from the real vector space of dimension n and that of the 
range space are real vectors from the vector space of 
dimension m (m in general need not be equal to n). We 
denote by R the set of nodes R1, … , Rm of the range space, 

where Ri = {(x1, x2, …, xm) / xj = 0 or 1} for i = 1, … ,m. If 
xi = 1 it means that the node Ri is in the ON state and if xi = 
0 it means that the node Ri is in the OFF state. Similarly D 
denotes the nodes D1,…,Dn of the domain space where Di = 
{(x1,…, xn) / xj = 0 or 1} for i = 1, …, n. If xi = 1, it means 
that the node Di is in the on state and if xi = 0 it means that 
the node Di is in the off state. A FRM is a directed graph or a 
map from D to R with concepts like policies or events etc. as 
nodes and causalities as edges. It represents casual relations 
between spaces D and R. Let Di and Rj denote the two nodes 
of an FRM. The directed edge from D to R denotes the 
casuality of D on R , called relations. Every edge in the FRM 
is weighted with a number in the set {0, 1}. 

Let ei j be the weight of the edge Di Rj, e i j   {0.1}. The 
weight of the edge DiRj is positive if increase in Di implies 
increase in Rj or decrease in Di implies decrease in Rj. i.e. 
casuality of Di on Rj is 1. If e i j = 0 then Di does not have any 
effect on Rj. We do not discuss the cases when increase in Di 
implies decrease in Rj or decrease in Di implies increase in 
Rj. When the nodes of the FRM are fuzzy sets, then they are 
called fuzzy nodes, FRMs with edge weights {0, 1) are called 
simple FRMs. Let D1, …, Dn be the nodes of the domain 
space D of an FRM and R1, …, Rm be the nodes of the range 
space R of an FRM. 

Let the matrix E be defined as E = (ei j ) where ei j  {0, 1}; is 
the weight of the directed edge DiRj ( or RjDi ), E is called 
the relational matrix of the FRM. It is pertinent to mention 
here that unlike the FCMs, the FRMs can be a rectangular 
matrix; with rows corresponding to the domain space and 
columns corresponding to the range space. This is one of the 
marked difference between FRMs and FCMs. 

Let D1, …, Dn and R1,…,Rm be the nodes of an FRM. Let 
DiRj (or Rj Di) be the edges of an FRM, j = 1, …, m, i = 1, 
…, n. The edges form a directed cycle if it possesses a 
directed cycle. An FRM is said to be acycle if it does not 
posses any directed cycle. 

An FRM with cycles is said to have a feed back when there 
is a feed back in the FRM, i.e. when the casual relations flow 
through a cycle in a revolutionary manner the FRM is called 
a dynamical system. 
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Let DiRj ( or RjDi), 1  j  m, 1  i  n. When Rj ( or Di) is 
switched on and if casuality flows through edges of the cycle 
and if it again causes Ri(Dj), we say that the dynamical 
system goes round and round. This is true for any node Ri (or 
Dj) for 1  i  m, ( or 1  j  n). The equilibrium state of this 
dynamical system is called the hidden pattern. If the 
equilibrium state of the dynamical system is a unique state 
vector, then it is called a fixed point. Consider an FRM with 
R1, …, Rm and D1, …, Dn as nodes. For example let us start 
the dynamical system by switching on R1 or D1. Let us 
assume that the FRM settles down with R1 and Rm ( or D1 
and Dn) on i.e. the state vector remains as (10…01) in R [ or 
(10…01) in D], this state vector is called the fixed point. If 
the FRM settles down with a state vector repeating in the 
form A1

  A2
  ….Ai

  A1 or (  B1
B2

  …  
Bi B1 ) then this equilibrium is called a limit cycle. 

Methods of determination of hidden pattern. 

Let R1, …, Rm and D1, …, Dn be the nodes of a FRM with 
feed back. Let E be the n  m relational matrix. Let us find a 
hidden pattern when D1 is switched on i.e. when an input is 
given as vector A1= (1000...0) in D the data should pass 
through the relational matrix E. This is done by multiplying 
A1 with the relational matrix E. Let A1E = (r1, … , rm) after 
thresholding and updating the resultant vector (say B) 
belongs to R. Now we pass on B into ET and obtain BET. 
After thresholding and updating BET we see the resultant 
vector say A2 belongs to D. This procedure is repeated till we 
get a limit cycle or a fixed point. 

2. Description of the problem 

2.1. Intoduction  

Diabetes is a problem with the body's fuel system. It is 
caused by lack of insulin, a hormone made in the pancreas 
(an organ that secretes enzymes needed for digestion) that is 
essential for getting energy from food. There are two kinds 
of diabetes: 

In type 1 diabetes, which usually starts in children, the body 
stops making insulin completely. 

In type 2 diabetes, also called adult-onset diabetes, the body 
still making insulin, but cannot use it properly. 

Most adults with diabetes have type 2; in fact, type 2 diabetes 
accounts for 90% of all diabetes cases. 

 2.2. Facts about Diabetes in Adults  

 Diabetes is not contagious disease. 

 Diabetes has a genetic component and is greatly 
influenced by environmental factors related to 
Lifestyle  

 Diabetes contributes to the deaths  

 Diabetes often leads to blindness, heart and blood 
vessel disease, strokes, kidney failure, amputations, 
and nerve damage.  

 Uncontrolled diabetes can complicate pregnancy and 
put a mother at risk for having a baby with birth 
defects.  

 India has the largest number of people with diabetes, 
roughly around 35 million. of this approximately13 
million still remain undetected. 

 Indians develop diabetes almost one decade earlier 
than whites. This could be due to the fact that 
Indians have a low-risk threshold for many of the 
acquired diabetic factors, like obesity.  

 In India, diabetes is more prevalent among males than 
females(ratio being 1:0.6) 

 Amongst diabetics, 4.6% urban and 1.9% of rural 
population had a direct relation with diabetes. 

 Diabetes was twice as frequent amongst vegetarians as 
non-vegetarians. A higher prevalence of diabetes in 
urban India 

 Expatriate Indians tend to be more overweight, have 
stronger generic factor, being emigrants, live and 
marry amongst close relatives and thus have a much 
higher prevalence of diabetes.  

 In India, the average male weight is 55kg and the 
female, 48.5 kg. Among those detected to be 
diabetic, 31.5% were overweight. It would seem 
that leanness does not have negative correlation 
with diabetes in a country like India. 

 The recent World Health Organization report suggests 
that over 19% of the world’s diabetic population 
currently resides in India. This translates to over 35 
million diabetic subjects, and these numbers are 
projected to increase to nearly 80 million by 2030. 

 Obesity raises the risk for diabetes by as much as 93%, 
and an inactive lifestyle can raise it by as much as 
25%. 

2.3. Diabetes shifts base in India  
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Midway through their journey into urbanization, suburbs and 
small towns are finding themselves in precarious health.  
Results of a cohort study presented at an international 
conference recently shows that a higher number of people 
living in semi-urban areas have diabetes and hypertension 
when compared to those in cities.  Health care experts are 
concerned that a greater number of people in these areas now 
run the risk of cardiac arrests, renal failures and strokes. 
Says Dr. S. Thanikachalam lead investigator of the study 
and cardiology head at Sri Ramachandra university, who 
presented the results at an international conference in the 
city recently: “ We found that nearly 22.2% of people in 
semi-urban areas have diabetes compared to 17.5% in urban 
and 14.5% in rural areas. Similarly, the number of people 
with hypertension was 26.4% in suburban areas compared to 
17.3% in urban and 17.9% in the rural population.” The 
number of people with prediabetic and pre-hypertensive 
conditions was also found to be higher in semi-urban areas.  
Here is the logic: Suburbs and small towns have moved away 
from the routine physical exertions of villagers and neither 
do they have the awareness and wherewithal for an 
organized exercise regime like gymnasia. 

 The study, funded by the department of Science and 
Technology screened 6,000 people in Chennai, Tiruvallur 
and Kancheepuram.  “We fround 43.3% of people with 
abnormal glucose metabolism, 75.3% with abnormal lipid 
profiles and 52% with high blood pressure.  Though only a 
person with blood pressure higher than 140/90 is considered 
hypertensive, people with 135/85 also require intervention.  
So, at least 50% of our population would require 
intervention in one form or another,” says Dr. 
Thanikachalam. State health secretary VK Subburaj says the 
government is seized of the matter. “We have programmes 
like door-to-door screening of people.  We have been 
working out new awareness and prevention strategies”, he 
said. 

 Another disturbing trend the study revealed was that 
nearly 80% of the people had shown signs of physiological 
distress, including anxiety, stress or depression. “It was due 
to various factors including loss of a family member, 
financial problems or even other emotional issues.  We have 
adequate studies that prove How lack of good mental health 
can trigger a series of non-communicable diseases.  We 
think it is necessary to have a series of problems including 
counseling for such people,” he said. Now ‘rich man’s 
diseases’ come calling on city slums 

 Despite the health department’s ambitious project to 
provide health for all, a study by a city based hospital and 
research centre shows how poverty has pushed Chennai’s 
slum dwellers into a series of health problems and chronic 
disorders.  The study has generated interest among 
healthcare experts particularly because many feel the city’s 
epidemic pattern of diabetes is beginning to see a change.   

A study by MV Hospital for diabetes led by Dr. Vijay 
Vishwanathan, which screened over 900 people, showed that 
at least 17.2% of them had respiratory illness and 13.5% had 
other infections.  Anemia was high among women of all age 
groups and many children were found to be underweight. “In 
Chennai, more than 25% of the total population are slum 
dwellers.  About 40% of this slum population lives along the 
rivers and canals and the rest are on the pavements.  We saw 
how slums are largely neglected in terms of provision of 
healthcare facilities,” Says Dr. Vijay Vishwanathan. His 
team carried out the study to explore the living conditions 
and determining the health related problems that affect the 
underprivileged section of the urban population from all 
parts of Chennai. The study published in the Indian Journal 
of Community Medicine got 326 men and 574 women to 
answer an questionnaire covering socio-demographic details, 
housing and environmental details, health problems, and 
behavior, They were then taken to a hospital for clinical 
examination.  

“At least 48% had no access to safe drinking water and 66% 
had no toilets.  About 53% lived in temporary shelter.” Said 
Shabana Tharkar, Who did the study along with Dr. Vijay. 
But what makes their condition worse is that in addition to 
malnutrition and communicable diseases, their modified diet 
has led to increase in blood sugar.  A parallel study by the 
Madras Diabetes Research Foundation has shown that the 
incidence of diabetes in Chennai slums has gone up by 134% 
in the last ten years. The Dr. V. Mohan of Madras Diabetes 
Research Foundation says the epidemic pattern of lifestyle 
disorders is beginning to see a change within cities.  “I term 
the causes as influenza or sedentary, “he said. “Diabetes was 
once called the rich man’s disease.  In 10 years, it is likely to 
become the disease of the poor.  And we are seeing 
differences even within the city. Our study has shown a 
slowdown in the incidence of diabetes in the middle and 
upper middle class because they are aware and they can 
afford exercises.  Those in slum dwellers have two-wheelers 
instead of bicycles.  The lack of physical activity and 
consumption of packaged foods and aerated drinks are 
showing on their health. “says Dr. Mohan. 

2.4. The high risk factors for developing 
Diabetes 

Type 2 diabetes affects all types of people. However, there 
are factors that can put anyone at higher risk for developing 
the diabetic are  

 Being overweight (body-mass index of 25+)  

 Carrying fat around the waist and stomach  

 Being sedentary  
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 Being more than 45 years old (being over 65 increases 
risk even further)  

 Having a family history of type 2 diabetes  

 Having gestational diabetes or having a baby that 
weighed 9 lbs or more  

 Being of  Indian, or Native Indian descent  

 Having a low high-density lipoprotein (HDL) 
cholesterol level (less than 35)  

 Having a high triglyceride level (250 or above)  

 Having high blood pressure (140/90 mm/Hg or 
higher)  

Type 2 diabetes used to be quite rare before middle age and 
people living in the rural areas in India but now affects more 
and more young people who are overweight. Being 
overweight, even as a child or teenager is a significant risk 
factor for developing diabetes as an adult. 

2.5. The Symptoms of Diabetes   

Diabetes in adults may start slowly. In fact, millions of 
people don't even know they have it.  

They may just feel very tired at first, then later may have 
these symptoms: 

Urinating more than usual, as the body tries to get rid of the 
extra sugar in the blood, Feeling unusually thirsty, because 
the body needs to replace the lost fluid, Nausea, Blurred 
vision, Feeling hungry while losing weight, Frequent 
infections, Skin sores that won't heal. It’s important to 
remember that diabetes symptoms may not be the same for 
everyone. The symptoms of type 2 diabetes may come on 
gradually. Some people may have no symptoms at all. Many 
people have type 2 diabetes and don't know it. Untreated 
diabetes can cause serious health problems, such as 
blindness, heart and blood vessel damage, and permanent 
nerve damage. In this paper, we give an algebraic approach 
to the Diabetic problem faced by an adult. This study is 
significant because most of the adults in India can adopt the 
same procedure. All South Asians in general and Indians in 
particular are prone to diabetes. Thus all Indians above the 
age 25 years ought to be tested for diabetes.  By knowing this 
age group an adult least can take steps to treat himself. This 
linguistic questionnaire was used to obtain the attributes and 
using these attributes and the opinion of the experts we have 
used FRM to analyze the problem. 

3. Adoption of FRM model to study about 
Type2 Diabetic Problem 

We have made a sample survey of around 120 people living 
in Chennai( Patients of M.V. Hospital for Diabetes, 
Royapettah). They were interviewed using a linguistic 
questionnaire. The Fuzzy concepts, i.e. attributes are first 
given in the form of matrix relational equations and then 
solved. In this paper we use this method to find who the 
victims of Diabetes are. The following risk factors are the 
developing condition for diabetes and taken as the attributes 
of our study 

3.1. Attributes Related to the risk factors  

The domain space G connected with the risk factors are 
given by G = {G1, …,G10} 

      G1 : Carrying fat around the waist and stomach 

      G2 : Being sedentary  

      G3 : Being more than 45 years old  

      G4  : Having a family history of type 2 diabetes  

      G5: Having gestational diabetes or having a baby that   
              weighed 9 lbs or more  

      G6 : Being of Indian, or Native Indian descent  

      G7 : Having a low high-density lipoprotein (HDL)     
            cholesterol level less than 35)  

      G8 : Having a high triglyceride level (250 or above)  

      G9 : Having high blood pressure  (140/90 mm/Hg or  
      higher)  

      G10: Being overweight (body-mass index of 25+)  

3.2. Attributes Related to the Symptoms  

The Range space S connected with the symptoms are  given 
by S={S1,…S7 } 

      S1 : Frequent urination  

      S2 : Excessive thirst  

      S3 : Nausea  

      S4 : Blurring vision  

      S5 : Extreme hunger and  losing weight  
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      S6 : Frequent infections  

      S7 : Skin sores that won't heal  

Now using the expert's opinion. We have the following 
relation matrix by taking Risk factors G1….G10 as the rows 
and Symptoms S1,……,S7 as the columns.   

3.3. First Experts Opinion 

The opinion of the first expert is a Diabetic patient from 
urban and is given vital importance. His opinion is 
transformed into the Fuzzy Relational matrix P1 given by                                        

 

                          S1       S2       S3          S4      S5         S6      S7  

1

2

3

4

5
1

6

7

8

9

1 0

G 1 0 0 0 0 0 0
G 0 0 1 0 0 1 1
G 1 0 1 0 1 0 0
G 1 1 1 0 1 1 0
G  1 0 0 0 1 0 0

P
G 1 0 0 0 0 0 1
G 0 1 0 1 1 1 0
G 0 1 0 0 0 0 1
G 1 1 0 0 0 1 0
G 1 0 1 0 0 0 0

  

 
 
 
 
 
 
 

  
 
 
 
 
 
 
  

 The hidden pattern of the state vector X = (0 0 01 0 0 0 0 
0 0) is obtained by the following method: 

 XP1  ↪  (1 1 1 0 1 1 0 )      =   Y 

 YP1
T ↪  (1 1 1  1 1 1 1 1 1 1 )   =  X1 

 X1P1 ↪ ( 1 1  1 1 1 1 1 )      =  Y1 

(Where ↪ denotes the resultant vector after thresholding and 
updating)  

When we take G4 in the ON state ( i.e. Having a family 
history of type 2 diabetes ) and all other attributes to be in 
the off state. We see the effect of  X on the dynamical system 
P1 is a fixed point given by the binary pair   

{(1 1 1  1 1 1 1 1 1 1), (1 1  1 1 1 1 1)}.  

When we are having a family history of type 2 diabetes node 
alone in the on state we get say X = (1 1  1 1 1 1 1)  

The resultant to be the fixed point given by the binary pair 
{(1 1 1  1 1 1 1 1 1 1), (1 1  1 1 1 1 1)}.  

When the on state is taken as node G4 we see the hidden 
pattern is the fixed point which is the same binary pair, 
which makes all the nodes to be in the on state in the domain 
space and also makes all the nodes in the range space to be 
in the on state.  

3.4. Second Experts Opinion 

The opinion of the second expert who happens to be a 
Diabetic patient from rural area and his opinion is 
transformed into the Fuzzy Relational matrix P2 is given by: 

                                   S1      S2      S3     S4      S5     S6     S7 

1

2

3

4

2 5

6

7

8

9

1 0

G 1 0 0 0 0 0 0
G 0 0 0 0 0 1 0
G 0 0 0 0 1 0 0
G 0 0 1 0 0 0 0

P = G  0 0 0 1 0 0 0
G 0 1 0 0 0 0 0
G 0 0 0 0 0 0 0
G 0 0 0 0 0 0 1
G 0 0 0 0 0 0 0
G 0 0 1 0 0 0 0

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

The hidden pattern of the state vector X = (0 0 01 0 0 0 0 0 
0) is obtained by the following method: 

 XP2   ↪  (0 0 1 0 0 0 0 )      =   Y 

 YP2
T  ↪  (0 0 0  1 0 0 0 0 0 1 )   =  X1 

 X1P2  ↪  (0 0 1 0 0 0 0)       =  Y1 

 Y1P2
T  ↪  (0 0 0  1 0 0 0 0 0 1 )   =  X1 

  When we take G4 in the ON state ( i.e. Having a family 
history of type 2 diabetes ) and all other attributes to be in 
the off state. We see the effect of X on the dynamical system 
P1 is a fixed point given by the binary pair  {(0 0 0  1 0 0 0 0 
0 1), (0 0 1 0 0 0 0)}.  Since the working is time consuming, 
a C program is formulated for finding the hidden pattern.   

4. Conclusions and Suggestions 

The cause of diabetes continues to be a mystery, although 
both genetics and environmental factors such as obesity and 
lack of exercise appear to play roles. The principal reason for 
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escalating diabetes and regional disparities appears to be 
rapidly occurring socioeconomic changes and affluence 
associated with dietary excess and reduced physical activity. 
Chennai showed a steady increase in the prevalence of 
diabetes in the urban population. The major observation of 
the study had been the low amount of physical activity in the 
urban population in India is the main cause. Increasing 
urbanisation tends to lead to lower physical activity 
worldwide. The impact of urbanisation and its influence on 
life style has been the cause of diabetes.  

     Early identification of the high risk individuals would 
help in taking appropriate intervention in the form of dietary 
changes and increasing physical activity, thus helping to 
prevent, or at least delay, the onset of diabetes. This means 
that identification of at risk individuals is extremely 
important to prevent diabetes in India. The following steps 
are suggested to prevent diabetes. 

 Watch for and treat symptoms of low blood sugar, which 
may be a medication side effect  

 Watch out for early signs of complications such as 
problems with eyes, feet, skin and kidneys  

 It's important to remember that diabetes symptoms may 
not be the same for everyone 

 The symptoms of type 2 diabetes may come on 
gradually. Some people may have no symptoms at all. 
Many people have type 2 diabetes and don't know it.  

 Untreated diabetes can cause serious health problems, 
such as blindness, heart and blood vessel damage, and 
permanent nerve damage. 

 Seeing doctor regularly for checkups and a discussion of  
risk for diabetes is key to staying healthy. 

 Eat in a way that keeps blood sugar as steady as possible  

 Lose weight if necessary  

 Test  blood sugar correctly  

 Learn to take insulin shots  

           Start a fitness program  
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Abstract - Sleep disorders are exponentially growing with 
current statistics as approximately 1 in 6 or 40 million 
people in USA. This alarming state has to be controlled in its 
early stage, to achieve physical and mental wellbeing of 
human beings, contributing to the peace and welfare of 
whole world. Current sleep monitoring facilities uses 
dedicated sleep labs at the hospital. However these tests 
results are error prone since the patient sleep gets disturbed 
due to the numerous wired sensors attached to their body, 
new ambience, reduced privacy, and long waiting duration 
due to the non availability of sleep labs. This research aims 
to develop a pervasive monitoring system that overcomes 
these drawbacks and provides the capability to monitor and 
detect sleep disorders in any place comfortable to the patient 
such as patients home, hospitals etc thereby collecting the 
best signals. The real-time data received from the system will 
be analyzed to detect sleep disorders remotely and issue the 
alerts to the clinicians. In the first phase of this research, we 
have designed and implemented the complete system using 
EMG sensor alone. The initial results are incorporated in 
this paper.   

Keywords: Sleep Monitoring, Polysomnography, Wireless 
Sensor Networks, Real-time monitoring  

 

1 Introduction 
  Sleep is a naturally recurring state characterized by 
reduced or lacking consciousness, relatively suspended 
sensory activity, and inactivity of nearly all voluntary 
muscles" [1]. Sleep is important for the restoration and 
renewal of the body. Inadequate sleep can lead to many 
disorders like irritability, poor concentration, memory loss, 
impaired moral judgment, risk of type2 diabetes, decreased 
reaction time, increase heart rate variability and risk of heart 
diseases. Sleep disorders actually disturb the sleep cycle and 
the quality of sleep. According to the statistics of National 
Heart, Lung, and Blood Institute (NHLBI), 1 out of 6 
American are having sleep disorders [2]. Even though a 
clear statistics about the amount of sleep disorders prevalent 
in India is unknown, we estimate to have a similar figure 
equal to that in US.  One of the major problems faced in 
India is the improper treatment & diagnosis available for 
sleep disorders. This is mainly because of the lack of 
facilities and the exorbitant cost for the diagnosis and 

treatment [3]. The proposed system targets to solve this 
issue and is aimed at Indian Population.  

 According to the statistics by World Health 
Organization [4], it is estimated that 5-10% of the 
population at any given time is suffering from identifiable 
depression needing medical attention. By analyzing the 
sleep pattern, it is possible to detect depression. This can be 
found by analyzing the time it takes to sleep after going to 
bed, actual sleep duration, quantitatively measuring whether 
having deep or shallow sleep, number of awakening during 
sleep. The proposed system actually can calculate all these 
parameters to detect depression. Untreated sleep disorders 
will lead to poor concentration and Excessive daytime 
sleepiness (EDS). About 22% of the road accidents [5] are 
caused due to EDS in drivers. Obstructive sleep apnea is 
also a cause for EDS. Sleep apnea and other sleep disorders 
can be detected with the proposed system.  

 The system can be also used for disaster management 
applications, to monitor the sleep pattern of panic struck 
population and to provide proper medication to overcome 
them from the state of trauma. 

  Polysomnography is used to diagnose sleep disorders 
like sleep apnea, periodic limb movement disorder (PLMD), 
Rapid Eye Movement (REM) behavior disorder and 
narcolepsy.  Polysomnography is performed in dedicated 
sleep labs with all the measuring electrodes positioned on 
the patient body. With the placement of the electrodes the 
patient discomfort increases, which in turn affect the sleep 
leading to the failure of the test. The discomfort is mainly 
due to the change in the environment and also due to limited 
mobility since large number of electrodes fixed to the 
patient body. The proposed system actually takes care to 
reduce the patient discomfort, since it's a wireless system it 
overcomes the mobility and environment problems listed 
above. The system also supports remote monitoring so that 
the patients can take-up the test from the comfort of their 
home. The proposed system also helps in data collection 
from patients to capture the important biomedical signatures 
before and after an epileptic attack, which can be used for 
clinical research people to study epileptic attacks in detail.  

  The remaining portion of the paper is organized as 
follows, Section II describes the related work. Section III 
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explains the architecture and design of the proposed 
wireless remote sleep monitoring system. Section IV 
outlines the implementation details and Section V concludes 
the paper and provides the future work.  

2 Related Work 
 In [6], the authors provide a general outline about the 
measurement of key sleep related biomedical signatures, 
this can be obtained without wiring or physical contact with 
the subject. The paper presents a new approach of contact-
less measurement of heart rate, physical movement and 
respiration using Doppler radar mechanism. In the paper the 
authors illustrate that the Doppler system was able to detect 
the peaks similar to that of conventional measurements 
systems. This paper gives a new idea about contact-less 
sensing of biological signals. The system actually limits the 
mobility of the patient. The proposed system actually 
overcomes the mobility limitation. 

 The paper [7], provides an insight into measuring 
severity of OSA with the help of a new measure known as 
the Dynamic Apnea Hypopnea Index time. Normally the 
severity is measured from the Apnea Hypopenea Index, 
which is the average of the obstructive sleep events (OAH) 
during the entire sleep period. According to the authors, the 
number of OAH events is a random variable with unknown 
mean and probability distribution. The paper provides 
details on how to detect apnea from the available data with 
minimum error. The details regarding what type of 
physiological signals used to evaluate the algorithm is not 
specified in the paper. This paper actually helps in the signal 
analysis part of the proposed system.  

 In [8], paper describes a system which performs real 
time monitoring and transmission of physiological data of 
patients. The data collected from a wireless pulse oximeter 
is used to detect apnea on a Personal Digital Assistant 
(PDA) which has a General Packet Radio Service 
(GPRS)/Universal Mobile Telecommunications System 
(UMTS) facility. The analysis is based on SpO2 signals 
(blood oxygen level). A classifier that runs on the PDA is 
used for the analysis.  The main feature of this classifier is 
that it works on the limited resources of a PDA. The paper 
provides more details on the signal processing aspects on 
how to process the available data to detect apnea from the 
SpO2 Signals. The accuracy and reliability is improved in 
the proposed system by considering multiple parameters for 
the analysis. The system is limited only for the detection of 
apnea, but proposed system can be used for the detection of 
a variety of sleep disorders.  
 
 
 
 

3 Problem Domain : Sleep Disorders and 
Detection 

 “Sleep disorders involve any difficulties related  to 
sleeping, including difficulty falling or staying asleep, 
falling asleep at inappropriate times, excessive total sleep 
time, or abnormal behaviors associated with sleep”[9]. 
According to International Classification of Sleep Disorders 
(ICSD)[10], Sleep disorders are classified into four, 
Dyssomnias, Parasomnias, Sleep Disorder associated with 
Medical/Psychiatric disorders, and proposed sleep disorders.  

3.1 Dyssomnias 

 This disorder is characterized by problems in getting 
sleep or staying asleep or of excessive sleepiness. The three 
core sub-classification include, Intrinsic sleep disorders, 
Extrinsic sleep disorders, and Carcadian rhythm sleep 
disorders. Main intrinsic sleep disorders include Psycho-
physiological insomnia, Idiopathic insomnia, Narcolepsy, 
Obstructive Sleep Apnea, Periodic Limb Movement 
Disorder. Key Extrinsic Sleep Disorders include inadequate 
sleep hygiene, altitude insomnia, insufficient sleep 
syndrome, Alcohol-dependent sleep disorder and Sleep 
Onset association disorder. Few Carcadian Rhythm Sleep 
Disorders include time zone syndrome, shift work sleep 
syndrome, irregular sleep wake pattern, and non 24-hour 
sleep-wake disorder.  

3.2 Parasomnia 

 Parasomnias are characterized by undesirable motor, 
verbal, or experiential phenomenon occurring in association 
with sleep, specific stages of sleep, or sleep-awake 
transition phases [11]. Parasomnias are broadly classified 
into three, Arousal Disorders, Parasomnias associated with 
REM sleep and other parasomias like Sleep bruxism, Sleep 
enuresis, Nocturnal paroxysmal dystonia. 

3.3 Sleep Disorders associated with Medical/ 
Psychiatric Disorders 

 These are classified into Sleep Disorders associated 
with Mental Disorders, Sleep Disorders associated with 
Neurological Disorders, and Sleep Disorders associated 
with other medical disorders like Sleeping sickness, 
Fibrositis Syndrome. 

3.4 Proposed Sleep Disorders 

 Proposed Sleep Disorders include short sleep, long 
sleep, subwakefulness syndrome , Sleep hyperhidrosis and 
Terrifying Hypnogogic Hallucinations. To diagnose and to 
identify the disorders listed above a detailed multi-
parameter sleep study known as Polysomnography (PSG) is 
carried-out. The test result is known as Polysomnogram 
which contains a detailed capturing of key biological signals 
related to brain activity (EEG), Eye Movements (EOG), 
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Muscle Movements (EMG), cardiac rhythm (ECH), 
respiration and blood oxygen saturation during sleep. PSG 
is conducted with an overnight stay in dedicated sleep labs. 
The main factor that affects the test is the amount of quality 
sleep the patient gets during the sleep study at sleep labs, 
which is dependent on the discomfort level the patient faces 
while placing the electrodes for measuring various 
parameters which in turn tethers the patients to the bed. 
Also the new environment of the sleep labs can also affect 
the quality of the sleep. The proposed system overcomes all 
the drawbacks with the conventional PSG techniques. 

4 Architecture and Design of 
SLEEPGAZE 

 The top level overall architecture of the proposed 
system in depicted in Figure 1. The proposed system has 
three tier architecture. The base level module has the 
interface to the patient and the top most module has 
interface to the clinicians. The modular design and the plug 
n play features allow the system to be scalable and robust. 
The proposed system performs the real-time acquisition, 
wireless transmission and signal analysis & characterization 
of the signals. The major advantage of the system is that it 
can detect the sensor failure if the electrode comes out from 
the patient body and can provide alert to the bystander to fix 
the sensors properly. 

 

Figure 1.  Top Level Architecture 

4.1 Signal Acquisition and Transmission 
Module (SATM) 

 SATM is the module that has an interface with the 
patient. This module actually acquires the biomedical 
signal, performs basic signal conditioning and wirelessly 
transmits to the base station unit. 

The module block diagram is shown in the Figure 2. The 
electrodes used are Ag/AgCl electrodes. The electrodes pick 
the bio-potentials and generate a corresponding voltage 
output. The micro volt level of the electrode output needs to 
be amplified. The instrumentation amplifier amplifies the 

electrode output and generates an output that is sufficient 
for further signal conditioning. The band pass filter 
performs the required filtering of the signal and processed 
signal is sampled and wirelessly transmitted using MicaZ 
motes. 

 

Figure 2.  Block Diagram of SATM 

The sampling rate of the signal can be changed real-time 
depending upon the application and the user requirements, if 
required. The key feature is of this module is the plug n play 
capability of the module. Different modules can be interface 
to the system depending on the requirement and the type of 
parameter that is to be monitored. 

4.2 Data Aggregation & Escalation Module 
(DAEM) 

 The functionality of DAEM is to receive the 
continuous real-time signals from the SATM. The received 
signals will be aggregated, and transmitted to the server 
through heterogeneous wireless networks. If the congestion 
experienced in the wireless networks is high, then the 
signals have to be temporarily stored in DAEM, and later 
transmitted to the server. 

 The DAEM hardware architecture is designed to 
achieve the above mentioned functionalities.   The 
architecture of DAEM is shown in the Figure 3.  

 The Zigbee module will be receiving the data 
wirelessly from the SAT module. The DAE module will 
aggregate the received over a time and will be uploading the 
data to a remote server, using the available wired backbone 
or internet. This module will perform an initial level of 
analysis to detect sensor failure and has an alerting 
mechanism to notify the user. The actual signal processing 
takes place at the server. The memory facilitates the 
temporary storage of received data. The keypad and the 
LCD Display provide the required user interface. The 
Ethernet/USB interface provides the base station with the 
Ethernet and USB interface for external connectivity. 
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Figure 3.  Block Diagram of DAEM 

          
4.3 Database and Signal Processing/Analysis 

Module(DSPAM) 

 The functionality of DSPAM module is to store all the 
transmitted data, perform the essential signal processing and 
analyze the data.  

 

Figure 4.  Block Diagram of Server and Signal Processing 
Application 

 
 The analysis results and the raw data will be accessible 
to the clinicians once they authenticate and login to the 
application. The signal processing application has access to 
all the transmitted data and will perform a basic and 
application specific signal processing depending upon the 
user requirement. The user interface will display the 
waveforms. The block diagram is shown in Figure 4. The 
server can also perform real-time data dissemination 
depending upon the test scenario and user requirement. i.e.: 
If the doctor requires an alert to his mobile phone if the 
measured parameters crosses a predefined threshold, so that 
he can login and check the real-time data only when there is 
a necessity. 

5 Implementation  
As a first phase to the development and implementation of 
the system, the SAT Module for EMG was developed and 
tested. 

 

Figure 5.  Network Flow Diagram 

 The acquired signal was wirelessly transmitted to a 
remote PC using wireless sensor network. The network flow 
diagram of the test scenario is shown in Figure 5 and the 
transmitted EMG signal is shown in Figure 6. Since it is an 
ongoing research activity, the other modules for the entire 
sleep suite are under development.    

 

 

Figure 6.  Captured EMG Signal from Electrodes. 
 

 The IC used for pre-amplification is INA122 from 
Texas Instruments. INA122 has a variable gain from 1 to 
10000, high CMRR, low noise and low quiescent current 
which makes it suitable for physiological amplification 
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applications. The filtering is performed in the range of 10 to 
500Hz. Active fifth order Butterworth high pass and fifth 
order Bessel low pass filters were designed, developed and 
tested.  Maximally flat response in both magnitude and 
phase and nearly linear-phase response in the pass band 
makes the Bessel filter ideal for this applications. The 
software tools used for the design and simulation of the 
above circuits were TinaTI from Texas Instruments, 
FilterLab from Microchip and LabVIEW & MultiSIM from 
National Instruments. 

  

 

Figure 7: Packet Structure 

 

Figure 8 : Signal Processing GUI 

 The conditioned EMG signals were sampled satisfying 
the Nyquist criteria and was wirelessly transmitted to a 
remote location using Wireless sensor Networks having 
MicaZ motes. The coding was done using the nesC 
programming language and TinyOS platform. The packet 
structure used is shown in Figure 7. The transmitted packet 
is divided into three main segments, the time stamp, 
sourceID and data segments. The time stamp helps to 
synchronize and reorganize the data and the source ID helps 
in identifying the source at the receiver. In order to increase 
the battery life of the node, the data was transmitted only 
when there was some signal activity. 

 A GUI was also developed to perform basic signal 
processing on the EMG signal is shown in Figure 8. 

 The functionality and integration testing of the 
modules will be completed shortly. Tests are planned to 
validate the functionality of the system with multiple nodes 
and all the modules integrated. The final system will be 
deployed at Amrita Institute of Medical Science, Kochi, 
India. 

6 Conclusions 
 The paper provides a novel design for the monitoring 
and detection of sleep disorders. The main advantage of the 
system is that remote monitoring and diagnosis is made 
possible with the proposed system. The system can be 
manufactured at a very low price compared to the 
commercially available products in the market. Alerting 
mechanism provide a feed back to the bystander, if the 
sensors are not working properly.  Since the design has 
three tier architecture, the system is scalable and robust. The 
system actually reduces the discomfort level in patients 
since they can take the test from the comfort of their home 
and by improving their mobility. The future works 
envisaged include securing the wireless transmission, QoS 
analysis considering multiple system implementations and 
system commercialization. The main aim of the system is to 
target the rural population of India thereby making them 
accessible to clinicians and providing better remote 
healthcare and reliable diagnostic opportunities at low cost. 
This system can be used for determining different other 
ailments such as depression, post traumatic stress and relief 
work. 
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Abstract - This work describes a Doppler ultrasound system 
for measuring blood flow. The system is intended to be used 
for assessing coronary implants and bypass operations. 
Quantifying the blood flow through these implants/bypasses is 
an important task to ensure the chirurgical process, thus, 
reducing both the post-chirurgical and death risks. The system 
is based  on an open architecture that is portable and low-
cost, incorporating the advantages of expensive systems with 
dedicated hardware. It incorporates a pulsed-wave bi-
directional Doppler ultrasound flow detector working at 8 
MHz. Signal conditioning, detection of direction, signal 
processing, spectrogram displaying, parameters calculation, 
and a database handling subsystem complete the system. A 
graphical user interface is provided for controlling and 
monitoring the whole system. Doppler signal is processed 
using both Fourier Transform-based and Parametric Model-
based algorithms, having the facility to incorporate 
alternative higher-resolution spectral estimation methods. The 
system is being assessed in coronary revascularization. 

Keywords: Blood flow measurement, Doppler ultrasound, 
signal processing, spectral analysis. 

 
1 Introduction 
  Ultrasonic techniques have been successfully used in the 
development of medical diagnostic equipment in obstetrics, 
cardiology and the peripheral vascular system among others. 
This equipment may generate the image of an internal 
structure or the associated spectrogram of an artery’s blood 
flow using external ultrasonic transducers [1,2,3]. Ultrasonic 
diagnostic is a well-established and widely used technique in 
almost all medical areas. Although initially its development 
was focused to obstetrics, very soon several applications were 
found in cardiology [4].  

 The use of instruments based on the Doppler principle 
has allowed extracting phase information from the echoes of 
body moving structures producing images and sonograms 
which are used to estimate pressure and flow parameters [5]. 
Development of pulsed Doppler techniques in conjunction 
with the signal and image processing methods have generated 
a notorious increment in the use of ultrasound, opening new 

options and displacing other invasive methods used up to 
nowadays. 

 This work describes a Doppler ultrasound system for 
measuring blood flow. The system is intended to be used for 
assessing coronary implants and bypasses. Quantifying the 
blood flow through these implants/bypasses is an important 
task to ensure the chirurgical process, thus, reducing both the 
post-chirurgical and death risks. The system is based on an 
PC architecture that is portable and low-cost, incorporating 
the advantages of expensive systems with dedicated 
hardware. It incorporates a pulsed-wave bi-directional 
Doppler ultrasound flow detector working at 8 MHz. Signal 
conditioning, detection of direction, signal processing, 
spectrogram displaying, parameters calculation, and a 
database handling subsystem complete the system. A 
graphical user interface is provided for controlling and 
monitoring the whole system. Doppler signal is processed 
using both Fourier Transform-based and parametric model-
based algorithms, having the facility to incorporate 
alternative higher-resolution spectral estimation methods 
based on time-frequency distributions. The system is being 
assessed in a number of coronary implant and bypass 
chirurgical operations. 

 
2 Doppler ultrasound 
 Doppler ultrasound systems either continuous or pulsed 
are used as a non-invasive method for detection and 
evaluation of the blood flow [6]. Doppler frequency is 
proportional to blood velocity in the sampled volume and as 
the arterial blood flow is pulsed the Doppler signal has a 
spectrum that constantly varies in the time domain.  
 
 In ideal conditions the Doppler power spectrum has a 
similar form to a blood flow histogram in the sampled 
volume. This is depicted in figure 1a. The analysis of the 
Doppler signal gives relative information to the evolution of 
the distribution of the blood particle velocity in the artery [7]. 
An increment in the Doppler frequency range as a result of 
some type of turbulence in the blood flow is typically used to 
detect artery occlusions and other vascular problems, see 
figure 1b. 
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(a) 

 

Figure 1.- Doppler ultrasound measurement 

e 

modifi tion. 
Figure 2.- Doppler ultrasound blood flow system 

frequencies, and a 40–50 dB amplifier per channel. 

(b) 

 
 
 3 System description 

 The system is based on an PC architecture that is 
portable and low-cost, incorporating the advantages of 
expensive systems with dedicated hardware. It incorporates a 
pulsed-wave bi-directional Doppler ultrasound flow detector 
working at 8 MHz. Flow direction, signal processing, 
spectrogram displaying, parameters calculation and a 
database handling subsystem complete the system. A 
graphical user interface is provided for controlling and 
monitoring the whole system. Figure 2 shows the complete 
system. The system described in this work introduces som

cations in order to optimize its size, cost and opera

4 Pulsed wave flow detector 
 The design of a pulsed wave bi-directional Doppler 
Ultrasound blood flow detector is presented. The system 
includes a piezoelectric transducer operating in pulsed wave 
mode at 8 MHz of frequency. It uses a quadrature phase 
demodulation for detecting the Doppler signal produced by 
the blood flow. The Doppler detector generates audio signals 
I (in phase) and Q (in quadrature). These audio signals in 
quadrature are used as an input for further processing. 
 
4.1 Sensing probe 

 The system described in this work incorporates in a 
sensing probe, the transducer and the detector of the 
ultrasonic Doppler signal. Figure 3 shows a diagram of this 
sensing probe. This device has two piezoelectric ceramics, 
which are excited in a continuous mode, using demodulation 
in quadrature to detect the ultrasonic Doppler signal and 
giving as output the I and Q signals. The oscillator–
transmitter and the detector–demodulator circuits are 
integrated in a printed circuit board. These PZT-5 ceramics 
with a ‘‘D’’ shape are connected 1 cm away from the circuit 
for noise reduction and a higher sensitivity. System includes 
an ultrasound 8 MHz probe, however the circuit design 
allows the use of 4, 5, 8 and 10 MHz piezoelectric ceramics. 

4.2 Filters 

Considering that the blood flow velocity profile in humans is 
within the 20–750 mm/s range and the ultrasound velocity in 
tissue is 1540–1600 m/s [8,9], we may estimate the resulting 
Doppler signal bandwidth (Fd), and use ultrasonic transducers 
in the 2–10 MHz range. This Doppler signal may be 
calculated using the expression; Fd = (2v/c) f0, where v is the 
blood velocity [m/s], c is the ultrasound velocity in the 
medium and f0 is the transducer frequency, using this 
expression and the values given, the Doppler signal is within 
the 200–10,000 Hz range. Quadrature signals (I, Q outputs) 
from the blood flow-sensing probe are connected to a two 
channel amplifying and filtering module, a schematic diagram 
of this module is shown in Figure 4. Filters are dynamic 
analogue, fifth order band-pass and with 300 and 8000 Hz cut  

Figure 3.- Sensing probe diagram 
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Figure 4.- Amplifying and filtering module 
 

4.3 Flow direction 

 Blood flow signals I(t) and Q(t) are filtered and 
amplified giving as a result signals I’(t) and Q’(t) These 
signals are input and then are transform into quadrature 
signals d(n) and q(n) to be digitally processed. There are 
several methods to transform quadrature signals d(n) and q(n) 
into flow directional signals f(n) (forward flow) and r(n) 
(inverse flow). The phasing filter [1] was selected to 
transform the signals. This has the advantage that the 
processing time is around milliseconds. Figure 5 shows the 
block diagram of the algorithm. Here Hilbert transform was 
implemented using FFT in order to achieve efficiency.  

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.-  Phasing filter and flow direction case study 

5 Doppler signal processing 
In order to measure blood velocity and to monitor is 

flow, it is necessary to estimate the Doppler signal spectrum. 
A conventional method to determine and display the spectral 
information is real time spectral analyzer, see Figure 6. The 
frequency information of the signal may be display as an 
amplitude graphic of the signal spectral components versus 
frequency (frequency spectrum) for each sample interval. Due 
to the blood velocity in arteries is periodic, the Doppler signal 
is cycle-stationary, therefore, the Doppler spectrum of each 
sample interval show variations in the mean frequency and 
shape along the cardiac cycle. Then, it is necessary to use 
very short intervals (5–10 ms) where the Doppler signal may 
be considered as a stationary signal. Spectral power density 
estimation of a Doppler signal is achieved using methods 
based on the Fourier transform (FT). However, several 
research studies present spectral estimation alternative 
methods such as parametric methods [10-16]. Processing 
module includes different processing capabilities and 
calculates automatically the Pulsatility Index, Resistance 
Index and volumetric flow. The software can also process the 
Doppler signal using a CFFT (Complex Fast Fourier 
Transform) algorithm [3,4] or an AR-Modified Covariance 
algorithm [10] in order to visualize the spectral broadening 
due to possible stenosis. Doppler blood flow signal is 
typically represented by a spectrogram where the horizontal 
axis is time [s], the vertical axis is frequency [Hz] or 
Volumetric Flow [ml/min] and the Amplitude is represented 
with a color proportional to its magnitude. The software was 
developed using C++ programming language and Open GL 
for graphics display. The Graphical User Interface (GUI) has 
been developed using  GTK. Figure 6 shows examples of 
spectrograms displaying 512 point windows at 11025 S/seg 
sampling rate. Hanning windows are used with a 5 ms overlap 
to reduce the numeric noise due to windowing. The complete 
spectrogram is build with all the consecutives spectra, scaling 
the amplitude to a dynamic range 1 – 12 (1 being at 25 dB and 
12 at 37 dB). Doppler signal was divided into 2-20 ms 
overlapped windows and processed. 

(a) 
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(b) 
 
Figure 6.- Spectrograms corresponding to 6 cardiac cycles 
using (a) FT and (b) AR-modified covariance based methods 
(over zero values-direct flow, below zero-inverse flow) 
 
 
6 Tests and results 
 The testing of the detection device in the laboratory was 
conducted using a blood flow “phantom” system which 
includes an electronic controlled pump that emulates different 
flows and heart rates through 2–4 mm diameter vessels as is 
shown in figure 7.  A mimic blood fluid was used to produce 
the Doppler effect in the fluid passing through the vessels. 
The system was also tested in real open-heart surgeries in 10 
patients that had coronary implanted grafts, see figure 8.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.-  Doppler ultrasound system in vitro 
 

The application software allows the user to select the 
diameter of the artery, the frequency and angle of the 
ultrasound probe. It also allows de user to select the amplifier 
gain, threshold, dynamic range and processing approach 
(CFFT or Modified Covariance) so the surgeon can visualize 
the spectrogram according to predefined patterns of the 
signal. The software incorporates a stand-alone data base that 
will capture all single or sequential grafts done in each 

operation and that can be uploaded or downloaded from a 
general distributed database system connected via internet.   

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Figure 8.-  Doppler ultrasound system in vivo 
 
 
7 Conclusions 
 A Doppler ultrasound system for measuring blood flow 
has been presented. The system is intended to be used in 
coronary implants and bypasses, aiming to verify the quality 
of flow in coronary grafts which is essential for the success of 
a heart surgery and the recovery of a patient with heart 
disease. Quantifying the blood flow in these 
implants/bypasses is an important task to ensure the 
chirurgical process, thus, reducing both the post-chirurgical 
and death risks. The spectrogram output and estimated 
parameters generated by the system provides important 
quantitative and qualitative information of the blood flow and 
can even detect possible errors during surgery or even 
internal stenosis or “flaps” in the new implanted grafts.  

 The system is based on an architecture that is portable 
and low-cost, incorporating the advantages of expensive 
systems with dedicated hardware. A graphical user interface 
has been provided for controlling and monitoring the whole 
system. Doppler signals are processed using both Fourier 
Transform-based and Parametric Model-based algorithms, 
having the facility to incorporate alternative higher-resolution 
spectral estimation methods.  

 The system has been tested successfully in the 
laboratory (with synthetic signals in a “phantom”) and during 
real surgery, separating effectively the direct and inverse flow 
components of the Doppler signal and giving important 
information about the quality of blood flow, providing the 
cardiovascular surgeon with an suitable tool for detecting 
anomalies during the coronary graft surgery. Further work is 
being carried out, aiming to provide higher-resolution 
spectral estimation methods together a number of software 
tools that can help in the interpretation of the Doppler grafts 
signals database. 
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Abstract— Not much data are available regarding the 

electrical activity in the stomachs and intestines of elderly 
gastrectomized patients. The purpose of this study was to 
determine the feasibility of using a complex dynamic method to 
analyze the electrogastrograms (EGGs) of healthy young, 
healthy elderly, and gastrectomized elderly male individuals. 
We analyzed the EGGs by using the maximum Lyapunov 
exponent (MLE), which is one of the indices of the chaotic 
characteristics of time series. Significant differences were 
observed between the MLEs estimated from the EGGs of the 
young and elderly individuals for most of the temporal intervals. 
Our data indicate that the EGGs of elderly gastrectomized 
subjects might be distinguished from the EGGs of healthy 
elderly individuals on the basis of the MLE distribution. 

I. INTRODUCTION 
ANY young women suffer from gastrointestinal 
diseases such as constipation and functional dyspepsia 

including gastroesophageal reflux disease (reflux 
esophagitis). Percutaneous electrogastrograms (EGGs) 
unrestrainedly and easily measure gastrointestinal activities. 

The first electric activity record on the body surface was 
performed by Alvarez in 1921, and he named it an 
electrogastrogram (EGG) [1]. EGGs were easily affected by 
electrocardiograms (ECGs) and electromyograms (EMGs) of 
the diaphragm during breathing due to the law induced 
potential from the abdominal wall. There was also no clear 
association with gastric activity and data analysis methods, 
and, therefore, they did not achieve clinical application like 
ECGs and electroencephalograms. 

There is regular electrical activity in the stomach and small 
intestine, like the heart, and electric depolarization and 
repolarization are repeated. A pacemaker for gastric electrical 
activity exists in 1/3 of the greater curve of the gastric body, 
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and electrical activity travels to the pyloric part 3 times per 
minute (3 cpm, cycle per minute) in humans. The pacemaker 
triggers periodical electric activities controlled by the vagus 
nerve. This involves a cell group network called the 
interstitial cells of Cajal (ICCs) [2 – 4]. 

The advantages of EGGs were their utility to measure the 
above-mentioned periodical electric activity and evaluate the 
(gastrointestinal) autonomic nerve function. In the stomach of 
resting healthy individuals, peristalsis occurs 3 times per 
minute when a certain period of time has passed after meals [2 
– 4]. The normal range of the EGG fluctuation cycle is 
between 2.4 – 3.6 cpm, but there is no clear standard except 
for a frequency close to 3 cpm [5, 6]. 

EGG studies have made progress with the recent 
improvement of measurement technology. However, the 
common EGG analysis method is a spectral analysis 
technique such as Fast Fourier Transform (FFT), and few 
reports are available on non-linear analysis. However, 
considering complex organic activity, non-linear analysis 
methods including chaos analysis and evaluation based on 
stochastic process analysis are considered inevitable for the 
modelization of dynamic movement, an accurate diagnostic 
index, and extraction of a body assessment index. 

Maximum Lyapunov exponent (MLE) is a common index 
of non-linear analysis [7, 8], and has been widely used in 
various fields including economic model and sound analysis 
[9 – 11]. In biosignal analysis, biosignals are considered to be 
generated based on the non-linear dynamic systems with a 
few degrees of freedom in the pulse and brain waves, and R – 
R interval of ECG. Therefore, chaos analysis is used [12 – 13]. 
In contrast, few reports are available on the chaos analysis of 
EGGs using the Lyapunov exponent. 

A previous study showed that there were groups with and 
without gastric electrical activities in subtotal gastrectomy 
cases, although no EGG was recorded in total gastrectomy 
cases [14]. Therefore, it is difficult to diagnose and judge 
gastrectomized EGGs of healthy individuals and 
gastrectomized patients whose intestinal electrical activities 
and digestive functions decline with age solely with spectral 
analysis. 

The purpose of the present study was to perform a basic 
examination of non-linear analysis application in EGG. The 
EGGs of healthy young males, healthy elderly males, and 
elderly gastrectomized males were analyzed using MLE, 
which analyzes the chaos of time series signals, and 
compared. 

Analysis of the Electrogastrograms of Elderly Subjects  
by using Maximum Lyapunov Exponent 

Matsuura Yasuyuki, Miyao Masaru, and Takada Hiroki 
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II. MATERIALS AND METHODS 

A. Method 

Subjects were 7 healthy young males aged between 21 and 
25, 7 healthy elderly males aged between 65 and 76, and 3 
elderly gastrectomized males aged between 67 and 76 whose 
stomach had been resected by more than 2/3. A full 
explanation was given to the subjects prior to the experiment, 
and signed consent forms were obtained. The research on 
young individuals was approved by the Ethics Committee, 
Nagoya City University Graduate School of Natural Sciences, 
and the research on healthy elderly and elderly 
gastrectomized males was approved by the Ethics Committee 
of Aichi Medical University. 

EGG in a supine position was conducted for 90 minutes. 
Measurement was performed in a sound-insulated (40 dB) 
experimental room without windows. The room temperature 
was between 20 – 24℃, humidity was 40 – 55%, and the air 
current was below 0.1 m/s. Subjects were told to finish meals 
2 hours before measurement so that it was not affected by the 
meals. Measurement was started between 14:00 and 15:00 for 
all subjects to avoid the influence of circadian rhythm 
(circadian change). 

EGG measurement was performed using unipolar 
induction. The measurement was amplified by a biomedical 
amplifier (MT11: NEC Medical), and recorded in a data 
recorder (PC216 Ax, Sony Precision Technology). 

Several methods have been proposed for EGG 
measurement methods [5], and the number of electrodes and 
pasting position vary. All the measurement and pasting 
methods include measurements involving the area closest to 
the stomach pacemaker. Therefore, measurement was 
performed in the area closest to the stomach pacemaker in the 
present study. 

EGG electrodes were pasted as shown in Fig. 1, using 2 
disposable ECG electrodes (Vitrode Bs, Nihon Kohden). 
Pasting was performed after confirming a sufficient reduction 
of skin resistance using Skin Pure (Nihon Kohden). 

B.  Time-series extraction 

The recorded EGG was A/D converted at 1 kHz to obtain 
time-series data. A low-pass filter for a 0.15-Hz treble cutoff 
frequency was applied to the obtained data to remove 
electronic noise from the incorporated EMG and electronic 
devices, and resampling was performed at 1 Hz to remove 
noise. 

The EGG time series with removed noise was moved at a 
300-point (5-minute) interval in a 1,200-second (20 minutes) 
time window to divide data. EGG time series for a total of 255 
subjects (supine position: 15 cases x 17 subjects (7 young 
healthy, 7 elderly healthy, and 3 gastrectomized individuals)) 
were developed for analysis. 

C. Analysis method 

The Lyapunov exponent is a quantity that characterizes the 
rate of separation of two trajectories on an attractor with time, 
and demonstrates the enlarged distance of the behavioral gap 
caused by a minute initial gap [7, 8]. The maximum exponent 
is called MLE. This exponent quantitatively evaluates the 
complexity of the attractor that formulates the time series 
{ }1199

0=ttx . 
The Rosenstein analysis method was used in the present 

study [15, 16]. The attractor was constructed using the 
obtained data. An infinitesimally close point xj from the point 
xi on the attractor was created, and the ratio of the distance 
with d intervals was assessed by the changes with time as 
shown in the following Eq.(1).  
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where the interval d expresses an embedded dimension. The 
calculations are made for multiple pairs, and uniform 
operation is performed using the following formula: 
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The Lyapunov exponent λ is estimated using the following 
formula in which τ means the embedding delay: 

 

),(log1)( dtd ∆=
τ

λ
 . 

 There is a potential for the time series to show chaos when 
MLE is positive [7, 8]. The bigger the value, the more 
irregular the wave becomes, suggesting a complex orbit [7, 8]. 
In the present study, numbers were fixed including the data 
length for 1,200 points, d for 3 (dimension), and τ for 3 to 
estimate the MLE. 

 
Fig. 1.  Pasting position of EGG electrodes. 
 

(1)

(2)

(3)
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III. RESULTS 
Fig. 2 shows EGGs of healthy young (a), healthy elderly 

(b), and gastrectomized individuals (c) 10 minutes after 
measurement initiation for 5 minutes. Normal fluctuation 
cycles are observed in EGGs of Figs.2 (a), (b), and (c). 
However, EGGs of the healthy young individuals (Fig. 2 (a)) 
showed a large amplitude and unstable fluctuation cycle. In 
contrast, EGGs of the healthy elderly (Fig. 2 (b)) showed a 
regular pattern, and that of gastrectomized individuals 
showed wavelengths with a shorter cycle compared to the two 
other groups, suggesting a different fluctuation pattern. 

Figs. 3 (a), (b), and (c) show the two-dimensional attractors 
(τ=3) formed based on EGGs of the healthy young (Fig.2 (a)), 
the healthy elderly (Fig.2 (b)), and gastrectomized individual 
(Fig.2 (c)), respectively. 

Fig. 4 shows fluctuation of the average and the standard 
deviation of the MLE estimated from EGGs of the healthy 
young, healthy elderly, and gastrectomized individuals. Fig. 5 
shows the frequency distribution of the MLE estimated from 
EGGs of the healthy young, healthy elderly, and 
gastrectomized individuals.  

MLEs of EGGs in the healthy young ranged from 0.69  
– 0.79, with an average of 0.75, standard deviation of 0.018, 
and standard error of 0.069. MLEs of EGGs in the healthy 

elderly ranged from 0.59 – 0.76, with an average of 0.72, 
standard deviation of 0.031, and standard error of 0.012. 
MLEs of EGGs in the gastrectomized individuals ranged 
from 0.68 – 0.78 with an average of 0.73, standard deviation 
of 0.028, and standard error of 0.016. The MLE was positive 
in all subjects and all analysis intervals. The results suggested 
that sensitivity to initial conditions was seen in EGGs of the 
healthy young, healthy elderly, and gastrectomized 
individuals. There was a significant difference in MLEs 
estimated from EGGs of the healthy young and healthy 
elderly according to the time. 

IV. DISCUSSION 
MLEs were estimated based on EGGs of healthy young, 

healthy elderly, and gastrectomized individuals. The results 
showed that MLEs of healthy young individuals were around 
0.74. In contrast, MLEs of healthy elderly individuals were 
around 0.72. The results suggested that EGGs of healthy 
young individuals are more irregular in wavelength and 

Fig. 2(a).  Example of an EGG in a healthy young individual 
 

Fig. 2(b).  Example of an EGG in a healthy elderly individual 
 

Fig. 2(c).  Example of an EGG in a gastrectomized individual 

 
Fig. 3(a).  Attractor of the healthy young EGG (Fig. 2(a)) 
 

 
Fig.3(b). Attractor of the healthy elderly EGG (Fig. 2(b)) 
 

 
Fig. 3(c). Attractor of the gastrectomized EGG (Fig. 2(c)) 
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complex in the orbit compared to those of the healthy elderly. 
Although MLEs of the healthy young and healthy elderly 
EGGs generally continued to be flat, MLEs of gastrectomized 
individuals’ EGGs changed over time.  This is considered to 
be due to the fact that part of the gastric pacemaker cell group 
was lost on subtotal gastrectomy, and the electrical 
activity-derived component of the intestine was dominant in 
the EGG wavelength. 

The shape of the MLE frequency distribution showed a 
one-peak distribution in the healthy young, strained-floor 
distribution in the healthy elderly, and multiple-peak 
distribution in the gastrectomized individuals. The elderly 
show larger individual differences compare to the young. 
This causes a strained frequency distribution and greater 
variance in the healthy elderly. Multiple-peak distribution of 
MLEs in the gastrectomized individuals is considered to be 
caused by transmission fluctuation of gastric electrical 
activity due to gastrectomy. 

In this study, EGGs of the healthy young, healthy elderly, 
and gastrectomized individuals were compared using an 
index in the non-linear analysis. The indices in the non-linear 
analysis are expected to apply to the evaluation of motion 
sickness induced by stereoscopic movies. 

V. CONCLUSION 
EGGs of the healthy young, healthy elderly, and 

gastrectomized individuals were compared using the MLE, 
which is an evaluation method of time-series chaos as a basic 
examination of non-linear analysis method application to 
EGG. 

There was a significant difference in MLEs estimated from 
EGGs of the healthy young, healthy elderly, and 
gastrectomized individuals according to the time. There is a 
potential for EGG classification of gastrectomized 
individuals based on the MLE distribution.  

The MLE was used for analysis in the present study, and 
further basic examinations are planned employing other 
non-linear analysis methods. 

EGGs of 3 gastrectomized individuals were used in the 
present study. Further studies are planned with an increasing 
number of cases. 
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A Personalized Health Information System to foster Preventive

Medicine

Sebastian Klenk, Julia Möhrmann, Andre Burkovski, Jürgen Dippon, Peter Fritz and Gunther Heidemann

Abstract—The first and foremost task of all health informa-
tion systems is to inform the users about their current health
level. Good systems give information on what action might
change their status quo for the better. A excellent system would
engage the user in these actions to improve their health in a
sustainable way.

In the course of this paper we will demonstrate how such
a system might look like. Our main emphasis will be on its
attainability with currently available data sources.

I. INTRODUCTION

People are traveling in their cars along a highway,

only to find that the road heads directly off a cliff.

Not surprisingly, this creates a pileup at the cliffs

bottom with all sorts of injuries and fatalities. So,

where do you put the hospital?

This quote taken from Goetzs book ”The decision tree” [5]

illustrates the dilemma we have with our current heath care

system: We treat people only after they fell of the cliff and

do not prevent them from falling. In this paper we will

present a system that is intended to make people think about

performing a u-turn before they reach the cliff. We will start

with a small example which will serve as a guidance through

this paper.

Example 1: You, a health concerned user, decide to do

something about your health. You consult your doctor and

buy a lot of books and magazines. The information you

get from your doctor is rather medical as well as detailed

and you get the advice to exercise more and perform a

healthy diet. The facts and information you get from books,

magazines or health portals are also rather generic and in no

way personalized. After a number of days with healthy food

and irregular exercise your motivation drops. You neither see

any progress nor does the abstract idea of better health allows

you to further remain obedient.

What is clearly lacking in this example is the connection

between you current situation, its outcome and the improved

outcome after exercise and a better diet. The same example

with feedback on the actions taken would result in a dramat-

ically different outcome.

Example 2: You, a health concerned user, decide to do

something about your health. You consult your doctor and

buy a lot of books and magazines. The information you get
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is very specific to your current situation. You get detailed in-

formation on how more exercise and a healthier diet improve

your health and reduce the risk of fatal diseases. After each of

your exercise you can see how you life expectance changes

and after each healthy meal you see the risk reduction for

different diseases. This kind of continuous feedback keeps

you on track for the next few years.

Goetz [5] argues in his book that personal monitoring

and direct feedback allows for more conscious decisions.

In the next few sections we will propose a system that

can support such a process. It monitors personal lifestyle

data, compares the data with epidemiological data, estimates

probable outcomes and proposes alternatives.

II. THE DATA

Changing peoples behavior requires them to be knowl-

edgeable about their current actions and what consequences

of these actions are. Further it is necessary to demonstrate

how a change in action positively influences their health. At

first sight, this seems to be rather trivial and the, therefore

necessary, data easy to obtain. Basically we would need data

on

1) the current health condition, the current lifestyle and

2) on the expected progress or decline of the persons

health.

But obtaining objective, quantitative data on peoples lifestyle

is still a question of active research. How do we measure the

average stress level, or the overall amount of exercises people

actually perform? How to measure peoples diet, alcohol or

smoking habits? For obvious reasons, having them record

each of these factors by hand does not work. We need a

(semi-) automatic way of determining these aspects.

A. Personal lifestyle information

As lifestyle data we will consider any data that is in

any way connected to the personal lifestyle. This could be

dietary facts, the current stress level, the amount of exercise,

relationship status or parental status. Even though this data

is all around us, it is not easy to access. We belive that a

semi automated approach is most promising. We will now

discuss how the raw data can be obtained and we will

present methods how to calculate actual information from

the different sources.

1) Movement data: Lifestyle data, which is relatively easy

to obtain, is movement data. How much does the person

move, or at least how much does the smart phone of a person
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Fig. 1. The structure of the personalized information system. On the left
side of the brick wall is the medical information system. On the right side
is the patient information portal.

move? The difficulty with this kind of data is that, as long

as it is not processed, it is of little use.

Figure 1 shows how the data is collected. Most of todays

smart phone are capable of collecting acceleration data.

There are three sensors, one for each axis in a three di-

mensional space. Each of these sensors collects informa-

tion on the acceleration along its axis. Once the data is

inside the phone it has to be classified. This is necessary

because not all movement is actually due to self induced

body movement. Some movement might be cause by the

movement of a car the user is in or because he or she is

taking the elevator instead of walking up the stairs. Figure 2

shows the acceleration curves for these two cases. There is

already some promising research being done in this area [3],

[1]. These approaches use time-frequency domain features

and let users label their data themselfs. The result is a

time series of different discrete blocks of activities. These

include movement related aspects such as walking, running

or climbing stairs, but also things like driving a car or taking

an elevator.

With Information about different activities performed by

a person and the duration of each of these activities it is

easy to obtain a measure for the level of exercise performed

by that person. This is already a good health indicator, but

focusing sole on the amount of movement might also lead

into wrong directions. A high stress level could result in a

high degree of personal movement which would lead to the

conclusion of a healthy life. We therefore have to include

further information.

2) Stress level: Obtaining information on psychological

aspects of a persons health is a difficult task. Stress for

example is perceived and handled different by different

people. There are however physical manifestations of stress

such as in speech [6]. The voice and the articulation changes

significantly when people are under stress. This is used, for

Fig. 2. Acceleration curves for a elevator ride (top) and a walk upstairs
(bottom).

example, in the area of driver safety to detect the stress and

distraction level of a driver [2]. A similar approach could

be used to detect the stress level of a person answering the

phone. Given the speech data from phone calls, the same

algorithms can be used to determine whether the speaker is

currently under pressure or not. With this information we

could determine the stress level at the moment of the phone

call. With the data on all phone calls a user performs it would

be possible to calculate a stress measure that could be used

as a health indicator.

3) Eating habits: Exercise and Stress are just two im-

portant aspects of personal health. Others are eating habits.

Again, modern smart phones can help us gather information

on this lifestyle fact. Because, especially in urban areas,

people eat out most of the time, eating habits can be obtained

from their geographical location.

Most restaurants are visited for the food they are famous

for. Therefore concluding from the restaurants people visit

to the food they eat is not too far of a reach. People visit

fast food restaurants for fast food, not for salad. They go to a

sportsbar for beer and wings and not for juice and vegetarian

food. If we accumulate data from several restaurant visits we

might get a quite good idea of eating habits.

The difficulty with this kind of information is the classi-

fication of restaurant. Not all restaurants are already labeled

with a suitable class label. We would therefore require the

user to provide some initial information on the type of

restaurant he is visiting and on the kind of they serve.

4) Semi automatic classification: So far we assumed that

given the data and a smart enough algorithm we can deduce

almost any information. Movement can be classified by

looking at different frequencies, listening closely gives us

information on the stress level and the restaurant visits reveal

the kind of dish a person likes. Unfortunately it probably

will not work that smoothly. The algorithms will most likely

need further information. Such input could be a verification

of a classification result: was the classification the algorithm
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performed right or should it make adjustments. ”Was it right

to deduce that you just had steak after you visited this steak

house? No this place is famous for its fresh salad bar, I

had salad”. Semi automatic approaches to machine learning

come in different flavors and are long known in the pattern

recognition community [7].

B. Medical data

Besides personal lifestyle data we will also need data on

the outcome of the current lifestyle of people. This data

can be obtained from different clinical or epidemiological

sources.

From the early days of medicine data on the success

or failure of treatments has been gathered. Evidence based

medicine has increased the importance of such data col-

lections. They have become the foundation of treatment

decisions. Especially for chronic diseases, such as heart

diseases, stroke, cancer or diabetes there are large collections

of data that cover numerous aspects of a person as well as

follow-up information. These data bases have been used as

rich source for epidemiologist and should now be opened up

to all people.

1) Epidemiological data: From the point of view of those

people involved, these large collections of data are a good

thing because all the relevant data is already available. The

drawback is that, in its current complexity, most likely,

people will be overwhelmed by the amount of information

available. Fortunately, given the information about peoples

current condition, a small number of key diagnosis dates is

sufficient to calculate all necessary probabilities. Therefore

it is easy to calculate the personalized expected development

of a chronic disease of a person, given only his current age

and as little as five to ten other variables. The obtained data

can then be compared to the expected development under

a different condition. All the data which is necessary for

such a calculation is already contained in different research

data sets. The computations required to analyze them are

mostly known for a quarter of a century. Almost all statistics

packages are therefore perfectly capable of analyzing them.

The resulting plots, Kaplan-Meier diagrams or hazard curves

are easily interpretable, even by non experts.

2) Further information: So far, we only discussed data

that can be statistically analyzed. Such data is an important

source of information when it comes to determining what the

expected outcome of a persons current lifestyle is. Besides

this quantitative data there is also qualitative data that is

of interest for people. Such information might be data on

different diets or exercises, the side effects of a special

treatment or whether any of this is covered by insurance.

Most of this information is already publicly available in

different sources and different qualities.

One major source of qualitative information are medical

publishers such as Thieme or Springer. Most of them pro-

vide some form of online service. These services provide

information on diseases, treatments, drugs and other health

care related topics. Depending on the targeted audience the

treatment of the subject ranges from coarse to very fine and

detailed. Besides services that stem from print products there

are a number of native online services such as WebMD,

MedicineNet or Healthline.

Other important sources of information can be found

in user generated content such as the open encyclopedia

Wikipedia or public health portals and forums such as

iMedix or eHealthForum. Of course the degree of quality

in these sources varies extremely depending on the person

who contributed the content.

All these sources of health data provide information that

can be searched for, and found, with simple key word based

queries. Such a search benefits mostly from the vast amount

of data available online.

III. THE INFORMATION SYSTEM

When you decide to change your lifestyle towards a more

sustainable way of life and you are confronted with a system

that bombards you with all the data described above, you will

soon stop using such a system. Even worse, instead of having

reassuring guidance you will feel confused and insecure.

Data is probably the most important aspect of an informa-

tion system, but the extraction of the valuable information

from the vast amount of data available is also the most

difficult aspect of such a system.

When presenting personalized information, focusing on

the right information is a major challenge. In this section

we will show how system architecture and information flow

can be constructed such that only relevant and suitable

information will be presented to the user.

The personalized information system we are proposing

consists of three parts. Each of these parts performs its own

data processing. The structure of the system can be seen

in Figure 3. The first part is the, already existing, medical

information system (left to the brick wall). Its main objective

is the statistical analysis of large patient data corpora. The

second part (right to the brick wall in Figure 3) is the personal

health information portal which gathers and aggregates data

from different sources. The third part, and one of the data

sources, is the mobile application that collects the personal

lifestyle information.

A. Medical information system

The statistical analysis of patient data has a long and

fruitful history in medicine. Most medical research work is

based on thorough numerical evaluation. The results of these

calculations are mostly left to the physician to interprete.

Patients usually don’t come in contact with this kind of

data. There is a good reason for this: The statistically valid

interpretation of subtle statistical differences is neither easy

nor obvious.

In a health information system the software decides which

are the different options that can be compared. This way

only statistically valid queries can be formulated. Interpreting

the resulting plots from these queries, is also made much

more easy as only a very small number of intuitive plots are

presented.
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Fig. 3. The structure of the personalized information system. On the left side of the brick wall is the medical information system. On the right side is
the health information portal with the mobile data collector.

B. Personal health information portal

Portals are places where data, people and services are

integrated into one seamless presentation of information. The

proposed personal health information portal integrates clini-

cal and statistical data from the medical information system

with personal health information, lifestyle information other

publicly available data sources.

The clinical data will be obtained directly from medical in-

formation systems. Here the physical separation (represented

by the brick wall in Figure 3) serves two purposes: First, it

guarantees that only data will be presented to the user which

is suitable for his needs. Second, it also protects the privacy

rights of other patients in the database underlying the medical

information system.

The publicly available data will be obtained from differ-

ent sources. First of all there are medical publishers that

provide information services. Some of them also provide

standardized access methods such as SOAP, REST or the,

currently under development, InfoButton Specification [4].

The main difficulty when connecting to these services is

the standardized nomenclature. Different services require

different name spaces. The InfoButton for example requires

ICD-10 codes whereas other sources allow for ordinary key

word search.

Accessing open sources such as Wikipedia is usually rather

easy. Here XML-APIs are provided. Other social web sites

have to be included into the portal on a individual basis.

C. Personal lifestyle app

Applications running on smart phones, usually called apps,

have become extremely popular especially because of there

simple interfaces and their easy handling. This should also

be the driving force when developing such an application for

health information collection: simplicity and ease of use [8].

The app in this system serves as a data entry method

only. This means that its only purpose is to collect data,

query information from the user and send this data to the

information system. Therefore not much user interaction is

required. The user has to be able to respond to queries and

alter the information the app has generated. This might be

the case when the app falsely assumes the user is performing

some exercise or is at a certain type of restaurant. In such a

situation the user has to be able to change the current data

that is generated by the app.

D. Related work

There is, of course, already a number of methods and

systems that try to tackle the kinds of problems discussed

in this paper. There are, for example numerous videos or

questionnaires that serve as health guidances or decision aids.

Most of them are either non inter active, such as videos, or

in form of questionnaires that present answers to predefined

questions. Especially the interactive and explorative character

of the system proposed in this paper is aimed at fostering a

change in lifestyle that people can identify themselves with

and have trust in.
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Besides several approaches to foster a healthier lifestyle

there are several web sites that server a more educational pur-

pose (such as WebMD – http://www.webmd.com or heart.org

– http://www.heart.org). These lack the interactivity and

the personalization that is achieved through integrating the

patients clinical data. The same holds true for web sites for

people with chronic diseases, where they can organize their

drug regiments and symptomatology [9].

IV. CONCLUSION

A sustainable change towards a healthy lifestyle requires a

thorough commitment. Such a commitment is only possible if

the person truly believes that such a change is necessary. We

have demonstrated, in the course of this paper, how different

data sources and information on the personal lifestyle can be

combined in a personalized information system that provides

a user with enough information to come to such a conclusion.

We argue that the current smart phone generation is well

equipped to collect all data necessary to form a sufficiently

clear picture of a users lifestyle. As we discussed whether

state of the art technology is capable of extraction informa-

tion on the users stress level, eating habits and amount of

exercises performed.

Medical data and online sources on health questions are

an other cornerstone of the system proposed. They augment

the personal lifestyle data with life expectancy data or further

information such as dietary facts or suitable exercises.

Personal health information is of concern to everyone.

Making well informed decisions on our personal health

should be the rule and not the exception. Public and per-

sonalized access to health information, as we propose it will

benefit this cause.
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Abstract- Gene expression analysis is very instrumental in 
understanding the pathogenesis of the disease. To enhance 
the understanding of the molecular basis of the disease there 
is a need to extract the buried patterns in gene expression 
profiles. This paper is intended to provide a computational 
approach for the analysis of claudin gene family 
association with the pathogenesis of ovarian cancer. Our 
analysis verified some major members of claudin family as 
either up regulated or down regulated. It shows the 
differential expression of cldn3, cldn4 and cldn7 in ovarian 
cancer. In addition to that the up regulation of cldn16 and 
down regulation of cldn5 in human ovarian cancer has also 
been observed. 
 
Keywords: Ovarian cancer, Claudin, Expression analysis. 

1 Introduction 

Ovarian cancer is the sixth most common cause of 
cancer death among woman worldwide [1]. Environmental 
and genetic factors are both important in ovarian 
carcinogenesis. This disease predominantly affects 
postmenopausal women causing approximately 13,300 deaths 
each year and for over half of all deaths from genital cancer. 
The highly lethal nature of this tumor is related to the absence 
of symptoms in the majority of women with early stages of 
the disease and it is the leading cause of mortality due to 
gynecological malignancy.  In the past two decades, much 
progress has been made in identifying genes involved in the 
development of ovarian cancer. These identified genes are 
useful in understanding the pathogenesis of ovarian cancer 
and defining its molecular signature. They can also serve as 
biomarkers for early diagnosis and targets for drug 
development. Claudin gene family is implicated with various 
types of cancers [2] [3] [4] [5] . This family consists of 23 tight 
junction proteins [6]. The correct arrangement of all claudin 
genes is very necessary to perform its function which is the 
formation of tight junctions. Any problem in its gene 
arrangement causes cancers. Association of ovarian cancer 
with some members of the claudin family has already been 
reported before e.g. cldn3 [7], cldn4 [8] and cldn7 [9] [10] [11] [12]. 
The function of claudins is highly tissue specific because 
claudin3 and claudin4 was observed in ovarian cancer but not 
in ovarian cystadenomas [13]. Here we will computationally  

 

analyze the whole caludin gene family association with 
ovarian carcinoma. 

2 Methods 

2.1 Gene Finder tool 

The Gene Finder is a tool that identifies one gene or list 
of genes, based on selected search criteria. This tool is 
available at Cancer Genome Anatomy Project (CGAP) 
official website http://cgap.nci.nih.gov/Genes/GeneFinder. 
By choosing the search criteria as ovarian cancer and claudin 
gene family it showed all of the ovarian cancer related genes 
of claudin family.   

2.2 SAGE Genie 

The SAGE Genie is a gene expression database that 
reliably matches SAGE tags, 10 or 17 nucleotides in length, 
to known genes. It not only produces the list of tags but also 
provide the frequency of occurrence of these tags in each 
normal and cancerous tissues by scanning all of the given 
expression libraries. All publicly available data to date was 
used for the analysis of gene expression of claudin gene 
family. SAGE anatomic viewer 
http://cgap.nci.nih.gov/SAGE/AnatomicViewer [14] was used 
for collection of tags. Both NlaIII and Sau3A tags were 
mapped to UniGene clusters 
http://www.ncbi.nlm.nih.gov/unigene/. The reliable UniGene 
clusters matched to claudin tags were adopted to determine 
the levels of expression of claudin gene family in both 
normal and ovarian cancer libraries. The list of tags and 
matched unigene clusters is provided in table 2. 

2.3 Virtual Northern  

Virtual northern available at CGAP allows the user to 
observe the expression of a specific gene in all SAGE and 
EST libraries. Five libraries of ovarian carcinoma and two of 
normal ovarian expression were studied in northern blot 
analysis for the expression patterns of all of the gene 
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members of claudin gene family. The difference of greater 
than two fold was considered significant.  

 

 

2.4 Microarray analysis 

Two microarray datasets having normal and cancerous 
ovarian cancer tissues available on Gene Expression 
Omnibus (GEO) http://www.ncbi.nlm.nih.gov/geo/ was used. 
The dataset GSE6008 contain 99 individual ovarian 
tumors and 4 individual normal ovary samples contributed by 
Hendrix ND [15] and the second dataset GSE4122 is 
contributed by Tate DL and co workers with 32 cancerous 
tumors and 14 controls. These datasets was used for further 
verification of SAGE and northern blot analysis results. 
Statistical analysis was done to analyze the microarray 
expression. Two major statistics applied to available data was 
t-test and significance analysis of microarrays (SAM). 

3 Results 

3.1 Gene Finder Results 

Gene finder provided the list of only those claudin gene 
family members which found to be more frequently involved 
in the expression of ovarian cancer on the basis of number of 
tags available in CGAP libraries of ovarian cancer as 
compared to normal ovarian libraries. These selected gene 
members from claudin gene family are shown in table 1. 
Only these selected genes were chosen for further analysis.  

 

Table 1: Gene finder results of claudin gene family members 
involved in the expression of ovarian cancer 

3.2 SAGE and virtual Northern blot analysis of              
Claudin genes expression in ovarian cancer 

There are two normal ovarian libraries and five SAGE 
libraries of ovarian cancer tissues available in GEO. This was 
also observed by using tool SAGE Absolute Level Lister 
(SALL) http://cgap.nci.nih.gov/SAGE/SALL?ORG=Hs 
available at CGAP website. The reliable tags of all selected 
claudin gene family members were then extracted from 
SAGE Genie by as shown in table 2. Only those genes were 
picked which have atleast > 2 fold difference. From 10 genes 
7 genes were found to have greater than 2 fold difference. 
The cldn1, cldn 10 and cldnd1 have no significant differences 
or they found to have almost same result that’s why they 
were excluded from the list. The virtual northern results 
confirm the involvement of cldn3, cldn7, cldn4, cldn15, 
cldn16, cldn5 and cldn6 in the ovarian cancer. 

Table 2: SAGE Anatomic Viewer and Northern blot analysis 
results: 

 

3.3 Microarray analysis of Claudin genes 
expression in ovarian cancer 
The involvement of above selected genes of claudin 

family was then verified by Microarray analysis. Two 
datasets GSE6008 and GSE4122 from GEO contains the 
gene expression information related to ovarian cancer. All of 
the above mentioned genes can be located in these data sets. 
The results obtained from both datasets (table 4) shows that 
cldn4, cldn7, cldn16 and cldn3 are highly over-expressed in 
ovarian cancer while cldn5 is down regulated. Cldn6 and 
cldn15 showed a very different behavior, as cldn6 is found to 
have over expression and down regulation of cldn15 in 
dataset GSE4122 while in GSE6008 no significant difference 
is detected. These findings through fold change analysis were 
further verified through t-test and SAM. The t-test confirmed 
the cldn3, cldn4, cldn7, cldn16, cldn15 and cldn5 as 
significant genes and cldn6 was the only non significant gene 
so it was excluded from further analysis. The differential 
expression of these significant genes was also detected in a 
volcano plot in fig 1. Further mining of selected members of 

GENE ID  UNIGENE 

CLUSTER 
SAGE TAG NORMAL 

(TPM ) 
OVARIAN 

CANCER 

(TPM ) 

CLDN3 Hs.647023 CTCGCGCTGG 0.0 77 
CLDN7 Hs.513915  TATAGTCCTC 0.0 37 
CLDN4 Hs.647036 ATCGTGGCGG 0.0 91 
CLDN15 Hs.38738 GCCCCTCCAG  4 9 
CLDN16 Hs.251391 TTGCCATCCT 0.0 4 
CLDN6 Hs.533779 TTTTGTTAGT 0.0 28 
CLDN5 Hs.505337 GACCGCGGCT 0.0 14 

Symbol Name Sequence ID 
CLDN1   Claudin 1 NM_021101 

CLDN10
 
  

Claudin 10 NM_182848 
NM_001160100 
NM_006984 

CLDN15
  

Claudin 15 NM_001185080 
NM_014343 

CLDN16  Claudin 16 NM_006580 

CLDN3  Claudin 3 NM_001306 
CLDN4  Claudin 4 NM_001305 
CLDN5 
  

Claudin 5 NM_001130861 
NM_003277 

CLDN6  Claudin 6 NM_021195 
CLDN7 
  

Claudin 7 NM_001307 
NM_001185023 
NM_001185022 

CLDND1
 
  

Claudin 
domain 
containing 1 

NM_001040199 
NM_019895 
NM_001040182 
NM_001040181 
NM_001040183 
NM_001040200 

440 Int'l Conf. Bioinformatics and Computational Biology |  BIOCOMP'11  |



 

 

claudin family was done through SAM which separated 
cldn4, cldn3, and cldn7 as positive significant genes and 
cldn5 as negative significant. This is also shown in SAM 
graph fig 2.  

 

 
 

Table 4: Microarray results of dataset GSE6008 &  GSE4122 

CLAUDIN 
GENES 

REFERENCE 
I D 

FOLD 
CHANGE IN 
GSE 6008 

FOLD CHANGE 
I N GSE4122 

P-VALUE  FALSE  
DISCOVERY 

RATE  
CLDN4 201428_AT > 2 > 5 0.0018636247 0.003261343 

CLDN7 202790_AT > 2 > 3 2.9067648E-6 6.7824512E-6 

CLDN3 203953_S_AT > 3 > 6 0.0 0.0 

CLDN5 204482_AT < 2 < 3 0.009433004 0.011005172 

CLDN15  219640_AT NO CHANGE NO CHANGE 1.7732685E-8 6.2064395E-8 

CLDN16  220332_AT > 1.5 > 3 0.004344086 0.0060817203 

 

 

 

 

 

 

 

 

 

 

FIGURE 1: VOLCANO PLOT  

 

 

 

 

 

 

 

FIGURE 2: SAM GRAPH
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4 Discussion 

Claudins are tight junction proteins and their 
involvement in several cancers implicated their role 
in tumor development. Some of the claudin family 
members association with the ovarian cancer has 
already been identified in vitro but this is the first in 
silico analysis of complete claudin gene family’s 
association specifically with the ovarian cancer. The 
approach used in this paper is very reliable because 
the in silico methods of detecting SAGE tags and 
northern blot analysis are very reliable gene 
expression methods because they are based upon 
DNA sequencing. Secondly the microarray analysis 
was done on the data available on GEO and all this 
data is experimentally produced data so the chances 
of error are minimized. 

As it is described earlier that three members of 
claudin family has already been reported for their 
involvement in expression of ovarian cancer, our 
results not only verified the significant up regulation 
of these genes but we also observed the over 
expression of cldn16 in cancer state. Cldn16 showed 
up regulation in both SAGE and Microarray analysis.  
Although the expression of cldn16 is less than the 
cldn4, cldn3 and cldn7 but its involvement in cancer 
can never be neglected.  

Another interesting finding is the down regulation of 
cldn5 in microarray data sets, which is very amazing 
as far as we observe the role of claudins. The tight 
junction formation ability of claudins makes us to 
believe their up regulating role in tumor formation 
but here the association of cldn5 as significant 
downregulated gene in ovarian cancer is the most 
surprising thing which reveals the fact that may be 
our knowledge about the claudins is still very limited 
and there are many other unraveled truths about the 
claudins that have to be identified yet. But the SAGE 
analysis of cldn5 revealed the totally different results 
by showing its up regulation in cancerous ovary. 
These findings about the cldn5 makes it role 
suspicious in ovarian cancer which must be analyzed 
in vitro.  

5 Conclusion  

Our work verified the previously known association 
of claudin members with ovarian cancer .In addition 
to that our systematic methodology has disclosed the 
high gene expression level of cldn16 in ovarian 
cancer which might play an important role in the 

cancer cell differentiation and proliferation. 
Furthermore cldn5 shows down regulated behavior 
verified by microarray analysis. This needs to be 
further confirmed, there may be a chance that cldn5 
would serve as a novel biomarker for the treatment of 
ovarian cancer. 
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Abstract— The intent of the following paper is to expound
on new algorithmic ideas that show marked improvement
over formerly state-of-the-art functions in HIV-1 subtyping,
such as those found in Wu et al. and NCBI. The paper identi-
fies deficiencies in these older conceptions and sets forth, in
a clear and simplistic manner, our improved methodology.
The two main boons to the new method described below
are the development and utilization of reference profiles
and the increased recombination prediction accuracy due
to increased branching options and redesigned replacement
policies. There is also a new importance placed on absolute
prediction accuracy, thus making room for a multitude of
real-world possibilities.

Keywords: Recombination, HIV-1 subtyping, statistical classifi-
cation

1. Introduction
Human Immunodeficiency Virus type-1 (HIV-1) is in-

credibly adaptive and diverse. This diversity is caused by
a high error rate during transcriptase and a likelihood of
recombination [4]. Recombination is the process by which
different pure subtypes recombine to form a new strain, in
terms of HIV-1, a new circulating recombinant form (CRF)
is generated. Understanding recombination, and correctly
classifying the pure subtypes that define a CRF, gives the
research community the means by which to correctly define
the phylogeny of the virus. By understanding the evolution
of the virus, the development of effective drug treatments
and control vaccines could be possible. Lastly, by correctly
classifying an HIV-1 CRF in a host, correct drug treatment
could be established, if available for the CRF in question.

Techniques from [11] and [12] and those from NCBI [10],
and others [5], [4] using sequence alignment have been very
good at predicting the genetic subtypes for an HIV-1 strain,
with Wu et al. obtaining 100-percent prediction accuracy.
However, detection and classification of an HIV-1 CRF is
very difficult [11] to attain. Algorithms, such as construction
of top strings from relative entropy, in order to determine
the subtypes of a CRF test sequence and that is proposed
by [10], which uses NCBI sliding window to create BLAST
similarity scores between reference and testing sequences,
have preformed reasonably well (obtaining ≈ 87-percent and
77-percent prediction accuracy respectively). However one
should note, in [11], that the prediction accuracy refers not

to the number of correctly predicted pairs, but the number of
correctly predicted subtypes. For example, take testing se-
quences CRF1-A1F1 and CRF1-A2G1. These two sequences
have four subtypes, mainly A1, F1, A2, and G1, [11] only
gives the accuracy in terms of correctly defined singles. In
this case, a 50-percent prediction accuracy would represent
classifying 2/4. Even though it is possible that CRF1-A1F1
was classified as A1 and D, likewise CRF1-A2G1 could be
classified as B and G1. Results being 2/4 correctly identified
(50-percent) but zero pairs correctly classified. In this paper,
absolute prediction accuracy will refer to the metric of
correctly classified pairs, and relative prediction accuracy
will refer to the metric used in [11] of correctly classified
subtypes. Obviously a correctly classified pair provides more
information, but for comparative purposes with [11] we will
list both relative and absolute prediction accuracy.

[11] shows great results in terms of relative prediction
accuracy, achieving the noted 87-percent; however, testing
for absolute accuracy (complete pair subtype match) results
in 70-percent prediction accuracy, a remarkable difference.
The novelties of our algorithm stem from a quicker im-
plementation of [11] along with changes and improvements
in both relative and, most importantly, absolute prediction
accuracy. There are three new techniques implemented, all
obtaining improvements in runtime and accuracy; however,
all are based on the generation of top strings T, relative en-
tropy, and Euclidean distance between reference sequences
and test sequences, formally found in Wu et al.

The information below will: give a formal description of
the methodologies used, the underlying algorithm, and the
three subsections defining the main novelty of each algo-
rithm; provide a small section describing the 42-reference
sequences used for generation of top strings and the 91
CRF test sequences; a results section, showing results of
T on accuracy; and lastly relative and absolute prediction
accuracy of the baseline algorithm from [11] and the three
new refinements.

2. Review
2.1 Nucelootide composition string selection in
HIV-1 subtyping using whole genomes [11]

The techniques from Wu et al. are based on nucleotide
composition string selection. This methodology was chosen
by Wu et al. for a number of reasons. First, it requires
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no foreknowledge of the genes being tested. Second, no
compression is undertaken which results in fewer errors.
Due to the fact that every composition string provides
unequal amounts of information to the evolutionary distance
calculation, Wu et al. noted that by selecting the most
important composition strings, those that contribute the most
evolutionary data, analysis of thousands of strings can be
done in a very affordable manner. This nucleotide compo-
sition string selection is a highly effective way to assess
HIV-1 recombination and evolution. By selecting the genes
that contribute most information to the evolutionary process
Wu et al. met with impressive results in predicting HIV-1
subtyping. The dataset utilized by Wu et al. was composed
of 867 pure subtype HIV-1 strains and 331 recombinants.
By setting the maximum number of strings at 500 and
ensuring string length did not exceed 21, Wu et al. attained
100% leave-one-out subtyping accuracy while maintaining
computational efficiency. To further test this methodology,
Wu et al. blindly compared their results to three HIV-1
subtyping programs, again meeting with impressive results.

2.2 Top Strings
A string of nucleotides is generated from a reference

sequence in an incremental fashion up to length-K. For
example, take the nucleotide sequence AAGC, and length-K
= 3, the strings constructed would be A, AA, AAG, A, AG,
AGC, G, and GC. Notice that the maximum length string is
three equaling length-K.

Each string generated from the reference sequences is
scored based on relative entropy (or Killback-Leibler dis-
tance), Equation 1.

s(α) =
n∑

i=1

|π(α, i)|ln|π(α, i)

Π(α)
|, (1)

where s(α) = relative entropy of string α, i = genome i, n
= number of whole genomes, π(α, i) = absolute composition
value for string α in a given genome i, defined in Equation
2, and Π(α) = unnormalized background probability.

π(α) =
(p(α)− q(α))

q(α)
(2)

where π(α) = absolute composition value, p(α) = prob-
ability of string α in a given genome, and q(α) = expected
appearance of string α defined in Equation 3.

q(a1a2...ak) =
(p(a1a2...ak−1) ∗ p(a2a3...ak))

p(a2a3...ak−1)
, (3)

where p(a1a2...ak−1) = probability of sub pattern a1 to
ak−1, p(a2a3...ak) = probability of sub pattern a2 to ak,
and p(a2a3...ak−1) = probability of sub pattern a2 to ak−1.

2.3 Complete Composition Vector (CCV)
After the scoring and ranking of strings, the top T

strings are used to compute a CCV. The vector always
has T values and represents the composition values of the
top strings in a given genome. Where the vector index
i would represent the composition value of the ith top
ranked string. String selection and scoring is very important
to this technique, with higher scores seeming to contain
richer information [11], [12]. Generating the selected string
composition vector is rather simple. If there are less than
500 strings, add the current string in question. If not, and the
current string has a higher score, a larger absolute relative
entropy, then the lowest score is replaced. This technique
of only storing the richest 500 strings basically resolves
all memory issues according to [11]. Once all the strings
have been examined a 500-dimensional composition vector
is built. For example, testing in [11] included the use of 42
reference whole genomes, 331 recombinant, and 825 pure
subtype whole genomes. 500 top ranked strings were used,
in turn producing a 500-dimensional composition vector. The
technique was 100% successful in the subtyping of the 825
pure subtypes. Most importantly, the technique does not rely
on prior knowledge about the genomic sequences.

2.4 Pair-wise distance
Given a pair of genomes, a and b, the distance between

them can be represented as the Euclidean distance between
their respective CCV’s as seen in Equation 4.

distance = (
m∑
l=1

(al − bl)2))1/2 (4)

2.5 Basic Local Alignment Search Tool
(BLAST)

BLAST is a widely used method for comparison between
nucleotide and protein sequences. It is used to determine
relative relationships between test and reference strains [6].
BLAST is such an effective tool because of its speed and
ease of use; however, it is victim to one downfall, namely
that, because of its high speed, its optimality cannot be
guaranteed in alignment. This large speedup, approximately
fifty times faster than conventional optimal algorithms, is
made possible by a simple heuristic. Using this heuristic
ensures high computing speed while maintaining quality re-
sults and high accuracy. More information about the specifics
of BLAST can be found at [6]. BLAST is a useful tool in
the analysis of recombination in HIV, such as being able
to compare a test strain against known reference strains
using BLAST, in order to classify the test strain. After
utilizing BLAST, the results can show a high probability
of belonging to a certain clade, being recombinant, or being
a pure subtype. If the results show the test strain belongs to
a certain clade, a drug treatment that is specific to this clade
can be administered for a more effective treatment.
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2.6 National Centre for Biotechnology (NCBI)
algorithm using Scored BLAST

NCBI, being considered a state-of-the-art institution [10]
in recombination detection prior to 2007, utilizes a technique
that uses a score based BLAST [6] pairwise alignment
between overlapping segments. This alignment is carried out
between a query sequence and a known reference sequence.
The algorithm moves a window along the query sequence,
processing each window segment separately while compar-
ing each against the reference sequences using BLAST.
BLAST returns a similarity score for each local alignment
[10]. The reference sequence that matches with the highest
similarity score is assigned for the local alignment. The
process is repeated for each window and recorded. Once the
comparisons are completed, if a single genotype is assigned
to most segments, the query segment is considered a single
genotype and classified accordingly. If multiple genotypes
were recorded during local alignment and the percentage
belonging to each genotype is higher than a predefined
threshold. the query sequence is deemed recombinant. This
process could easily be used to speculate the most probable
breakpoint for recombination [10] because the location of
divergence is easily seen when local alignment produces a
new reference sequence and they match continually. The
three parameters that govern the NCBI method are: the
choice of window size, often experiment specific; the incre-
mental step, defined as the amount the window is shifted
along the sequence; and the similarity threshold, defined
as the percentage of non-primary genotypes that can be
recorded before recombination is considered, for a match.
The NCBI method is impressively simple and the results
it yields are among the best when detecting recombination.
Tests of 48 reference sequences [10] were used to predict
recombinant deterministic forms. NCBI was able to obtain
a 73.4% prediction accuracy where later CCV tests only
yielded 66.2% prediction accuracy using the same reference
sequences. This method was able to accurately predict all but
two CRF12BF strains, namely AY771588 and AY771589.
The techniques of [11] were tested on the 91 strains that
have deterministic recombinant forms and was able to de-
termine 87.3% accuracy. Likewise, the 42 known reference
sequences were used; however, 5000 top ranked strings were
used vs. the 500 top ranked strings used in pure subtyping.
The results were a substantial increase over those of NCBI.

2.7 Detecting subtypes in CRF
Difficulty arises when trying to compute the pure subtypes

that make up a CRF. There is no guarantee the breakpoint is
consistent and it likely varies. Therefore, Wu et al. suggests
breaking a sequence into equal parts. At each testing, a
consecutive number of parts are removed and the remaining
concatenated together. For example, take a partitioning factor
P = 50, a CRF genome would be broken into ≈ 180

nucleotides (9000 nucleotides / 50 = 180). A maximum l
parts can be removed, l ≈ P/2 seems to work well in
empirical testing.

Given a partitioning factor of P = 50, and if 1 <= l <=
25 parts can be removed, we would construct the following
test strings.

l = 1,
s1 = (p2...p50),

s2 = (p1, p3...p50),
...

s49 = (p1...p48, p50),
s50 = (p1...p49).

l = 2,
s1 = (p3...p50),

s2 = (p1, p4...p50),
...

s47 = (p1...p47, p50),
s48 = (p1...p48).

.

.

.
l = 25,

s1 = (p26...p50),
s2 = (p1, p27...p50),

...
s24 = (p1...p24, p50),
s25 = (p1...p25).

In all, 950 strings are constructed. For each test string the
CCV is generated and the Euclidean distance between the
test string and the reference CCVs are calculated, see Equa-
tion 4. The two reference sequences, that, when compared
against the test sequence, produced the lowest scores are
recorded. In all, 1900 reference sequences would be stored.
The frequency of a reference sequence can be thought of
as the amount of the test genome that belongs to a specific
reference sequence; in turn, a specific pure subtype. The two
reference sequences with the greatest frequency are reported
as the two predicted pure subtypes of the test CRF sequence.

2.8 Conclusion
The base technique from Wu et al. is seen in many

different areas of computer-based learning. The algorithm
breaks down into a learning stage, a metric between learned
top ranked strings and reference sequences; distance is
then computed between test and reference sequences before
the minimum distances between reference and test data
is finally associated with the most probable match. Many
enhancements are possible, such as using the ordering of top
ranked strings as a weight metric. Giving a higher weight
to the very best strings and decreasing accordingly as lower
ranked strings are used. Likewise, different distance metrics
can be used when comparing test to reference sequences
and; furthermore, the metric used to score a string can
be replaced with a variety of other metrics. As with most
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Replacement Policy
R [A or G]
Y [T or C]
K [G or T]
M [A or C]
S [G or C]
W [A or T]

Fig. 1: Nucleotide Replacement Policy, see [1]

Replacement Policy
B [C or G or T]
D [A or G or T]
H [A or C or T]
V [A or C or G]
N [A or C or G or T]

Fig. 2: Complex Nucleotide Replacement Policy, see [1]

learning techniques, the metrics or kernels used are often
application or class-of-problem specific – more testing in
this area is needed and enhancement in predicting CRFs is
probable.

3. Methodologies
3.1 Nucleotide Replacement Policy - Alg. 1

The reference sequences used to construct the top strings
T often contain questionable nucleotides. Frequently these
nucleotides are ignored, as in Wu et al. However, by ignoring
these nucleotides, it is possible that important strings or pat-
terns could be lost. Algorithm 1 focuses on replacing these
questionable nucleotides as seen in Figure 1, based on in-
ternationally agreed standards outlined in [1]. During string
generation, when one of these questionable nucleotides is
seen, it is replaced with two possible occurrences. Most
importantly, because we are not incrementing the occurrence
of substrings for the newly generated strings, the probability
calculations are still accurate.

3.2 Complex Nucleotide Replacement Policy -
Alg. 2

The reference sequences used to construct the top strings
T often contain complex questionable nucleotides. These are
nucleotides that have > 2 possible replacements. Likewise,
we are never incrementing subpatterns of the newly formed
strings so the probability distributions are still accurate.
The replacement policy used can be seen in Figure 2,
which are also based on internationally agreed standards
[1]. For testing purposes, algorithm 2 also uses the simple
replacement policy seen in the previous section.

Reference Distribution
6 subtype A 4 A1 and 2 A2
4 subtype B 4 B1
4 subtype C 4 C1
3 subtype D 4 D1
8 subtype F 4 F1 and 4 F2
3 subtype H 3 H1
3 subtype G 3 G1
2 subtype K 2 K1
3 subtype N 3 N1
2 subtype J 2 J1
4 subtype O 4 O1

Fig. 3: Pure subtype distribution in 42 reference sequence
database

3.3 Reference Profiles - Alg. 3
Creating the top strings T has a small disadvantage to

strings or patterns seen in the same subtypes. For instance,
say a string was seen in four pure subtype reference se-
quences. We would like a way to emphasize this occurrence,
rather than the marginal increment it would get using the
standard relative entropy calculation. In the simplest form,
we combined the reference sequences into pure subtype
profiles. In all, 13 reference profiles were constructed, repre-
senting 13 pure subtypes. This provided an increased relative
entropy score for regularly seen strings/patterns in the same
subtype. Reference profiles use both simple and complex
nucleotide replacement policies as described in the previous
sections.

4. Pure Subtype and CRF Databases
Although many techniques use simulated data, we believe

using actual data is more realistic regarding the natural
diversity found in HIV-1, in terms of recombination and
pure subtype reference sequences. With this consideration
in mind, we focus testing entirely on the datasets used in
[11]. This makes comparison between algorithms easier and
prior results from [11] can be examined directly. Lastly, the
generation of good testing data is difficult to achieve. The
issues surrounding data acquisition are mainly the complex
nature of naturally occurring recombinant forms and how
to simulate them. For instance, there is often multiple
breakpoints in a strain and non-reciprocal exchange [7], [8],
[9], which is very hard to reproduce. Therefore, we focus
on test data previously classified and internationally used for
recombinant form classification, mainly those found in [11].

4.1 Reference Pure Subtype Sequences
42 pure subtype reference sequences are used to construct

the top ranked strings. The distribution of the 42 reference
sequences can be seen in Figure 3.
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Test CRF Distribution
52 subtype A1 and G1
3 subtype A1 and B1
3 subtype D1 and F1
11 subtype B1 and C1
3 subtype C1 and D1
10 subtype B1 and F1
7 subtype B1 and G1
2 subtype A2 and D1

Fig. 4: 91 unique test sequences and respective compositions

4.2 CRF Test Sequences
91 deterministic CRF test sequences are used. These test

sequences are well-documented and the respective pure sub-
types are well-defined and accepted. The distribution of the
91 test sequences can be seen in Figure 4. Most importantly,
not all pure subtypes are seen in the 91 test sequences;
however, all pure subtypes are used during the training stage
of the algorithm. Better results can be obtained by narrowing
the training stage to only those reference sequences that
are present in the CRF test sequences. However, the goal
of the research is to construct a method to reliably predict
recombinant forms (pure subtypes that define the CRF) from
test sequences where there is no knowledge of the phylogeny
of the sequence. Therefore, all pure subtype reference se-
quences are always used regardless of the specifics that may
be known about the test data. Lastly, throughout all testing,
the knowledge of what pure subtypes make up a given CRF
is never used, only during verification of the prediction.

5. Results
Overall, some notably important results were obtained.

Chiefly, a quicker runtime was realized, a limit has been
found for top string count, and better prediction accuracy
in terms of both relative and absolute accuracy for all
algorithms was achieved.

5.1 Limits on number of Top Strings
Figures 5 and 6 clearly show that, as T grows from 0

to 5000, prediction accuracy steadily improves. As T grows
larger than 5000 one can see accuracy, conversely, drops.
These results counter suggestions in [11] that the greater the
size of T the greater the knowledge contained in T.

5.2 Relative prediction accuracy
Previous results from [11] show 87-percent prediction

accuracy and using [10] NCBI with a sliding window and
BLAST comparative scores, obtained 77-percent prediction
accuracy. Simple nucleotide replacement policy resulted in
88-percent prediction accuracy and complex nucleotide re-
placement policy resulted in 90-percent prediction accuracy.
These results are rather impressive on their own and should

Fig. 5: Accuracy improves up to T ≈ 5000, decreases
steadily as T > 5000.

Fig. 6: Accuracy improves up to T ≈ 5000, decreases
steadily as T > 5000.
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Fig. 7: Relative prediction accuracy in terms of 182 subtypes

not be overshadowed by the results from the third algorithm
reference profiles. Obviously, there is knowledge contained
in these areas of questionable nucleotides, the fact the top
strings changed dramatically depending on the use of simple
and complex nucleotide replacement policies show us this.
However, the third algorithm shows extraordinary results,
achieving 95-percent accuracy, see Figure 8. This is likely
because when the relative entropy is calculated for a string,
the strings are given a slight boost because they are are seen
in the foreground distribution more than the background. The
boost is only slight, but works well experimentally.

5.3 Absolute prediction accuracy
Absolute prediction accuracy is an important metric be-

cause it not only tells us how many pure subtypes we pre-
dicted correctly, but it also reports many correctly predicted
pairs were obtained. This is ultimately the goal: predict the
makeup of a CRF with high precision. Previous algorithms
demonstrated only marginal accuracy, as in Wu et al., where
even our simple and complex nucleotide replacement poli-
cies show a respectable gain in terms of relative accuracy,
fare much better in terms of absolute accuracy. For instance,
looking at Figures 9 and 10, we see the simple nucleotide
replacement policy predicts three more pairs correctly, and
complex nucleotide replacement predicts five more pairs cor-
rectly, when compared to the baseline algorithm that predicts
only 66/91. These results show clearly, like that shown in
relative prediction accuracy, that information is gained when
using the replacement policies. This information results in
new strings in our top strings list that were never available
previously. Absolute prediction accuracy was never included

Fig. 8: Relative prediction accuracy percent correct.

Fig. 9: Absolute prediction accuracy in terms of pairs cor-
rectly labelled.
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Fig. 10: Absolute prediction accuracy percent correct.

in [11] for NCBI tool and, in turn, are not included.
Reference profiles show a clear advantage and rather

impressive results, with 84/91 correctly predicted pairs and
92-percent overall absolute prediction accuracy. Clearly this
technique works well on the 91 deterministic CRF database.

5.4 Considerations
These results show our techniques perform well under the

42 reference sequences used and the 91 deterministic CRFs;
however, there really is not much deterministic CRF data
available. Even the database of 91 CRFs likely has some
error and that could be in our benefit or not. In the future
we hope to obtain more reliable datasets, not simulated
data, but real-world CRFs that have been carefully examined
to define the composition of pure subtypes. We hope the
real-world data will further validate our method. Likewise,
it is interesting to see that there is an upper bound to
T ≈ 5000 and counters previous thoughts that more strings
would contain more information [11]. Some other results
that were not included in this paper are, chiefly, the results
of T > 5000 can be improved marginally if we restrict
the length-k of strings to ≈ 14. However, this only resulted
in a small improvement and therefore, was not formally
displayed. One can infer that shorter length strings are more
important in classification, even though longer strings often
can show more information.

The ability to calculate the composition of the test se-
quence is very important, and because we are not limited
to only two results per test sequence we can easily give
composition based certainty that our algorithm uses for
classification. We have seen many examples that show five or

more base type ancestry. There is also the ability to do inter-
clade analysis after the initial classification is done using the
same algorithm. This is very important because one often
wishes to know the composition outside of the reference
profiles that were created by joining pure subtypes.

Lastly, all results are available online, see [2]. We invite
any and all suggestions and also look forward to testing other
research groups’ data, whether HIV-1 specific or not.

Conclusion and FutureWork
[11] provides a novel starting point based on a general

machine learning framework used in bioinformatics. We
have shown a substantial increase in terms of both relative
and absolute prediction accuracy in all of our algorithms.
The goal of our research is to build a tool that gives high
certainty results concerning the makeup of a CRF. These
results can lead to more accurate HIV-1 phylogeny and the
development of widely applicable treatments that are more
adaptive to recombinant forms of HIV-1. Further testing is
needed to validate the results in this paper, we will continue
to refine our algorithm and as more deterministic and reliable
data becomes available we hope to have a sound method
for detection of recombination and classification or pure
subtypes in the sequence.
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Abstract – A physiologically based pharmacokinetic model is 
build to determine the dynamics of drug (compound) 
concentration in the human body. The model consists of two 
major subsystems. The first subsystem simulates the diffusion 
of the drug(s) and respiratory gases between plasma and the 
tissues. Second subsystem controls the processes of the drug 
and gas delivery to the tissues. The system of control is based 
on the principles of optimal control theory and the 
mechanisms of self-regulation. The model allows simulation of 
a combined influence of multiple clearance factors. The drug 
is administered intravenously into the human body and goes 
through phases of Absorption, Distribution, Metabolism, and 
Excretion (ADME). The results of numerical calculations of 
drug concentration profiles under renal and hepatic clearance 
are reported. The model can be tailored to suit the 
experimental needs in the fields of pharmacological and 
medical research.    

Keywords: pharmacokinetics, drug, dynamics, ADME, 
model, profile 

 
 

1 Introduction 
 Drug development is a costly and time consuming 
process [1]. To reduce expenditure of this process, multiple 
analytical methods and tools are currently used. Attempts 
were made to integrate the compartments and build 
physiologically based models [2]. A variety of mathematical 
models and software tools was created and is available on 
market today [2]. Most of them are based on traditional 
concepts of pharmacokinetic modeling [2, 3]. However, 
physiological regulation mechanisms of the internal state of 
the system (organism) and the mechanisms of the drug 
transportation were not modeled.  
 The complexity of the mechanisms of regulation in the 
living organism required more sophisticated models (tools) 
which could represent the organism as a single system. The 
most important physiological mechanisms and principles of 
regulation of the drug transport system had to be properly 
incorporated into the model.  
 A new approach to the drug kinetics model creation with 
the use of Functional Respiratory System as a major system of 

drug transportation was offered [4]. A brief overview of the 
model simulating renal clearance was given. 
 In this paper a new model for drug kinetics simulation is 
introduced. This model is built on the principles described in 
[4] and implements the simultaneous influence of two drug 
elimination factors – renal and hepatic clearance. The control 
of the model is based on the principles of optimal control 
theory and the mechanisms of self-regulation.  
 The model allows calculating drug concentration 
dynamics in plasma and the tissues of the organism, as well 
the distribution of the dose among the tissues and the re-
distribution and elimination of the drug. The model represents 
a self-regulating system, and is built on modern knowledge of 
the cardiovascular and respiratory systems. As such, the 
simulated drug dynamics clearly reflect changes in the 
internal and external environment of the organism. Note, that 
traditional pharmacokinetics models attempt to predict the 
drug concentration under steady-state conditions. However, 
the newly developed model presented in this paper allows 
simulating the drug concentration dynamics in the organism in 
both – steady and disturbed states. A disturbed state is 
induced by modeling of internal and external stress factors 
exerted on a steady state of the system (organism).  
 This model is proven to be a dynamic and adaptable tool 
to build accurate as well as extensive drug concentration 
profiles in both plasma and tissues. It allows simulating 
multiple dosage regimens; determining effective and viable 
dosage gradients; rates and methods of administration and to 
simulate various routes of the drug elimination, including 
renal clearance and multiple schemes of metabolism. 

 

2 General description of the multi-
compartmental model 

 Organ tissues of the body are represented by m 
compartments, between which the drug d is transported via 
the closed circulatory system. The compartments represent the 
following tissues: cardiac, cerebral, hepatic, renal, skeletal 
muscle, and skin. An additional compartment is allocated for 
the remaining tissues. The distribution of the drug and 
respiratory gases through tissue capillaries is represented by a 
network of pipelines through which arterial and venous blood 
is pumped.  
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Scheme 1: Joined multi-compartmental system 
 

 The general scheme of the circulatory system is shown 
in Scheme 1. The sites of administration and routes of drug 
distribution as well as the compartments chiefly responsible 
for drug elimination are shown.  

 The multi-compartmental system is governed by the 
self-regulating control system built on the principles of 
Optimal Control Theory [9]. 

 

3 The system of drug and gas transport 
and exchange in the compartments  

 The system consists of a set of differential equations 
governing drug concentrations in the capillaries and the 
tissues of the compartments, and a separate set of differential 
equations that governs the tensions of respiratory gases – O2 
and CO2. 
 In this paper, intravenous blood infusion is considered. 
The model can be adapted to other routes of administration. 
 Concentration of the drug d in the plasma ( ) of 
tissue capillaries is represented by the following set of 
differential equations:  

idctc

iiii

i

i dcttdtfat
dct

ct cQGcQ
d

dc
V −−=

τ
,  

m1,=i , 

 Index i is assigned to a corresponding tissue,  - the 
volume of the blood in the capillary of the tissue i. 

ictV

 Modeling of renal clearance is performed through 
modification of equation (1). 
 Concentration of the drug in the tissues ( ) is 
calculated by:  
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t
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 Where 
i
 - the volume of the tissue i,  - the flow 

of the drug from the capillary of the tissue i into the tissue, 
 - the blood flow through the capillary of the tissue i,  

- the rate of the drug clearance.  

tV
idtG

it
Q dQ

idtG  is calculated by the formula: 

( )
iiiii dtdcttdtdt ccSDG −=  

idtD  is the value of the diffusion coefficient,   - the area 
of the surface of the diffusion. 
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S

The equation of the drug concentration in venous blood is 
calculated by: 
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where miQQ
i

ti
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venous blood. 
 The equations for the tension of oxygen ( ) and 

carbon dioxide ( ) in the blood of tissue (compartment) 
capillaries are [5]:  
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 In equations (5)-(10) α  - solubility of corresponding 
gas, pН is the acidity of blood, ВН is the concentration of 
enzyme carbonic anhydrates,  - tension of oxygen (  - 
carbon dioxide) in arterial blood, is the degree of 
saturation of hemoglobin with oxygen, S – the area of the 
surface of alveoli capillaries in a compartment, q – 
consumption of oxygen (index 1) or production of carbon 
dioxide (index 2). 

ap1 ap2
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 In the compartments (tissues) the dynamics of the 
parameters of the model are defined by equations: 
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The flows of gases through alveoli-capillary membranes are 
calculated based on  

( )
iiiii tctttt PPSDG −= , 

it
D - diffusion coefficient of the corresponding gas. 

 Scheme 1 and correspondingly, the model can be 
modified for other possible ways of drug administration.  

 

4 Description of the self-regulating 
control system  

(5) 

 Volumetric blood flows in tissue capillaries Q  are 
considered as control parameters. Then, the general criterion 
of control of the system (1)-(13) is given as the cost 
functional: 
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(6) 
iK  - coefficients dependent on the size and the type of the 

corresponding compartment. 
 The task of control of the system (3)-(15) is formulated 
as the transformation of disturbed trajectories of the system 
(1)-(12) into the area of attraction of the stationary solution 
(equilibrium point - if a drug administration is not modeled by 
a periodic function), defined by inequalities: 

(7) 

(8) 
111 ε≤−

ii tt qG , (16) 

222 ε≤+
ii tt Gq . (17) (9) 

 The process of control of the system (3)-(15) is provided 
by the changes of parameters Q  in order to minimize the 

functional (13). The values of  are calculated using the 
methods of Optimal Control Theory [9].  

it

it
Q

(10) 

 If system (1)-(12) is disturbed by the changes in external 
or internal environments, then the new homeostatic state is 
determined, and the trajectories of the system (1)-(12) are 
transferred in the area defined by conditions (16)-(17).  

 
5 Drug concentration profiles 

calculated by the model for 
intravenous drug administration 

 The model was adapted to reflect the characteristics of 
an average human being of 75 kg weight, including the 
surface of drug and gas exchange. The steady state of the 
system was characterized by the oxygen consumption of 4.3 
ml/sec. Tensions of respiratory gases in arterial and venous 
blood were kept constant; O2 arterial tension was equal to 95 
mmHg, CO2 arterial tension was equal to 42 mmHg.  

(11) 

(12)  To conduct the numerical experiments with the model 
(1)-(17), 200mg of the drug d were introduced intravenously 
every 5 hours within a 25 hour period. Several series of 
experiments were conducted with the model. First, the drug 
distribution and its diffusion to the compartments was 
simulated under the conditions of no clearance and no 
physical stress. Thus, benchmark values of the drug dynamics 
were set, upon which the trajectories of the system with renal 
and hepatic clearance would be evaluated.  

(13) 

(14) 

Second, the calculations with model were performed under 
the effects of renal clearance exclusively.  
 The last series of experiments simulated both renal and 
hepatic methods of drug clearance. 
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Figure 1A: Drug d Dynamics in Arterial Blood and Skeletal Muscle Tissue 
 

 Figures 1A, 1B and 1C display the trajectories of the 
drug concentration in skeletal, cardiac muscles, cerebral 
tissue, and arterial blood. The evident peaks on the trajectory 
that correspond to the drug concentration in arterial blood, 
show the moments of drug infusion into venous blood. Soon 
after infusion, the trajectory descends to a much lower level 
due to the rapid dose distribution to the tissue capillaries and 

to the tissues themselves. The trajectories of the drug 
concentration in skeletal muscle (Figure 1A), cardiac muscle 
(Figure 1B) and cerebral tissue compartments (Figure 1C) 
show the dynamics of drug accumulation in the 
corresponding compartment.  
 The rate of the infusion of the drug can be regulated in 
the model (1)-(17) according to the dosage requirements.
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Figure 1B: Drug d Dynamics in Arterial Blood and Cardiac Muscle  
 

 The evident peaks on the trajectory of the caridac muscle 
are observed due to a higher ratio between the volume of the 
capillaries (Vcti) in the cardiac muscle and the volume of the 

tissue compartment in comparison to the same ratio in skeletal 
muscle or cerebral tissue. Once the concentration of the drug 
in the capillaries becomes lower than the concentration of the 

Int'l Conf. Bioinformatics and Computational Biology |  BIOCOMP'11  | 457



drug in the tissue, the diffusion of the drug back to the capillaries from the tissue begins.  
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Figure 1C: Drug d Dynamics in Arterial Blood and Cerebral Tissue 
 

 Figure (2) presents the drug dynamics within skeletal 
muscle tissue under varying degrees of renal clearance in a 
steady state. It is apparent, that the dynamics of the drug 
concentration trajectory changes significantly. The 
calculations show significant decrease in the levels of the drug 

concentration in the skeletal muscle. Under the same rate of 
infusion, lower clearance rates show more rapid drug 
accumulation in the skeletal muscle, than under higher 
clearance rates. 
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Figure 2: Effect of Renal Clearance on Drug d Dynamics in Skeletal Tissue. 
 
Figure (3) presents the effects of renal and renal and hepatic 

(metabolic) clearance of the drug concentration in skeletal 
muscle. Two trajectories of drug concentration in skeletal 
muscle were simulated. One was simulated solely under renal 

clearance. The second was simulated under a combination of 
renal and hepatic methods of clearance. The dynamics clearly 
demonstrate the difference in the levels of the drug 
concentration between two trajectories. The trajectory that 
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was calculated in the result of simulation of the joined effect 
of both ways of clearance displays significantly lower values 
of the drug concentration.  
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Figure 3: Effect of Hepatic Clearance on Drug d in Skeletal Tissue. 
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Figure 4: Effect of physical load on the drug concentration dynamics in skeletal muscle along with renal clearance (KR = 0.5) 

and hepatic clearance (KH = 0.0005). 
 

 Figure 4 represents the dynamics of the drug 
concentration in the skeletal muscle in a steady state (“No 
load”) and under physical load (“Load”, oxygen consumption 

was equal to 15 ml/sec). The dynamics of the trajectory under 
the load shows higher rate of accumulation of the drug in the 
muscle as well as higher rate of elimination. These changes 
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are explained by the increase in the blood flow in the skeletal 
muscle under the load from 19 ml/sec to approximately 100 

ml/sec. Under physical load the blood flow grows due to 
increased oxygen demand in the skeletal muscle. 

 
6 Conclusion 

 
 The results of the experiments with the model (1)-(17) 
proved that the model can be successfully used for the 
calculations of drug dynamics in plasma and tissues 
influenced by several factors of drug clearance. The dynamics 
of the drug concentration trajectories prove that the combined 
influence of two clearance factors accelerates elimination of 
the drug from the system (organism). 

 
 The model (1)-(17) allowed to build the accurate 
pictures of the drug dynamics in every (each) 
tissue/compartment in a steady and disturbed states. It was 
proven, that the model allows simulating the influence of 
several concurrent factors of drug clearance.  

 
 The model permits to calculate the dosage and the 
regimens of the drug for the different routes of its 
administration and ways of clearance. It can be readily 
adapted to a specific drug with the defined physical, 
physiological and chemical properties. Different mechanisms 
of clearance including multiple schemes of metabolism can be 
introduced into the model. 

 
 The model (1)-(17) is a versatile tool of the simulation of 
drug kinetics parameters, and can be tailored to suit the 
experimental needs in the fields of pharmacological and 
medical research; it considerably reduces the time and the cost 
of the laboratory studies. 
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Abstract- Drug resistance has now posed more severe 
and emergent threats to human health and infectious 
disease treatment. However, the wet-lab approaches 
alone to counter drug resistance have so far achieved 
limited success in understanding the underlying 
mechanisms and pathways of drug resistance. Our 
approach applied A* heuristic search algorithm in order 
to extract drug response pathways from protein-protein 
interaction networks and to identify the co-target for 
effective antibacterial drugs. In this paper, we chose one 
of the killer infectious diseases, Mycobacterium 
Tuberculosis as our test bed. The results showed that the 
acetyl-CoA carboxylase is believed to be involved in fatty 
acid and mycolic acid biosynthesis and is strongly 
associated with the drug resistance mechanisms. Our 
analysis are consistent with the recent experimental 
results and also found alanine and glycine rich 
membrane and cell wall-associated lipoproteins to be 
potential co-targets for countering drug resistance. 
 
keywords： Drug resistance, Co-target, Random walk, 
Mycobacterium Tuberculosis 
 

1 Introduction 
Drug resistance has been posing an emergent threat 

to human health and infectious disease treatment. Several 
web-lab experiments like rotation of antibiotic 
combinations, identification of new targets and chemical 
entities that may be less mutable are being explored to 
counter this problem by inhibiting the resistance 
mechanism employed by the bacterium [1]. However, 
those strategies are still not effective enough and have so 
far achieved limited success due to limited knowledge 
about how the resistance mechanisms are triggered in 
bacteria upon antibiotic drug treatment [7]. 
Mycobacterium Tuberculosis has remained one of the 
killer infectious diseases that have widely spread with 
prominent drug resistance. Multidrug resistant 
Mycobacterium Tuberculosis has underscored the need 
for research into the mechanisms of drug resistance and 
the design of more effective anti-tuberculosis agents.  

Systems biology approach is essential to gain novel 
insights into the pathways involved in the mechanism of 
drug resistance from biological networks. Due to the 
increasing availability of protein interaction networks, 
network-based analysis provides an opportunity to 
discover active (significant) networks under specific 
conditions. High-throughput microarray data technology 

has led to genome-wide measurements of mRNA activity 
levels under different conditions and it is one of the data 
sources that can help us realize the active networks. Most 
of statistical methods such as fold change, t-test identify 
genes using only different expressed genes among 
different conditions with large set of the microarray data. 
These methods do not utilize the knowledge of protein 
interaction networks nor do they capture the coordination 
of multiple genes. Recent works estimated the weights of 
protein interactions based on differential gene expression 
values that scored edge or vertex in the sub-networks and 
applied a heuristic search method to extract the 
significant networks and infer regulatory and signaling 
modules [2,3,4,5]. They proposed a search of active 
sub-networks in terms of a minimum-weight path search 
or an unsupervised maximum score sub-network 
problem. Vertex-based scoring methods take all known 
interactions among proteins as the edges of the active 
sub-networks. They do not further select the active 
interaction relationships among protein while only a part 
of the interactions among a set of proteins may be active 
This kind of methods are inconsistent with previous 
studies which found that not all protein interactions 
occur at a specific condition [6]. Edge-based scoring 
applied Pearson correlation coefficient for analyzing pair 
relationships which do not work in the small set of the 
microarray data and could be unsuitable to explore the 
true gene relationship because it is overly sensitive to the 
expression value. All of them applied greedy or heuristic 
search instead of exhausted search and may sacrifice the 
optimality of the identified active sub-networks.  

Typically, the target of a drug inhibits the pathogen 
or arrests its growth but the resistance machinery is 
established via certain pathways. A recent idea for a 
systems-level analysis is called “co-targets” instead of 
being the ancillary or secondary targets that have a 
critical physiological function for the survival of the cell 
but help in modifying the properties of the drug to inhibit 
the resistance mechanism [7]. Thus, co-targets could be 
either essential or non-essential but it is necessary to 
have a strong influence in the network and to counter 
drug resistance. Raman and Chandra formulated this 
problem as a search for the shortest paths obtained from 
the bacteria after exposure to the drug and calculated 
betweenness attribute of genes in the protein interaction 
networks to identify the potential co-target [7]. However, 
this formulation has an obvious weakness because the 
shortest paths are the only routes of drug resistance and 
there are some “back-up" ways to make the robustness of 
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possible inhibitors associated with the function of the 
drug. It can be envisaged that upon inhibition of a protein 
and the drug-related functional mechanism often occur 
so as to minimize the effect of inhibition on the 
particular protein [12]. Therefore, we used the drug 
target and the genes associated with the drug-related 
function as source nodes for searching. In search for 
paths using a traditional tree search method, it may 
expand a large collection of new nodes while traversing 
new level of tree. In order to determine the range of path 
lengths in the network we would detect, we apply the 
heap-based Dijkstra's algorithm for each node to get the 
longest shortest path of all pairs of nodes in the network 
[13]. This information shows if any pair of nodes in the 
network can link to others at most the length and we thus 
use the length of the longest shortest path as the 
maximum length in the path searching. We assume that 
the active sub-networks extraction issue is a minimum 
score linear path searching problem with the fixed length. 
First, we normalized the weight w(e) of the edge e 
calculated by Equation (1) to be the range [0,1]. Then, 
we transfer the larger weight of the edge to be a smaller 
score and the score of the edge e between two 
corresponding genes u and v is calculated as score(e) = 
score(u,v) = -log(w(u,v)). The negative logarithm makes 
larger weight become smaller score and so on. First, we 
defined the score of a path as the sum of scores of edges 
in the path and the formula is defined in Equation (2): 

         
∑
∈
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where  
score(e) is the score of an edge e in the path p 

To speed up the procedure in search of the 
minimum score linear path, it needs to prune the 
unexplored new nodes heuristically. We use the idea of 
A* search to design a pruning strategy and the heuristic 
function is to determine the weight of a pathway that 
reflects significance to some extent. In the preprocessing 
experiments, we determine the edge with minimum score 
as scoremin and an average score of edges as scoreavg. 
Then, we calculate the scores of the simple paths with 
the same length l between different source and end 
proteins in the network. We ran the procedure 5000 
times to determine the scores of all paths in the 
experiments formed a normal distribution and we defined 
the error rate based on the standard deviation scorestd to 
find the optimal pathway in estimating bound heuristic 
function of h(x) for a node x. We employed A* search 
method can explore heuristically after searching a fix 
length d in the paths that calculates current weight of a 
path as function of g(x). The overall heuristic function of 
f(x) is defined in Equation (3) for finding a pathway with 
an optimal (minimum) score.  
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where  
l means the length of a path, 

d means the length from the source node that we have 
already traversed in the network, 
score(Pd) means the sum of the score up to the current 
node x with a length parameter d, 
scoremin means the minimum edge score in the network. 
Because the lower f(x) a node is estimated, the more 
likely is it to be searched. We set a bound score for a 
path p with length l that is defined as Equation (4) to 
control the quality of the path we could find: 

   ( ) lscorescorepBound stdavg ××+= α)(   (4) 
α is a constant factor to control the bound 
scoreavg means the average score calculated in the 
preprocessing experiments, 
scorestd means the standard deviation calculated in the 
preprocessing experiments. 
While we move to the next node through the edge in 
each search process, we compute heuristic function f(x) 
and compare it with the initially-set bound score. If f(x) 
exceeds the initially-set bound score, we do not expand 
the node further. For the nodes that are allowed to 
expand, their children nodes are expanded and their 
heuristic functions are computed and compared with the 
bound score again until the search reaches the end node. 
As the example in Figure 2, we consider finding a 
pathway with length l=7 from the initial node A to the 
end node H. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 an example for A* searching method 
First we explored a fix length d=2 from initial node A 
that lead us to node C, we start to estimate the score of a 
path with an additional length of 5 that yields a total 
weight 11 from current node C. The estimated score of 
the path is smaller than the bound score 12.95, therefore, 
we continue to traverse its children. The function of f(x) 
of current node D is 13.2 and therefore we cannot search 
into its children. We applied heuristic method to prune 
the search space instead of exhaust searching for all the 
edges in the network. 

The known drug resistance genes reported in the 
previous researches further help in classification of the 
paths [9] and we identified the function the potential 
drug resistance pathways where at least one of curated 
resistance proteins within paths. We extract the linear or 
tree-like path in the protein interaction network and we 
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assemble them to the active sub-networks NDR with 
significant gene set GDR.  
2.3 Random walk to discover co-target 

Random walk (RW) is a ranking algorithm [15]. It 
simulates a random walker starts on a set of seed nodes 
and moves to its immediate neighbors randomly at each 
step. Finally, all the nodes in the graph are ranked by the 
probability of the random walker reaching this node. The 
procedure of the RW model provides the basic idea to 
propagate the information from the drug target to the 
other genes in the network based to the gene expression. 
2.3.1 Initial probability for primary drug 

treatment using RW 
Based on the characteristic of RW, we applied this 

method to discover potential co-targets which have the 
maximum probability to affect the genes related to the 
drug resistance mechanisms. First, for every node v (v
V), we defined adj(v) which describes the set of nodes u 
with direct interaction with node v in the network G, and 
ws(v) as the sum of the weight associated from node v to 
its neighbors u in adjacency matrix A, their formal 
definition is in Equation (5) and (6), respectively. The 
transition matrix M for RW is computed using the 
adjacency matrix A and ws(v) and the transition 
probability from node v to node u is defined as Equation 
(7) where w(v,u) is calculated by Equation (1) 

         { }Euvuvadj ∈= ),(|)(             (5) 

      
∑

∈

=
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),()(
vadjw
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               (6) 
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Let P0 be the initial probability vector constructed in such 
way that equal probabilities assigned to all the source 
nodes with their probability sum equal to 1. Let Ps be a 
vector in which a node in the network holds the 
probability of finding itself in the random walker process 
up to the step s, the probability of Ps+1 can be derived by 

             s
T

s PMP =+1                  (8) 

We plunge the transition matrix M and initial probability 
vector P0 into the iterative Equation (8). After certain 
steps, the probabilities will reach a steady state which is 
obtained by performing the iteration until the difference 
between Ps and Ps+1 measured by L1 norm falls below a 
very small number such as 10-8. We defined the vector 
Preference(d) representing the steady state probability 
vector for the treatment merely by drug target d and also 
represents the probability of the nodes in the network as 
the reference probability vector. 
2.3.2 Discovering potential co-target 

A combination of primary drug target and co-target 
should disrupt pathways and reduce the emergence of 
drug resistance thus allowing the main drug to kill the 
bacteria. Due to the calculation of the weight of the edge 
is done from the primary antibiotic treatment, we modify 
the transition matrix in order to determinate the possible 
probability of the interaction while setting candidate 

co-target. We make the following constraints to specify 
the new transition matrix M’: 
(1) To inhibit proteins that are co-target, the probability 

of the interaction to this node in the transition matrix 
should be set to a small value ε.  

(2) The constraint of the transition matrix is that sum of 
the weight of the node should be equal to 1, so the 
rest of the weights must be set accordingly if at least 
one of the edges is set to ε. 

In order to satisfy the above constraints, we have the 
following definition: Let ct(v) be a set of proteins where 
the node belong to adj(v) of node v and is also a 
co-target in Equation (9). 

     { }target-co a is )(|)( uvadjuvct ∧=   (9) 
For every node v in the network, if the nodes u in adj(v) 
belongs to ct(v), we want to reduce the probability of 
walking into co-target node with small value ε, else, we 
first count the number of the nodes in ct(v) as |ct(v)| and 
calculate the sum of the weights of those nodes in adj(v) 
which are not in ct(v) as ws’(v) in Equation (10). 
Afterwards, we adjust the weight to each node which is 
not in ct(v) based on their weight ratio of the remaining 
probability in Equation (11).  
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Where  
| ct(v) | denotes the number of nodes in ct(v) 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 the example for transition matrix of co-target 
assignment 

The small undirected network is represented in Figure 
3(A) where node A is a primary drug target and all the 
weights of the edges are equal to one. Figure 3(B) is the 
adjacent matrix A and original transition matrix M 
calculated by Equation (7). While we choose the node C 
to be co-target, the modified transition matrix M’ is 
calculated by Equation (9)-(11). Take node B as an 
example, first we get adj(B) = {A,C,E} and ct(B)={C} 
from Equation (9) and then we set the probability of 

∈
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MBCand MDC to be ε based on Equation (11). The 
probability of MBA is calculated by 

( ) ( )εε −=−













+
=

→=

1
2
1)1(1

3
1

3
1

3
1

)(' ABprobailityM BA

 

In a similar manner are set the probabilities of MBE, MDE, 
and MDF. The initial probability P0 is formed such that 
equal probabilities are assigned to the nodes which are 
targeted by the drug and co-target with the sum equal to 
1. In Figure 3(C), the initial probabilities for the pair of 
the primary drug target and co-target are set as 0.5 
respectively. After certain steps, the probability will 
reach a steady state to the probability Pcotarget(d, t) for the 
treatment by the primary antibiotic target d and its 
co-target t. Finally, we obtained an function F(d,t) which 
is shown in the following Equation (11) for every 
primary drug target-co-target pair. The function F(d,t) 
denotes the relative visitation frequency of drug 
resistance gene set GDR between the co-target Pcotarget(d, t) 
and reference probability Preference(d). 
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Where Pcotarget(d, t)g denotes the probability of the gth 

gene which belongs to the function of drug resistance in 
the vector of the Pcotarget(d, t) 
3 Computational experiments and 

results 
We extracted protein interaction networks of 

Mycobacterium Tuberculosis H37rv from STRING 
database which contains 3,764 proteins with 179,920 
undirected interactions among them. We extracted 
microarray experiments data which have been deposited 
in Gene Expression Omnibus at NCBI with accession 
number GSE1642 [16]. Isoniazid (INH) is a central 
component of drug regimens used worldwide to treat 
tuberculosis. H37Rv treated with 0.2mg/mL and 
0.4mg/mL isoniazid (+1uL/mL EtOH) for 6h with MIC 
(0.02ug/mL) and control cells treated with equivalent 
amount of EtOH for 6h. It must be noted that it is 
possible that the high concentration may lead to 
abnormal expression but there may be a higher 
probability to develop drug resistance. Isoniazid is 
known to be inhibitors of mycolic acid biosynthesis. It 
can be envisaged that upon inhibition of a protein within 
drug treatment and metabolic adjustments often occur so 
as to minimize the effect of inhibition on the particular 
protein [7,12]. In order to incorporate the effect of such 
adjustments, we have considered the functional related 
genes as source rather than individual drug target and we 
use 21 proteins as source nodes for A* search to extract 
active sub-networks [4]. 
3.1 The drug response and resistance 

pathways of the antibiotic treatment 
The variation of the gene expression in the 

microarray data upon exposure to anti-tubercular identify 

lists of genes whose expression levels were either 
increased or decreased. There are 1,920 over-expressed 
genes, 1,806 down-expressed genes and the expression 
value of the 38 genes are equal to zero. Known 71 genes 
relevant to resistance mechanisms were classified into 
four types (a) efflux pumps which transport drugs out of 
the cell, (b) cytochromes and other target-modifying 
enzymes that cause potential chemical modification of 
drug molecules, (c) SOS-response and related genes 
leading to mutations or its regulatory region, (d) proteins 
involved in horizontal gene transfer (HGT) to import a 
target modifying protein from its environment. Table 1 
shows the number of the over- and down- expressed 
genes belong to curated resistance proteins [9]. Our 
experiments observed seven up-expressed genes of 
antibiotic efflux pumps and ten in down-expression. 
There are five over-expressed and four under-expressed 
genes in SOS. Most over- and under- expressed genes 
have connection with cytochromes, 15 up-expression and 
20 down-expression in cytochromes. We found that 
32.3% (22/68) of the genes’ absolute expression value 
are larger than the average of the absolute expression 
value of all genes in the microarray data. But we only 
found that expression values of two genes (iniA and 
efpA) are more than two standard deviations. Only 
dependent on the patterns of variation in terms of an 
increase or decrease in the expression levels of 
individual genes are hard to know the mechanism of the 
drug response and resistance. 

Table 1 the number of the over- and down- expressed 
genes belong to curated resistance proteins 

Drug resistance Up Down 

Antibiotic efflux pumps 7 10 

Hypothetical efflux pumps 2 2 

Antibiotic degrading enzymes 1    0 

Target-modifying enzymes 1 0 

SOS and related genes 5 4 

Genes implicated in horizontal 

gene transfer (HGT) 

1 2 

Cytochromes 15 20 

Previous researches observed that paths to different 
resistance mechanisms for different drugs and it suggest 
that a given target may have a higher propensity for 
eliciting a specific mechanism of resistance [8]. 
Therefore, we applied the length of seven is the longest 
shortest path in bacteria network and detect the path with 
the length from three to seven as our experiment testing. 
We identified the potential drug resistance pathways 
under isoniazid treatment where at least one of curated 
resistance proteins within paths and assemble them to the 
active sub-networks. The part of the drug resistance 
network assembles by the paths while setting alpha value 
equal to three is shown in Figure 4. Nodes are labeled by 
their gene symbol as indicated. The thickness of an edge 
is proportional to the number of times that the active 
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sub-networks we extracted are traversed through this 
edge. The node with dashed line represents the gene is 
the known drug resistance genes.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 the part of the drug resistance networks 
The global view of the Figure 4, we suggest that 

drug resistance related genes efpA, ccsA, ctaD and 
dnaE2 strongly associated with fadE family which can 
contribute directly to the emergence of drug resistance. 
Genes kasA, kasB and fabD play important roles which 
have stronger relationship with fadE family in the active 
networks extracted by our method. Then, we show that 
the linear paths with small score in the network. Table 2 
denotes the paths with small score which are belong to 
different resistance mechanisms and the value of Savg(P) 
is the score(p) divided by the number of node involved in 
the path. The top significant drug resistance paths is 
antibiotic efflux pumps with minimum score 1.05. It was 
interesting to observe that efpA is an important 
transporter known to confer resistance involved in the 
antibiotic efflux pumps paths in isoniazid [12]. Genes 
fadE1/23/24, fadD, kasA, kasB, and accD6 encoding 
enzymes are involved in fatty acid oxidation and fatty 
acid biosynthetic pathway [17, 18, 19, 20]. Gene accD6 
is an acetyl-CoA carboxylase that is involved in the 
production of malonyl-CoA. The result has previously 
been shown that genes are over-expressed in 
Mycobacterium Tuberculosis in the presence of activated 
isoniazid in the wet-lab experiment [17]. The edges in 
the SOS response were common to paths from cell wall 
proteins and ahpC genes that encode type II fatty acid 
synthase enzymes involved in mycolic acid biosynthesis. 
In the cytochromes mechanism, Rv1592c and Rv0531 
are the genes with unknown functions and they are also 
transcriptionally induced by isoniazid [19]. Genes fabG1 
and inhA both encode mycolic acid biosynthetic 
enzymes and fabG1-inhA regulatory region have also 
been identified and associated with isoniazid resistance 
[17]. NADH dehydrogenase (ndh) has been associated 
with isoniazid resistance. The essential acetyl-CoA 
carboxylase is involved in fatty acid and mycolic acid 
biosynthesis in Mycobacterium Tuberculosis and those 
genes are also strongly associated with growth and cell 
wall function. Our findings suggest are consistency with 
the recent experimental results. 

Table 2 top paths of the drug resistance mechanism in 
active sub-networks 

Top paths in active sub-networks Savg(P) 

Antibiotic efflux pumps 

kasA--kasB--accD6--fadA2--fadE23--efpA--acn 1.05 

fabD--kasB--accD6--fadA2--fadE23--efpA--acn 1.08 

fabD--kasA--efpA--fadE23--echA6--fbpB--acrA1  1.12 

fadD32--fbpB--fadD11--fadE24--efpA--fadE23--accA2  1.14 

SOS  

fabD--kasB--accD6--fadE23--fadE24--fadE1--dnaE2  1.43 

fabD--kasA--accD6--fadE23--fadE24--fadE1--dnaE2 1.48 

inhA--kasB--kasA--fabD--panB--ruvA--ahpC 1.64 

Cytochromes 

kasA--kasB--fabD--ctaD--echA17--fbpB--acrA1 1.34 

kasB--fabD--kasA--ndh--nuoH--ctaD--aceE 1.42 

fabG1--kasB--fabD--ctaD--echA17--fbpB--acrA1 1.49 

kasB--accD6--fadA2--fadE24--Rv1592c--Rv0531--ccsA 1.56 

accA3--accD6--fadE23--fadE24--Rv1592c--Rv0531--ccsA 1.59 

fadD32--fbpB--fadD11--fadE24--Rv1592c--Rv0531--ccsA 1.61 

3.2 The potential co-target discovered by 
random walks  
After we ran our random walk model for 868 genes 

in GDR, we display top 5 co-targets in Table 3. The top 1 
potential co-taget, Rv2721c is associated with alanine 
and glycine rich membrane protein which has been 
suggested to be important for maintenance of the NAD 
pool [21]. Our method discovered rv0483 (lprQ) which is 
previously shown to be cell wall-associated by 
proteomics and it could be a specific inhibitor to counter 
the drug resistance [22]. Lipoproteins such like lprQ 
carry out important functions efficiently at the membrane 
aqueous interface and its biosynthetic pathway is also 
essential for bacterial viability. Bacteria may be 
inherently resistant with particular type of cell wall 
structure with an outer membrane that establishes a 
permeability barrier against the antibiotic. Although 
Rv0885, rv1109C and rv2137C are all hypothetical 
proteins, they are all strongly functional interact with the 
lipoproteins, adrenodoxin oxidoreductase and cell wall 
processes which is deposited in STRING database. 
Although the biological validation for the predicated 
results from our method is difficult, it turns out that some 
of our predicted results had been reported in the public 
literature for validation. 

Table 3 top 5 co-targets for countering drug resistance 

Co-target F(d,t) Annotation 

rv2721c 144.16 conserved alanine and glycine 

rich membrane protein 
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rv1109c 144.03 conserved hypothetical protein 

rv0483 143.93 lipoprotein lprQ 

rv0885 143.87 conserved hypothetical protein 

rv2137C 143.86 conserved hypothetical protein 

4 Conclusion 
We develop a computational workflow for giving 

new insights to bacterial drug resistance which can be 
gained by a systems-level analysis of bacterial regulation 
networks. In our approach, we utilize information on 
STRING database and expression data to construct a 
weighted network and to decipher the active networks 
related to drug resistance using A* search method. We 
also identified the potential genes having higher 
probability using modified random walk model and 
suggested those genes that could be explored as 
co-targets. Knowledge of the active networks under 
specific condition will help us address more systematic 
and novel ways. The merit of this research would help 
biologists to understand the cellular mechanism more 
easily so that they could either based it to conduct further 
clinical diagnosis or verification. In the future, we could 
further integrate directed DNA-gene interaction and 
signal pathway to construct a more complete networks. 
The edge orientation of the undirected protein network 
based on the domain-domain interactions could be added 
to realize the signal flow in the network. The genome of 
the drug-resistant strain and non-drug-resistant strain 
should be compared to identify extra genes which are 
worth considering as significant components for 
co-targets and drug-resistance pathways. 
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Abstract - Using a parallel next-gen sequencing and 
analytic pipeline, we sequenced the whole mRNA 
transcriptome and trimethylated histone H3-lysine 4 marked 
DNA regions in hippocampus from 14 humans and 14 
rhesus macaques. Using this equivalent methodology and 
sampling space, we identified 462,802 macaque SNPs, most 
novel and disproportionately located in functionally 
important genomic regions.  At least one SNP was identified 
in each of more than 16,000 annotated macaque genes. 
Comparative analyses with these SNPs equivalently 
identified in the two species revealed that rhesus macaque 
has approximately three times higher SNP density and 
average nucleotide diversity as compared to the human. The 
effective population size of the rhesus macaque is estimated 
to be approximately 80,000 and several times that of the 
human. Across five different genomic regions (intergenic, 5 
Kb upstream of transcription start site, introns, 
untranslated, coding), intergenic regions had the highest 
SNP density and average nucleotide diversity and coding 
sequences the lowest, in both human and macaque. 
Although there are more coding SNPs (cSNPs) per 
individual in macaque than in human, the ratio of dN/dS in 
macaque is significantly lower than that in human. 
Furthermore, the number of predicted “damaging” 
nonsynonymous cSNPs in macaque is more closely 
equivalent to that of the human.  
 
Keywords: Macaque, Human, Sequencing variation, Single 
nucleotide diversity, SNP density, Comparative genomics 
 
1 Introduction 
 

Rhesus macaque (Macaca mulatta) monkeys and 
humans (Homo sapiens) are thought to have shared a 
common ancestor approximately 25 million years ago [1]. 

Due to their genetic, physiological and behavioral 
similarities with humans, and because of their hardiness, 
adaptability, and availability, the rhesus macaque has been 
widely used as a nonhuman primate model in biomedical 
research [2,3].  Humans presently are the most numerous 
and widespread of primates. Furthermore, hominid apes 
representing the ancestral lineage of humans were 
geographically widespread, their fossils having been found 
in both Africa and Asia. However, the human diaspora is 
relatively recent, with our African ancestry dating back only 
80,000 to 150,000 yrs b.p [4]. Also, the number of humans 
worldwide numbered as low as one million as recently as 
100,000 yrs ago [5], and due to limitations in dispersion and 
gene flow effective population sizes were probably much 
smaller still. Substantial evidence exists that the neutral 
genetic diversity of humans has been shaped, and in fact 
restricted, by an effective population size that until recently 
was less than 8,000 [6].  

The geographic range of the rhesus macaque extends 
from Afghanistan to the East China Sea. The population 
presently numbers in the millions, and in its range and 
population size the rhesus macaque is only exceeded by the 
humans among primate species [7]. Fossil evidence 
indicates that the Macaca genus originated in North Africa, 
and dispersed to various sites in Asia at least three million 
years ago [8]. The rhesus macaque has adapted to a variety 
of natural environments, including savannah and forests, 
and various climatic zones. Rhesus macaques thrive in cities 
– where they live side by side with man. The diversity of 
environmental adaptations and large current and ancestral 
population sizes suggests that the genetic legacy of the 
rhesus macaque may include a higher quotient of both 
neutral and selectively significant genetic variation than 
humans. Consistent with a high degree of genetic variation, 
substantial morphological variation has been observed 
between rhesus macaques in the same populations and also 
between populations, with as many as 13 subspecies 
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identified [9]. Within rhesus macaques there is some 
evidence for genetic distinctiveness at the molecular level, 
and Indian rhesus may be among the least diverse [10]. 
Several studies using protein polymorphisms have found 
higher levels of diversity in Rhesus macaques from China 
(where there are also more subspecies) than India, and there 
is some evidence for a genetic bottleneck in Indian Rhesus 
macaques [9]. However, substantial gene flow probably 
occurred later, which could refresh genetic variation. In a 
study of six rhesus macaque populations, including Indian, 
Burmese, and four Chinese populations, Indian macaques 
had one third to one sixth the mitochondrial DNA diversity 
as compared to four other populations. But the Indian 
macaques were approximately equal in diversity to one of 
the Western Chinese populations [9]. A recent study with 
more than 1,000 Single nucleotide polymorphisms (SNPs), 
which are more mutationally stable than other types of 
polymorphisms, revealed that Indian and Chinese rhesus 
macaques were nearly identical in genetic diversity [11]. 
Taken together, the evidence suggests that the rhesus 
macaque is likely to be a genetically diverse primate species 
but Indian macaques are if anything among the least 
heterogeneous populations. Genomic analysis of rhesus 
macaques of Indian origin would thus provide a 
conservative estimate of the variability of rhesus macaques.  

A draft genome sequence of a single Rhesus macaque 
of Indian origin was completed in 2007 [3].  This draft 
sequence opened the opportunity to map the amount and 
type of macaque genomic variation. Furthermore, 
characterization of genetic variation in macaques would 
greatly improve the value of the rhesus macaque as an 
animal model for human biology.  However, there has been 
no systematic genome-wide view of the genetic diversity 
within this species. At present, fewer than 8,000 SNPs from 
macaque have been recorded (dbSNP Build 131, 
http://www.ncbi.nlm.nih.gov/SNP/snp_summary.cgi?view+
summary=view+summary&build_id=131).  In 2007, Malhi 
et al. reported about 23,000 candidate SNPs from 
pyrosequencing [12].  

Compatible with its larger effective population size 
across evolutionary timeframes, the macaque appears to 
have higher sequence diversity than the human [3,13]. SNP 
density in macaques was estimated to range 1~7.8 SNPs/Kb 
[3,14].  However, the number of loci on which this 
conclusion is based is relatively small, and the loci were not 
selected in an unbiased fashion.   Although >22 million 
human SNPs are recorded, the availability of <10,000 
macaque SNPs prevents large scale sequence diversity 
comparison between human and macaque in different 
genomic regions. In this study, we used SNPs equivalently 
identified in 14 humans and 14 rhesus macaques by 
massively parallel sequencing with both H3K4me3 
(trimethylated histone H3-lysine 4) ChIPseq (chromatin 
immunoprecipitation followed with massively parallel DNA 
sequencing) and RNAseq (whole transcriptome massively 
parallel shotgun sequencing) as sources of sequenced 
fragments. From more than 16,000 genes some half million 
macaque SNPs, most newly identified,  were further 
analyzed and the extent of diversity was compared between 

humans and macaques in different genomic regions to 
capture effects of neutral genetic drift and selection in these 
two primate species. By sequencing diversity in the tissue-
specific transcriptomes and histone-marked regions of the 
two species, we were able, without the use of DNA capture 
technology (that did not exist for the macaque) or whole-
genome sequencing, to compare diversity in equivalent, 
functionally relevant genomic regions and detect effects of 
selection and drift on sequence substitutions in protein-
coding gene regions. 
 
2 Methods 
 
2.1 Samples and tissues 

Postmortem brain tissue (hippocampus) of 14 
unrelated human (H. sapiens) males, age 30-50 was 
obtained from the University of Miami Brain Endowment 
Bank (Miami, FL, USA).  The ethnic background of the 
human sample was: 6 African Americans, 8 
Caucasians/Hispanics. Postmortem hippocampus of 14 
rhesus macaque (M. mulatta) males, most unrelated, age 
3.5-7, was obtained from the National Institutes of Health 
Animal Center in Poolesville, Maryland. Among the 
macaques, eleven were of Indian origin, one was of Chinese 
origin and two were approximately 50% Chinese/50% 
Indian as indicated by forensic genotyping with a panel of 
96 markers optimized for macaque origin identification 
(Primate Genetics Program, Oregon National Primate 
Research Center, Table S1). The macaques at the 
Poolesville colony are maintained in an outbred state, with 
frequent introduction of new breeding stock such that their 
genetic diversity is expected to be equivalent to natural 
populations.  
 
2.2 Construction of double-stranded cDNA 
libraries 

Total RNA was extracted from 100 mg of 
hippocampus collected postmortem. Briefly, tissue samples 
were submerged in guanidinium thiocyanate and phenol 
based RNA extraction solution STAT-60 (Invitrogen, 
Friendswood, TX) and homogenized using a glass-Teflon 
homogenizer. Following mixing with chloroform and 
centrifugation, the aqueous phase was collected and 
isopropanol was added. The samples were then loaded onto 
RNeasy spin columns (Qiagen, Valencia, CA) for 
purification. To eliminate residual genomic DNA 
contamination, RNA samples were incubated with DNase I 
(Qiagen) on column at room temperature for 15 min and 
washed several times before collection in elution buffer. To 
isolate mRNA, 35 μg  of total RNA was heated at 65ºC for 
2 min, and then mixed with 0.5 mg of Dynabeads oligo 
(dT)25 (Invitrogen) in binding buffer (20 mM Tris-HCl, pH 
7.5, 1.0 M LiCl, 2 mM EDTA). After incubation at room 
temperature for 5 min and then washing several times, 
mRNA was eluted from the beads by heating at 80ºC for 2 
min. The purified mRNA was fragmented to the 150 – 500 
base pair range by mixing with 10 x fragmentation buffer 
(Ambion, Austin, TX) and heating at 70ºC for 3 min. The 
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samples were purified with RNeasy spin column.  200 ng of 
fragmented mRNA was reverse-transcribed to first strand 
cDNA by random priming, using 3 μg of random hexamer 
oligos and 200 units of Superscript II reverse transcriptase 
(Invitrogen). The reaction was carried out at 45ºC for 1 hr in 
First Strand Buffer (Invitrogen) with 10 mM DTT and 0.5 
mM dNTP. For second-strand cDNA synthesis, 400 units of 
Escherichia Coli DNA polymerase, 2 units of E. Coli 
RNase H, and 10 units of E. Coli DNA ligase was added, 
and the reaction was carried out at 16ºC for 2 hr in Second 
Strand Buffer with 0.2 mM dNTP. 20 units of T4 DNA 
polymerase was also added at the end of incubation for 
endrepair. The synthesized double-stranded cDNA library 
was purified with QIAquick purification kit (Qiagen). 
 
2.3 Chromatin immunoprecipitation (ChIP) 

Postmortem brain tissue (100 mg) was cut into slices 
less than 1 mm in thickness, and fixed in 3 ml of 1% 
formaldehyde/PBS solution for 10 min at room temperature 
to cross-link chromatin DNA and proteins. The tissue 
samples were then homogenized using a glass-Teflon 
homogenizer. Following homogenization, chromatin was 
isolated using the Upstate Magna ChIP G kit (Millipore, 
Temecula, CA). Briefly, cells were lysed in Cell Lysis 
Buffer in the presence of protein inhibitor cocktail. Nuclei 
were isolated from lysed cells by centrifugation, and re-
suspended in Nuclear Lysis Buffer. The chromatin DNA 
was then fragmented into the 150 – 500 base-pair range by 
sonication using a Branson Sonifer (Branson, Danbury, 
Connecticut).  To immunoprecipitate specific genomic 
regions of chromatin DNA, isolated chromatin was 
incubated with antibodies (Abcam, Cambridge, MA) against 
H3K4me3 and magnetic protein G beads (Millipore) at 4ºC 
for 2.5 hr. Following incubation, beads were washed with 
low salt, high salt, LiCl salt, and TE buffers, and reverse 
cross-linked by proteinase K digestion at 62ºC for 2 hr. The 
enriched DNA was purified after reverse cross-linking by 
column purification. 
 
2.4 Sequencing with Illumina Genome 
Analyzer 

Sample preparation and sequencing on an Illumina 
Genome Analyzer (Illumina, San Diego, CA) were carried 
out according to Illumina protocols with some 
modifications. Briefly, double-stranded cDNA and ChIP-
enriched genomic DNA were treated with T4 DNA 
polymerase and Klenow fragment for end repair. The 5’ 
ends of DNA fragments were then phosphorylated by T4 
polynucleotide kinase, and an adenosine base was added to 
the 3’ end of the fragments by Klenow (3’-5’ exo-). A 
universal adaptor was added to the both ends of the DNA 
fragments by A-T ligation. Following 18 cycles of PCR 
with Phusion DNA polymerase, the DNA library was 
purified on a 2% agarose gel, and fragments 170 – 350 bp in 
size were recovered. Approximately 10 ng of the prepared 
DNA was then used for cluster generation on a grafted Flow 
Cell, and sequenced on the Genome Analyzer for 36 cycles 
using the “Sequencing-by-synthesis” method. 

2.5 SNP calling and sequence analyses 
Sequences were called from image files with the 

Illumina Genome Analyzer Pipeline (GApipeline) and 
aligned to the corresponding reference genome (UCSC 
rheMac2 for macaque and UCSC hg18 for human) using 
Extended Eland in the GApipeline. The uniquely mapped 
reads were parsed with in-house Perl scripts to generate base 
coverage and SNP calls as described previously [15]. To 
reduce false positive and false negative SNP calling for low 
coverage sequence data, a two-step approach was used. 
Briefly, reads were first pooled from all samples in a species 
for SNP identification. At this step, no base in the uniquely 
mapped reads had a quality score < 8, only a single mis-
match with quality score ≥ 15 was allowed in a single 36-
base read, and a probable SNP had to have three 
independent reads representing the same alternative allele 
within the pooled samples. To reduce false SNP calls due to 
mis-mapping of cross-exon RNAseq reads, putative SNPs 
were filtered to remove instances in which the alternative 
allele was represented only by reads located one or two 
bases from either end of the RNAseq fragment. Candidate 
SNPs were then filtered at the individual sample level, 
where the frequency of the alternative allele in a single 
sample had to be the highest or second highest with a 
frequency ≥ 0.2.  Genotypes were called for an individual 
sample only when sequencing coverage was ≥ 6x for the 
SNP site and when the allele with the lowest coverage was 
represented at least 3 times and heterozygotes with each 
allele covered by 30~70% of sequence reads. Gene 
structures for human were based on RefSeq Genes in UCSC 
hg18 and Ensembl Genes from UCSC rheMac2 were used 
for the macaque. PolyPhen-2 [16] was used to predict 
protein functional effects of nonsynonymous coding SNPs 
(nsSNPs). Fourteen novel macaque cSNPs were selected to 
be resequenced by Sanger sequencing using the BigDye 
Terminator Sequencing Mix (Applied Biosystems, 
Carlsbad, CA) and analyzed on the Applied Biosystems 
3730 DNA Analyzer. 
 
3 Results and Discussion 
 
3.1 SNP density is three times higher in the 
rhesus macaque than the human 

In this study diversity was determined in short 
sequence reads (36 bases) equivalently detected and 
analyzed in 14 humans and 14 rhesus macaques (Table 1) 
(The raw sequences generated in this study have been 
deposited in The Sequence Read Archive with the accession 
numbers of SRA028822, SRA027316, SRA029279 and 
SRA029275). It is important to point out that the analytical 
strategy of comparing diversity within the hippocampal 
transcriptome and in H3K4me3-marked DNA regions 
resulted in the analysis of equivalent regions in the macaque 
and in the human. There was a strong correlation between 
level of expression of genic associated sequences between 
the hippocampus of both species and in the regions strongly 
tagged by H3K4me3 (Fig. S1).  From these equivalent 
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genomic regions with at least 3x sequencing coverage, a 
total of 462,802 high quality putative SNPs (most of which 
were novel) were detected in the macaque, and 230,028 
(most of which were known) were detected in the human. At 
least one SNP was identified in each of 14,675 human 
annotated genes and 16,797 macaque annotated genes.   

 
Table 1. Summary of sequence coverage and 
putative SNPs 

  Human Rhesus 
Genome size in reference assembly (Mb) 3,080 2,864 
Non-gap reference genome size (Mb) 2,858 2,647 
Unique coding sequence size in reference (Mb) 32.5 31.8 
Sample number 14 14 
Average 36-base reads per sample  17.4 x 106 14.4 x 106 
Total length (Mb) of uniquely mapped reads 8,770 7,266 
Mb in genome with (≥1x sequence coverage) 1,505 1,571 
Mb in genome with (≥3x sequence coverage) 426 435 
SNPs in dbSNP_B 131 23.7 x 106  7,880 
SNPs in this study 230,028 462,802 

               Also in dbSNP_B131 206,267 
(89.7%) 

34 
(0.0%) 

               Transition AG,GA,TC,CT 155,836 
(67.7%) 

312,064 
(67.4%) 

               Transversion AC,CA,TG,GT 37,046 
(16.1%) 

79,061 
(17.1%) 

               Transversion CG,GC 25,467 
(11.1%) 

46,820 
(10.1%) 

               Transversion AT,TA 11,679 
(5.1%) 

24,857 
(5.4%) 

               Genes with SNPs 14,675 16,797 
               Genes with SNPs in exons 11,200 12,466 

               SNPs located in intergenic regions 107,461 
(46.7%) 

269,390 
(58.2%) 

               SNPs locate in 5Kb upstream of TSS 10,036 
(4.4%) 

26,303 
(5.7%) 

               SNPs located in UTR 18,432 
(8.0%) 

15,455 
(3.3%) 

               SNPs located in intron 79,875 
(34.7%) 

130,443 
(28.2%) 

               SNPs located in CDS 14,224 
(6.2%) 

21,211 
(4.6%) 

                         Synonymous 8,329 
(58.6%) 

13,798 
(65.1%) 

                         Non-synonymous 5,877 
(41.3%) 

7,367 
(34.7%) 

                         Damaging 1,741 
(29.6%) 

1,525 
(20.7%) 

                         Nonsense 18 
(0.1%) 

46 
(0.2%) 

 
Approximately 10~25% of the putative SNPs detected in 
intergenic regions were found to be covered with RNAseq 
reads (Table S2), suggesting that significant transcription 
activity occurred outside of defined genic regions in both 
species, consistent with those reported recently [17]. Among 
230,028 putative human SNPs, 90% had been recorded 
previously in dbSNP. This rediscovery rate is slightly higher 
than the 77-89% rediscovery rate for SNPs in the 1000 
Genomes Project Pilot 2 deep sequencing data [18].  Also 
bearing on the validity of the SNP detection pipeline, the 
transition to transversion ratio of human and macaque SNPs 
was non-random. Although the random transition to 
transversion ratio is 1:2, this ratio is approximately 2:1 in 
both human and macaque. Using the same SNP calling 
pipeline, 22 of 26 human nsSNPs were validated by Sanger 

sequencing in a previous study [15]. Using Sanger 
sequencing, 13 of 14 novel macaque cSNPs identified in 
this study were also verified. Overall, the rhesus macaque 
had a SNP density approximately three times higher than 
humans (Fig.1A). Calculated across all genomic regions 
with at least 4x sequencing coverage in individual samples, 
the SNP densities for macaques and humans were 2.82 
SNP/kb and 1.07 SNP/Kb, respectively (Table 2, Fig.1A).  
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Fig. 1: Average SNP density (SNPs per 1Kb) in human and macaque. A). 
SNP density was calculated as the putative SNPs having different allele 
from reference genome divided by the unique sequenced bases in 
individual samples. Only bases having ≥ 4x sequence coverage were used 
for this calculation. Macaque sample K20, with Chinese origin, is labeled 
as an unfilled circle.   B). Average SNP density in human and macaque was 
calculated for different sequencing coverage. Data from all macaque 
samples in solid line with filled square markers. Data with K20 omitted in 
solid line with unfilled triangle markers and others omitted one-by-one in 
dotted lines. Indian macaques only in solid line with unfilled circle 
markers. C). SNP density in 5 different genomic regions; D). The ratio of 
dN/dS for cSNPs. Error bar in C and D: standard error of mean.  
 
Table 2. SNP density  

Genome Technology Used SNPs/Kb 
Venter Sanger method 1.41* 

Watson 
454 Sequencing System 
(Roche) 1.46* 

Chinese (YH) Genome Analyzer (Illumina) 1.35* 
African (NA18507) Genome Analyzer (Illumina) 1.58* 
African (NA18507) SOLiD system (ABI) 1.69* 
Korean (SJK) Genome Analyzer (Illumina) 1.50* 
Korean (AK1) Genome Analyzer (Illumina) 1.51* 
Proband (III-4) SOLiD system (ABI) 1.50* 

CEU,YRI Genome Analyzer, SOLiD, 454 
1.21-

1.48** 

Humans in this study Genome Analyzer (Illumina) 
1.07 

(0.97-1.26) 
Macaques in this 
study Genome Analyzer (Illumina) 

2.82 
(1.88-3.71) 

* SNP number was from Lupski et al. 2010 [19] and SNPs/Kb was 
calculated based on the total SNPs reported and 2.85 x 109 of the sequenced 
human genome size and 80% of accessible genome [18]. 
** Based on the SNPs and accessible genome from high coverage Pilot 
Trios data of 1000 Genomes Project [18]. 
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Because sequencing coverage for individual samples was 
low for most regions, putative SNPs were called by a 
conservative, two-step approach as described in methods. 
As a result, SNP density increased in both species as 
sequencing coverage increased (Fig. 1B), but it can be 
observed that the macaque had proportionately higher SNP 
density at all levels of sequencing coverage (Fig. 1B). One 
of the macaque samples was of Chinese origin and two were 
approximately equally admixed between Chinese macaque 
and Indian macaques as described in methods. However, in 
the comparison between macaque and human, this Chinese 
macaque (K20) and the two admixed macaques did not exert 
a larger effect on SNP density as compared to any of the 
Indian macaques. This was tested by omitting individual 
macaques one-by-one, and also by evaluating SNP density 
with all three of the animals with Chinese ancestry omitted 
(Fig. 1B). The result is consistent with what found in a 
recent study where no difference was found in genetic 
diversity between Chinese and Indian macaques using 
genotype analyses with more than 1,000 SNPs [11]. As 
mentioned, our human sample itself included individuals of 
different ethnic backgrounds. Therefore, the Chinese 
macaque and the two admixtures were included in all 
analyses unless specified otherwise.  

At higher coverage, SNP density approached that 
found by higher coverage sequencing, being 1.5 SNPs/Kb 
for 30x coverage across human 14 samples.  A range of 3.07 
~ 3.86 x 106 SNPs was found in individual human genomes 
[19] representing approximately 1.3~1.7 SNP/Kb. Also, a 
SNP density of 1.2 ~ 1.5 SNPs/Kb was found in the 1000 
Genomes Project Pilot 2 data for two human family trios 
with >40 x sequencing coverage [18]. Here, SNP densities 
were estimated from 14 samples in both species and with 
highly similar sequencing coverage, representing a 
methodologically equivalent view of diversity. Since 
intergenic and intronic regions comprise the majority of the 
genome in both humans and macaques, the overall SNP 
densities reported here are most likely underestimates 
because a high proportion of our data derives from coding 
sequences (CDS) and untranslated regions (UTR)  that have 
the lowest SNP densities,  as will be discussed below and as 
shown in Fig. 1C.  

SNP density was compared across five different 
categories of genomic regions: intergenic, 5 Kb upstream of 
TSS (transcription start site), introns, UTR (5’- and 3’-
UTRs), and CDS as annotated in refGene (human) or 
ENSEMBL (macaque). In all five genomic regions, 
macaques had significant higher SNP densities than humans 
(Fig. 1C). Intergenic regions had the highest SNP density 
and coding regions the lowest SNP density in both species 
(Fig. 1C). In coding regions, 76% of the cSNPs would be 
expected to be nsSNPs if all base substitutions were equally 
likely [20]. But nsSNP density was lower than synonymous 
cSNP density with a dN/dS ratio (the ratio of 
nonsynonymous versus synonymous substitutions, 
reflecting selection pressure acting on nonsynonymous sites 
relative to synonymous ones) in humans approximately 
0.691±0.017 and dN/dS ratio of 0.567±0.022 in macaque 
(Fig. 1D). Although both adaptation and purifying selection 

may have occurred at numerous genes for both species, 
purifying selection is most likely to be predominant across 
the whole genome in both species as their dN/dS ratio values 
were significantly less than 1. The selection pressure on 
nonsynonymous substitutions may have been stronger in the 
macaque than in the human since the dN/dS ratio in macaque 
is significantly (t-test, p-value <0.0001) lower than human. 
In an equivalent genomic search space, twice as many 
putative SNPs were identified in macaque as compared to 
the human (Table 1). However, macaques only had 1.2 
times as many nsSNPs, reflecting that much of the increased 
diversity of the macaque, even in protein-coding regions of 
the genome, is likely to be selectively neutral. Furthermore, 
the nsSNPs of macaques were less likely to be “damaging” 
(including “possibly damaging” and “probably damaging”) 
as compared to the human (20% in macaque vs 30% in 
human), at least as predicted by PolyPhen-2 (Table 1).  In 
line with this result, the higher dN/dS ratio in human may 
reflect a relative relaxation of purifying selection during 
hominoid evolution as a consequence of smaller effective 
population sizes or a high rate of adaptive substitution [21]. 

Using RNAseq and H3K4me3 ChIPseq data, a 
relatively high percentage of SNPs can be identified in gene 
coding and promoter regions, which represent functionally 
important domains of the genome. This could represent an 
advantage for certain types of gene-centric analyses. For 
instance, 6.2% of the human SNPs detected in this study 
(and 90% are previously known) were located in coding 
regions (cSNPs), whereas only 0.7% of the total SNPs 
identified in 1000 Genomes Project Pilot 2 data were cSNPs 
[18]. Here we sequenced only 0.426 Gb of unique human 
sequence at ≥3x coverage, but detected 14,224 cSNPs. This 
is a substantial number given that 24,192 cSNPs were 
detected in three Caucasian individuals with whole genome 
sequenced at high coverage, in the 1000 Genomes Project 
Pilot 2 (Fig. S2). The major limitation for SNP detection 
here was the proportion of genes that are not expressed in 
adult hippocampus or that are expressed at a low level in 
this tissue. The overlap of the cSNPs we detected with those 
reported in two individuals from the 1000 Genomes Project 
Pilot 2 data is consistent with the overlap that has been 
empirically observed between unrelated individuals 
(50~70% SNPs shared) on a pairwise basis (Fig. S3) [18]. 
Based on our sensitivity of detection of human SNPs, where 
14,224 cSNPs were detected versus some 250,000 cSNPs 
that have been reported in NCBI (from a much larger 
population of subjects), we estimate that our region-focused 
sequencing of only 14 individuals enabled us to discover 
approximately 6% of the common cSNPs that are present in 
the rhesus macaque, although detection sensitivity was of 
course higher for the more abundant SNPs. 
 
3.2 Rhesus macaques are three times as 
diverse as the human 

The average nucleotide heterozygosity (diversity) for 
SNPs (θSNP, as defined by Levy et al. 2007[22]) in this study 
was measured as the ratio of heterozygous basepairs (both 
alleles with ≥3x coverage and ≥ 30% of sequence reads) 
divided by all basepairs sequenced at this level, within each 
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individual. Macaque θSNP was 3 times higher than human 
θSNP (8.93x10-4 vs 3.06x10-4, Fig. 2A).  
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Fig. 2: Average nucleotide diversity (θSNP). A). θSNP in individual samples.  
Calculation was based on bases with ≥ 6x sequence coverage. Macaque 
sample K20, with Chinese origin, was labeled as an unfilled circle. B). 
Nucleotide diversity was average from all samples in each species at 
different sequencing coverage. C). Average nucleotide diversity in 5 
different genomic regions; D). Average nucleotide diversity for 
synonymous cSNPs and nsSNPs. Error bar in C and D: standard error of 
mean. 

Paralleling observations on SNP density, as sequencing 
coverage increases, more heterozygous basepairs are 
detected. With increasing sequencing coverage, θSNP 
increased, becoming asymptotic at about 10x coverage (Fig. 
2B). At 20x sequencing coverage, θSNP was 11.4 x 10-4 in 
the macaque and 3.6 x 10-4 in the human (Fig.2B). Similar 
to what we observed for SNP density, θSNP was highest in 
intergenic regions and lowest in coding regions in both 
species and macaque had significant higher θSNP than human 
in all five genomic regions (Fig. 2C).  Our estimated θSNP in 
human from all regions (3.06 × 10−4) is lower than values 
that can be calculated (See supplementary Table S4) from 
1000 Genomes Project Pilot 2 data (7.2 × 10−4 to 9.3 × 10−4) 
and is also slightly lower than values of 5.4 × 10−4 to 8.3 × 
10−4 reported previously for humans [22-26].  Our overall 
lower human θSNP than those reported previously was 
expected due to our lighter sequencing coverage and higher 
genic percentage of sequenced regions.  However, within 
intergenic regions that comprise most of the genome our 
θSNP estimate of ~6.78 x 10−4 is actually very close to these 
previously reported estimates for humans based on high 
coverage whole genome sequencing. Therefore, the θSNP 
values we have computed for macaque and human appear to 
be robust, reflect parallel methodology and sampling and are 
informative for both genome-wide and regional increases in 
genetic diversity in the macaque compared to human. 

Within coding regions it is possible to compare 
diversity that is more likely to be functionally significant 
with diversity that is more likely to be selectively neutral. In 
coding regions, both human and macaque had 
approximately 2 times more diversity for synonymous 
cSNPs as compared to nsSNPs (Fig. 2D), reflecting 
functional constraint and selection against changes in the 
protein sequence [25]. Concerning the possible functional 
significance of nsSNPs, Polyphen predicted that some 1,741 
(29.6%) of the cSNPs we detected in the human and 1,525 
(20.7%) of the cSNPs we detected in macaque were likely to 
be “damaging”. The macaque cSNPs we identified include a 
substantial resource of putatively functional sequence 
variants. Supporting the functional significance of many of 
these SNPs, individual humans and macaques were both 
half as likely to be homozygous for “damaging” nsSNPs 
than they were to be homozygous for synonymous cSNPs 
and nsSNPs scored as “benign” by Polyphen (Fig. 3).  

 

Fig. 3: The ratio of homozygous/heterozygous for the alternative alleles of 
cSNPs. H.S: human synonymous cSNPs; M.S: macaque synonymous 
cSNPs; H.B: human nsSNPs with “benign” prediction by PolyPhen; M.B: 
macaque nsSNPs with “benign” prediction by PolyPhen; H.D: human 
nsSNPs with “damaging” prediction by PolyPhen; M.D: macaque nsSNPs 
with “damaging” prediction by PolyPhen.  

In line with the theory that most of the increased 
diversity of the rhesus macaque is selectively neutral in 
nature, the increase in macaque SNP density was not 
proportionately maintained from non-coding sequence to 
coding sequence, to nsSNPs and to putatively “damaging” 
nsSNPs. Instead, the macaque more closely resembled the 
human in its SNP density within these more functionally 
significant categories. Surprisingly, a different picture was 
observed using the diversity measure θSNP for human and 
macaque. By this standard, macaque was approximately 
three times as diverse as the human across all types of 
sequence categories. This could point to the maintenance of 
nsSNPs by balancing selection. This is an important 
mechanism of evolutionary adaptation in all genetically 
diverse species but may be operative at a larger percentage 
of loci in the macaque than in the human. Speculatively, 
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although the macaque does not have proportionately more 
nsSNPs, those that it does have are more likely to be 
maintained at higher frequency by balancing selection. 
However, although this would explain why nsSNP density 
does not increase proportionately with overall SNP density 
and with diversity, other validating data would be required 
to establish this point. One indirect test would be linkage 
disequilibrium analysis that could detect signals of selection 
(selective sweeps) at genes containing nsSNPs. In fact, one 
use of the SNPs we have discovered would be the creation 
of a marker panel enabling genome wide evaluation of LD. 
When that is done, the results may again be surprising.  

At equilibrium, LD depends on the recombination rate 
and effective population size. Therefore, it might be 
anticipated that LD blocks in the rhesus macaque will be 
substantially smaller than the human. Thus a macaque SNP 
panel effective for genome-wide use might have to be larger 
than human 1M panels that are now the standard. However, 
it is also possible that cross-population admixture has 
already occurred in the rhesus macaque, at least in some 
samples of macaques, which could have led to the presence 
of much larger haplotype blocks than anticipated on the 
basis of population size.  In this same vein, cross-population 
comparisons of genetic variation would be valuable. The 
macaques analyzed here are primarily of Indian origin, but 
as described earlier the species is widely dispersed. In 
particular there is a very large population of Chinese 
macaques with several Chinese subspecies proposed 
including a subspecies representing the island of Hainan, 
and several unique island-based colonies including Cayo 
Santiago, Puerto Rico, and Morgan Island, South Carolina. 
The similarity of diversity of the one Chinese and 
Chinese/Indian admixed macaques we studied does not 
address whether there are significant differences at the 
haplotype level, and based on the analysis of these several 
animals we have not developed a panel of markers 
informative for Chinese origin. That might also require the 
analysis of multiple Chinese populations.  Because of their 
population sizes and breeding structures, macaque and 
human founder populations, both of which are available, 
offer an opportunity to observe the changing impact of 
population dynamics on genetic diversity of different types. 

There is some evidence that the mutation rate may 
have slowed in the hominoid ape lineage, but based on the 
nucleotide diversity rates we have observed we can compare 
the effective population sizes of rhesus macaque and human. 
For this purpose, we used Watterson’s (1975) [27] estimator 
θ = 4Neu with average nucleotide diversity (θSNP) in 
intergenic regions (Fig. 2C) as θ because intergenic 
diversity is most likely to faithfully reflect neutral diversity 
at the whole genome level. Assuming an average mutation 
rate of 1 x 10-8  to 2.5 x 10-8 mutations per nucleotide site 
per diploid genome per generation for human [18,28-30] and 
an average mutation rate 5.9 x 10-9  mutations per nucleotide 
site per diploid genome per generation for macaque [14], the 
effective population size of humans is approximately 6,780-
16,950 and the effective population size of the macaque is 
approximately 80,000.  The most relevant comparison 
remains the diversity ratio between the human and macaque, 

with the macaque emerging as having an effective 
population size several times larger.   

As mentioned, our findings on the relative diversity of 
Chinese and Indian macaques were limited because we 
studied only one individual animal of Chinese origin and 
two that were admixed. Furthermore, the specific 
geographic origin of this one Chinese macaque, and the 
admixture component of the two other macaques, was 
unknown. That could be relevant, because the mitochondrial 
diversity of rhesus macaques from one Western Chinese 
population appeared to be equivalent to Indian macaques 
[9], which displayed lower mitochondrial diversity than 
several other macaque populations. However, it should be 
noted that the genetic diversity of nuclear DNA is less 
sensitive to the effects of population bottlenecks than is the 
diversity of the mitochondrial genome or the haploid Y 
chromosome. For example, a Finnish bottleneck that left a 
strong imprint on Y chromosome diversity led to no 
reduction in autosomal diversity [31]. Recently, 
Kanthaswamy et al revealed that Chinese and Indian 
macaques appeared to have near identical genetic diversity 
based on genotype analysis with more than 1,000 SNPs 
[11]. Regardless of whether there was a population 
bottleneck in the rhesus macaque population of India, the 
Indian macaques that we studied are several times as diverse 
as the human. Perhaps this is due to subsequent gene flow 
from other populations which would have restored nuclear 
DNA diversity of the species on the Indian subcontinent. 
Considering the geographic origin of the macaques we 
studied, it is clear that rhesus macaque is several times as 
diverse compared to the human, but with indications that 
selection has dampened the increase in functional diversity 
in this species.  
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6 Supporting Materials 
 

 
* Calculated as the heterozygous bases divided by the sequencing accessible 
genome size (2.85 x 109 x 80%) using 1000 Genomes Project Pilot 2 data. 

 
Fig. S1: A: RNAseq correlation between human vs macaque. Data points: mean 
of normalized gene expression level (log2).  B: H3K4me3 ChIPseq correlation 
between human vs macaque. Data points mean of normalized area under curve 
(log10) of covered reads within 1Kb of TSS. C. Sequencing coverage (H3K4me3 
ChIPseq and RNAseq) in NPY genic region. 

 

 
Fig. S2: Human cSNPs identified in 1000 Genomes Project Pilot 2 samples and 
this study. C or CEU: CEU trio from 1000 Genomes Project Pilot 2; Y or YRI: 
YRI trio from 1000 Genomes Project Pilot 2; M or Miami: 14 samples from Miami 
dataset in this study. 
 

 
Fig. S3: SNPs shared between individuals in 1000 Genomes Project Pilot 2. 
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Abstract – The swine origin influenza A (S-OIV) virus of 
2009 reached pandemic proportions due to its novel 
sequence identity in human populations of North America 
and other localities. The S-OIV virus shows subtle change 
from 2009-2010 in humans, affirming that the HA and NA 
sequences have been unable to antigenically drift or shift 
enough to emerge as another pandemic. This study aimed to 
document the succession of S-OIV from 2009 to current in 
addition to investigating its relationship among other 
locations. Based on the phylogenetic analysis, the 2010 
H1N1 is similar to other isolates circulating the previous 
year. Furthermore, the protein sequences with the highest 
non-synonymous to synonymous ratio were HA and NA thus 
indicating strong selective pressures for the antigen receptor 
binding sites to adapt even within human hosts. 
 
Keywords: 2009 influenza pandemic H1N1 influenza virus; 
antigenetic shift and drift; phylogenetic analysis; non-
synonymous to synonymous ratio; neighbor joining method 
 
1 Introduction 
 

With the development of antibiotics within the past 
century, life expectancy has increased despite a prolonged 
window of susceptibility and transmissibility to viral and 
bacterial infections during humans’ life span. Currently, with 
over a quarter of a million deaths and upwards of three 
million cases of influenza globally each year in humans, the 
emergence of a novel swine-origin influenza virus (S-OIV) in 
2009 garnered much attention [1]. The common influenza 
(flu) is caused by the Orthomyxoviridae family of ssRNA 
viruses including Influenzavirus A, Influenzavirus B, 
Influenzavirus C, Isavirus and Thogotovirus. All but Isavirus 
are detected in vertebrates with Influenzavirus A seemingly 
the most virulent, diverse, and pathogenetic to humans. The 
present paper deals with the pandemic H1N1 flu virus, a 
novel subtype of Influenzavirus A.  

 
Three months after its identification in Mexico in 2009, the 
S-OIV epidemic had reached alert phase 6, marking the first 
pandemic in almost forty years to reach that phase [1, 2]. The 
                                                           
  *both authors contributed equally;  †duan@uakron.edu 

S-OIV virus, despite its novel sequence and severity, is a 
triple reassortment from three different “donors” [3, 4].  
Phylogenetic analyses conclude that of its eight nucleotide 
sequences, six of them (HA, PB2, PB1, PA, NP, NS) are 
highly similar to influenza viruses endemic to pigs in the late 
1990’s with the other two genes (NA and MP) from a bird 
lineage isolated in Europe [5-7]. None of the individual 
genes were previously found in Europe or North America, 
reaffirming conditions for a pandemic viral outbreak [3, 4, 8, 
and 9].  

 
Therefore the early detection and continuous monitoring of 
novel strains in the environment are poised at the interface of 
molecular biology, viral biology, and, more recently, 
computer science.  Furthermore, the inherent diversity, total 
number of sequences of Influenzavirus A and the lack of 
sampling resolution make phylogenetic analysis very 
complex. The present paper focuses on the antigenic shifting 
and drifting of the virus from 2009 to present and the post 
pandemic evolution of the 2009 H1N1 (S-OIV) Influenza 
virus.  

 
2 Materials and Methods 
 

In order to study the evolution of S-OIV since its 
emergence, phylogenetic trees were constructed using only 
unique, full length coding sequences, human host H1N1 
nucleotide sequences from April 2009 to January 2011 [10]. 
The trees were constructed via the neighbor-joining method, 
with distances calculated using the Felsenstein F84 
nucleotide method [11]. Non-synonymous (dN) to 
synonymous (dS) substitution ratio were then calculated 
using the Nei-Gojobori method [12]. The 
A/California/04/2009(H1N1) isolate was used as the first 
identified S-OIV strain (highlighted in green in figures) and 
2010 strains were highlighted in red. A/Moscow/ 
01/2009(H1N1), A/Boston/ 653/2009(H1N1), A/Korea/ 
CJ01/2009(H1N1), A/Chile/ 4064/2009(H1N1), 
A/MexicoCity/ WRAIR1752N/2010(H1N1), A/Newark/ 
INS429/2010(H1N1), A/Vienna/ INS179/2010(H1N1), and 
A/Ontario/ 3620/ 2010 were randomly selected in calculating 
dN/dS ratios. In constructing the phylogenetic trees, only 
unique isolates were used and a Perl script was written to 
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randomly select a sample of 1000 sequences. 
Kingdom/1/1933(H1N1) is used as the 
A/California/04/2009(H1N1) and 2010 sequences
highlighted in each tree for reference and 
branches were collapsed for tree readability. 

 
3 Results and Discussion 
 

Phylogenetic trees were constructed using neighbor
joining method to understand how the novel S
influenzavirus A strain has changed through its pandemic 
period (April 2009 - January 2011) in human hosts. The 
phylogenies for the unique protein coding sequences HA, 
NA, M1, M2 and PB2 are shown in Figures 1

 
 
 
 
 
 

 
Figure 1. Phylogenetic relationships among human H1N1 viruses (HA)
 
 
 
 
 
 

 

sequences. The A/United 
gdom/1/1933(H1N1) is used as the outgroup. The 

2010 sequences were 
for reference and closely related 

branches were collapsed for tree readability.  

Phylogenetic trees were constructed using neighbor-
joining method to understand how the novel S-OIV (H1N1) 
influenzavirus A strain has changed through its pandemic 

January 2011) in human hosts. The 
phylogenies for the unique protein coding sequences HA, 
NA, M1, M2 and PB2 are shown in Figures 1-5 (phylogenies 

for other coding sequences are not shown here).These trees 
show the genotypic variation of encoded protein
influenzavirus A. Our results indicate that the 
A/California/04/2009(H1N1) strain is genetically similar to 
2010 isolated strains and is always present within every tree. 
Furthermore A/United Kingdom/1/1933 (H1N1) is
outgroup for all trees. Interestingly, 2010 isolates are 
genetically similar to the previous 2009 isolates once again 
reiterating that most epidemic H1N1 stem from circulating 
viral reservoirs. Surprisingly, a large polytomy occurred 
within the 2009 pandemic and 2010 isolates are 
diverse from one another, yet still similar to 
than any other sequences.  

Figure 1. Phylogenetic relationships among human H1N1 viruses (HA) 

for other coding sequences are not shown here).These trees 
show the genotypic variation of encoded proteins in H1N1 
influenzavirus A. Our results indicate that the 
A/California/04/2009(H1N1) strain is genetically similar to 
2010 isolated strains and is always present within every tree. 
Furthermore A/United Kingdom/1/1933 (H1N1) is the 

nterestingly, 2010 isolates are 
genetically similar to the previous 2009 isolates once again 
reiterating that most epidemic H1N1 stem from circulating 
viral reservoirs. Surprisingly, a large polytomy occurred 
within the 2009 pandemic and 2010 isolates are much more 
diverse from one another, yet still similar to ones from 2009 
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Figure 2. Phylogenetic relationship among human H1N1 viruses (M2) 
 
 

 
 

Figure 3. Phylogenetic relationship among human H1N1 viruses (NA)  
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Figure 4. Phylogenetic relationship among human H1N1 viruses (M1) 
 
 

 
 
Figure 5. Phylogenetic relationship among human H1H1 viruses (PB2) 
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Figure 6. Non-synonymous to synonymous (dN
 
 

To quantitatively identify the changes in primary sequence 
from 2009 to 2010, non-synonymous to synonymous 
(dN/dS) substitution ratio were calculated to identify 
whether changes in nucleotide sequence actually resulted in 
changes in primary sequence. Unusually high number of 
non-synonymous substitutions is widely accepted as a
of positive selection [13]. Within our case study, the non
synonymous substitutions between A/California/04/2009 
(H1N1) strain and the 2010 sequences of HA and NA are 
considerably smaller than their respective synonymous ones. 
Ratios of less than one across all 2010 isolates suggest 
concrete evidence as to why no genetically dissimilar S
isolates have arisen (Figure 6). Furthermore, in comparing 
randomly selected 2009 and 2010 sequences to 
A/California/04/2009(H1N1), there was less variation 
between A/California/04/2009(H1N1) and more recent 2010 
sequences than amongst 2009 sequences (0.424 vs 0.371, 
respectively). This suggests there was more genetic 
variation among the initial outbreak than subsequently 
documented in 2010 and even more so, this 
strains identified are likely small antigenic drifts from other 
viruses circulating in 2009. 

 
Genetically dissimilar and novel isolates to a population are 
the cruxes of a pandemic.  Additionally, the d
HA and NA are considerably larger than th
proteins (not shown in paper); suggesting that as these ratios 
increase, the prevalence of new coded amino acids will 
increase. A new amino acid can be the difference betwee
viral detection and infection [14-16]. However, the direction 
of selection is not well articulated within dN/dS ratios
begs the question of whether neutral theory is the 
evolutionary process underlying epidemic viral outbreaks 

 

 
mous (dN/dS) ratios for selected human H1N1 isolates from 2009 and 2010

To quantitatively identify the changes in primary sequence 
synonymous to synonymous 

(dN/dS) substitution ratio were calculated to identify 
whether changes in nucleotide sequence actually resulted in 
changes in primary sequence. Unusually high number of 

synonymous substitutions is widely accepted as a result 
. Within our case study, the non-

synonymous substitutions between A/California/04/2009 
(H1N1) strain and the 2010 sequences of HA and NA are 
considerably smaller than their respective synonymous ones. 

ne across all 2010 isolates suggest 
concrete evidence as to why no genetically dissimilar S-OIV 
isolates have arisen (Figure 6). Furthermore, in comparing 
randomly selected 2009 and 2010 sequences to 
A/California/04/2009(H1N1), there was less variation 

ween A/California/04/2009(H1N1) and more recent 2010 
sequences than amongst 2009 sequences (0.424 vs 0.371, 
respectively). This suggests there was more genetic 
variation among the initial outbreak than subsequently 

 signifies that the 
strains identified are likely small antigenic drifts from other 

Genetically dissimilar and novel isolates to a population are 
the cruxes of a pandemic.  Additionally, the dN/dS ratios of 

are considerably larger than those of other six 
; suggesting that as these ratios 

increase, the prevalence of new coded amino acids will 
increase. A new amino acid can be the difference between 

. However, the direction 
dN/dS ratios and 

eutral theory is the 
evolutionary process underlying epidemic viral outbreaks 

and the “perfect storm” reassortments in pigs and birds 
causing pandemic outbreaks [17].  

 
By crossing the positive selection threshold, the possibility 
of novel strains of influenza virus A increase, requiring new 
vaccines. In other words, as the dN/d
the novelty of its structure begins t
virus’s transmission, ultimately increasing its fitness. 
Despite research indicating that selective pressures will 
increase non-synonymous substitutions, the lack of 
biochemical and evolutionary data is not in accordance. For 
all proteins, there are both essential and nonessential amino 
acids, those which are responsible for function and those 
that are not. HA and NA are two proteins on the viral coat 
which, by being genetically different through selective 
pressures from innate and adaptive immunity, can cause a 
pandemic. Yet proteins within the virion that are not as 
plastic show little variation from one host or year to the next
(Figure 2). The later example is similar to most proteins in 
the human body in which there are areas cap
nonsynonomous substition and areas that have conserved 
sequences. Consequently, in viral biology producing a 
genetically different coat is advantageous as oppossed to 
maintaining the status quo and being erradicated. 
inability to infect (highly detected) or novel
virulent) may both result in the erradication of the strains 
from the gene pool.  

 
4 Conclusions 
 

The swine origin influenzavirus A S
2009 has a unique genetic composition as suggested by 

 

isolates from 2009 and 2010.   

and the “perfect storm” reassortments in pigs and birds 

By crossing the positive selection threshold, the possibility 
of novel strains of influenza virus A increase, requiring new 

/dS ratio goes above one, 
o be advantageous to the 

virus’s transmission, ultimately increasing its fitness. 
Despite research indicating that selective pressures will 

synonymous substitutions, the lack of 
biochemical and evolutionary data is not in accordance. For 

roteins, there are both essential and nonessential amino 
acids, those which are responsible for function and those 

are two proteins on the viral coat 
which, by being genetically different through selective 

adaptive immunity, can cause a 
pandemic. Yet proteins within the virion that are not as 
plastic show little variation from one host or year to the next 

. The later example is similar to most proteins in 
the human body in which there are areas capable of 
nonsynonomous substition and areas that have conserved 
sequences. Consequently, in viral biology producing a 
genetically different coat is advantageous as oppossed to 
maintaining the status quo and being erradicated. An 

detected) or novelize (highly 
virulent) may both result in the erradication of the strains 

influenzavirus A S-OIV pandemic of 
2009 has a unique genetic composition as suggested by 
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almost a century of viral data. Our study reveals that despite 
being phylogenetically similar to 2010 influenza viruses in 
human, the dN/dS ratios indicate that the surface proteins 
HA and NA do antigenetically drift fastest amongst human 
hosts. Furthermore, the dN/dS ratios suggest that sequences 
during 2009 are significantly more dissimilar than recent 
2010 isolates, suggesting that the 2009 S-OIV pandemic 
might have peaked during the summer of 2009.  

 
Future studies should comparatively measure the 
substitution rates amongst host types and by locations to 
further elucidate whether avian and swine lineages are the 
most capable and dominating viral incubators or whether 
attention should be focused at a more macroscopic regional 
or continental understanding of viral transmission. Thus 
further research of immunoinformatics will increase the 
interdisciplinary understanding of viral transmission, 
vaccination, documentation, and retrieval.   
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Abstract—Thermal bacteria that live in higher temperature have 
been considered as good candidates for bioremediation and 
processing of protein-rich wastewater. However, very little is 
known about the proteases, the enzymes that digest the protein 
wastes in these organisms. In this study, we present a 
comparative genomic analysis of the protease complement in a 
thermal bacterium Coprothermobacter proteolyticus. The 
proteases common to a group of thermophilic bacteria have been 
identified, providing a short list of important enzymes for 
experimental characterizations. 

Keywords- genome, protease, Coprothermobacter, degradome, 
bioinformatics, gene family 

1.  INTRODUCTION  
Bacteria, a member of the Domains of life, mediates the 

fundamental geochemical cycles that sustain life on earth. 
These microorganisms live in diverse habitats and 
environments. Although some bacteria are human pathogens, 
the majority of bacteria species are harmless and some have 
important applications in biotechnology. For example, bacteria 
that are capable of degrading organic compounds have been 
used in bioremediation and waste processing in industry.  

The advent of high throughput genomic technology and the 
development of effective bioinformatics data mining approach 
have provided an unprecedented opportunity to investigate the 
adaption and evolution of bacteria. Previously uncharacterized 
organisms can now be explored at a genome level. This study 
is focused on a bioinformatics characterization of gene families 
in an understudied bacterium Coprothermobacter proteolyticus 
(strain DSM 5265). This bacterium is anaerobic. Its most 
important feature is the high growth temperature (about 63°C). 
It was first isolated from a thermophilic digestor for fermenting 
water wastes and animal manure. Waterwaste often contains 
proteins. Coprothermobacter proteolyticus was found to have 
strong protease activity to degrade proteins and peptides [1, 2]. 
Here we report a comprehensive survey of the protease 
complement (or degradome) in the genome of C. proteolyticus, 
which may be a good candidate for facilitating waste water 
processing under high temperature. 

2. METHODS 
A total of over 34,000 sequences of characterized and 

predicted proteases were obtained from the Merops database 
(http://www.merops.ac.uk) [3]. These sequences were searched 

against the C. proteolyticus predicted protein sequences using 
BLASTP with default settings and an E-value cutoff of less 
than 10-5 for defining protease homologs. Partial sequences 
(less than 80% of fulllength) and redundant sequences were 
excluded. The domain/motif organization of predicted C. 
proteolyticus proteases was revealed by an InterPro search. For 
each putative protease, the known protease sequence or domain 
with the highest similarity was used as a reference for 
annotation; the catalytic type and protease family were 
predicted in accordance with the classification in Merops, and 
the enzyme was named in accordance with SWISS-PROT 
enzyme nomenclature (http://www.expasy.ch/cgi-
bin/lists?peptidas.txt) and the literature.  

3. RESULTS 
One of the most prominent physiological features of the 

anaerobic thermophilic Coprothermobacter proteolyticus, 
formerly Thermobacteroides proteolyticus, is its well-
documented proteolytic activity [1, 2]. Although proteolytic 
activity is common in the anaerobic bacteria that are 
mesophilic, it is observed in only a few thermophiles [4-7]. C. 
proteolyticus has attracted the attention of researchers 
interested in its potential applications in high temperature 
environments, including the treatment of protein-rich 
wastewater, for example. Despite this interest, however, not a 
single protease in C. proteolyticus has been systematically 
characterized at the biochemical and molecular level to date.  

Our comparative genomic analysis revealed that its 
proteolytic repertoire (degradome) consists of a total of 59 
protease homologs, which account for approximately 1.9% of 
the proteome (Table 1). The fraction of proteases in the Ich 
genome is close to the average observed in the 1,569 organisms 
with completed genomes (2.6%). Using the Merops protease 
nomenclature, which is based on intrinsic evolutionary and 
structural relationships [3], the C. proteolyticus proteases were 
divided into four known and one unknown catalytic classes that 
encompass 38 families. These families include: Two aspartic 
protease families and five cysteine protease families, each 
represented by a single member; 24 metalloproteases belonging 
to 17 families, 23 serine proteases belonging to 12 families, and 
two families (five proteases) with unknown catalytic types. 
Clearly, gene duplication occurred at a very small scale during 
the evolution of C. proteolyticus proteases, which accounts for 
the large number of singletons.  
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A glance at the C. proteolyticus degradome reveals some 
significant features.  The entire catalytic class of proteasome-
specific threonine proteases is missing, which is consistent with 
the observation that the proteasome is absent. C. proteolyticus 
has an abundant catalog of metalloproteases (40.7%) and serine 
proteases (40.0%), compared to aspartic (3.4%) and cysteine 
proteases (8.5%). The most abundant protease family, serine 
protease subtilisin (S8), has 6 members. Interestingly, many 
subtilisins that have been characterized are thermostable [8-10]. 

The lineage specific expansion of subtilisins in C. proteolyticus 
is likely to be adaptive: at least two subtilisins 
(COPRO5265_1473  and COPRO5265_1474) are the products 
of one tandem gene duplication event. Specifically, two 
sublitisins (COPRO5265_1474 and COPRO5265_1431) are 
extracellular Vpr peptidases. Vpr was previously only found in 
a number species from the Bacillales [11]; the homologs found 
in C. proteolyticus expand the range of Vpr to the Clostridiales.  

 
Table 1.  Protease complements in Coprothermobacter proteolyticus and other model organisms. 

 
 

 
a. The percentage of the whole genome that encodes putative proteases. 
b. Percentage of individual catalytic class in the protease complement is included in parentheses. 
c. The total proteases in Coprothermobacter proteolyticus includes 5 protease homologs with unknown classifications. 

 

 

C. proteolyticus possesses a core degradome structure that 
may be common in the thermophilic bacteria, as shown by 
comparison with Moorella thermoacetica and 
Thermoanaerobacter tengcongensis, which are the most 
closely related sequenced species in the family 
Thermoanaerobacteriaceae to have a detailed analysis of its 
proteases published in Merops [12]. Nineteen protease families 
are present in all the three organisms. For example, at least 
three proteases may be actively involved in the secretion 
system: signal peptidase I (S26) typically processes newly-
synthesized secreted proteins by removing the hydrophobic 
signal peptides when the precursors are translocating the 
membrane; the bacteria-specific signal peptidase II (A8) is 
membrane bound and it plays an important role in the 
production of cell wall by removing the signal peptide from the 
murein prolipoprotein; type IV prepilin peptidase (A24) 
processes prepilins by removing leader peptides. Fifteen 
protease families found in C. proteolyticus are also present in 
either Moorella thermoacetica or Thermoanaerobacter 
tengcongensis, but not both. Four protease families are 
uniquely present in C. proteolyticus. They are papain (C1), 
dipeptidase A (C69), RTX toxin (M6), and carboxypeptidase 
Taq (M32). Among them, Taq (M32), by its presence in a 

variety of thermophiles and hyperthermophiles [13], has a 
demonstrated ability to tolerate high temperatures. While the 
RTX toxin was implicated in several bacterial pathogens to be 
a virulence factor as host immune inhibitor, its role in the non-
pathogenic C. proteolyticus remains unclear [14]. 

2. CONCLUSIONS 
 We performed a comparative genomic study of the 
proteases in thermophilic bacterium Coprothermobacter 
proteolyticus. These enzymes play important roles in digesting 
and breaking down proteins and peptides into smaller 
fragments. Functional characterization of these enzymes in this 
bacterium may provide a better understanding of the  
mechanisms of physiological adaptation to hot temperature and  
a better assessment of its potential application to wastewater 
processing.  
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Organism 
Catalytic Class 

Total 

Percentage 

of the 

Proteomea Aspartic Cysteine Metallo Serine Threonine 

Coprothermobacter 
proteolyticus 

2 (3.4%) b 5 (8.5%) 24 (40.7%) 23 (40.0%) 0 (0%) 59c 1.9 

Neurospora crassa 19 (8.1%) 41 (17.4%) 81 (34.5%) 75 (31.9%) 19 (8.1%) 235 2.4 

Saccharomyces 
cerevisiae 

19 (11.1%) 41 (24.0%) 57 (33.3%) 38 (22.2%) 16 (9.4%) 171 2.4 

Caenorhabditis elegans 27 (5.6%) 125 (25.9%) 190 (39.4%) 115 (23.9%) 25 (5.2%) 482 2.4 

Drosophila melanogaster 46 (6.2%) 86 (11.5%) 207 (27.7%) 373 (49.9%) 35 (4.7%) 747 5.4 

Homo sapiens 320 (29.3%) 190 (17.4%) 252 (23.0%) 291 (26.6%) 41 (3.7%) 1,094 4.5 

Arabidopsis thaliana 233 (27.6%) 162 (19.2%) 112 (13.3%) 306 (36.2%) 31(3.7%) 849 3.1 
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Abstract  

Various proteins play important roles in diabetes and a 

number of plants have been tested for their efficacy in 

modulating diabetes. Of all the proteins, we selected 

aloes reductase enzyme to analyze few plant compounds 

computationally for their efficacy towards protein 

inhibition. A total of 85 compounds from different parts 

of a plant, Cuminum cyminum were studied. Analysis 

was conducted using Molegro Virtual Docker software 

as docking program and the molecules drawn in ISIS 

Draw software are energy minimized using cosmic - 

optimize 3D module of Tsar (Tools for structure activity 

relationships) software. Before docking plant 

compounds, software validation was performed and 

found that the co-crystallized ligand was within 2.0 A°. 

Further, docking and re-scoring of top ten compounds 

with GOLD, AutoDock vina, eHiTS, PatchDock and 

MEDock followed by rank-sum technique revealed high 

binding affinity of compound Apigetrin.  

Keywords—Computer Science, Computer 

Application, Computer Aided Drug Design, type 2 

Diabetes, Docking, GOLD, Molegro,  aldose reductase 

 

1. Introduction 
 Human body gets energy by making glucose 

from foods like bread, rice, potatoes etc., To use this 

glucose human body needs insulin. Insulin is hormone 

that helps the body control the level of glucose in the 

body. Type 2 diabetes is disease in which pancreas 

does not produce enough insulin or body may not 

utilize insulin produced. Diabetes mellitus is a group of 

metabolic diseases characterized by hyperglycemia 

resulting from defects in insulin secretion, insulin 

action, or both. The chronic hyperglycemia of diabetes 

is associated with long-term damage, dysfunction, and 

failure of various organs, especially the eyes, kidneys, 

nerves, heart, and blood vessels. [1]. 

Furthermore, the researchers suggested that 

high intakes of plant foods and low intakes of meat 

products may help high blood pressure treatment and 

proper insulin levels and hence these benefits can be 

linked to the presence of specific compounds in plants. 

Various plants have been tested for their efficacy in 

modulating diabetes, however, when literature was 

searched for computer-aided docking studies on 

compounds from plants vs proteins that mediate 

diabetes, very few reports were found to contain the 

required information. Also, many virtual screening 

studies have been reported in literature stating the 

importance of dataset, algorithms and scoring 

functions, whereas none of the works contain 

screening compounds from plants. This provided us the 

rationale to screen plant based compounds using 

Molegro Virtual Docker software. Hence, in this paper 

we report screening various compounds from 

Cuminum cyminum against Aldose reductase extracted 

from Protein Data Bank (PDB). 

2. Materials And Methods 

2.1 Virtual Screening 

Virtual screening utilizes docking and scoring of each 

compound from a dataset and the technique employed 

is based on the prediction of binding modes and 

binding affinities of each compound in the dataset by 

means of docking to an X-ray crystallographic 

structure [2]. Some recent studies [3] have focused on 

certain crucial factors such as the size and diversity of 

the ligand dataset, wide range of targets and the 

evaluation of docking programs. Taking these aspects 

into consideration, diverse compounds from seven 

plants and three protein targets are evaluated. 

However, in general, it is important to visualize the 

docked poses of high-scoring compounds because 

many ligands are docked in different orientations and 

may often miss interactions that are known to be 

important for the target receptor. This sort of study 

becomes more difficult as the size of the dataset 

increases. Therefore, an alternative approach is to 

eliminate unpromising compounds before docking by 

restricting the dataset to drug-like compounds; by 

filtering the dataset based on appropriate property and 

sub-structural features and by performing diversity 

analysis [4]. 
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2.2 Data Set 

Chemical compound names from each plant were 

obtained from Dukes Ethnobotany (http://www.ars-

grin.gov/duke/) and the respective structures are 

searched in various literature databases. This resulted 

in 85 compounds, selected based on the property and 

sub-structural features, from Cuminum cyminum were 

drawn using ISISDraw software (www.mdli.com). The 

2D structures are converted into 3D structures by using 

corina 3D analysis tool in Tsar (Tools for structure 

activity relationships) software (www.accelrys.com). 

The geometries of these compounds were optimized 

using cosmic optimize 3D module and the charges 

were added. All molecules were written as mol2 files. 

2.3 Receptor X-ray structure 

The X-ray crystal structure of Aldose reductase, 1AH3, 

in complex with inhibitor was recovered from Protein 

Data Bank. We used the molecular docking program 

Molegro Virtual Docker (MVD) for virtual ligand 

screening based on docking, and a consensus scoring 

and ranking was employed to generate classes using 

MolDock score of Molegro software respectively. 

2.4 Molegro Docking 

Water molecules were discarded from the pdb file, 

added hydrogens and missing side chains were 

reconstructed. Automated docking studies were then 

performed using the genetic algorithm to explore the 

full range of ligand conformational flexibility and the 

rotational flexibility of selected receptor hydrogens.  

The docking poses are ranked based on a scoring 

function, MolDock score. The scoring scheme was 

derived from PLP [Piecewise Linear Potential] scoring 

functions originally proposed by Gehlhaar et al [5] and 

later extended by Yang et al [6].  In the present work, 

the binding site was defined as a spherical region 

which encompasses all protein atoms within 15.0 Å of 

each crystallographic ligand atom. Default settings 

were used for all calculations.  

Before screening plant compounds, the docking 

protocol was validated. 1AH3 with bound ligand was 

docked individually into its corresponding binding 

pocket to obtain the docked pose and the RMSD of all 

atoms between these two conformations was 0.87 A˚ 

(Table 1) indicating that the parameters for docking 

simulation are good in reproducing the X-ray crystal 

structure. 

 

Table1: Table showing the RMSD values of 1AH3 in 

three runs. 

SlNo PDB ID Run1 Run2 Run3 

1 1AH3 0.8736 0.8721 0.670 

 

2.5 Consensus Scoring and Ranking 

Generally, docking programs have the ability to predict 

the experimental orientations of protein-ligand 

complexes. The ability to predict the ideal binding 

mode of a ligand and to differentiate correct poses 

from incorrect ones is based on reliable scoring 

functions. However, it has been reported that various 

combinations of scoring functions would reduce errors 

when compared to single scoring scheme which 

improves the probability of identifying true hits [7]. 

Thus, it has been demonstrated that consensus scoring 

is generally more effective than single scoring for 

molecular docking [8,9] and represented an effective 

way in getting improved hit rates in various virtual 

database screening studies [10] 

In our study, we tested three different scoring functions 

such as GOLD score of GOLD docking routine, dock 

score implemented in eHiTS (electronic High 

Throughput Screening) and MolDock score of 

Molegro software respectively. Docking program 

GOLD was used to dock compounds to generate an 

ensemble of docked conformations and each scoring 

function is applied to generate classes based on the 

obtained dock scores followed by ranking the best 

conformations. During ranking, signs of some scoring 

functions are changed to make certain that a lower 

score always indicates a higher affinity. 

3. Results 

Dock runs of 85 compounds on protein 1AH3 using 

MVD resulted in few best compounds that were 

evaluated based on the binding compatibility [docked 

energy (kcal/mol)] with the receptor. The software 

generated 5 conformers for each docked molecule and 

in each case, binding energies greater than the co-

crystallized ligand were only selected. 

Dock scores of co-crystallized ligand of 1AH3 run in 

triplicates are within -105.52 to -107.01 kcal/mol, 

respectively, and hence any molecule from the dataset 

that result in scores higher than the range are 

considered more appropriate. Therefore, in the first 

step, virtual screening with docking and scoring 

resulted in few best hits [Table-2]. In the second step, 

consensus scoring was applied to generate different 

scores for these compounds. Likewise, re-scoring 

docking poses with independent functions is another 

valuable approach which gained prominence in recent 

studies. Therefore, re-scoring of best docked poses 

based on their interaction energies with respective 

protein active site residues was done using MolDock 

score scoring function. 

 

Table 2: Table showing the dock scores of best 

compounds from Cuminum cyminum 

S.No. Compound 
Affinity 

(kcal/mol) 

1 Riboflavin -133.388 

2 Apigenin-5-o-glucoside -131.705 

3 Apigetrin -130.833 

4 Apiin -127.982 

5 Benzyl Cinnamate -117.458 
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6 Luteolin -116.643 

7 Stigmasterol -116.379 

8 Cosmosin -115.701 

9 Luteolin-7-o-glucoside -112.54 

10 Cynaroside -111.372 

 

4. Discussion 

In our study, we tested seven different scoring 

functions such as GOLD, Molegro, AutoDock vina 

(Windows platform), e-HiTS (Linux platform) and 

PathDock, MEDock (docking servers). Re-scoring was 

carried out using all the above scoring functions and 

each molecule was optimized using optimization 

routine. Post-scoring results are evaluated for RMSD 

(Root Mean Square Deviation) and found to be within 

2A°. In all the above cases, ranking was done 

individually by clustering best scored compounds into 

equally split four classes using Tsar software, of which 

compounds in Class4 represents the highest class or 

top rank. Classes were generated for all scoring 

functions and instead of taking an average, rank-sum 

technique [8] was employed to retrieve best 

compounds. The ranks obtained from each of the 

individual scoring functions were added to give a rank-

sum [Table-3]. The advantage of a sum over an 

average is that the contribution from each individual 

score can more easily be split out for illustrative 

purposes in the former instance. Finally, from top rank-

sum classes, Riboflavin, Apigenin-5-o-glucoside and 

Apigetrin compound conformers are considered as 

potential ligands against Aldose reductase. The 

docking scores of the above best compounds in the 

seven different softwares, generated classes using Tsar  

software and the sum of the classes for each ligand are 

shown in Table 3 and Table 4.(Appendix) 

From our analysis, it is evident that plant 

based compound Apigetrin exhibited anti-diabetic 

activity as it obtained best rank among other 

compounds and the the major interacting residues are 

reported in Table-5 and the 2-D image of apigetrin in 

Figure-1. 

 

Table 5: Number of H-bond interactions and the 

corresponding interacting residues of apigetrin with 

active site amino acid residues of aldose reductase. 

 

Compou

nd 

MolDock 

Score 

No. of 

Interactio

ns 

Interacting 

residues 

Apigetrin -133.388 4 

OG  -  Ser302 

NE1  -  Trp20 

NE2  -  Gln49 

O  -  Tyr48 

 

 

 

 

Figure 1: 2-dimensional structure of Apigetrin 

 

5. Conclusion 

Screening methods are routinely and extensively used 

to reduce cost and time of drug discovery. It has been 

clearly demonstrated that the approach utilized in this 

study is successful in finding novel anti-diabetic 

inhibitors from plants. Compound Apigetirn, in 

particular, from Cuminum cyminum showed high 

binding affinity against Aldose reductase, 1AH3. The 

docked pose of the compound exactly fits into the 

active site region and the ligand formed more number 

of H-bond interactions than the co-crystallized ligand. 

Therefore, this study states the importance of small 

molecules from various plant sources and their use to 

enhance protein-ligand interaction studies, in silico. 
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APPENDIX 

 
Table 3: Scores of the top 10 Cuminum cyminum compounds obtained from different docking softwares. All values are 

in kcal/mol 

 

 

 

Table 4: Classes generated using Tsar software. 

 

S.N

o. 
Cuminum compounds 

Molegro 

(kcal/mol) 

Ehits 

(kcal/mol) 

Vina 

(kcal/mol) 

Gold 

(kcal/mol) 

MEDock 

(kcal/mol

) 

Patchdock 

(kcal/mol) 

1 Riboflavin -133.388 -7.4034 -7.9 29.15 -9.24 4670 

2 Apigenin-5-o-glucoside -131.705 -4.7679 -8.4 58.05 -7.51 4792 

3 Apigetrin -130.833 -6.5608 -9.3 56.89 -11.61 5114 

4 Apiin -127.982 -5.471 -8.7 50.47 -8.14 5748 

5 Benzyl Cinnamate -117.458 -4.7007 -7.8 55.91 -9.21 4476 

6 Luteolin -116.643 -5.5682 -8.3 49.89 -12.6 3864 

7 Stigmasterol -116.379 -2.4912 -9.2 21.18 -6.13 5436 

8 Cosmosin -115.701 -6.1684 -9.1 46.83 -11.76 5090 

9 Luteolin-7-o-glucoside -112.54 -4.8228 -8.7 51.73 -10.77 4946 

10 Cynaroside -111.372 -5.9918 -8.8 52.7 -11.95 4932 

S.No. Compound Molegro Ehits Vina Gold MEDock Patchdock Sum 

1 Riboflavin 4 4 1 1 2 2 14 

2 Apigenin-5-o-glucoside 4 2 2 4 1 2 15 

3 Apigetrin 4 4 4 4 4 3 23 

4 Apiin 4 3 3 4 2 4 20 

5 Benzyl Cinnamate 2 2 1 4 2 2 13 

6 Luteolin 1 3 2 4 4 1 15 

7 Stigmasterol 1 1 4 1 1 4 12 

8 Cosmosin 1 3 4 3 4 3 18 

9 Luteolin-7-o-glucoside 1 2 3 4 3 3 16 

10 Cynaroside 1 3 3 4 4 3 18 
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Abstract: There are evidences according to which the 

colonies of Escherichia coli bacterium form parabolic 

cylindrical structures. In such circumstances many symptoms 

are generated which are produced by a parasitic capacitance. 

This last is generated by the bacteria and it was calculated 

using a mathematical model using computer algebra. The 

mathematical model was built using Laplace equation, 

Whittaker functions, Hermite functions and the corresponding 

boundary condition. The resulting mathematical model was 

implemented using a maple algorithm. This algorithm can be 

extended to other kinds of bacteria whose colonies are 

characterized by different classes of specific geometries. Our 

results suggest that the antibodies are not able to find the 

bacteria because the induced parasitic capacitance alters the 

electromagnetic signals that the brain sends to the immune 

system doing that antibodies lost the signals that are 

indentifying those colonies. 

 

Keywords: parabolic cylinder, parasitic capacitance, 

computer algebra, E-Coli, Laplace equation, Whittaker 

functions, Hermite functions. 

1 Introduction 

  The bacterium Escherichia coli or better known as E-coli 

through the history has been the bacteria most studied around 

the world because this is the principal cause of the 

gastrointestinal diseases in humans. The colonies of these 

bacteria form in some circumstances parabolic cylindrical 

structures creating a parasitic  capacitive [1] effect due to 

electric potential that each bacterium contain and for hence 

due to the electric potential that all structure contains, as will 

be see later. This parasitic capacitance changes the 

electrostatic potential of the intestine, causing the gastro 

intestinal symptoms and altering the control of the 

electromagnetic signals that are regulating the immune 

system. 

In this work will obtain a mathematical expression that 

defines the etiology of the diseases caused by bacterium 

Escherichia coli in terms of a parasitic capacitance and with 

this aim we will derive the electric potential and de electric 

field using especial functions such as Hermit function and 

Whittaker function. All computation will be made using 

Maple. 

2. Problem 

 
 After decades of study in biology have resulted evidence 

of the structure that form the Escherichia Coli colonies. Some 

colonies have particular forms that create symptoms on the 

humans and the animals for this reason is justified study them 

with computational math. 

In figure 1 and figure 2 are shown particular forms of 

Escherichia coli colonies that will be studied in this work with 

the objet to obtain physical explanations of their effects on 

humans and animals. The images in figures 1 and 2 were 

obtained by scanning electron microscopy. 

 

  

Figure 1, Photography of Escherichia-Coli 
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Figure 2, Photography of Escherichia-Coli with SEM (Scanning 

Electron Microscope). 

 
 Idealizing a little bit, we can represent a colony of the 

bacteria E-coli by a set of parabolic cylinders that create an 

effect of parasitic capacitance, as is illustrator en figure 3. 
 

 

Figure 3, parabolic cylinder formed for E-coli bacteria. 

 

As each bacterium contains a small amount of electric charge 

then the resulting parabolic cylinder formed by the colony will 

have an electric potential and this potential will be called V (α, 

β, z) as shown in Figure 4. 

 

 

 

Figure 3, idealized model of tow parabolic cylinders made 

by E-coli bacteria 

 

 

The equation that will use to determine the electrical potential 

between the parabolic cylinders is the Laplace equation, which 

in cartesian coordinates is described as: 

 

 
 

 

 

For practical purposes the Laplace equation will be worked in 

parabolic cylindrical coordinates defined by [2]:  

 
 

 

Where α ∈ [0,∞), β ∈ [0,∞), and z ∈ (-∞,∞). 

  

Figure 4. Coordinate surfaces of parabolic cylindrical 

coordinates. 

Rewriting the Laplace equation in parabolic cylindrical 

coordinates we obtain: 

 

 
 

To find the solution to the problem is required to establish 

boundary conditions. In our case we use Dirichlet conditions 

which consist in specify the solution V (α,β,z) on the border of 

the application domain of the Laplace equation. In our case 

the borders that delimit such domain are two parabolic 

cylindrical surfaces determined as β=β0 y β=β1 giving that we 

only take into account the potential generated between these 

two surfaces. 

 

 

3 Method 

To solve the problem we used computer algebra, specifically 

Maple and with its help packages including "VectorCalculus" 

and "PDETools”. 
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for reasons of space was not possible to show all the algorithm 

is illustrated for this reason the procedure took place in the 

following flow chart but if you want you can download it copy 

the following URL in your web browser 
 
http://dl.dropbox.com/u/7791924/ETIOLOGY%20OF%20THE%20DISEAS

ES%20CAUSED%20BY%20BACTERIUM%20ESCHERICHIA%20COLI

%20ACCORDING%20TO%20AN%20ELECTROMAGNETIC%20MODE.

mw  

or 
 http://cid-

ad28443fd7d93b36.office.live.com/self.aspx/P%c3%bablico/ETIOLOGY%2

0OF%20THE%20DISEASES%20CAUSED%20BY%20BACTERIUM%20E

SCHERICHIA%20COLI%20ACCORDING%20TO%20AN%20ELECTRO

MAGNETIC%20MODE.mw 

 

 
 

4 Results 
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4.1 Electric field 
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Now to find the capacitance we know that: 

 

 

 

 

 

 

 

 

5 Conclusions 

 In this work was made a study about the Escherichia Coli 

bacterium for giving a explanation the etymology of this 

bacterium in electromagnetic terms could be interpreted as 

follows: 

 

E-Coli bacteria when they enter a human or animal body stays 

in the intestinal wall forming parabolic cylindrical structures 

as evidenced in the photographs above. By the fact that those 

bacteria are alive. These bacteria have a certain amount of 

electric charge, hence the electric field and electric potential. 

As in electrical circuits that only the proximity of the 

components produce a "parasitic capacitance" the Escherichia 

coli produces the same capacitance produces interference in 

the order of the electromagnetic signals of the host body such 

as immune system and gastrointestinal system making 

antibodies can not easily locate the position of the bacteria in 

the body and altering the electromagnetic signals of the amino 

acids that control the gastrointestinal biochemistry. 

 

Software has given an acceleration of the developments that 

are at the present around the world. In this case Maple allowed 

developing an algorithm that gives an explanation for the 

etiology of the E-coli bacterium using electromagnetic 

concepts which alters the physiology of the beings who suffer 

from this infection. 

 

Particularly the study was done on E-coli colonies with 

parabolic cylindrical form but this algorithm can be extended 

to different bacteria and forms that make their colonies only 

defining a specific geometry and a coordinate system that 

helps simplify the problem as much as possible. 
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Abstract: Systems biology has developed considerably in the 

past decade combining the different disciplines of 

mathematical modelling, computational simulation and 

biological experimentation facilitating the quantitative 

analysis of biological systems. This is often severely 

hampered by the lack of time-resolved data which ultimately 

leads to problems in validating any models created. To 

address the inherent complexity in biological systems, a 

recent trend in systems biology is exploring multi-scale 

modelling and simulation methodologies. We consider the 

Bile Acid and Xenobiotic System (BAXS) as a typical 

example of a multi-scale system. In the absence of dynamic 

data from biological experimentation the models we have 

developed are based on artificial data which enables us to 

explore multi-scale modelling and validation techniques and 

the integration of individual models. The outcome of this 

study will direct further research into multi-scale modelling 

methodology and ultimately will produce a novel framework 

for validation in the absence of dynamic data. 

Keywords: Systems biology, multi-scale modelling, 

simulation, xenobiotics, bile acids. 

1. Introduction 

The main focus for this research is addressing the inherent 

complexity in biological systems by exploring multi-scale 

modelling and simulation methodologies. To facilitate this 

investigation we model the bile acid and xenobiotic system 

(BAXS), a typical example of a multi-scale biological system 

adopting a multi-scale modelling and simulation approach. 

The BAXS describes a genetic network that facilitates two 

distinct but intimately overlapping physiological processes; 

The enterohepatic circulation and maintenance of bile acid 

concentrations (Figure 1) and the detoxification and removal 

from the body of harmful xenobiotic (e.g. drugs, pesticides), 

and endobiotic compounds (e.g. steroid hormones) 
[1]

. The 

system involves the coordination of several levels of gene 

activity, including control of mRNA and protein expression 

and regulation of metabolising enzyme and transporter 

protein function in tissues such as liver, intestine/colon and 

kidney. Bile acids are necessary for the emulsification and 

absorption of dietary fats and are therefore valuable 

compounds, however as their build-up can cause harm, their 

concentrations need to be appropriately regulated and 

recycled. Similarly there is a requirement for a system that 

can ‘sense’ the accumulation of xenobiotic and endobiotic 

compounds and facilitate their detoxification and removal 

from the body. The BAXS accomplishes this and maintains 

enterohepatic circulation (the circulation of biliary acids 

from the liver, depicted Figure 1) through a complex network 

of sensors in the form of nuclear receptors that function as 

ligand-activated transcription factors. 

 

Figure 1. Schematic illustration of enterohepatic 

circulation. 

They serve to detect fluctuations in concentration of many 

compounds and initiate a physiological response by 

regulating the BAXS. Transcriptional regulation by nuclear 

receptors involves both activating and repressive effects 

upon specific ‘sets’ of genes. There is considerable overlap 

exhibited between nuclear receptors in the genes they target 

and also the ligands that bind to and activate them. It is these 

factors that contribute to the phenomenon of drug-drug 

interactions, e.g. between St. John’s Wort and 

Cyclosporine 
[2]

 or St. John’s Wort and Oral contraceptive 
[3]

. 

Positive feed-forward and negative feed-back loops can also 

occur, e.g. within the cholesterol metabolic pathway 
[4, 5]

. 

Multi-scale modelling of the BAXS will benefit biologists 

interested in exploring such phenomena. Multi-scale systems 

biology modelling efforts aim to explore such multi-scale 

systems quantitatively by means of simulations that integrate 

several (usually independently developed) single-scale 

models into a coherent multi-scale model 
[6]

.
 
Our aim is to 

capture and model separate BAXS processes individually 

and combine them using a multi-scale modelling approach. 

For example, in the BAXS the initial stimuli leading to a 

physiological response would be the binding of a ligand by a 
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nuclear receptor. The process following the ligand-receptor 

binding event involves the bound nuclear receptor binding to 

response elements in the target genes and the cascading 

effects of increased gene expression that would ensue. 

Subsequent processes include conjugation and transporter 

functions 
[7]

. Each single process can be modelled separately 

regardless of the different scales the may operate in. They 

can be referred to as separate modalities of biology thus the 

approach taken is ‘multi-modal’. The ‘modularity’ or multi-

biology approach better reflects the way biologists would do 

experiments, investigating one constituent process at a time, 

each yielding a separate data set. Single-scale / single-

biology models can be built from these experiments and then 

these individual models can be integrated into a multi-

scale/multi-biology model. Each single scale model can then 

be reverse engineered separately and then integrated with a 

suitable coupling approach. Alternatively all single scale 

models can be reverse engineered in a single reverse 

engineering process however this approach must include the 

coupling within the reverse engineering phase. Through such 

experimentation the aim is to address the problems 

associated with multi-scale modelling and validation, 

specifically the coupling of processes operating on different 

scales.  

Developing dynamic models of biological process and 

systems requires dynamic (time-resolved) quantitative data. 

Such time-series data provides measurements being recorded 

at certain, pre-defined intervals over a period of time. For 

many biological systems or processes of interest, sufficient 

dynamic data required for modelling may not be 

available 
[8, 9, 10]

. For example, many experimental protocols 

in biology require the killing of their specimen. This 

approach precludes the collection of individual-based time 

series data. Systems biology is still a developing field and 

current biological experimentation is rapidly changing to 

produce quantitative data facilitating the development 

(including validation) of dynamic models. Currently 

however, for many biological systems of interest, there is 

insufficient data to develop and validate dynamic models. 

2. BAXS processes 

Nuclear receptors are a class of proteins found within the 

interior of cells that are responsible for sensing the presence 

of steroid and thyroid hormones and certain other molecules. 

In response, these receptors work in concert with other 

proteins to regulate the expression of specific genes, thereby 

controlling the development, homeostasis, and metabolism of 

the organism. Nuclear receptors have the ability to directly 

bind to DNA and regulate the expression of adjacent genes. 

Hence, these receptors are classified as transcription 

factors
1
. The regulation of gene expression by nuclear 

receptors occurs only when a ligand — a molecule that 

affects the receptor's behavior (i.e., activate or deactivate it) 

— is present. More specifically, ligand binding to a nuclear 

                                                 
1 Transcription factors activate or repress the transcription of a gene 

by controlling the time and rate of transcription of a gene’s DNA 

into RNA.  

receptor results in a conformational change of the receptor 

molecule complex, which in turn activates the receptor 

resulting in up-regulation of gene expression. A unique 

property of nuclear receptors that differentiates them from 

other types of receptors is their ability to directly interact 

with and control the expression of genomic DNA. As a 

consequence, nuclear receptors play a key role in both 

embryonic development and adult homeostasis.  

Our BAXS modelling efforts are directed first at the effects 

of ritonavir on the metabolism of hyperforin in the liver and 

the overlap of this process with FXR mediated primary and 

secondary bile acid metabolism. We refer to this as the Liver 

scenario which is depicted in the diagram of Figure 2. Its 

main constituent elements and processes are described 

below.  

 
 

Figure 2. Metabolism of hyperforin and bile acid in liver. 

PXR-mediated metabolism of hyperforin in the liver inhibited 

by ritonavir, FXR mediated bile acid metabolism and the 

transport process. 

Pregnane X receptor (PXR) is a nuclear receptor highly 

expressed in the liver encoded by the NR1I2 (nuclear 

receptor subfamily 1, group I, member 2) gene. Its primary 

function is to sense the presence of foreign toxic substances 

and in response up-regulate the expression of proteins 

involved in the detoxification and clearance of these 

substances from the body 
[11]

. 

Farnesoid X receptor (FXR), a nuclear receptor encoded by 

the NR1H4 (nuclear receptor subfamily 1, group H, member 

4) gene is also known as the bile acid receptor. It is highly 

expressed in the liver and its primary function is to sense the 

presence of bile acids and protect the body from elevated bile 

acid concentrations 
[12]

. 

Hyperforin is a herbal antidepressant found in St. John’s 

wort and is an activating ligand for PXR 
[13]

. Activated PXR 

up-regulates transcription of CYP3A4 (measured in hours) 

producing enzymes which metabolise Hyperforin (measured 

in seconds to minutes) 
[14]

. PXR also targets the gene 

encoding MDR1 
[15]

, a transporter protein which transports 

hyperforin from the cell (measured in seconds to minutes).  

Ritonavir is a protease inhibitor, often prescribed to HIV 

patients as part of antiretroviral therapy 
[16]

. HIV protease is 

an enzyme which cuts the raw material for HIV into specific 

pieces needed to build a new virus. Protease inhibitors block 

the protease enzyme preventing it from working, thus 
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incomplete, defective copies of HIV are formed which 

cannot infect cells. Ritonavir is also an activating ligand for 

PXR 
[17]

, however without receptor binding it can repress 

metabolism and transporter activity induced from 

transcription of CYP3A4 and MDR1 through competitive 

inhibition (measured in seconds and minutes). This could 

lead to a possible build-up of hyperforin in the liver. 

The bile acid receptor (BAR), also known as farnesoid X 

receptor (FXR) is activated by primary and secondary bile 

acids, lithocholic acid (LCA) and chenodeoxycholic acid 

(CDCA). It up-regulates transcription of CYP3A4, MRP2 and 

BSEP, the latter two encoding transporter proteins which 

transport bile acids into the bile duct. The overlap of both 

processes occurs at the CYP3A4 gene and several scenarios 

can be explored. A patient taking hyperforin will have 

increased expression of CYP3A4 which may lead to a 

deficiency in bile acid concentration as this gene produces 

enzymes which metabolise bile acids. Similarly a patient 

with high bile acid concentrations may reduce the efficacy of 

hyperforin (if taken) as transcription of CYP3A4 is 

increased. If ritonavir is added to this example then bile acids 

and hyperforin could accumulate to toxic levels in the liver.  

A second scenario which will be considered in future work 

looks at the effects of ritonavir on the metabolism of 

hyperforin in the intestine and the overlap of this process 

with VDR-mediated vitamin D metabolism. 

3. Multi-scale modelling 

Starting with early studies beginning in 1990s 
[18]

 multi-scale 

modelling and simulation has now turned into a focal point 

of attention across many scientific and engineering 

disciplines. An increasing number of scientific papers are 

published, workshops are organized and some specialized 

journals exist. Communities (ranging from physics and 

biology to medicine, finance, and engineering) are 

confronted with the problem of understanding multi-scale 

systems that are central to their field of study. For instance, 

the Virtual Physiological Human project 
[19]

, funded by the 

EC, is a good example of a community concerned with 

multi-scale modelling and simulation of human physiology. 

The COAST project developed a multi-scale modelling 

methodology 
[20]

 whose basic building blocks comprise 

single-scale models and their mutual multi-scale couplings. 

Many, if not all, multi-scale models can be expressed in this 

general multi-scale modelling framework. In the COAST 

framework, a multi-scale model can be represented as a 

directed graph on a scale separation map (SSM), which is a 

plot that has the relevant range of scales on its axes (usually 

space and time, but other quantities are possible). The single-

scale models are positioned on the SSM according to their 

characteristic scales, and the coupling templates are 

represented as directed edges (Figure 3). While many 

approaches to systems biology involve single-scale models, 

there is a growing body of work that aims at modelling of 

life phenomena across several scales. Multi-scale systems 

biology is concerned with experiments and hypotheses that 

involve different scales of biological organization from 

intracellular molecular interactions to cellular behaviour and 

the behaviour of cell populations (Figure 3). Multi-scale 

systems biology modelling efforts aim to explore such multi-

scale systems quantitatively by means of simulations that 

incorporate several different simulation techniques because 

of the different temporal scales and spatial scales 

involved 
[6, 21, 22]

.  

 

Figure 3. The scale separation map.  

Decomposition of a multi-scale system: Left, a multi-scale 

model spanning many temporal and spatial scales. Right, the 

resulting decomposed model, consisting of four coupled 

single scale models. 

Qualitative diagrammatic multi-scale models are very 

common in biomedical research. Ultimately all biological 

properties on the level of tissues or organs are based on 

molecular interactions occurring within or on the surface of 

cells. Biologists frequently describe the hypothetical role a 

specific molecular mechanism may play in a tissue-level 

disease by means of a diagram with an arrow connecting 

molecular entities to a higher scale entities associated with 

the disease. However, if one wants to subject the proposed 

causal relationships to a stringent quantitative exploration 

one needs to transform the knowledge embodied in the 

arrow-based diagram into a formal description suitable as 

input for computer simulations. The SSM depicted in Figure 

4 represents the Liver BAXS scenario as described above.  

 
Legend:   

Ligand/Receptor binding: 

Enzyme activity on substrate 

(inhibited by ritonavir) 

A PXR binds hyperforin J CYP3A4 metabolises LCA 

B PXR binds ritonavir K CYP3A4 metabolises Hyperforin 

C FXR binds LCA Transport of substrate from cell  

D FXR binds CDCA (inhibited by ritonavir) 
Receptor activates gene: L MDR1 transports metabolised  

E PXR activates CYP3A4  hyperforin to exosol 

F PXR activates MDR1 M MRP2 transports CDCA to exosol 

G FXR activates CYP3A4 N BSEP transports metabolised LCA  

H FXR activates MRP2  to exosol 

I FXR activates BSEP O BSEP transports metabolised CDCA  

   to exosol 

Figure 4. SSM representing the Liver scenario. 
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Each individual process in this scenario has been identified 

in terms of the spatial and temporal scales within which they 

occur. The first group of processes (labelled A to D in the 

diagram) operate within the cytosol and involve the binding 

of ligand to nuclear receptor which can be measured on a 

time scale of minutes. The next group of processes (labelled 

E to I) take place in the nucleus and result in an increased 

rate of gene expression. These processes operate on the scale 

of hours. Processes J and K take place in the cytosol, involve 

the metabolism of the ligand through increased enzyme 

activity and include the inhibitory effects of another substrate 

on the metabolic process through competitive inhibition. 

These processes are measured on a scale of micro-seconds to 

seconds.  

The processes labelled L to O are localized in and at the cell 

membrane and involve the transport of metabolized 

substrates across the membrane out of the cell by transporter 

proteins. These processes also include competitive inhibition 

of another substrate. These processes occur over a time scale 

of minutes. To simplify the modelling approach, the 

processes are grouped together such that process A 

represents the binding of ligand and nuclear receptor, process 

B represents gene expression, process C represents enzyme 

activity on a substrate, including competitive inhibition, and 

process D represents activity of transporter proteins as shown 

inFigure 6. Additionally, the initial models created represent 

the pathway resulting from PXR activation only. This will be 

further developed to include the FXR pathway once the 

modelling techniques have been established. 

The ligand receptor binding process is governed by mass 

action kinetic laws 
[23]

 which determine the rate at which the 

overall reaction occurs. The reaction equations below 

describe how this process occurs and how the kinetic laws 

are applied. 

LRRL onk
  Eq. 1 

RLLR offk
  Eq. 2 

Eq. 1 shows that ligand (L) plus nuclear receptor (R) bind to 

create the ligand/nuclear receptor complex (LR). The rate at 

which this occurs is determined by the kinetic constant kon 

which is the association rate for the ligand binding to the 

nuclear receptor. This reaction is reversible therefore Eq. 2 

shows the dissociation of the ligand/receptor complex into its 

constituent compounds and the rate is determined by the 

kinetic constant koff which is the dissociation rate of the 
bound nuclear receptor complex. The combination of both 

reactions determines the overall rate of complex formation.  

The transactivation process resulting in increased gene 

expression is triggered by the activated PXR complex 

resulting from process A (either bound to hyperforin or 

ritonavir) translocating to the cell nucleus and binding to 

DNA. Among the target genes are CYP3A4 which produces 

the enzyme cytochrome p450, and MDR1 which produces 

the transporter protein p-glycoprotein, an ATP binding 

cassette transporter (ABC-transporter). 

 

Figure 5. Simplified SSM representing the Liver scenario. 

Grouping all similar process types together for modelling 

purposes. 

The transcription process follows kinetic laws determined by 

the Hill function for transcriptional activation 
[24, 25]

. Eq. 3 

shows the equation determining the overall rate of mRNA 

production 

nn

n

Ak

Ak

m ][

][1


 Eq. 3 

where A denotes the activator (the concentration of the PXR 

compound), k1 the maximal transcription rate of the gene, km 

the activation co-efficient and n the Hill coefficient.  

As mRNA is produced it translocates to the cytosol and is 

translated into protein at the ribosome. Eq. 3 shows the 

equation determining the overall rate mRNA is translated 

into protein. The rate of this reaction follows the kinetic laws 

of mass action  

]mRNA[2k  Eq. 4 

where k2 is the translation rate which represents the number 

of protein molecules produced per mRNA molecule per unit 

of time.  

The ligand receptor binding model was implemented in 

COPASI 
[26]

, a software tool for simulation and analysis of 

biochemical networks and their dynamics. The final model 

forms a mathematical representation of the biological process 

under study upon which dynamic simulations can be run. 

Table 1 details the initial concentrations used in the model 

for ligand-receptor binding. Table 2 shows the reactions 

between species in the model and the parameter values used. 

Due to the absence of data from biological experimentation 

the values used in the model where estimated through a 

process of trial and error.  

Legend:   

A Ligand/Receptor binding. C Enzyme activity on substrate. 

B Receptor activates gene 

expression. 
D Transport of substrate from 

cell. 
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Table 1. Initial concentrations for ligand receptor 

binding model. 

Species Initial concentration (µmol/l) 

Hyperforin 600 

Ritonavir 500 

PXR 10 

Table 2. Ligand receptor binding model reactions. 

Reaction Equation Rate  

Ass. of Hyp with PXR PXR + Hyp → PXR:Hyp 8e-06 l/(µmol*s) 

Diss. of Hyp and PXR PXR:Hyp → PXR + Hyp 6.5e-07 1/s 

Ass. of Rit with PXR PXR + Rit → PXR:Rit 9e-06 l/(µmol*s) 

Diss. of Rit and PXR PXR:Rit → PXR + Rit 7.5e-07 1/s 

Ass. = association; Diss. = dissociation; 

Hyp = hyperforin; Rit = ritonavir 

A simulation was run in COPASI with the duration set to 600 

seconds (10 minutes) and interval size at 2 seconds resulting 

in a dataset with 300 time-steps. Figure 6 shows the resulting 

graph of plotting the simulated data.  

 

Figure 6. Ligand receptor binding model: 

Species concentration (vertical axis) over time (horizontal 

axis). 

A second model was created in COPASI to simulate the 

reactions involved in process B, which result in activation of 

gene expression.  

Table 3 shows the initial concentrations used in the gene 

expression model and  Table 4 details the reactions rates and 

parameter values used. The duration for the simulation was 

set to 100 000 seconds (27.7 hours) with 2500 time steps of 

40 seconds each. Figure 7 shows the result of plotting the 

simulated data. Again, the initial values, rates and parameters 

have been estimated through a process of trial and error due 

to the lack of experimental data. 

Table 3. Initial concentrations for gene expression model. 

 Table 4. Gene expression model reactions. 

Reaction  Equation Rates / 

Parameters 
Diss. of PXR:Hyp 
complex 

PXR:Hyp → PXR + Hyp 0.00085 1/s 

Diss. of PXR:Rit 

complex 
PXR:Rit → PXR + Rit 0.00095 1/s 

Transc of CYP3A4 

by PXR:Hyp 
→ CYP3A4(m); PXR:Hyp 

k1 = 0.003, 

n = 1, km = 0.5 

Transc. of CYP3A4 
by PXR:Rit 

→ CYP3A4(m); PXR:Rit 
k1 = 0.006, 
n = 1, km = 0.5 

Transc. of MDR1 

by PXR:Hyp 
→ MDR1(m); PXR:Hyp 

k1 = 0.005, 

n = 1, km = 0.5 
Transc. of MDR1 

by PXR:Rit 
→ MDR1(m); PXR:Rit 

k1 = 0.007, 

n = 1, km = 0.5 

Transl. of CYP3A4 
mRNA 

CYP3A4(m) → CYP3A4 
k2 = 2.4e-05 1/s, 
d2 = 1e-05 1/s 

Transl. of MDR1 

mRNA 
MDR1(m) → MDR1 

k2 = 2.7e-05 1/s, 

d2 = 1e-05 1/s 

Diss. = dissociation; Transc. = transcription; 

Transl. = translation; Hyp = hyperforin; Rit = ritonavir  

 
Figure 7. Gene expression model: 

Species concentration (vertical axis) over time (horizontal 

axis). 

4. Results 

The ligand-receptor binding model indicates a steady 

increase in bound PXR correlated to a steady decrease in 

available (unbound) PXR. The initial concentrations of 

ritonavir and hyperforin decrease steadily (not shown) 

relative to the accumulation of bound PXR. The entire 

process is modelled over 600 seconds and reaches a steady 

state after approximately 500 seconds where the rate of 

formation of bound PXR begins to level out. The data 

indicates that after 600 seconds the concentration of PXR 

bound to ritonavir is 4.82 µmol/l and the concentration of 

PXR bound to hyperforin is 5.14 µmol/l. To initiate the 

transcription process only a minimum concentration of 

activated PXR is required. Process B can therefore start 

Species Initial concentration (µmol/l) 

PXR:Hyp 5.14 

PXR:Rit 4.82 

Int'l Conf. Bioinformatics and Computational Biology |  BIOCOMP'11  | 503



 

 

 

before process A has finished therefore the processes are not 

necessarily sequential in nature. 

An exchange of data from process A to B is required during 

the simulation of process A at predefined intervals. The gene 

expression model indicates a sharp increase in mRNA 

production peaking at approximately 5000 seconds 

(approximately 1.5 hours) after which there is a gradual 

decline. 

The translation of mRNA into protein is indicated as a 

gradual increase in MDR1 and CYP3A4 concentrations 

which approach steady state at approximately 100 000 

seconds (27.7 hours). 

The process of enzyme activity on a substrate (process C) is 

yet to be modelled, however it is dependent on the 

concentration of the enzymes produced in the gene 

expression process (process B). As with the integration of 

processes A and B the relationship between processes B and 

C is not necessarily sequential. A minimum concentration of 

enzyme is required to initiate the metabolic process, the rate 

of which increases as enzyme concentration increases. Each 

model has been determined as the trigger for the subsequent 

process, however the processes are not sequential, therefore 

the integration or ‘coupling’ of models needs to be studied in 

more detail. This forms one of the major research areas for 

this project. 

5. Model integration 

To investigate how separate individual processes operating 

on different scales interact with each other a stock and flow 

diagram was created in Stella
2
 for the processes under study 

(Figure 8). The stock and flow diagram treats the 

components of the model as stocks, e.g. ‘Le’ is a stock of 

ligand outside the cell. The flows represent the rate of change 

of the stock, either localization or change of state, e.g. ‘Le’ 

flows into the cell at a defined rate and accumulates as ‘L’ 

which represents the stock of ligand in the cell. The flow 

from the ligand stock (L) combines with the flow from 

receptor stock (R) to accumulate as bound ligand receptor 

stock (LR). This stock has a positive effect on the flows 

resulting in enzyme production (E1 and E2) represented by 

the arcs connecting the stock to the flows. Enzyme 1 stock 

(E1) has a positive effect on the flow of ligand (L) to its 

metabolised form (L\OH) and enzyme 2 (E2) has a positive 

effect on the flow of metabolised ligand (L\OH) out of the 

cell. Finally the stock of inhibitor (I) has a negative effect on 

the flow of ligand to metabolised ligand and the flow of 

metabolised ligand out of the cell. By studying the model in 

terms of stocks and flows it is easy to visualise the 

interactions in the model as an exchange of stocks. In terms 

of coupling multi-scale models the exchange of data must 

therefore represent a concentration of a component or 

components in the individual processes. For example the 

integration of processes A and B, ligand binding and gene 

expression, is an exchange of data representing the 

                                                 
2 STELLA is a general-purpose modelling and simulation tool of 

isee systems: www.iseesystems.com. 

concentration of activated PXR, the interaction of processes 

B and C, gene expression and enzyme activity, is an 

exchange of data representing enzyme concentrations. As the 

processes are not necessarily sequential, exchange of data 

has to occur at predefined time steps within the model 

operating on the smaller scale. 

 

Figure 8. Stock and flow diagram. 

Representing the metabolism of hyperforin inhibited by 

ritonavir in the liver. 

E.g. the duration of the ligand binding model is 600 seconds 

with interval sizes of 2 seconds whereas the duration of the 

gene expression model is 100 000 seconds with time 

intervals of 40 seconds. This would mean that for every 20 

time steps of process A an exchange of data can occur with 

process B. This forms the basis for developing methodology 

for coupling multi-scale processes and allows us to explore 

this problem further. The development of a ‘data generator’ 

using Java has begun which will be able to open two separate 

instances of Copasi and run two simulations together. It will 

also be able to interrupt the simulations at specific time 

intervals and facilitate the exchange of data in either 

direction as required. 

6. Discussion 

This study leads us to suggest the most suitable approach in 

multi-scale modelling and simulation is to deconstruct the 

entire system into individual processes and model each 

separately. The coupling of models can then be explored in 

more detail. We suggest the integration or coupling of 

separate models involves an exchange of data representing a 

stock or concentration of a component within the individual 

models. The development of a data generator in Java allows 

this integration of models to be further explored and 

developed to include other modelling methodologies. This 

research project has also raised several issues which require 

further investigation and prompt further research in the fields 
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of biology and systems biology. The models created in 

Copasi use artificial data to quantify the kinetic rates of 

reactions within the processes under study. This project 

would benefit greatly if biological experimentation in this 

area could provide real data upon which to validate the 

models. Further models will be developed to capture the 

additional processes detailed in the SSM and the ‘data 

generator’ will be implemented to explore the coupling of 

these separate processes. Ultimately the ‘data generator’ will 

be developed to explore the integration of different spatial 

scales in biology, including the integration of models using 

different methodologies e.g. cellular automata, agent based 

modelling. Multi-scale modelling and simulation is more 

complex than single-scale modelling and simulation. On the 

biology side it involves different temporal and spatial scales 

as well as different types of biological process and entities. 

On the mathematical side, different methods may be used to 

model the different sub-models of a multi-scale model. 

Furthermore, specific methods may be used to couple the 

different sub-models. On the computational side many 

intricate issues arise.  

A new EC-funded project with University of Ulster 

participation aims to develop computational strategies, 

software and services for distributed multi-scale simulations 

across disciplines, exploiting existing and evolving European 

e-infrastructure 
[27]

. Our preliminary literature research on 

evaluation and validation of multi-scale modelling and 

simulation in biology shows that there is a lack of suitable 

detailed work in this area. This and the lack of suitable 

dynamic data for modelling of the BAXS has prompted us to 

pursue the development of a testing environment which 

would allow us (1) To generate unlimited dynamic data 

related to the BAXS, (2) develop and study multi-scale 

modelling and simulation approaches for the BAXS, and (3) 

study, apply and develop validation techniques for multi-

scale modelling and simulation in systems biology. The basic 

idea of this testing environment is based on the Turing-like 

test for biology 
[28]

. 
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Abstract— Kidney transplantation has emerged as the treat-
ment for the most serious forms of kidney disease, but the
supply of kidneys from deceased donors cannot meet the fast-
growing demand. Recently, Kidney Paired Donation (KPD)
program, a modality which enables willing but incompatible
live donor-candidate pairs to swap donors, offers a promis-
ing solution for closing the gap between kidney supply and
demand. Most of current KPD programs focus mainly on
organ allocations strategies achieving the maximum number
of transplants or matches. However, patients’ quality of
life after transplants can be more important for kidney
candidates. In this paper, we propose a novel algorith-
mic platform to optimize cross-matches with the maximum
benefits for donor-candidate pairs. Utilizing the power of
integer programming, our platform implements a recently
proposed method that takes probabilistic-based utility as
the objective function, so that the overall expected utility,
instead of the number of matches, is maximized. Moreover,
involving altruistic donors in the allocations lead to a sig-
nificant improvement in successful transplants. Empirically,
we demonstrate the computerized platform for optimal organ
allocations in kidney exchanges through extensive simulation
experiments.

Keywords: Kidney exchange; Optimal matching; Integer pro-
gramming; Computerized platform

1. Introduction
Kidney transplantation has emerged as the treatment for

the most serious forms of kidney disease. However, there is
a considerable shortage of donor kidneys in the U.S.: more
than 80, 000 patients are on the waiting list for transplants
by the end of 2010 [9]. In the real world clinical appli-
cation, deceased donation and living donation are the two
resources of organs for kidney transplantation, and living-
donor transplant has a higher chance of success. Unfortu-
nately, about one-third of patients with willing live donors
will be excluded from kidney transplantation because of
ABO blood type mismatch or HLA incompatibility [8]. ABO
blood type mismatch infers to: type O people are universal
donors for any candidates; people who have type AB blood
can donate to only the same blood type patients; and a
type A or B donor can donate to the same type or a type
AB candidate. HLA incompatibility occurs when a recipient

candidate is sensitized to some of the Human Leukocyte
Antigens (HLA) of his/her willing donor. Therefore, KPD
program is established as a promising clinical solution to
overcome the shortage of donors. The essential idea of
such program is to exchange living kidney donors between
two willing but incompatible donor-candidate pairs. The
fundamental question in the KPD program is how to make
an optimal decision of kidney exchanges that benefit patients
the best.

An Integer Programming (IP) approach is widely used
to tackle the optimization problem of selecting the optimal
matches among incompatible donor-candidate pairs. Unfor-
tunately, most of all current methods focus on determin-
ing the optimal two-way and/or three-way cycle exchanges
through the means of graphic representation. Such constraint
on the length of cycles to be less than 3 is imposed due
to logistic consideration [1]. In this setting, many articles
have considered to maximize the total number of trans-
plants; see for examples, [11], [12], [14], [13], [1], [3].
In the real kidney exchanges, it is not only necessary to
consider how to increase the number of transplants, but
also needs to improve the quality of life for recipients
after their transplants so that the transplants can make them
live better. Therefore, we consider an expected-utility-based
algorithm proposed by [6], which takes account of the
medical-outcome-based utility (e.g., the life years gained
from real transplants (LYFT) [16]) as well as the probability
of successful actual transplants. In addition, most of the
KPD exchanges only consider the paired donor-candidates
to swap donors between them. Recently, these swaps also
include chains triggered by altruistic donors (ADs) because
chains offer more advantages [10], [4], [2]. On the one
hand, it relaxes the reciprocality requirement of KPD, so
pairs can find a donor from other pairs or ADs, rather
than matching both the donor and candidate of another pair.
More importantly, the simultaneity requirement of KPD is
relaxed, even if one donor of chain reneges, the candidate has
some opportunity to get transplants. Therefore, we integrate
ADs into the expected-utility-based algorithm to improve the
kidney exchanges. The idea is to define a virtual recipient
for an AD and carry out the similar optimization using the
algorithm of paired exchanges. A complete review of KPD
program is presented in [15].

In summary, we implement an innovative method that
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takes account of utility and uncertainty into the optimization
of graph matching and further integrates ADs into the
traditional KPD program. Through simulation experiments,
we demonstrate the superiority of the expected-utility-based
approach in comparison to the existing allocation strategies.
Thus, our algorithmic platform brings more benefits for a
greater number of kidney patients. In addition, we develop
a general KPD graphic user interface (GUI) software that
allows to model, visualize, and monitor the real world kidney
exchanges. The remainder of the paper is organized as
follows. We first present the mathematical formulation, opti-
mization algorithm and theoretical work of kidney exchange
problem in details in Section 2. In Section 3, we provide
thorough computerized platform, experimental results and
GUI software. Finally, we give a conclusion and discuss
some future work in Section 4.

2. Optimization Algorithm
2.1 Graph-based Formulation

A kidney exchange problem can be represented as a
directed graph G = (V,E). Let |V | be the number of vertices
(nodes) and |E| be the number of edges in a KPD graph,
where |.| denotes cardinality. Figure 1 shows an example.
Each vertex in graph G represents an incompatible donor-
candidate pair (e.g., vertex 1) or an altruistic donor (e.g.,
vertex 7). Each edge from vertex i to vertex j indicates that
the donor kidney in vertex i is compatible with the candidate
in vertex j (e.g., 7 → 1). In this directed graph, each edge is
assigned a weight representing edge utility eij of the kidney
transplant from the donor in vertex i to the candidate in
vertex j (e.g., e71 = 9). In addition, an edge probability pij
is considered for each edge to reflect the chance of an actual
successful kidney transplant from i to j (e.g., p71 = 0.6).
All the directed edges are established for compatibility of
ABO blood types and HLA sensitization.

The goal of optimization for kidney exchange program is
to find a collection of mutually disjoint cycles or chains that
attain the maximum overall expected utility of graph G. This
task of optimizing matches on graph G can be realized by
the following setup of an integer programming [6]:

max
∑
c∈C

ycuc, (1)

s.t.
yc ∈ {0, 1},∀c ∈ C,∑

c∈C(i) yc ≤ 1, 1 ≤ i ≤ |V |.

where C is the exchange set of all cycles or chains with
length 2 and/or 3 in graph G. C(i) is the exchange set
of cycles or chains in C that contain vertex i and yc
is a vector of indicators representing if cycle or chain
exchange set c is to be executed for transplant (yc = 1)
or not (yc = 0). Notice that uc is the expected utility
of cycle or chain exchange set c, which has been fully
discussed in [6]. According to [6], where uc =

∑
UcPc.

1

2

7

6

35

4

(9 ,  0 .6 )

(4 ,  0 .2 )

(6 ,  0 .4 )

(5 ,  0 .8 )

(1 ,  0 .5 )

(8 ,  0 .6 )

(4 ,  0 .2 )

(2 ,  0 .1 )

(4 ,  0 .1 )

Altruistic donor

(1 ,  0 .1 )

Fig. 1: A toy kidney exchange program including an altruistic
donor and six incompatible pairs. It contains 3 two-way cycles
({2,4}, {2,6}, {3,5}), 1 three-way cycle ({6,2,4}) and 3 chains
beginning with an altruistic donor ({7,1}, {7,5} {7,5,3}). The
optimal matches selected by IP are: {7,1}, {6,2,4}, and {3,5},
which represent the optimal exchanges 7 → 1, 6 → 2 → 4 → 6
and 3 → 5 → 3.

Uc is the maximum utility of the possible exchange sets
in c, while Pc =

∏
i,j∈c

eij∈Es

pij
∏

i,j∈c
eij∈(1−Es)

(1 − pij) for

the corresponding exchange sets c, where Es indicates a
set of edges eij leading to actual transplants. Therefore,
the calculation of expected utility is based on all possible
configurations in exchange set corresponding to each edge
either resulting in an actual successful transplant or not in the
real lab match run. And for each such configuration, we aim
to choose the available cycle that yields the highest expected
utility. In addition, the expected utility of a chain initiated by
an AD can be computed in a similar way except creating a
dummy cycle from the ending vertex of chain. For example,
add a dummy edge from vertex 1 to vertex 7 with edge utility
e17 = 0 and edge probability p17 = 1, which results in a
2-way cycle {7, 1}. In Figure 1, using the above formula,
we compute the expected utilities of cycles as u{2,4} = 2.4,
u{2,6} = 0.8, u{6,2,4} = 3.35, u{3,5} = 0.12. Also, the
expected utilities of chains are calculated as u{7,1} = 5.4,
u{7,5} = 0.1, u{7,5,3} = 0.156. Then, plugging the expected
utilities uc into Equation (1), we use IP to find the optimal
solution of the virtual matches: 7 → 1, 6 → 2 → 4 → 6
and 3 → 5 → 3. Finally, not all the optimal virtual matches
lead to actual operations. For instance, some higher order
cycles (e.g, three-way cycles) are less likely to be chosen
because such cycles tend to be more difficult to successful
carry out [1]. If lab match run suggests one transplant fails
(e.g., edge e62 is broken), then the entire three-way exchange
6 → 2 → 4 → 6 is labeled as a failure in the existing
methods. However, [6] suggests a method with fall-back
option; that is, we can choose the kidney exchange between
2 and 4 as a sub-cycle. As a result, the transplants now
include 7 → 1, 2 → 4 → 2, and 3 → 5 → 3.

Int'l Conf. Bioinformatics and Computational Biology |  BIOCOMP'11  | 507



2.2 Algorithm
The computerized platform for kidney exchanges is based

on a graphic optimization algorithm, described in detail as
the following steps:

1) Given incompatible donor-candidate pairs and ADs
at time t = 0, build a directed graph G = (V,E)
with each vertex representing a donor-candidate pair
or an AD and each edge from vertex i to j denoting
compatibility, so that there is a possibility match
between the donor in vertex i to the candidate in vertex
j.

2) Assign edge utility eij and edge probability pij to
each match pair of donor i and candidate j. eij is
derived from medical-outcome-based utility or some
existing KPD scoring systems [11], and pij is derived
from a statistical model for probability of successful
transplants.

3) Find chains beginning at vertices of ADs with length
size equal to 2 and/or 3.

4) Add dummy edges from the end vertices of chains to
ADs, on which assign the edge utility eij = 0 and the
edge probability pij = 1.

5) Find all cycles with length size 2 and/or 3 in graph G
using the depth-first search algorithm.

6) Compute the expected utility uc according to the
configuration of each cycle exchange set.

7) Solve Equation (1) to get indicators yc representing
the optimal virtual donor-candidate matches.

8) Determine the final optimal kidney transplants accord-
ing to Bernoulli trails with a certain success probability
in the real lab match run. If such a Bernoulli trial
is realized, the transplant will lead to an successful
operation; otherwise, it fails.

9) Compute the number of completed transplants and
associated utility of optimal kidney transplants.

10) Remove the vertices of donor-candidate pairs and ADs
that finish successful transplants from graph G, and
those end vertices of chains are “bridge donors" [10]
as new ADs.

11) At time t = t+ 1, form the new incompatible donor-
candidate pairs and ADs based on pair arrival rate λ
according to a Poisson process, then go to step 1).

2.3 Theoretical Analysis
In this section, we show that the decision version of

our algorithm for kidney exchange program is NP-complete
given in Equation (1).

Theorem 1: Given a graph G = (V,E) and an integer
n (n ≥ 3), the problem of deciding if G admits a perfect
cycle/chain cover containing cycles/chains of length at most
n is NP-complete.
Our proof of Theorem 1 follows that in [1]. First, it is easy
to demonstrate this problem is in NP. Second, we can prove

that it is NP-hard through a reduction from a 3D-Matching
problem. Due to the space limitation, we omit detail of the
proof.

3. Experiments
3.1 Computerized Platform and Evaluation
Measurement

We tested the algorithm on a computerized platform
by mimicking a general kidney exchange simulation sys-
tem proposed in [6], which appropriately reflects the real
world clinical application. In this computerized platform,
we hope to evaluate different kidney allocation strategies.
The flowchart for the computerized platform is illustrated
in Figure 2. First, we generated data of candidates and
donors separately. Candidates are sampled at random from
the University of Michigan kidney paired donation database,
which currently has 187 incompatible donor-candidate pairs.
This database provides us the important information of ABO
blood type and HLA useful to characterized each sampled
candidate. Donors, on the other hand, are generated by the
population distributions of ABO and HLA. In particular,
the distribution of ABO blood types for the US population
is: O(44%), A(42%), B(10%), and AB(4%), according
to Stanford Blood Center (2010) 1, and the distribution
of HLA is derived from HLA haplotypes frequencies of
the US population [7]. Through random sampling, we can
appoint ADs directly from the set of drawn donors or
construct an incompatible donor-candidate pair if either their
ABO blood types mismatch or HLA incompatibility. In this
way, simulated donors and candidates reflect real-world of
data. Second, KPD parameters needed for data generation,
including an initial pair number n and percentage of ADs,
are specified for the first match run. Third, a directed graph
G = (V,E) involving edge utilities and edge probabilities
is created by using characteristics of candidates and donors.
In this paper, for illustration, we assign values of edge
utilities and edge probabilities according to uniform random
distributions on interval denoted by [min,max] = [a, b],
such as U [10, 20] and P [0.1, 0.5], respectively. Fourth, for a
given KPD graph, we find all cycles and chains with length
size equal to 2 and/or 3 by the depth-first search algorithm.
Furthermore, using IP optimization algorithm discussed in
Section 2, we search for the optimal solution regarding
the maximum potential matches (transplants) under each
allocation strategy applying Gurobi optimization software
[5]. Fifth, the ready transplant matches are finalized as actual
successful transplants in the real lab match run according to
Bernoulli trails with a certain success probability. At the
end, the actual successful transplants are output from the
platform. Moreover, in an evolving KPD program, successful
donor-candidate matches will leave the database and some

1http://bloodcenter.stanford.edu/about_blood/blood_types.html
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Table 1: Donor Data

ID Integer

Type String

Blood String

Gene String

Arriving Time Date

Optimization 

    Decision

Table 2: Patient Data

ID Integer

Type String

Blood String

Gene String

Arriving Time Date

User

Input

Computing Engine
        (Gurobi)

 Potential Matching 
    Transplants

    Graphic 
Visualization

  Save 

Results

Comparison 
      and 
Analysis

(1) (2) (3) (4) (5)

Simulated Data

   Generation 

      Graph

   Generation 
 Real Lab 

Match Run

(6)

 Ready Matching 
Transplants

File Names:
Recipient.csv,
Donor.csv

Input Parameters:
(1) Initial number of people
(2) Arrival Rate
(3) Altruistic Donor Percentage

Input Parameters:
(1) Edge Utility Max, Min
(2) Edge Probability Max, Min

Input Parameters:
(1) Optimization Methods
(2) Optimization Run Period Index

Input Parameters:
(1) Lab Match Run Methods
(2) Match Run Period Index

Fig. 2: A flowchart of computerized platform for kidney exchanges.

new pairs will enter into the pool according to a Poisson
process with an arrival rate λ. Thus, a new match run will
be performed at another time (see the dot line in Figure 2).
In order to make a better comparison, we fixed the number
of match runs as k = 12, mimicking the reality that there is
one match run each month within a year. In the following
simulation experiments, we evaluated the kidney exchange
results based on two criteria: the accumulated number of
transplants and accumulated utility. The higher the number
of transplants or the utility is, the higher mutual benefits for
the kidney transplant patients. For each allocation strategy,
we conducted 100 test runs, and reported the averaged ac-
cumulated number of transplants and averaged accumulated
utility.

3.2 Results
We began by creating a KPD pool of by specifying three

input parameters: the initial number of pairs n = 200,
the arrival rate of pairs λ = 10 or λ = 20, and the
percentage of ADs 5%. Then we generated a directed graph
by assigning edge utility and edge probability as U [10, 10]
and P [0.1, 0.5], respectively. First, we aimed to compare
two allocation strategies in terms of accumulated number
of transplants, in the settings where the KPD only involved
donor-candidate pairs (namely no ADs). The two strategies
to be compared are (1) Cycle-Without-AD-Base: a traditional
method that does not consider the expected utility in the
optimization and fall-back option in the real lab match
run; (2) Cycle-Without-AD: a new method [6] that uses the
expected utility in the optimization and accounts for the
fall-back option in the real lab match run. The accumulated
number of transplants obtained by the two approaches with
different arrival rates λ are shown in Figure 3. Generally,
the accumulated number of transplants appears higher for

a larger number of arrival rate (e.g., λ = 20 in Figure
3(b) versus λ = 10 in Figure 3(a)). This implies that
the more pairs participate in the kidney exchange program,
the higher number of achieving matches in the KPD pool.
Moreover, the accumulated number of transplants gained by
the new approach (i.e., Cycle-Without-AD) is significantly
higher than the traditional method (i.e., Cycle-Without-AD-
Base) in the magnitude of 2−4 folds. These results indicate
that the new approach is clearly advantageous to increase
the number of transplants in kidney exchanges.

Next, we integrated the ADs into the new allocation
strategy and investigated the role of ADs in the kidney
exchanges. As discussed in Section 2, method Cycle-With-
AD is modified by simply adding dummy edges from each
donor-candidate vertex to the ADs with cycle-length size
2 and/or 3. Then we utilized the same optimization proce-
dure as that of the Cycle-Without-AD method to find the
optimal exchanges. Figures 4(a)-(c) display the accumulated
number of transplants obtained by two strategies: (1) Cycle-
Without-AD and (2) Cycle-With-AD, where the edge utility
is generated by U [10, 10], U [10, 20], and U [10, 30], and
the arrival rate is assigned by λ = 10. In these panels,
based on the accumulated number of transplants over 12
match runs, method Cycle-With-AD gives at least 10% more
matches than the method without using ADs. Moreover,
we plotted the results for the case of λ = 20 in Figures
4(d)-(f). Again, when more people enters, method with ADs
clearly performed better than the one without ADs. In the
meanwhile, we also compared accumulated utility of these
two methods when the edge utility distribution changes from
U [10, 10] to U [10, 30] in the cases of λ = 10 and λ = 20.
From Figures 5(a)-(c), we noticed that the accumulated
utility of the Cycle-With-AD method enjoys a gain between
15% to 30% over the Cycle-Without-AD method if λ = 10.
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Fig. 3: Comparison of accumulated number of transplants versus
month (number of match run) for Cycle-Without-AD-Base and
Cycle-Without-AD methods with different arrival rate of pairs: (a)
λ = 10, (b) λ = 20.

Likewise, Figures 5(d)-(f) report the accumulated utility of
the method using ADs is about at least 10% higher than
that of the method not using ADs if λ = 20. Therefore, it
is obvious that on average the method without using ADs is
consistently outperformed by the method using ADs over all
match runs in terms of accumulated number of transplants
and accumulated utility. As a result, using ADs in the kidney
exchanges would help clinicians to achieve more number and
better quality of transplants.

3.3 Software
In this paper, one of our new contributions is the de-

velopment of a graphic user interface (GUI) software to
visualize inputs and outputs in a kidney exchange program.
Our simulation experiments above were carried out by using
our GUI software developed by C++ language on a machine
with Quad 3GHz Intel Core2 processors and 4GB RAM. The
software offers a range of functions to create a user-friendly
interface and builds appropriate configurations to support
communications between inputs and outputs essential in
the kidney exchanges. It includes six types of functional
components associated with inputs and outputs, which are
displayed in the middle panel of Figure 2: (1) reader of
original data from internal and external files; (2) KPD data
simulator; (3) KPD graph generator; (4) Optimizer of KPD
kidney donation; (5) KPD lab match run; (6) output of graph

matching results. In addition, the input data or parameters
are showed in the upper panel of Figure 2, while the output
data or results are showed in the lower panel of Figure 2.

For instance, Figure 6 shows a slapshot of GUI software
of kidney exchanges for five match runs by the Cycle-With-
AD method. Revelent information is displayed in multiple-
windows. Recipient (right-top) and Donor (right-middle)
windows in Figure 6 show the randomly drawn kidney
experimental data when the initial number of pairs, arrival
rate and percentage of ADs are fixed as 50, 10 and 5%
respectively. The display of data includes period (i.e., num-
ber of match run), ID, type of vertex (i.e., pair or AD),
blood type or HLA type. If ID number is the same between
recipient candidate and donor, it indicates a pair of orig-
inally incompatible donor-candidate, otherwise it denotes
an AD. In the Graph Builder window (right-bottom), the
corresponding directed graph is created with the edge utility
and edge probability generated by U [10, 10] and P [0.1, 0.5],
respectively. After selecting an optimization method, such as
Cycle-Without-AD-Base, Cycle-Without-AD, or Cycle-With-
AD, the center window will report the optimal graph matches
between donors and recipients, including donor ID, donor
type, recipient ID, recipient type, number of transplants and
associated utility at each match run. Also, if desired, a
further match run can be performed, leading to an evolving
kidney exchange data exploration. In summary, the GUI
provides a very powerful tool to help clinicians, donors and
patients more easily analyze and assess the kidney exchange
program.

4. Conclusions and Future Work
In this paper, we investigated a new kidney allocation

strategy based on expected-utility to maximize the mutual
benefits for kidney exchanges. The problem is formulated
as to search for the maximum disjoint vertex sets in a
weighted directed graph. First, a depth-first search algorithm
is implemented to identify all cycles/chains with length
size 2 and/or 3. Then, an optimal solution of maximum
expected utility can be obtained by an IP. Finally, ADs
are added to increase the possibility of exchanges. Through
simulation studies that closely imitate the real application on
computerized platform, we demonstrated that the expected-
utility-based allocation strategy provides the higher quantity
and quality of life than the current practising methods in the
kidney exchanges. This will result in thousands of kidney
patients for life-saving each year in USA.

All algorithms discussed in this paper have been fully
integrated into a GUI software package, which will be
released publicly through the necessary Institutional Review
Board (IRB) regulations. In the future, we plan to conduct
practical studies to solicit feedbacks so that the software can
be improved with more user-friendly features for clinical
convenience. We also intend to incorporate interaction tools
for input data process, integration, and modeling, as well as
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Fig. 4: Comparison of accumulated number of transplants versus month (number of match run) for Cycle-Without-AD and Cycle-With-AD
methods with different arrival rate of pairs (λ) and different edge utility distributions (U ): (a) λ = 10 and U [10, 10], (b) λ = 10 and
U [10, 20],(c) λ = 10 and U [10, 30], (d) λ = 20 and U [10, 10],(e) λ = 20 and U [10, 20], (f) λ = 20 and U [10, 30].

output data graphical visualization into our existing system
for its maximum flexibility of clinical practice.
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Fig. 5: Comparison of accumulated utility versus month (number of match run) for Cycle-Without-AD and Cycle-With-AD methods with
different arrival rate of pairs (λ) and different edge distributions (U ): (a) λ = 10 and U [10, 10], (b) λ = 10 and U [10, 20],(c) λ = 10
and U [10, 30], (d) λ = 20 and U [10, 10],(e) λ = 20 and U [10, 20], (f) λ = 20 and U [10, 30].

Fig. 6: A GUI example for kidney exchanges
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Abstract - Influenza A viruses infect large numbers of 
animals and are subtyped according to their surface antigens 
to 16 HA subtypes and 9 NA subtypes. To identify the main 
prominent protein attributes representing each subtype, 
various clustering, screening, item set mining and decision 
tree models applied to dataset of 3632 HA sequences of 
influenza A viruses. The count of Tyr, Gln and Phe and the 
count of some hydrophilic – hydrophobic (such as Lys – Val, 
Asn – Leu and Pro – Leu) were the most important protein 
features. Most decision tree models used non-reduced 
absorption at 280nm as the main protein feature to build the 
trees. Parallel stump and ID3 numeric decision tree 
algorithms were the best tree to differentiate between HA 
subtypes. The results showed various bioinformatics tools may 
be used in this regard. For the first time, this paper showed 
that protein attributes can be used to differentiate between 
influenza A subtypes. 

Keywords: Influenza A, Bioinformatics, Modelling  

 

1 Introduction 
  Influenza is a highly contagious and acute respiratory 
disease with a high degree of morbidity and has been in 
circulation for centuries [1]. The disease is caused by the 
influenza virus, which is a segmented, enveloped RNA virus. 
Within the influenza virus family, there are four genera: A, B, 
C virus and Thogoto virus; although only A and B cause 
significant disease in humans [2]. Influenza A viruses are 
further subtyped according to their surface antigens, HA and 
NA, of which 16 HA subtypes and 9 NA subtypes have been 
identified to date [3]. The HA and NA genes are extremely 
variable in sequence, and less than 30% of the amino acids are 
conserved among all the subtypes. New epidemic strains of 
influenza A arise due to point mutations within two surface 
glycoproteins, HA and NA. These changes in HA and NA 
enable emerging virus strains to evade the host’s immune 
system and therefore necessitates the annual revision of 
vaccine to include the new viruses [4]. Furthermore, HA may 
also play a structural role in budding and particle formation. 
Human influenza viruses manage to cause epidemics almost 
every year. The circulating viruses change their surface 
glycoproteins by accumulating mutations (antigenic drift or 

antigenic shift) which results in variant viruses of the same 
subtype that are able to evade the immune pressure in the 
population [5]. 
Bioinformatics represents a new field at the interface of the 
twentieth-century revolutions in molecular biology and 
computers. A focus of this new discipline is the use of 
computer databases and computer algorithms to analyze 
proteins and genes. A major challenge in biology is to make 
sense of the enormous quantities of sequence data and 
structural data that are generated by genome-sequencing 
projects, proteomics, and other large-scale molecular biology 
efforts. Fitting a model such as a decision tree or item set 
mining to a set of variables this large may require more time 
than is practical [6]. A decision tree is constructed by looking 
for regularities in data, determining the features to add at the 
next level of the tree using an entropy calculation, and then 
choosing the feature that minimizes the entropy impurity [7]. 
To better understand the features that contribute to structural 
differences between influenza viruses A subtypes, it is 
necessary to identify the main features responsible for this 
valuable characteristic. Herein we used various clustering, 
screening, item set mining and decision tree models to 
determine which protein attributes may be used as a marker 
between subtypes of influenza A viruses. All available HA 
sequences (3632) of influenza A viruses from Swiss-Prot 
database were extracted and up to 924 protein features for 
each HA protein sequence was generated and various 
bioinformatics modeling techniques applied on this. 
2 Methods and Materials 
 Three thousand and six hundred and thirty two sequences of 
HA virus proteins from various species (human, bird, pig, 
horse, mouse, tiger, leopard, dog, and cat) were extracted 
from the UniProt knowledgebase database and categorized as 
H1 to H16, according to database classification. Nine hundred 
and twenty four protein features or attributes including 
primary and secondary protein features were extracted. A 
dataset of these protein features was imported into Clementine 
software [Clementine_NLV-11.1.0.95; Integral Solution, 
Ltd.], null data for subtype of virus was discarded, and this 
feature was set as the output variable and the other variables 
were set as input variables. The same database imported into 
RapidMiner software [RapidMiner 5.0.001, Rapid-I GmbH, 
Stochumer Str. 475, 44227 Dortmund, Germany] and again 
the subtype of virus set as target or label attribute [when Item 
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Set Mining model performed, no label or target attribute was 
set as this model requires so]. To minimize the effects of 
correlated features on modelling and to decrease the 
processing time and burden on processing facilities, the 
original database subjected to remove correlated features 
algorithm, so the number of protein attributes (variables) 
decreased from 924 to 486 attributes. Various algorithms such 
as screening models [Anomaly detection model, feature 
selection algorithm or attribute weighting], clustering models 
[K-Means, TwoStep cluster], Tree Induction models [with 
various criterion, C5.0, C5.0 with 10-fold cross Validation 
and C&RT], Item Set Mining [FPGrowth] and Rule Induction 
model [10 fold cross-Validation through stratified sampling] 
run on each dataset as described previously [8]. Whenever 
requested by model, data were discretized by the frequency; 
i.e. data were divided into 3 bins [ranges] with nearly equal 
the frequencies in each class [low 0-0.3, mid 0.3-0.5 and high 
>0.5]; and sometimes data were converted to nominal and in 
some cases to binominal datasets. 
3 Results 
 The number of protein attributes gained weights higher than 
0.7 in each weighting model were as follows: PCA 2, SVM 
24, relief 4, uncertainty 17,  gini index 280, chi squared 39, 
deviation 2, rule 59, gain ratio 61, info gain 350 and info gain 
ratio 13.   
The most important feature used to build the tree was non-
reduced absorption at 280nm. If the value for this protein 
attribute was higher than 1.180 and the value for the count of 
Trp – Ala was higher than 0.500 and the count of Gly was 
higher than 49, the viral protein was originated from H10; 
otherwise from H3. If the count of Trp – Ala was equal to or 
less than 0.500, then the count of Ala – Ala (value of 3.500), 
the length of protein (value of 566) and the count of Trp – 
Asn (value of 0.500) used to differentiate between H14, H4, 
H8 and H9 groups. When the count of Trp – Asn was higher 
equal to or less than 0.500, if the count of Ser – Cys, non – 
reduced absorption at 280nm and aliphatic index were higher 
than 1.500, 1.44 and 86.690, respectively, the protein 
originated from H16; otherwise from H13. With the count of 
Ser – Cys was equal to or less than 1.500 and the count of His 
– Asn was higher than 0.500 and the count of Glu – Trp was 
higher than 0.500, if the count of Gly was higher than 44.500, 
virus belonged to H2, otherwise to H5 group. With the count 
of Glu – Trp (< 0.500) and the count of His – Asn (<.500), the 
virus HA proteins belonged to H1 and H6, respectively. If 
non-reduced absorption at 280nm was < 1.180 and the 
aliphatic index was > 81.875, the protein belonged to H12 
group, if not to H15 or H7.  
 
Stump decision tree model created a very simple tree with 
non-reduced absorption at 280nm variable as the root feature. 
Decision Tree Stump (Parallel) generated a tree again with the 
same starting attribute. More complex tree generated by ID3 
Numerical method and again tree built on non-reduced 
absorption attribute. Random tree started with another protein 
attribute, the count of His – Ala. When value for this attribute 

was higher than 1.500 and the count of Ala was higher than 
26.500, the protein fell into H6 group. if the count of His-Ala 
was higher than 1.500 and the count of Ala was less than or 
equal to 26.500, the virus protein identified as H16. Ten 
different models were used by Random Forest algorithm to 
induce decision trees. In the first model, the count of Met-Ala 
was the main feature used by this method to induce the tree 
and its branches was created using the count of Gly and the 
count of Vla – Arg attributes to classify H2, H5, H10, H9, 
H8, H7, H1 and H11 subtypes. In the second model, the count 
of Gly – Ala, the frequency of Pro – Ile, the count of Asn – 
Cys, the frequency of Pro – Ile, the count of Met – Lys and 
the count of Leu – Trp to trace H6, H11,H1, H3, H5, H13, H2 
and H9 subtypes. The count of Gly – Met, the count of Cys – 
His and the count of sulfur were the most important attributes 
to build the tree by the third model (H10, H3, H9H4 and H5). 
Random forest, the fifth model, was able to differentiate 
between H10, H1, H4 and H3 by inducing a tree with the 
frequency of Pro – Ser as the main feature and the count of 
Cys – Met as the other important feature. In other models the 
count of Gln – Phe, the count of Trp – Pro and the count of 
Ala – Ala (model 5), the count of His – Phe, the count of Ile – 
Phe, the count of Leu – Lys and the count of Ala – Gln 
(model 6), the count of Gln – Gln and the count of Gln – Tyr 
(model 7), the count of Phe – Lys, the count of Asn – His and 
the count of Ser – Pro (model 8), the count of Gly – Met, the 
count of Gly – Val, the count of Asp – Gly and the count of 
Pro – Ala (model 9) and the count of Trp – Met (model 10) 
were the most important features used to build the trees. 
GRI node analysis created 100 rules with 3631 valid 
transactions with minimum and maximum support of 44.09 % 
and 44.09 %, respectively, while maximum confidence 
reached 100 %. When feature selection was used, minimum 
support, maximum support, maximum confidence, and 
minimum confidence were the same as previous. In both 
methods [with/without feature selection filtering] the count of 
Gln – Leu, the frequency of Gly – His and the frequency of 
Pro – Asn were the main features used to create the first rules. 
4 Discussion 
 Although the numbers of attributes with weights equal to or 
higher than 0.70 varied from 2 (in PCA weighting) to 62 (in 
Info Gain Ratio and Rule Induction weighting), the 
percentage and the count of Tyr, the frequency and the count 
of Lys - Val, the percentage, the frequency and the count of 
Gln, the frequency and the count of Asn – Leu, the count of 
Pro – Leu, the percentage of Phe and the frequency of Ser – 
Ile chosen by 7 attribute weightings as one of the most 
important attributes. When the same models run on dataset 
with correlated remove features, only six attributes gained 
weights higher than 0.70; again the count of Tyr, the count of 
Gln, the count of Lys – Val and the count of Asn – Leu were 
the most important features with weights higher than 0.70. 
The count of Gln – Asn was the other weight higher than 
0.70. More than 50% of features gained high weights in both 
models were hydrophobic amino acids and the rest were 
mainly from hydrophilic amino acids. For the first time the 
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importance of dipeptides in classifying the influenza virus A 
has been presented here. The combination of one hydrophobic 
amino acid such as Val, Leu or Ile and one hydrophilic amino 
acid such as Asn, Ser or Gln forms a strong link inside the 
protein and reduce the possibility of mutations in this area; 
but when there are hydrophobic dipeptides connections, the 
chance of mutation and flexibility increases.  
Although some trees generated by tree induction models had 
just two branches, as seen in stump decision tree, the depth of 
trees in some models were more complicated [more than 12 
branches in ID3 numeric run on information gain]. The ability 
of various decision tree induction models applied in this study 
to correctly and effectively classify influenza A subtypes 
based on protein attributes were very different. In some 
models, two or three classes were identified, showing the 
model was not competence in this field (as seen in decision 
tree stump, C5.0, C&RT, random tree and accuracy). But in 
some other models, such as decision tree run on removed 
correlated features' dataset, decision tree stump parallel and 
ID3 numeric, the models were able to completely classify the 
HA subtypes (H1 – H16) based on their protein features. So 
the latter models may be used as a suitable tool to classify 
those viral subtypes.  
The results showed that various bioinformatics tools and 
modelling facilities can be used to identify the subtypes of 
influenza virus A with a precision rate up to 95%. To our 
knowledge, for the first time we showed that some primary or 
secondary attributes can be used to differentiate between 
various subtypes of influenza A viruses. 
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Abstract 

 

Given the lead-time currently required for 

vaccine production, a widespread administration 

of effective anti-influenza therapeutics is the only 

practical defense against a 1918-scale influenza 

pandemic after the pandemic begins.  

Neuraminidases are glycoproteins that  facilitate 

the transmission of the influenza virus from cell 

to cell.  The neuraminidase inhibitor  

osteltamivir is currently the most widely used 

anti-flu therapeutics.  Oseltamivir was ineffective 

against the dominant H1N1 strains in the 2008 

flu season and decreasingly effective against the 

dominant influenza H1N1 mutants in the US in 

the 2009 "Spring/Fall" pandemic.   Several of 

the Influenza A/H5N1 mutants are genetically 

close to the 1918 pandemic strain. Here I 

provide a computational docking analysis of  

oseltamivir with the active site of the 

neuraminidase of an H5N1 strain.  The 

computed inhibitor/receptor binding energy 

suggests that oseltamivir would not be effective 

against that  strain. These results are consistent 

with the efficacy of oseltamivir observed in avian 

flu cases in humans. 

 
Keywords: Influenza, H1N1, neuraminidase, 

oseltamivir 

 

 

1.0  Introduction 
 
     The mortality rate in humans infected 

with Influenza A/H1N1 in the 1918 

pandemic was ~50% ([2]).  The 1918 

mutant(s), unlike any genotype of H1N1 

observed since, was easily transmitted 

among humans and killed ~10% of the 

world population within a single six-month 

period ([2]).   

 

     At present, no plausible public health 

regime could control an outbreak of a high-

mortality-rate, highly infectious (HMR/HI) 

H1N1 mutant.  The scale of human 

interaction required to sustain food and fuel 

distribution to large urban areas would 

render quarantine ineffective ([5]).  

Currently, the lead time for vaccine 

development and production is at least as 

long as the duration of the 1918 pandemic.  

A widespread administration of effective 

anti-influenza therapeutics is therefore the 

only practical defense against a 1918-scale 

event after the pandemic begins.   

     Neuraminidases are glycoproteins that  

facilitate the transmission of the influenza 

virus from cell to cell.  The most widely 

used anti-influenza therapeutic, oseltamivir 

(Tamiflu, [4]), was ineffective against the 

dominant H1N1 mutants in the 2008 flu 

season and was decreasingly effective 

against the dominant influenza mutant 

(Influenza A/H1N1) in the US in the 2009 

"Spring/Fall" pandemic ([7]).   Several of 

the Influenza A/H5N1 ("avian flu") mutants 

are genetically close to the 1918 pandemic 

strain.  Avian flu in humans has not 

responded well to oseltamivir. 

     In the World Health Organization 

serotype-based influenza taxonomy, 

influenza type A has nine neuraminidase-

related sero-subtypes, and these subtypes 

correspond at least roughly to differences in 

the active-site structures of the flu  

neuraminidases. The subtypes fall into two 

groups ([3]): group-1 contains the subtypes 

N1, N4, N5 and N8;  group-2 contains the 

subtypes N2, N3, N6, N7 and N9.  
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Oseltamivir was designed to target the 

group-2 neuraminidases. 

     The available crystal structures of the 

group-1 N1, N4 and N8 neuraminidases 

([1]) reveal that the active sites of these 

enzymes have a very different three-

dimensional structure from that of group-2 

enzymes. The differences lie in a loop of 

amino acids known as the "150-loop", which 

in the group-1 neuraminidases has a 

conformation that opens a cavity not present 

in the group-2 neuraminidases. The 150-

loop contains an amino acid designated Asp 

151; the side chain of this amino acid has a 

carboxylic acid that, in group-1 enzymes, 

points away from the active site as a result 

of the 'open' conformation of the 150-loop. 

The side chain of another active-site amino 

acid, Glu 119, also has a different 

conformation in group-1 enzymes compared 

with the group-2 neuraminidases (8]). 

     The Asp 151 and Glu 119 amino-acid 

side chains form critical interactions 

with neuraminidase inhibitors. For 

neuraminidase subtypes with the “open 

conformation” 150-loop, the side chains 

of these amino acids might not have the 

precise alignment required to bind 

inhibitors tightly ([8]).    The active site 

of the 1918 strain has the 150-loop 

configuration. 

     The difference in the active-site 

conformations of  the two groups of 

neuraminidases may also be caused by 

differences in amino acids that lie 

outside the active site. This means that 

an enzyme inhibitor for one target will 

not necessarily have the same activity 

against another with the same active-site 

amino acids and the same overall three-

dimensional structure ([17]).    

 

 

 

 

2.0  Method 
 

     The general objective of this study is 

straightforward:  to computationally assess 

the binding energy of the active site of a 

crystallized Influenza A/H5N1 

neuraminidase with oseltamivir.    Unless 

otherwise noted, all processing described in 

this section was performed on a Dell 

Inspiron 545 with an  Intel Core2 Quad CPU 

Q8200 (clocked @ 2.33 GHz) and 8.00 GB 

RAM, running under the Windows Vista 

Home Premium (SP2) operating 

environment.   

     Protein Data Bank (PDB) 2HU4 is a 

structural description of a crystallized 

neuraminidase of  an H5N1 neuraminidase, 

bound to oseltamivir.  2HU4 consists of 8 

identical chains, designated Chains A-H.  

     2HU4 was downloaded from PDB ([6]) 

on 31 January 2011.  The ligand portion of 

2HU4 was extracted using Microsoft Word.  

The automated docking suite AutoDock 

Tools v 4.2 (ADT, [9]) was used to perform 

the docking of oseltamivir to the receptor.  

More specifically, in ADT, approximately 

following the rubric documented in [12] 
     -- Chains B-H, and the water in Chain A, 

of 2HU4 were deleted  

     -- the ligand (oseltamivir) and Chain A's 

active-site was extracted  (2HU4 identifies 

the active site of Chain A as 13  amides:  

ARG118,  GLU119,  ASP151,  ARG152,  

TRP178,  SER246,  GLU276,   GLU277,  

ARG292,   TYR347, ARG371,  and 

TYR406.) 

     -- the hydrogens, charges, and torsions in 

the ligand and active site were adjusted 

using ADT default recommendations, 

and finally,  the ligand, assumed to be 

flexible wherever that assumption is 

physically possible, was auto-docked to the 

active site, assumed to be rigid, using the 

Lamarckian genetic algorithm  implemented 

in ADT. 

     The ADT parameters for the docking are 

shown in Figure 1.  Most values are, or are a 

consequence of,  ADT defaults. 
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_____________________________________________________________________________________ 

 

autodock_parameter_version 4.2       # used by autodock to validate parameter set 

outlev 1                             # diagnostic output level 

intelec                              # calculate internal electrostatics 

seed pid time                        # seeds for random generator 

ligand_types C HD OA N               # atoms types in ligand 

fld 2HU4_receptor.maps.fld           # grid_data_file 

map 2HU4_receptor.C.map              # atom-specific affinity map 

map 2HU4_receptor.HD.map             # atom-specific affinity map 

map 2HU4_receptor.OA.map             # atom-specific affinity map 

map 2HU4_receptor.N.map              # atom-specific affinity map 

elecmap 2HU4_receptor.e.map          # electrostatics map 

desolvmap 2HU4_receptor.d.map        # desolvation map 

move 2HU4_Ligand.pdbqt               # small molecule 

about 0.5292 81.1637 109.1143        # small molecule center 

tran0 random                         # initial coordinates/A or random 

axisangle0 random                    # initial orientation 

dihe0 random                         # initial dihedrals (relative) or random 

tstep 2.0                            # translation step/A 

qstep 50.0                           # quaternion step/deg 

dstep 50.0                           # torsion step/deg 

torsdof 7                            # torsional degrees of freedom 

rmstol 2.0                           # cluster_tolerance/A 

extnrg 1000.0                        # external grid energy 

e0max 0.0 10000                      # max initial energy; max number of retries 

ga_pop_size 150                      # number of individuals in population 

ga_num_evals 2500000                 # maximum number of energy evaluations 

ga_num_generations 27000             # maximum number of generations 

ga_elitism 1                         # number of top individuals to survive to next 

generation 

ga_mutation_rate 0.02                # rate of gene mutation 

ga_crossover_rate 0.8                # rate of crossover 

ga_window_size 10                    #  

ga_cauchy_alpha 0.0                  # Alpha parameter of Cauchy distribution 

ga_cauchy_beta 1.0                   # Beta parameter Cauchy distribution 

set_ga                               # set the above parameters for GA or LGA 

sw_max_its 300                       # iterations of Solis & Wets local search 

sw_max_succ 4                        # consecutive successes before changing rho 

sw_max_fail 4                        # consecutive failures before changing rho 

sw_rho 1.0                           # size of local search space to sample 

sw_lb_rho 0.01                       # lower bound on rho 

ls_search_freq 0.06                  # probability of performing local search on 

individual 

set_psw1                             # set the above pseudo-Solis & Wets parameters 

unbound_model bound                  # state of unbound ligand 

ga_run 10                            # do this many hybrid GA-LS runs 

analysis                             # perform a ranked cluster analysis 
 

 

Figure 1.  ADT parameters for the docking in this study 

 

______________________________________________________________________________ 

 

Interatomic distances between ligand and receptor in the computed form were compared to those 

in 2HU4. 

 

 

3.0  Results 

 
The interactive problem setup, which 

assumes familiarity with the general 

neuraminidase "landscape", took about 15 

minutes in ADT; the docking proper, about 

29  minutes on the platform described in 

Section 2.0  The platform's performance 

monitor suggested that the calculation was 

more or less uniformly distributed across the 

four processors at ~25% of peak per 

processor (with occasional bursts to 40% of 

peak), and required  a constant 2.9 GB of 
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memory. 
     Figure 2 shows the oseltamivir/receptor 

energy and position summary produced by 

ADT.  The estimated free energy of binding 

is ~ -8.5 kcal/mol; the estimated inhibition 

constant, ~599 nanoMolar at 298 K.  All 

distances between receptor and ligand atoms 

in the computed ligand position lie within 

7% of the distances of the corresponding 

atoms in 2HU4.   

 

_____________________________________________________________ 

 

 
       LOWEST ENERGY DOCKED CONFORMATION from EACH CLUSTER 

 ___________________________________________________ 

 

 

 

Keeping original residue number (specified in the input PDBQ file) for outputting. 

 

MODEL       10 

USER    Run = 10 

USER    Cluster Rank = 1 

USER    Number of conformations in this cluster = 10 

USER   

USER    RMSD from reference structure       = 1.083 A 

USER   

USER    Estimated Free Energy of Binding    =   -8.49 kcal/mol  [=(1)+(2)+(3)-(4)] 

USER    Estimated Inhibition Constant, Ki   =  598.99 nM (nanomolar)  [Temperature = 

298.15 K] 

USER     

USER    (1) Final Intermolecular Energy     =  -10.58 kcal/mol 

USER        vdW + Hbond + desolv Energy     =   -6.25 kcal/mol 

USER        Electrostatic Energy            =   -4.33 kcal/mol 

USER    (2) Final Total Internal Energy     =   -1.19 kcal/mol 

USER    (3) Torsional Free Energy           =   +2.09 kcal/mol 

USER    (4) Unbound System's Energy  [=(2)] =   -1.19 kcal/mol 

USER     

USER     

USER   

USER    DPF = 2hu4.dpf 

USER    NEWDPF move 2HU4_Ligand.pdbqt 

USER    NEWDPF about 0.529200 81.163696 109.114304 

USER    NEWDPF tran0 0.598137 80.588296 109.027331 

USER    NEWDPF axisangle0 -0.942812 -0.318402 -0.098616 -12.108044 

USER    NEWDPF quaternion0 -0.099435 -0.033581 -0.010401 -0.994423 

USER    NEWDPF dihe0 -132.97 178.74 -163.16 -74.49 -77.91 6.34 21.37  

USER   

USER                              x       y       z    vdW   Elec        q     RMS  

ATOM      1  C2  G39 A 800      -1.828  80.459 110.166 +0.10 +0.08    +0.091  1.083 

ATOM      2  C3  G39 A 800      -1.053  79.024 110.281 -0.32 +0.01    +0.050  1.083 

ATOM      3  C4  G39 A 800       0.139  78.772 109.253 -0.19 -0.11    +0.209  1.083 

ATOM      4  C5  G39 A 800       0.996  80.037 109.196 -0.15 -0.03    +0.143  1.083 

ATOM      5  C6  G39 A 800       0.097  81.256 108.700 -0.14 +0.00    +0.147  1.083 

ATOM      6  C7  G39 A 800      -1.218  81.494 109.394 -0.12 +0.03    +0.049  1.083 

ATOM      7  O7  G39 A 800       0.965  82.478 108.693 -0.00 -0.13    -0.379  1.083 

ATOM      8  C8  G39 A 800       1.066  83.449 107.573 -0.12 +0.04    +0.121  1.083 

ATOM      9  C9  G39 A 800       0.655  82.959 106.157 -0.21 +0.00    +0.027  1.083 

ATOM     10  C91 G39 A 800       1.669  82.075 105.411 -0.17 +0.00    +0.007  1.083 

ATOM     11  C81 G39 A 800       0.247  84.645 108.019 -0.27 +0.02    +0.027  1.083 

ATOM     12  C82 G39 A 800      -1.056  84.731 107.289 -0.48 +0.00    +0.007  1.083 

ATOM     13  N5  G39 A 800       2.104  79.738 108.210 -0.06 -0.03    -0.352  1.083 

ATOM     14  H5  G39 A 800       1.870  79.493 107.248 +0.08 +0.01    +0.163  1.083 

ATOM     15  C10 G39 A 800       3.397  79.792 108.587 -0.27 +0.10    +0.214  1.083 

ATOM     16  C11 G39 A 800       4.411  79.477 107.550 -0.29 +0.07    +0.117  1.083 

ATOM     17  O10 G39 A 800       3.796  80.089 109.751 -0.60 -0.23    -0.274  1.083 

ATOM     18  N4  G39 A 800       0.914  77.622 109.714 +0.05 +0.08    -0.073  1.083 

ATOM     19  H42 G39 A 800       0.767  77.422 110.704 -0.41 -0.44    +0.274  1.083 

ATOM     20  H41 G39 A 800       0.695  76.824 109.117 +0.04 -0.55    +0.274  1.083 

ATOM     21  H43 G39 A 800       1.914  77.816 109.758 -0.29 -0.25    +0.274  1.083 
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ATOM     22  C1  G39 A 800      -3.098  80.703 110.809 -0.23 +0.34    +0.177  1.083 

ATOM     23  O1B G39 A 800      -3.839  81.683 110.469 -1.57 -1.96    -0.648  1.083 

ATOM     24  O1A G39 A 800      -3.463  79.919 111.732 -0.62 -1.38    -0.648  1.083 

 

                  Figure 2.  ADT's oseltamivir energy and position predictions. 

 

______________________________________________________________________________ 

 

 

Figure 3 is a rendering of the active-site/inhibitor configuration computed in this study. 
 

 

 
 
Figure 3.  Rendering of oseltamivir computationally docked with the active site of Chain A 

of PDB 2HU4.  The inhibitor is shown  in stick form.  Only the interior, inhibitor-containing 

region of the molecular surface of the active site can be compared to in situ data: the surface 

distal to the interior is a computational artifact,  generated by the assumption that active 

site is detached from the rest of the receptor. 

 

 

 

4.0  Discussion 

 
The method described in Section 2.0 and the 

results of Section 3.0 motivate several 

observations: 

     1.  The inhibition constant computed in 

this study (~599 nanoMolar at ~298 K) is 

comparable to the inhibition constant of 

oseltamivir/neuraminidase interactions that 

are not clinically effective ([11], [13]).  This 

suggests that oseltamivir would not be 

effective against 2HU4. 

 

     2.  All distances between receptor and 

ligand atoms in the computed ligand 

position lie within 7% of the distances of the 

corresponding atoms in 2HU4.  (For 

electrostatic forces, a 7% distance difference 

would correspond to a (1.07
2
 = ) 14% 

difference in electrostatic force and potential 

energy.  One could of course apply other 

statistics to the coordinate sets and provide a 

more comprehensive comparison of other 

forces/energies.   Future work will address 

those issues.) 
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     3.  The docking study reported here 

assumes that the receptor is rigid.  This 

assumption is appropriate for the binding 

energy computation for PDB 2HU4 per se.  

However, the calculation does not reflect 

what  receptor "flexing"  could contribute to 

the interaction of the ligand with native 

unliganded receptor.  Future work will 

analyze the docking of the ligand with the 

native form. 

     4.  The analysis described in Sections 2.0 

and 3.0 assumes the neuraminidase is in a 

crystallized form.  In situ, at physiologically 

normal temperatures (~310 K), the receptor 

is not in crystallized form. The 

ligand/receptor conformation in situ, 

therefore,  may not be identical to their 

conformation in the crystallized form. 

     5.  Minimum-energy search algorithms 

other than the Lamarckian genetic algorithm 

used in this work could be applied to this 

docking problem.  Future work will use 

Monte Carlo/simulated annealing 

algorithms. 

     6.  A variety of torsion and charge 

models could be applied to this problem, and 

future work will do so. 

 

 

5.0  Acknowledgements 
 
This work benefited from discussions with 

Tony Pawlicki.  For any problems that 

remain, I am solely responsible.  
  

 

 

6.0  References. 
 

[1]  Russell RJ et al. The structure of H5N1 

avian neuraminidase suggests new 

opportunities for drug design.  Nature 443 (6 

September 2006), 45-49. 

 

[2]  Johnson NP and Mueller J.  Updating 

the accounts: global mortality of the 1918-

1920 "Spanish " influenza pandemic.  

Bulletin of the History of Medicine 76 

(2002), 105-115. 

 

[3]  World Health Organization.  A revision 

of the system of nomenclature for influenza 

viruses: a WHO memorandum.  Bulletin of 

the World Health Organization 58 (1980), 

585-591. 

 

[4]  Ward P et al.  Oseltamivir (Tamiflu) and 

its potential for use in the event of an 

influenza pandemic.  Journal of 

Antimicrobial Chemotherapy 55, 

supplement 1 (2005), i5-i21. 

 

[5]  Butler D.  Avian flu special:  The flu 

pandemic: were we ready? Nature 435  (26 

May 2005), 400-402.  doi: 

10.1038/435400a. 

 

[6]  Russell RJ et al. The structure of H5N1 

avian neuraminidase suggests new 

opportunities for drug design.  Nature 443 (6 

September 2006), 45-49.   

http://www.pdb.org/pdb/explore/explore.do?

structureId=2HU4. 

 

[7]  US Centers for Disease Control.  

Summary: Interim Recommendations for the 

Use of Influenza Antiviral Medications in 

the Setting of Oseltamivir Resistance among 

Circulating Influenza A (H1N1) Viruses, 

2008-09 Influenza Season.  19 December 

2008.  URL 

http://www.cdc.gov/flu/professionals/antivir

als/summary.htm. 

 

[8]  Luo M.  Structural biology: antiviral 

drugs fit for a purpose. Nature 443 (7 

September 2006), 37-38.  

doi:10.1038/443037a,  published online 6 

September 2006. 

 

[9]  Morris GM, Goodsell DS, Huey R, 

Lindstrom W, Hart WE, Kurowski S, 

Halliday S, Belew R, and Olson AJ.   

AutoDock v4.2.  

http://autodock.scripps.edu/.  2010. 

 

[10]  Drug Bank. Oseltamivir.  

http://www.drugbank.ca/drugs/DB00198. 

 

[11]  Govorkova EA et al.  Comparison of 

efficacies of RWJ-270201, zanamivir, and 

Int'l Conf. Bioinformatics and Computational Biology |  BIOCOMP'11  | 521

http://www.cdc.gov/flu/professionals/antivirals/summary.htm
http://www.cdc.gov/flu/professionals/antivirals/summary.htm


oseltamivir against H5N1, H9N2, and other 

avian influenza viruses.  Antimicrobial 

Agents and Chemotherapy 45 (2001), 2723-

2732. 

 

[12]  Huey R and Morris GM.  Using 

AutoDock 4 with AutoDock Tools: A 

Tutorial.  8 January 2008.  

http://autodock.scripps.edu/.   

 

[13]  Cheng Y and Prusoff WH.  

Relationship between the inhibition constant 

(Ki) and the concentration of inhibitor which 

causes 50 per cent inhibition (I50) of an 

enzymatic reaction. Biochemical 

Pharmacology 22 (December 1973),  3099–

3108. doi:10.1016/0006-2952(73)90196-2. 

 

 

522 Int'l Conf. Bioinformatics and Computational Biology |  BIOCOMP'11  |

http://en.wikipedia.org/wiki/Digital_object_identifier
http://dx.doi.org/10.1016%2F0006-2952%2873%2990196-2


 

 

Accelerate numerical diffusion solver of 2D multi-
scale and multi-resolution agent-based brain 

cancer model by employing graphics processing 
unit technology 

[BIOCOMP]

Beini Jiang1 
1Department of Mathematical 

Sciences  
Michigan Tech University  

Houghton, MI, USA 
beinij@mtu.edu 

 
 

Allan Struthers1 
1Department of Mathematical 

Sciences  
Michigan Tech University  

Houghton, MI, USA 
 

 
Le Zhang1* 

1Department of Mathematical 
Sciences  

Michigan Tech University  
Houghton, MI, USA 
zhangle@mtu.edu 

 
 

Michael E Berens2 
2Cancer and Cell Biology Division 
Translational Genomics Research 

Institute, TGen 
Phoenix, AZ, USA 

 

 
Wen Zhang1 

1Department of Mathematical 
Sciences  

Michigan Tech University  
Houghton, MI, USA 

 
 

Xiaobo Zhou3 

 3Center for Bioinformatics and 
Department of Pathology  
The Methodist Hospital  

Research Institute & Weill Cornell 
Medical College 

Houston, Texas, USA

    Abstract—Diffusion model is increasingly employed to simulate 
diffusion of biological compounds including nutrient, oxygen and 
chemoattractants in the agent-based model (ABM). However, it 
takes long compute time to employ conventional numerical 
methods such as alternating direction implicit (ADI) method to 
approximate the exact solution of the diffusion processed by 
sequential computing algorithm. To overcome this limitation, our 
study employs cutting-edge graphics processing unit (GPU) 
technology to speed up the conventional sequential numerical 
solver for diffusion and incorporates our proposed parallel 
computing algorithms into our well developed 2D multi-scale and 
multi-resolution agent-based brain cancer model to break 
through the bottleneck of the ABM that it is hard to simulate the 
large system restricted to the limited compute resource and 
memory. Our simulation outputs demonstrate that ABM model 
can be used to simulate real-time actual cancer progression with 
relative fine grids by using GPU based parallel computing 
algorithm. 
 

Keywords: graphics processing unit; agent-based model; 
alternating direction implicit method; domain decomposition; 
parallel computing 

I.  INTRODUCTION  
    Agent-based model (ABM) has become a popular method to 
describe the complex dynamic, adaptive and self-organizing 
cancer system. For example, Mansury and Deisboeck [1, 2]  
employed the ABM to simulate the expansion of brain tumor 

in micro-macro environments. And Zhang et al. [3-6] 
developed multi-scale ABMs to model the growth of glioma 
and investigate incoherent relations of the tumor expansion 
among macroscopic environment, microscopic environment 
and molecular environments. A diffusion module is employed 
to simulate the diffusion of the chemoattractants on the 
macroscopic scale environment. 
    Though conventional finite difference numerical methods 
such as ADI, Gauss–Seidel and Jocobi methods [7-9] for 
diffusion module already have been used to simulate diffusion 
of biological compounds such as nutrients, oxygen and 
chemoattractants [3, 10-15] for years, they all depend on the 
grid size so much that a relative fine grids can better mimic 
the diffusion process but significantly increase the compute 
time. Therefore, previous studies such as the work done by 
Athale et al. [10, 11] and Wang et al.[16] have to employ  
relatively coarse grids to reduce the compute time and the 
work done by Dai et al.[17] and Zhang et al.[18-20] employed 
special numerical scheme such as preconditioned Richardson 
method [21, 22] to sacrifice the compute accuracy in some 
dimensions of coordinates to reduce the compute resource 
request due to the specific aim of these biomedical projects. 
Nonetheless, our well developed 2D multi-scale and multi-
resolution ABM model needs such a fast diffusion module that 
not only can accurately model the diffusion process but also 
costs less compute resource. For this reason, using parallel 
computing algorithm to speed up the conventional numerical 
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solver [23, 24] is the best promising solution. Quite a few 
previous parallel computing algorithms employed Message 
Passing Interface (MPI) [25], a parallel computing scheme 
based on multiple instruction multiple data infrastructure, to 
parallel the sequential numerical diffusion solver. However, 
MPI is not only too expensive to be routinely used for light 
computing project, but also its compute speed is limited by the 
communication rate [26]. Since 2007, NVDIA keeps releasing 
its graphics processing unit (GPU) and the novel Compute 
Unified Device Architecture (CUDA) based on single 
instruction multiple data infrastructure (SIMD). Until now, 
GPU of NVDIA has been evolved into a highly parallel, 
multithreaded, many core processor, with dramatic compute 
ability and high memory bandwidth [27] , especially for the 
recent Fermi GPU [28, 29]. Compared to MPI, GPU 
computing is more affordable, portable and suitable for the 
ABM simulation. 
    In general, the aim of this study is to incorporate the parallel 
diffusion numerical solver based on latest released Fermi 
GPU technology into our previous well developed multi-scale 
and multi-resolution ABM model [5] to resolve its compute 
capability shortage problem. The methods section introduces 
the conventional numerical scheme, alternating direction 
implicit (ADI) method [7, 30] and the GPU implementation 
[31]. And then, we show that our parallel algorithms 
significantly increase the performance when applied to the 2D 
multi-scale and multi-resolution ABM [5].  

II. METHODS 
    This section gives a brief introduction to ADI scheme [7] 
with the standard domain decomposition strategy [32, 33] 
followed by the description of GPU implementations.  

A. Numerical diffusion solver:ADI Scheme 
The diffusion of the chemical cues is described by (1.a), 

where the D is the diffusivity for glucose (DG=6.7×10-7cm2s−1) 
and TGFα (DT=5.18×10-7 cm2 s−1), respectively.   = ∇ = + = + . (1.a) 
The Crank–Nicolson method approximates (1.a) by (1.b)  ∆ =  ∆ + ∆ + . (1.b) 
where  is the numerical approximation of ( , , ) and = ∆ , = ∆ , = ∆ . and  denote the central 
difference operators [7].  
    Introducing an intermediate level ⁄ , the ADI method 
modifies (1.b) into two separate difference equations with 
implicit scheme, given by (2):  ⁄∆ / = ∆ ⁄ + ∆ . (2.a) 
 ⁄∆ / = ∆ ⁄ + ∆ . (2.b) 

Writing = ∆∆  and  = ∆∆  reduces (2) into the 
Peaceman-Rachford ADI scheme [7], shown as (3)   − , ⁄ + (1 + ) ⁄ − , ⁄ = , +                                        1 − + , .  (3.a)  − , + 1 + − ,  = , ⁄ +                                   (1 − ) ⁄ + ,⁄ .  (3.b) 
The right part of both equations of (3) is explicit formula and 
easily parallelized, while the left part is a symmetric and 
tridiagonal system of equations =  to be solved with the 
Thomas algorithm [7, 34].  

Equation (3) could be written into a general form as (4.a) 
with = 0 and = 0 . 

 + + = , = 1,2, … , . (4.a)

The corresponding matrix form of this tridiagonal system is 
represented by (4.b) 

 
0 ⋯⋱ ⋯ 00⋮ ⋱ ⋱⋱ ⋱ ⋱⋱ 0⋮0 ⋯ ⋱ ⋱⋯ 0 ⋱ ⋮⋮⋮ = ⋮⋮⋮ .  (4.b) 

B. Thomas Algorithm 
    The Thomas algorithm is employed to solve (4.a). It has 
two major steps. First is computing coefficients   (5.a) and  (5.b) known as forward sweep. Second is using backward 
substitution to get solutions as (5.c). 

 

= ;   = 1
− ;   = 2,3, … , − 1. 

= ;   = 1−− ;   = 2,3, … , . 
     (5.a)

(5.b)
 == − ;   = − 1, − 2, … ,1. (5.c) 
The details of the deduction of (5) are described in Morton’s 
book [7].  

C. Domain Decomposition 
For the boundary value problem on a large domain, the 

domain decomposition method decomposes the problem into 
smaller independent boundary value problems on smaller 
subdomains and then employ iterative method to resolve 
differences between the solutions on adjacent subdomains [32, 
33]. We develop such a GPU based parallel computing 
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algorithm with classical alternating Schwarz method [33, 35] 
that can benefit from the advantages of GPU technology. Fig. 
1(b) [31] exhibits the decomposition of a 10 by 10 array with 
an 8 by 8 inner array (green) and four vectors of boundary 
points (red) (Fig .1(a) [31]) into 4 overlapping 6 by 6 sub-
arrays, each of which consists of a 4 by 4 inner array (green) 
and four artificial internal boundaries (red).  Each sub-array is 
iteratively solved to make the artificial boundaries converge [7, 
32, 33, 35, 36]. Here, we use the data transfer between sub-
matrix 1 and sub-matrix 2 as an example. The values of the 
four inner elements on the rightmost side in sub-matrix 1 are 
sent to sub-matrix 2 as the new left artificial boundary as well 
as the values of the four inner elements on the leftmost side in 
sub-matrix 2 are sent to sub-matrix 1 as the new right artificial 
boundary until both artificial boundaries converge. 

 

 
                   (a) 

 
               (b) 
    Figure 1 [31] (a) A 10 by 10 solution matrix with red to indicate boundary 
elements and blue to indicate inner elements and (b) Decomposition of a 10 by 
10 array into 4 overlapping 6 by 6 sub-arrays with red to indicate boundary 
elements, green to indicate inner elements and  the arrows to show how to 
update the boundary data. 

D. Parallel Computing Algorithms to Speed up the diffusion 
solver 

   The first step of ADI is to set up the explicit scheme, shown 
as the right part of (3). Since each element could be computed 
independently, the explicit scheme is easy to be parallelized 

with single-instruction, multiple-thread (SIMT) infrastructure 
of CUDA.  The second step is to solve the implicit scheme of 
ADI by Thomas algorithm. As we discussed in our previous 
research [31], Thomas algorithm is the bottleneck to speed up 
the conventional numerical diffusion solver.  
    CUDA programming has two major steps. The first is 
preparing such data that can be paralleled in the host side 
(CPU). The second is processing these data in the device side 
(GPU) by kernel. CUDA organizes the threads into a two-level 
hierarchy (Fig. 2-1 of NVIDIA CUDA Programming Guide 
[27]).  As shown by Fig. 2-2 of NVIDIA CUDA Programming 
Guide [27], a thread executing on the device has access to the 
device’s (GPU) DRAM and on-chip memory through 6 
different memory spaces such as registers, local memory, 
shared memory, global memory, constant memory, and texture 
memory [27, 37-40]. As a very important memory of GPU, 
global memory is in charge of exchanging the data between 
the host (CPU) and the device (GPU). Moreover, it plays such 
a role that passes the messages between the threads from 
different blocks, since current GPU infrastructure prohibits the 
communication of threads from different blocks [27, 29, 41]. 
However, as an off-chip memory, the latency of global 
memory is very high. As on-chip memory, shared memory, 
registers, and constant-memory caches are much faster with 
much lower latency. Nonetheless, shared memory is very 
limited and it is only allocated to each block. For example, the 
capacity of the latest version of GPU (Fermi) is only 64KB 
[28, 42]. Moreover, another on-chip memory, constant 
memory, is disallowed to be written to during the computation 
[27, 43] though it is cashed.  

CUDA uses a new architecture called SIMT to mange 
threads running different programs. The multiprocessor SIMT 
unit creates, manages, schedules, and executes threads in 
groups of 32 parallel threads we call warps [27]. We have 
developed three parallel computing algorithms to accelerate 
the numerical diffusion solver based on the new features of 
GPU technology [31]. The first is parallel computing 
algorithm with global memory (PGM), which employs only 
global memory to carry out parallel computing. The second is 
parallel computing algorithm with shared memory, global 
memory and CPU synchronization [27, 29, 41, 44] (PSGMC) 
and the third is parallel computing algorithm using shared 
memory, global memory and GPU synchronization [29, 41, 45] 
(PSGMG). PSGMC and PSGMG employ “tiles” strategy to 
partition the data and take advantages of both global memory 
and shared memory with the classical alternating Schwarz 
domain decomposition method [7, 32, 33, 35, 36]. The details 
of these three implementation methods are presented in our 
recent publication [31]. Here, we incorporate our fastest 
parallel diffusion solver into 2D multi-scale and multi-
resolution ABM [5] to speed up the computation of ABM.  

III. RESULTS 
Our source code is implemented by C [46, 47] and NVCC 

[48] programming language and running on the recent Fermi 
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GPU card (GeForce GTX 480) [42, 49, 50] with CUDA 
standard.   

In the beginning, let us briefly show how to use parallel 
computing algorithms [31] based on GPU technology to 
accelerate the numerical diffusion solver as following. 

First, we employ PGM to compute the diffusion on the 
lattice with different number of grid points and compare the 
computing time with the sequential computing. Fig. 2 shows 
PGM computing time is not always faster than sequential 
algorithm for the lattice with small point number but 
dramatically faster than sequential algorithm for the lattice 
with large point number [31]. 

 

 

Figure 2 [31]. Computing time of PGM and sequential computing by 
logarithmic scale. The x axis represents the inner matrix size (number of inner 
grid points) and y axis represents the computing time (logarithmic scale with 
base 10) in millisecond. The blue bar represents the computing time of 
sequential computing and the red bar represents the computing time of PGM. 

Second, we compare the compute time between PSGMC 
and PGM, when simulating the diffusion on a 4098 by 4098 
lattice. Fig. 3 shows PSGMC improves the performance by 58% 
compared with PGM [31]. 

 

 

Figure 3 [31]. Computing time of PSGMC and PGM by logarithmic scale. 
The y axis represents the computing time (logarithmic scale with base 10) in 
millisecond. The blue bar represents the computing time of PGM and the red 
bar represents the optimal computing time of PSGMC.  The number on each 
bar indicates the multiple of acceleration to the sequential computing. 

Third, we compare the performance of PSGMC and 
PSGMG. Fig. 4 exhibits PSGMG improves the performance 
by 11% compared with PSGMC, when processing the 
diffusion on a 4098 by 4098 lattice [31]. 

 

Figure 4 [31]. Computing time of PSGMG and PSGMC by logarithmic 
scale. The y axis represents the computing time (logarithmic scale with base 
10) in millisecond. The blue bar represents the computing time of PSGMC 
and the red bar represents the computing time of PSGMG.  The number on 
each bar indicates the multiple of acceleration to the sequential computing. 

Next, we incorporate the fastest parallel computing method 
(PSGMG) into the well developed multi-scale and multi-
resolution ABM model [5]. The multi-resolution model is 
designed based on two different resolution lattices, namely 
low-resolution lattice and high-resolution lattice. The low-
resolution lattice is set up with a grid size of about 62.5 , 
on each grid point of which, a 6 by 6 high-resolution lattice 
with a grid size of  approximately 10   is superimposed, 
described by Fig. 5 [5].  To demonstrate the advantages of the 
parallel computing algorithm, we scale up the lattice size of 
the previous multi-scale and multi-resolution ABM model [5]. 
Current low-resolution lattice is changed from 100 by 100 to 
683 by 683 and high-resolution lattice is upgraded from 600 
by 600 to 4098 by 4098.  

 

 
Figure 5 [5] Configuration of multi-resolution lattice. 

    The diffusion of the chemical cues is observed on the high-
resolution lattice, with a grid size of approximately 10 , 
namely both ∆  and ∆  in the ADI scheme (2) are equal to 
10 . ∆  is set to 1s to make max , 1 regarding to 
the maximum principle [7], thus the ADI scheme needs to be 
computed 3600 times for each time step, which is equivalent 
to 1h. 

And then, Fig. 6 exhibits that parallel computing can 
significantly increase the performance of the compute time 
37.5 folders than sequential computing for multi-scale and 
multi-resolution ABM model [5]. 
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Figure 6. Computing time of parallel and sequential computing by 
logarithmic scale. The y axis represents the computing time (logarithmic scale 
with base 10) in millisecond. The blue bar represents the computing time of 
sequential computing and the red bar represents the optimal computing time 
of parallel computing.  The number on the red bar indicates the multiple of 
acceleration to the sequential computing.  

IV. CONCLUSIONS 
This study demonstrates that it is possible to simulate the 

real-time actual tumor progression in a 2D lattice with relative 
fine grids by using GPU based parallel computing algorithms. 
Our extension research will develop a GPU based parallel 
ODE solver to speed up the molecular pathway module of our 
well developed multi-scale and multi-resolution agent-based 
model [5].  
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Gonzalo Martín, Maria-Cristina Marinescu, David E. Singh and Jesús Carretero
Computer Science Department
Carlos III University of Madrid

28911 Leganés, Spain

Abstract— This paper presents a novel approach to mod-
eling the propagation of the flu virus throughout a real-
istic interconnection network based on actual individual
interactions which we extract from social networks. We
allow the individual interconnections to change during the
propagation by making them time-dependent. We have im-
plemented a scalable, fully distributed simulator and we
validated the epidemic model by comparing the simulation
results against those of another epidemic simulator, with
similar prediction values and better performance. We then
performed an extensive analysis of the effects of the new
features of our approach on the results of the simulations.

Keywords: simulation, epidemiology, social networks, distributed
algorithms

1. Introduction
Modeling the evolution of an epidemics involves both

modeling the specific infectious agent as well as the actual
social structure of the population under study. The purpose
of the work we present in this paper is to accurately model
the evolution of an epidemics in specific populations over a
short to medium time span. Using an actual social model
as input for the epidemic model promises more accurate
results then either using probability distributions or syn-
thetically generating the interaction graphs. Our approach
approximates an actual social model by a realistic model
based on real demographic information and actual individual
interactions extracted from social networks. To the extent
of our knowledge ours is the first attempt to model the
connections within a population at the level of an individual
based on information extracted from virtual social networks
such as Enron or Facebook. Additionally, we allow modeling
the characteristics of each individual as well as customizing
his daily interaction patterns based on the time and the day.

We implemented EpiGraph, a simulator which takes as
inputs the social model and an epidemic model specific to the
influenza virus. The implementation is distributed and fully
parallel; this allows simulating large populations of the order
of millions of individuals in execution times of the order
of minutes. We compared the results for our simulations in
terms of the effects of the epidemics with the results obtained
by InfluSim in [1]. We show that the simulators predict
similar results. We further perform an extensive study of the
effects of the features specific to our approach on the disease

propagation. For instance, we study how different social
models affect the disease propagation and we investigate
the effects of introducing different vaccine or quarantine
programs at different stages of the epidemic.

Our contributions: The specific contributions of this work
are the following: (1) We use real demographic data to
model group types with different characteristics. We leverage
data extracted from social networks to model the interaction
patterns between individuals pertaining to the same social
group; (2) We allow modeling individual characteristics such
as profession, age, gender, etc. We also allow customizing
individual behavior based on the time of day for every
type of interaction between individuals; (3) We implement
a scalable, fully distributed simulator and we evaluate its
performance on two platforms; (4) We validate the results
of the simulation against another epidemic simulator. We
additionally perform an extensive analysis of the effects of
the features specific to our approach on the results of the
simulations.

The rest of the paper is organized as follows. Section 2
discusses the related work. Section 3 describes the modeling
task and the simulation algorithm. Section 4 presents an
study of the performance and simulation results of EpiGraph.
Section 5 summarizes the paper with the conclusions and
some directions for future work.

2. Related work
Interconnection networks: The majority of human-

transmitted infectious diseases use physical contact as the
main transmission mean. For this reason the dynamics of
the propagation is tightly related to the structure and the
characteristics of the network of connections between the
individuals within a population [2], [3], [4], [5], [6]. Typi-
cally epidemiological models are compartmental in the sense
that they model the dynamics of the epidemics by nonlinear
differential equations and do not model the topology of
the contact network. The assumption is that individuals in
a population are homogeneously connected, which means
that all individuals have the same probability of infecting
other individuals [5]. In reality each person has specific,
possibly very different, interaction patterns. This makes
the interconnection network be heterogeneous [7], [5]. Ad-
ditionally, there tend to be few people who have many
connections, some strong but most of them weak—these are
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the “core groups”—while most of the individuals have few
connections [8], [9].

The typical way to approximate a heterogeneous contact
network is to build a contact graph in which the individ-
uals are nodes and edges represent connections [10], [11],
[12]. A straightforward model implements the graph as an
adjacency matrix. We use a more sophisticated model in
which each matrix cell holds a value that represents the
type of social interconnection: study, work, leisure, or family.
The patterns of interactions depend on whether they occur
between individuals within the same group or from different
groups. We additionally allow the type of interconnection
to change depending on a time parameter to reflect the fact
that we may interact with individuals from different group
types at different times during the day. This approach allows
to more accurately model the heterogeneity of the actual
contact network.

Work such as HPCgen and Epigrass [13], [14] take
the approach of modeling actual populations; FastGen and
CL-model [15], [16] choose instead to generate a random
adjacency matrix. HPCgen uses actual demographic data
from census data and interviews, and introduces the idea
of generating the contact network based on social structures
with arbitrary degree distributions following a Poisson distri-
bution. To work well HPCgen requires a very high accuracy
when modeling the social contacts for a specific population.
The contact network is fully static in the sense that the
interconnections between individuals cannot change during
simulation. Experiments have shown that such a model is
accurate in the case that the propagation rate of the infection
is high relative to the rate with which the interconnections
may change in the network [17], but would break down
otherwise.

[18] presents a large-scale simulator based on a stochastic
model for influenza. It uses a molecular dynamic algorithm
for modeling the interactions between individuals. Their
approach is computationally expensive, requiring extended
simulation times and a large number of processors to com-
plete. In contrast, EpiGraph has lower computational re-
quirements and can simulate single individuals with specific
characteristics and dynamically evolving interactions.

A different approach is followed by BioWar [19]. Biowar
is a multiagent network model for simulating the effects
of epidemic outbreaks due to bioterrorism attacks. It takes
into account several input models such as disease, geogra-
phy, weather, attack and communication technology, also it
models the population behavior distributed in social group
types with real census data. InfluSim [1] extends the SEIR
epidemic model. It uses demographic information from real
census data and it models the social structure based on
different age groups. InfluSim uses differential equations to
model the transmission of the disease and does not take
into account time-dependent individual interactions, such as
EpiGraph does.

Epidemic models: The typical mathematical model for
simulating epidemics is the SIR model [20]. The SIR model
is usually appropriate for infectious diseases which confer
immunity to recovered individuals and it works best if
demographic effects may be neglected. Our work focuses
on the propagation of the influenza virus over short to
medium time spans. Work in [21] extends the mathematical
model with latent, asymptomatic, and dead states, as well
as the possibility of introducing a vaccine program. The
latent state corresponds to the incubation state in which an
individual is infected but has not yet developed symptoms. A
relatively small percent of the population will never develop
them, passing into an asymptomatic state. All asymptomatic
individuals, together with a high percentage of infected
individuals recover and become immune. The rest of them
pass to the dead state. EpiGraph builds on this model and
extends it to introduce a new hospitalized state.

[22] proposes a more detailed model for the dissemination
of the influenza virus. In their approach the susceptible cases
first go to a latent stage that is non-infective. This can
transition either to an asymptomatic stage which leads to
removal, or to a second latent stage with some contagion
degree, followed by two contagious stages with different
contagion degrees. Treatment is applied only during the first
infective stage.

3. The modeling task
EpiGraph consists of two main components: (1) a model

for the population under study with the patterns of contact
between individuals within this population, and (2) a model
of how the participating agents spread the disease. This
work focuses on the dissemination of the flu virus over a
short to medium length time span. Our goal is to facilitate
the understanding and prediction of how the virus spreads
within specific populations with possibly dramatically differ-
ent interaction patterns over short and medium time spans.
We do not focus on extended time periods during which
qualitatively different parameters may make a difference. For
instance, in our model there is no entry into or departure
from the population, except possibly through death from the
disease. This is a reasonable hypothesis in case of short to
medium time spans. On the other hand we are modeling
interaction features that may have a large impact in the case
of a single epidemic outbreak but whose effects level out
over time. Generally diseases transmitted by viral agents
confer immunity so the assumption is that if an infected
individual recovers he will acquire immunity for a time
period at least as extended as the simulation time for the
infection.

In the social model each graph node models a single
individual and may have specific characteristics such as
gender, age, role, as so on. Each graph edge represents
an interaction between two individuals and depends on the
time of the day. That is, EpiGraph can capture heterogeneity
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features at the level of both the individual and each of his
interactions.

The social model is based on two data sources: actual
demographic information, as well as a realistic model of
social interactions. These are used to build graphs for both
intra- and inter-group interactions. A group is a collection
of individuals of the same group type as extracted from the
demographic information. The complete graph is then used
as an input for the epidemic model. This model captures the
characteristics that are important in the process of spreading
a contagious agent, is specific to the agent under study, and
needs to make assumptions such as what is the subset of sus-
ceptible individuals that an infected individual may pass the
agent to. Rather than assuming a distribution or generating
synthetic interaction graphs, we use real information from
social networks to model the social interaction patterns. The
interaction network is built statically to reflect the existence
of communication between individuals but abstracts away
the timing for these interactions. To recover the dynamic
nature of these interactions we introduce a time component
depending on which an individual may interact with any
number of other individuals following his own patterns.

3.1 Modeling the population
To most faithfully simulate the effects of an infectious

agent spreading through a specific population we decided to
use real instead of synthetic data. We use real demographic
information obtained from the Primary Metropolitan Statisti-
cal Area of Philadelphia [23] to determine the distribution of
the population in group types; these typically show different
patterns in terms of social interactions. The group types
which we extracted from the census and which we are
modeling are the following: (1) school-age children and
students, (2) workers, (3) stay-home parents, and (4) retired
individuals. The population is split into many groups of each
of these types—a structure which reflects the way individuals
tend to associate with each other in terms of social contacts.
Each individual has contacts within his own group as well as
with individuals from other groups. Let’s take the example of
a worker. She’s going to interact frequently with people from
the same work group during work hours, with friends during
leisure hours, and with family during evening/night hours.
We therefore model three kinds of interactions: (1) between
individuals of the same group, (2) between individuals of
different groups, and (3) between members of the same
family. Each of these kinds of interactions is assigned to a
specific daily time frame depending on the schedule for the
main activity—work, study, etc—, for leisure activities, and
for family time. This makes the simulation more realistic,
particularly over short time periods.

Intra-group connections: Which specific group an indi-
vidual belongs to determines the actual number and patterns
of interactions with other individuals from his own group.
One of the contributions of our work is that we model

intra-group communications by scaling down real interaction
graphs extracted from the Social Networks (SN) of Enron
and Facebook. The idea is to exploit the connectivity that
exists in real business and leisure SNs. The graph extracted
from the Enron email database consists of 70,578 nodes and
312,620 connections, while Facebook has 250,000 nodes
and 3,239,137 connections. We use Enron’s SN to model
the worker and retired groups and Facebook’s to create the
school and stay-home groups. Note that the SNs are bigger
than the generated groups. We scale each down by selecting
as many random entries of the SN as group members, then
connecting the nodes following the same patterns as those in
the SN. The selection of random entries of the SN allows us
to create different structures for each group. This approach
is more realistic than either synthetically generating the
interaction graphs or using discrete probability distributions
to approximate the number of individual interactions.

Inter-group and family connections: We create a number
of intergroup contacts per individual based on the group
characteristics which the individual belongs to. Mostly the
inter-group contacts occur in the hours between finishing
one’s main daily activity—such as work or study—and going
home in the evening, or during weekends. These reflect daily
activities which occur in public places such as parks, gyms,
public transport, coffee shops, where one generally interacts
with unknown people or friends pertaining to a different
group. The connections of inter-group contacts are generated
at the level of the group based on a set of percentages
which reflect the degree to which groups of specific types
are connected. There are two types of connections between
pairs of groups: strong and weak. Probabilistic parameters
decide whether two groups are strongly connected, weakly
connected, or are not connected at all. In addition to intra-
and inter-group contacts we also model a different type of
social interaction: the contacts one has with members of his
family. These may be pertaining to the same or to a different
group and one has contacts with them from late night to
morning, and during the weekends.

Strong vs. weak ties: Interactions between groups may
be either strong or weak. This reflects the degree to which
the connection may serve as a channel for spreading the
infectious agent. Strongly coupled groups tend to be the
ones who spend many hours in contact, either for affinity,
family, or work related reasons. On the other hand, weak
connections are between groups that only share a few
contacts. It reflects occasional or casual contacts between
individuals.

Data structures: EpiGraph models interactions between
individuals via a graph. To represent it we are using sparse
matrices in Compressed Sparse Column format which en-
ables both optimized matrix operations and an efficient way
to distribute and access the matrices in parallel.
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Fig. 1: State diagram for the epidemic model.

3.2 Modeling the infectious agent
The basic epidemic model is based on the principles of

the SIR model as it is described in [20] and extended for the
case of the flu virus by [21]. The extended model consists of
a set of additional states—latent, asymptomatic, and dead—
which reflect real possible stages during the development of
the infection within a host. We further enhance the model
with a hospitalized state in which an individual’s contacts are
severed. Having such a state is important when simulating
realistic cases where hospitalization may be needed in order
to curb the effects of the epidemics.

Figure 1 consists of two symmetrical subgraphs; the
upper part has states with non-subscripted names, the lower
part consists of subscripted states. Let’s focus on the non-
subscripted subset of the states for the time being. A
susceptible individual in state S may be infected by another
individual and pass to the latent—or incubating—state L.
From here he normally goes to the infective state I, but may
also become asymptomatic and go to state A. Individuals
which are asymptomatic will always recover and go to state
R; infective individuals may recover, get hospitalized, or die.
A hospitalized individual in state H either recovers or dies.
In the case of the flu virus we assume that recovery implies
immunity over short and medium time spans such that a
recovered individual will not get infected again during the
time of the simulation.

The epidemic model for influenza has many parameters,
some of the most important being the basic reproduction
number R0 (average number of secondary cases of infec-
tions which produces an infected individual), the time an
individual spends in each of the states, the probability that
an individual will take a transition from a source state into
each of the target states, and so on. The time each individual
spends in a given state is generated following a Gaussian
distribution to faithfully simulate the time ranges which are
specific to the stages of a flu infection. The probability
of infecting another individual while incubating depends
on whether the specific connection is low or high risk. A
high risk interaction reflects a contact between individuals
which has high probability to transmit the infection. For
instance, these may be interactions between members of
the same work team in a company or between friends in

a classroom. On the other hand, low risk connections are
related to contacts that have a low probability for disease
transmission. For instance, these may be contacts between
members of different work teams in the same company.

We adopted most of the concrete values for the model
parameters from the existing literature on flu epidemics [21],
[24], [25]. The epidemic model also receives as an input the
social model constructed in the previous step.

Vaccination: Our simulator provides for the possibility
of vaccinating a subset of individuals either before the
outbreak of the epidemics or at any other point during the
outbreak. The lower half of Figure 1 consists of subscripted
states which reflect the susceptible, latent, asymptomatic,
infectious, and hospitalized states for the case of vaccinated
individuals. The figure contains a transition from state S
to state St which reflects the adoption of a vaccination
policy for susceptible individuals. Since in case of the flu
virus no symptoms are evident during the latent period it
is in reality possible to vaccinate individuals either in the
latent or in the asymptomatic state. We assume that getting
vaccinated when are states L or A does not make any differ-
ence with respect to the individual’s response to infection.
Vaccination has specific implications such as: reducing the
susceptibility of getting infected at the time of contact with
an infected individual, reducing the probability of infecting
another individual, reducing the recovery time, and reducing
the possibility of becoming symptomatic. Vaccination is
implemented such that it is possible to control the number of
vaccines available and the probability of it succeeding when
applied to a specific individual. Due to the fact that only part
of the population is susceptible as result of a vaccination
program we now use for the subscripted cases a control
reproduction number Rv instead of the basic reproduction
number R0.

In case of an epidemics the period of time between its
onset and the time when a vaccine becomes available is
usually problematic because of the lack of understanding of
the effects of the timing when the vaccine is administrated.
Our simulator allows analyzing the effects of implementing
a vaccination program at different times throughout the
dissemination of the infectious agent. One of the advantages
of our epidemic model is that it is possible to monitorize the
effect of interventions such as vaccination or hospitalization
for each individual. It is therefore possible to simulate
various scenarios like vaccinating or insolating a specific
collective, for instance, the members of a specific company
or school, or a given city area.

3.3 The simulation algorithm
Our simulation algorithm uses as inputs both the social

model as well as the epidemic model. The social model
provides the intra-group connections for each individual;
these are the paths through which the infectious agent may
propagate and they may be either low-risk or high-risk. The
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epidemic model captures the states that each individual goes
through during an epidemics and the probabilities for taking
transitions from a given source to a specific destination
state. The simulation algorithm processes each connection
of every individual to generate a probability with which
the connection will serve for transmitting the infection. This
probability depends on: (1) The connection type and current
time: the connection types are intra-group, inter-group, and
family, and each of them corresponds to a specific daily time
slice; and (2) The current state of the individual: this is the
current state in the epidemic model plus other factors like
the group which he belongs to, age, etc.

3.4 Performance issues
EpiGraph has been designed as a fully parallel applica-

tion. It employs MPI [26] to perform the communication
and synchronization for both components of the simulator:
the contact network model and the epidemic model. This
approach has two main advantages. First, it can be exe-
cuted efficiently both on shared memory architectures—for
instance multicore processors—and on distributed memory
architectures—such as clusters. On both platforms EpiGraph
successfully exploits the hardware resources and achieves a
significant reduction in execution time relative to a sequential
implementation. The second advantage is that the simulator
scales with the available memory. Given that all the data
structures are evenly distributed, the size of the problems that
can be simulated grows with the number of computational
resources.

4. Results
Our main simulation scenario is the population of the

Primary Metropolitan Statistical Area of Philadelphia, U.S.
We used [23] to extract statistical demographic data for the
city and we created a basic scenario with the following
characteristics. The city has 3,849,647 inhabitants with the
following distribution: 27.95% school-age children, 43.62%
workers, 14.52% stay-home parents, and 13.92% retired
individuals. The interconnection graph has 160 millions of
contacts, on average 41 per inhabitant. Working hours are
from 9am to 5pm, leisure time is from 5pm to 7pm, and
time spent at home—family and sleep time—is from 7pm
to 9am. We consider 13,181 groups of workers; 8,513 groups
of school-age children corresponding to classrooms; 4,192
groups of stay-home parents corresponding to friends that
share activities such as shopping or walking; and 4,314
groups of retired individuals. We use Gaussian distributions
to assign a size to each group; the mean size for each of the
four group types is 261, 39, 12 and 8.

Figure 2 displays in logarithmic scale the number of
individuals in each epidemic state during a simulation of
200 days for our basic scenario. This scenario includes
the following parameters extracted from [24]: the basic
reproduction number R0 = 1.373, the factor by which the
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Fig. 2: Epidemic propagation for the basic scenario and a 200-day
simulation.

infectivity of asymptomatic individuals is reduced δ = 0.5,
the probability that susceptibles become asymptomatic p =
0.33, the latent period for influenza 1.9 days, the infective
period for influenza 4.1 days, and the hospitalization period
3 days. We can observe that the infection lasts approximately
175 days and its peak is around day 82.

We have performed a number of experiments in order
to evaluate the strengths of EpiGraph. These experiments
address three different properties of the simulator: (1) the
prediction accuracy of the mathematical epidemic model,
(2) the ability to accurately model highly heterogeneous
scenarios where each individual and her connections may
be customized, and (3) the performance and scalability of
the simulator.

4.1 Validation of the EpiGraph model
In order to evaluate the accuracy of our mathematical

model we compare the simulation results of EpiGraph with
those of InfluSim [1]. In order to perform a comparison
we used in both simulators the population and epidemic
parameters of the basic scenario. Table 1 shows the num-
ber of susceptible, immune and dead individuals for each
simulator. Results show deviations of 3.30%, 2.97% and
8.04% in the number of susceptible, immune, and dead
individuals. Another aspect that we have considered is the
numerical stability of EpiGraph under different conditions.
More specifically, we have analyzed the variability of the
results for two cases: when EpiGraph is executed several
times with the same input parameters and when it is executed
using different time step durations.

Table 1: InfluSim and EpiGraph results.
State InfluSim EpiGraph Deviation
Susceptible 2,023,187 1,930,773 3.30%
Immune 1,837,305 1,916,226 2.97%
Deaths 2,362 2,647 8.04%
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Fig. 3: Impact of different basic reproduction numbers on the
number of infected. Basic scenario.

The time step determines the frequency of computations
for each individual. By default we use a 10 minute step,
which means that we apply the propagation model and
update the system state six times per hour. A smaller time
step implies a more detailed simulation at the expense of a
longer execution time. We execute the basic scenario using
the following time steps: 1, 5, 10, 30, 60 and 120 minutes.
We observe that the loss of accuracy when using larger
steps is not important. More specifically, the peak of infected
individuals for all of these executions reaches a mean value
of 205,168 with a standard deviation (in percentage of the
mean value) of 1.17% and confidence interval of 1.21%. This
peak is reached at the simulation time of 118,770 minutes,
with a standard deviation of 2.83% and confidence interval
of 2.97%.

To evaluate the variability of EpiGraph we run ten times
the same scenario with the same initial conditions, including
the same set of individuals that are initially infected. After
repeatedly simulating the epidemics for 200-day intervals,
results show a variability in the number of immune individ-
uals of 0.28%. Similar results are obtained for susceptible
and dead individuals. Based on these results we conclude
that EpiGraph is able to precisely model the epidemic with
a small variability in the results.

4.2 Exploiting the features of EpiGraph
EpiGraph employs a highly detailed social model which

allows customizing the interactions of each individual as
well as the effect of time on the individual relationships.
These features allow the simulation of infection and trans-
mission process for individual cases.

We have performed experiments aimed at evaluating the
effect of different basic reproduction numbers and different
graphs structures on the epidemic propagation. Figure 3
evaluates the effect of different reproduction numbers. We
can see that the epidemic propagation is faster and the

Fig. 4: Effect of different graph configurations on the latent cases.
200-day simulation.

number of infected individuals is larger when the basic
reproduction number grows. For instance, for values of R0

of 1.373, 2, and 4 the overall numbers of infected individuals
are 1,933,901 and 2,783,435 and 3,597,751, respectively.

We evaluated two different graph structures called stan-
dard connectivity and high connectivity. Standard connec-
tivity corresponds to the basic scenario; high connectivity
corresponds to a scenario where the graph is flattened.
Specifically we are considering only the graph connections
corresponding to workers and we assume that the working
hours are from 9am to 9am of the next day. That is, in
this case we are considering a global graph that contains
only one group type which is active during the whole day.
Figure 4 illustrates the evolution of the latent cases for the
scenarios of standard connectivity and high connectivity;
infected cases exhibit a similar behavior. The figure shows
that differentiating between social groups has a significant
impact on the evolution of the epidemics. We can observe
that when we assume standard connectivity there exists a
periodic variation of the latent cases. This is related to the
existence of different daily time slices that exhibit different
propagation patterns. In the case of high connectivity this
pattern doesn’t appear due to the unique time interval, that
of working hours.

We have evaluated the effect of different vaccination
policies on the basic scenario. Figure 5 shows the evolu-
tion of the infected cases for five different strategies: no
vaccination (reference), vaccination at the beginning of the
outbreak, before reaching the peak of the outbreak (day 52),
at the peak of the outbreak (day 82) and after the peak
(day 97). For each of these cases 28% of the population
is vaccinated and the reproduction number for vaccinated
people is Rv = 0.047 [25]. We can observe the following
behavior: vaccinating at day 0 is the most efficient approach
in terms of minimizing the number of infected individuals.
When vaccinating at day 52 there is a large number of
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Fig. 6: Impact of different quarantine policies. Basic scenario, 300-
day simulation.

individuals in infected and latent stages; the vaccine reduces
the number of infected cases but also delays its propagation,
thus increasing the duration of the outbreak. This effect is
also manifested when vaccinating at day 0. In contrast, for
the vaccination campaigns at days 82 and 97 the peak of
infected cases has already been reached; vaccination thus
contributes to an early end of the outbreak.

Lastly, we evaluated different quarantine policies. For
the basic scenario we specify a given threshold in number
of infected cases. When this threshold is reached all the
school and work activities are cancelled, keeping only two
leisure hours per day; during the rest of the day all the
individuals stay at home with their family. Figure 6 shows
the simulation results when quarantine is applied based
on different threshold values. We observe that there is a
decrease in the number of infected at the expense of a larger
propagation time.
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Fig. 7: EpiGraph execution time on a multicore processor and a
cluster. Basic scenario, 200-day simulation.

4.3 Performance evaluation

We measured the execution time of EpiGraph on two
different parallel architectures: a multicore processor and
a cluster. The multicore is an Intel Xeon X7350 quadcore
processor with a frequency of 2.93 GHz, 3 MB of cache
and 16GB of RAM. The cluster consists of 4 computers
connected with a GigaBit network, each of them with a
single Intel Xeon E5405 at 2GHz with 6MB of cache and
4GB of RAM. Figure 7 shows the EpiGraph execution time
for the basic scenario when simulating 200 days of epidemic
outbreak. Given the faster interconnection system of the
multicore architecture, this achieves better performance than
the cluster system. We can observe that in both cases
EpiGraph reduces its execution time when more processors
are used.

5. Conclusions

This paper presents a novel approach to modeling the
propagation of the flu virus via a realistic interconnection
network based on actual individual interactions extracted
from social networks. We have implemented a scalable, fully
distributed simulator and we present an extensive analysis
of the effects of the new features of our approach on the
results of the simulations. Work in progress and future work
involve studying the effects of introducing new states in the
epidemic model and making use of the individual values
such as age and gender in implementing different social and
medical propagation characteristics. We are also interested
in investigating the characteristics of our social models—
such as clustering, node distance, and so on—and estimate
to what degree disease propagation occurs differently for
different types of real social networks.

Int'l Conf. Bioinformatics and Computational Biology |  BIOCOMP'11  | 535



Acknowledgements
The work has been performed under the HPC-EUROPA2

project (project number: 228398) with the support of the Eu-
ropean Commission-Capacities Area-Research Infrastructure
and the Spanish Ministry of Science and Education under the
MEC 2011/00003/001 contract.

References
[1] M. Eichner, M. Schwehm, H. P. Duerr, and S. Brockmann, “The

influenza pandemic preparedness planning tool influsim,” BMC In-
fectious Diseases, vol. 7, no. 17, pp. e–pub, 2007.

[2] M. J. Keeling and K. T. D. Eames, “Networks and
epidemic models,” Journal of The Royal Society Interface,
vol. 2, no. 4, pp. 295–307, Sept. 2005. [Online]. Available:
http://dx.doi.org/10.1098/rsif.2005.0051

[3] I. Doherty, N. Padian, C. Marlow, and S. Aral, “Determinants and
consequences of sexual networks as they affect the spread of sexually
transmitted infections,” The Journal of Infectious Diseases, vol. 191,
no. S1, p. 42–54, 2005.

[4] K. T. D. Eames and M. J. Keeling, “Modeling dynamic and network
heterogeneities in the spread of sexually transmitted diseases.” Proc
Natl Acad Sci U S A, vol. 99, no. 20, pp. 13 330–13 335, Oct. 2002.
[Online]. Available: http://dx.doi.org/10.1073/pnas.202244299

[5] S. Bansal, B. T. Grenfell, and L. A. Meyers, “When
individual behaviour matters: homogeneous and network models
in epidemiology,” Journal of The Royal Society Interface,
vol. 4, no. 16, pp. 879–891, Oct. 2007. [Online]. Available:
http://dx.doi.org/10.1098/rsif.2007.1100

[6] R. M. Christley, G. L. Pinchbeck, R. G. Bowers, D. Clancy, N. P.
French, R. Bennett, and J. Turner, “Infection in social networks: Using
network analysis to identify High-Risk individuals,” American J. of
Epidemiology, vol. 162, no. 10, pp. 1024–1031, 2005.

[7] L. A. Meyers, B. Pourbohloul, M. E. Newman, D. M.
Skowronski, and R. C. Brunham, “Network theory and SARS:
predicting outbreak diversity.” Journal of theoretical biology,
vol. 232, no. 1, pp. 71–81, Jan. 2005. [Online]. Available:
http://dx.doi.org/10.1016/j.jtbi.2004.07.026

[8] M. E. J. Newman, The spread of epidemic disease on networks, Apr.
2002. [Online]. Available: http://arxiv.org/abs/cond-mat/0205009

[9] J. M. Read, K. T. Eames, and W. J. Edmunds, “Dynamic social
networks and the implications for the spread of infectious disease.”
Journal of the Royal Society, Interface / the Royal Society,
vol. 5, no. 26, pp. 1001–1007, Sept. 2008. [Online]. Available:
http://dx.doi.org/10.1098/rsif.2008.0013

[10] A. Vazquez, “Spreading dynamics on heterogeneous populations:
Multitype network approach,” Phys. Rev. E, vol. 74, no. 6, p. 066114,
Dec 2006.

[11] F. Harary, GRAPH THEORY. Addison Wesley
Longman Publishing Co, 1969. [Online]. Avail-
able: http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-
20&path=ASIN/B000OLF0P0

[12] D. B. West, Introduction to Graph Theory, 2nd ed. Prentice Hall,
Sept. 2000.

[13] T. Zhang, S. H. Soh, X. Fu, K. K. Lee, L. Wong, S. Ma, G. Xiao, and
C. K. Kwoh, “Hpcgen a fast generator of contact networks of large
urban cities for epidemiological studies,” in International Conference
on Computational Intelligence, Modelling and Simulation, 2009, pp.
198 –203.

[14] F. C. Coelho, O. G. Cruz, and C. T. Codeco, “Epigrass: a tool
to study disease spread in complex networks.” Source code for
biology and medicine, vol. 3, no. 1, Feb. 2008. [Online]. Available:
http://dx.doi.org/10.1186/1751-0473-3-3

[15] S. Eubank, A. V. S. Kumar, M. V. Marathe, A. Srinivasan,
and N. Wang, “Structural and algorithmic aspects of
massive social networks,” in SODA ’04: Proceedings of
the fifteenth annual ACM-SIAM symposium on Discrete
algorithms. Philadelphia, PA, USA: Society for Industrial and
Applied Mathematics, 2004, pp. 718–727. [Online]. Available:
http://portal.acm.org/citation.cfm?id=982792.982902

[16] F. Chung and L. Lu, “Connected components in random graphs
with given expected degree sequences,” Annals of Combinatorics,
vol. 6, pp. 125–145, 2002, 10.1007/PL00012580. [Online]. Available:
http://dx.doi.org/10.1007/PL00012580

[17] E. Volz and L. A. Meyers, “Susceptible-infected-recovered epidemics
in dynamic contact networks,” Proc Biol Sci., vol. 274, no. 1628,
2007.

[18] T. C. Germann, K. Kadau, I. M. Longini, and C. A. Macken,
“Mitigation strategies for pandemic influenza in the united
states,” Proceedings of the National Academy of Sciences, vol.
103, no. 15, pp. 5935–5940, Apr. 2006. [Online]. Available:
http://dx.doi.org/10.1073/pnas.0601266103

[19] K. Carley, D. Fridsma, E. Casman, A. Yahja, N. Altman, L.-C. Chen,
B. Kaminsky, and D. Nave, “Biowar: scalable agent-based model of
bioattacks,” IEEE Transactions on Systems, Man and Cybernetics,
vol. 36, no. 2, pp. 252 – 265, 2006.

[20] R. M. Anderson, R. M. May, and B. Anderson, Infectious
Diseases of Humans: Dynamics and Control, new ed ed.
Oxford University Press, USA, Sept. 1992. [Online]. Available:
http://www.worldcat.org/isbn/019854040X

[21] F. Brauer, P. v. d. Driessche, and J. Wu, Eds., Mathematical
Epidemiology, 1st ed. Springer, June 2008. [Online]. Avail-
able: http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-
20&path=ASIN/3540789103

[22] M. E. Alexander, C. S. Bowman, Z. Feng, M. Gardam, S. M.
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Abstract – Among sulfonylureas, gliclazide is prescribed to 

80% of the diabetic population and mainly metabolized by 

CYP2C9 in Caucasians. Our data shows that the orientation 

of the substrate is changed and therefore, the site of oxidation 

with respect to heme-Fe is altered in *2. This leads to an 

altered metabolic pathway in *2 and it is a rate limiting step 

in gliclazide metabolism. Our results also show that the 

position of 7-propionate side chain of ring A and 6-propionate 

side chain of ring D is flipped in *2 and thus, the stability of 

heme and oxidative potential of substrate in the active binding 

pocket are reduced. In summary, the altered pathway, and 

instability of heme and the substrate in the active site are 

contributing to decreased metabolic activity consistent with 

greater therapeutic response observed in patients carrying 

CYP2C9 *2 allele.  

Keywords: CYP2C9*2, gliclazide, therapeutic response, 

molecular dynamics, docking simulation, metabolic pathway 

 

1 Introduction 

  Among sulfonylureas, gliclazide is dispensed almost 4 

million prescriptions in UK [1] and 1.2 million prescriptions 

in Australia [2]. It is also given in combination with 

metformin to keep successful control of the disease [3, 4]. 

Comparing with other hypoglycemic agents, the incidence of 

hypoglycemia is relatively low in gliclazide and may have 

beneficial effects beyond reduction of blood glucose [5]. In 

Caucasians, gliclazide is extensively metabolized by 

CYP2C9. Pharmacokinetic clearance of gliclazide revealed 

the existence of two major metabolites due to the oxidation of 

methyl carbon of tolyl-group that constitutes ~60% of 

metabolites and hydroxylation at a specific site in the 

azabicyclo-octyl ring represent ~40% of  metabolite observed 

in urine [6,7] as shown in Fig. 1. 

Fig.  1. Location of the hydroxylation sites in gliclazide 

 CYP2C9 is the major human enzyme of the cytochrome 

P450 2C subfamily and it is responsible for metabolism of 

~10% of therapeutic drugs in the market. This gene is highly 

polymorphic [8,9] and so far twenty four alleles have been 

identified [10]. Two alleles, *2/*2 (R144C) and *3/*3 (I359L) 

genotype carriers had a lower gliclazide clearance, with 

reductions of 25 and 57%, respectively, relative to those 

carrying the wild type [11-13]. Crystallographic data 

confirmed that the I359L variation is located in proximity to 

the active center in the substrate recognition site (SRS) 5 and 

therefore, explain the loss of functional activity in the variant 

allele. However, the codon 144 amino acid substitution is 

located outside the active center and therefore, the loss of 

activity observed in this allele is not clear. Minor differences 

in frequencies of these genotypes between different ethnic 

subgroups of the Caucasians population have been reported 

and the variant CYP2C9*2 (*2) is almost absent in Africans 

and Asian population [13]. Pharmacogenetic study conducted 

in larger population of 1073 patients with type-2 diabetes 

recruited between 1992 and 2007 demonstrated that the loss-

of-function alleles *2 are robustly associated with greater 

response to sulfonylureas and approximately 80% of the 

patients treated only with gliclazide in this study population 

[14]. The influence of CYP2C19 polymorphism in the 

pharmacokinetics of gliclazide has been reported in healthy 

Chinese population [15, 16]. This small discrepancy may be 

due to the ethnic differences and also due to the selection of 

smaller population for shorter periods of treatment. 

 Pharmacokinetic studies show that 6ß- 7ß-, and 

tolymethyl- hydroxylation represents the rate-limiting pathway 

of gliclazide elimination [7]. Our previous molecular docking 

of gliclazide on *2 studies indicate that 6β- and 7β- carbon 
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atom is closer to heme-Fe [17]. Based on this, our hypothesis 

is that β-hydroxylation may be the preferred route of 

metabolism and this may lead to the reduced metabolic 

clearance of gliclazide observed in *2. Therefore, in this study 

we are proposing to use molecular dynamic simulation and 

automated molecular docking tools to better understand the 

altered substrate orientation, proton – heme distance, binding 

pocket, heme and gliclazide stabilization, and regioselectivity 

of metabolism in *2 allelic variant and thus it leads to the 

altered route of metabolism 

2 Materials and methods 

  

2.1 Computational methods of CYP2C9*1 & 

*2 

 With the X-ray crystal structure of human 

CYP2C9/flurbiprofen (PDB code 1R9O) [18] as a model, 

substrate free computational models of CYP2C9 *1 (wild, *1) 

and *2 (R144C) were constructed using the software tools 

VMD and NAMD [19, 20]. The missing amino acid residues 

38 - 42 and 214 - 220 were also included in the computational 

models using Modeller [21]. The generated models were 

validated for their structural quality using Procheck [22, 23]. 

2.2 Molecular dynamics simulation 

 The generated computational models were further 

processed for MD simulation. The intermolecular hydrogen 

atoms were added and the complexes were solvated in a layer 

of TIP3 water molecules of 10Å radius, ionized at a 

physiological pH of 7 and subjected to energy minimization 

for 2000 steps. The minimized protein complex was simulated 

using NAMD for 600 picoseconds without any restrains at a 

constant temperature of 300 K. In each model, the lowest 

potential energy state was chosen for further analysis, whose 

stability was examined by calculating the root mean square 

deviation of the protein backbone. 

2.3 Flexible docking 

 The simulated protein was further processed using the 

molecular modeling program CHIMERA [24] to remove 

water and ions, and add Gastegier charges and hydrogen 

atoms. Gliclazide was docked with the above models using 

the grid-based docking program AutoDock 4.2 [25-27], in 

which some of the key residues of the active site were kept 

flexible. The best ten clusters having the lowest energies and 

<2Å RMSD values were chosen for analysis. 

3 Results and discussion 

Modeller was used to generate *1 and *2 models and the 

Procheck program was used to check the stereochemical 

quality of a protein structure within the allowed 

Ramachandran region. The results show that 92% and 94% of 

residues in 3D structure of *1 and *2 lie in the most favored 

regions and 0.7% and 0.5% of residues lie in disallowed 

regions of the Ramachandran plot (Fig.1a & 1b). The docking 

results indicate that gliclazide is located nearby heme and 

surrounded by SRS residues. The location of SRS residues in 

*1 and *2 are in consistence with the results of the crystal 

structure of CYP2C9 [18] and confirms the validity of our 

docked models. 

The automated molecular docking using Autodock was 

performed to further validate the reliability of the 

conformation of the SRS in *1 and *2 models (Fig. 2a & 2b).  

 

 

 

Fig. 1a. Ramachandran plot of *1
a
 

a
Ramachadran Plot  statistics 

                                                                                             

                             No. of  

                                                      residues      %-tage 

                                                      ----------       --------- 

Most favoured regions            [A,B,L]            373          92.1%           

Additional allowed regions  [a,b,l,p]               25            6.2%           

Generously allowed regions [~a,~b,~l,~p]        4            1.0%           

Disallowed regions               [XX]                     3            0.7%   

                                                                         ------  -------- 

Non-glycine and non-proline residues            405        100.0% 

 

End-residues (excl. Gly and Pro)                         3 

 

Glycine residues                                                  27 

Proline residues                                                  31 

                                                                           ------- 

Total number of residues                                   466 
 

a
Based on an analysis of 118 structures of resolution of at 

least 2.0 Angstroms and R-factor no greater than 20.0 a good 

quality model would be expected to have over 90% in the 

most favoured regions [A,B,L] 
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Fig. 1b. Ramachandran plot of *2
a
 

    
a
Ramachadran Plot  statistics 

                                                    No. of 

                                                     residues      %-tage 

                                                       ----------      --------- 

Most favoured regions         [A,B,L]               380          93.8%           

Additional allowed regions  [a,b,l,p]                21            5.2%           

Generously allowed regions [~a,~b,~l,~p]        2            0.5%           

Disallowed regions               [XX]                     2            0.5%   

                                                                        ------        -------- 

Non-glycine and non-proline residues            405        100.0% 

 

End-residues (excl. Gly and Pro)                        3 

 

Glycine residues                                                 27 

Proline residues                                                 31 

                                                                         ------- 

Total number of residues                                  466 

 
 a
Based on an analysis of 118 structures of resolution of at 

least 2.0 Angstroms and R-factor no greater than 20.0 a good 

quality model would be expected to have over 90% in the 

most favoured regions [A,B,L] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                  

 

Fig. 2a. Substrate recognition site of *1 

 

         

 

Fig. 2b. Substrate recognition site of  *2 
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In CYP2C9 crystal structure study, the heme and active 

binding pocket are buried deep into the protein molecule and 

the substrate should access the binding pocket for the 

occurrence of catalysis. Since the substrate access channel and 

the binding pocket near the heme-Fe play an important role in 

the determination of the orientation of the substrate towards 

heme-Fe, we have examined these factors in this study. Our 

previous study shows that the number of amino acids forming 

the hydrophobic cage is not changed in *2 but the size of the 

substrate access channel is reduced from 10.3Å (*1) to 9.3Å 

(*1) [17], and this may change the orientation of the substrate 

entering into the binding pocket and thus alter the position of 

the substrate in the binding pocket.. Since the size of the 

substrate access channel is smaller in *2, azabicyclo- group 

may enter first rather than the bulky methyl-phenyl group. We 

believe that this resulted in the complete change in the 

orientation of gliclazide in the binding pocket (Fig. 3a & 3b).  

 

 

Fig. 3a. Binding pocket  of *1 after docking gliclazide 

 

 

Fig. 3b. Binding pocket of *2 after docking gliclazide  

 

Our previous studies show that the distance between tolyl 

methyl carbon atom of gliclazide and the heme is 4.1Å and 

6β-carbon atom and the heme is 10.3Å in *1 [17]. These 

results correlate with the pharmacokinetic data which shows 

that the tolylmethyl hydroxylation is the major pathway 

responsible for metabolic clearance of gliclazide in *1 [6] and 

this constitutes ~60% of the metabolites detected in urine. 

While in *2, tolylmethyl carbon atom is located at 14.7Å & 

hydroxyl group is located at 4.5Å  from heme and this 

suggests that β-hydroxylation may be favored route of 

metabolic clearance of gliclazide. According to pharmokinetic 

data, this route of metabolism  constitutes only ~40% of the 

metabolite  and therefore, it may explain the reduced activity 

observed in diabetic patients carrying *2 allele. Previous study 

[28] shows that the differences in the distance between 

substrate proton to heme-Fe play a key role in the observed 

differences in catalytic activity. NMR derived T1-relaxation 

studies conducted with the probe substrate flurbiprofen and 

co-incubation of flurbiprofen with dapsone show that the 

movement of flurbiprofen protons closer to the heme iron 

partially explains heteractivation observed in CYP2C9 allelic 

variants [28,29]. 

 

Amino acids in the binding pocket of both *1 and *2 are 

similar, except BC loop amino acids V113 and R108  are not 

present in *2 (Fig. 3a & 3b). R108 stabilizes the gliclazide by 

binding to the acidic group of gliclazide and formation of 

hydrogen bonds (Table 1). R108 itself is stabilized by the 

formation of hydrogen bond with D293, thus gliclazide 

positions itself in proximity with heme prosthetic group for 

subsequent oxidation in *1 as represented in Table 1. While 
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gliclazide and R108 stabilization by the hydrogen bonding are 

lacking in *2 (Table 1). These results are consistent with the 

proposed catalysis model for P450 [30, 31]. Hydophobic 

amino acids, G296 and G475, that stabilizes the binding 

pocket are absent in *2 (Fig. 3b). 

 

Table 1: Gliclazide stabilization in *1 compared to *2 by 

hydrogen bond formation 

 

Donor Acceptor Distance (Å)
a 

*1           *2 

Angle (˚)
b 

*1          *2 

R108 Gliclazide 

Carboxyl O1 

2.0        5.6 153        116 

R108 Gliclazide 

Carboxyl O1 

1.9        6.5 160        102 

R108 D293 OD2 2           4.4 124        124 

 

The donor and acceptor distance is <3.5 Å
a 
[30] and 180˚±45˚

 

b
[31], a hydrogen bond is defined to be formed 

 

Many factors are known to affect the heme redox potential, 

including proximal heme ligand and propionate and substrate 

orientations and interactions with the immediate protein 

environment. In *1 complex, the A ring propionate is 

stabilized by the formation of hydrogen bonding with S365, 

L366, and R97, whereas the D ring is stabilized by R124, 

R433, and W120  by the formation of hydrogen bonds (Fig. 4a 

; Table 2).  

 

             

 

Fig. 4a. Heme stabilizing amino acids of *1 

 

                   

 

Fig. 4b. Heme stabilizing amino acids of *2 

 

Table 2 : Heme stabilization in *1 compared to *2 by 

hydrogen bond formation 

Donor Acceptor Distance (Å)
a 

*1           *2 

Angle (˚)
b 

*1         *2 

W120 NE1 Heme O1D 1.9       15.7 168       158 

R124 NH1 Heme O1D 1.8       14.6 162        77 

S365 NG1 Heme O1A 1.6         4.1 164       108 

L366 NH Heme O1A 1.9         4.4 157       149 

R433 NH1 Heme O2D 2.4       14.2 143         58 

The donor and acceptor distance is <3.5 Å
a 
[30] and 180˚±45˚

 

b
[31], a hydrogen bond is defined to be formed.  

 

This structure is consistent with the closed form of 2C   

enzyme reported  earlier [32]. In contrast to this conformation, 

the position of rings A and D are flipped in *2 and the 

stabilization of both propionate rings are lacking (Fig. 4b; 

Table 2). These  alterations in heme coordination may affect 

the heme redox potential. Mutagenesis and structural studies 

indicate the importance of the movement of the ring A towards 

substrate for the occurrence of oxidation [33]. Replacement of 

the D-ring resulted in the loss of enzyme activity and confirms 

the importance of this propionate in catalytic activity [33]. 

 

 

4 Conclusions 

 In summary, our present study shows that the orientation 

of gliclazide is altered significantly and changes the nature of 

the functional group located closer to heme-Fe and therefore, 

the site of oxidation is changed in *2. Since tolyl-methyl 

group is closer to heme-Fe, tolylmethyl-hydroxylation of 

gliclazide is the preferred route of metabolism in *1. While 

Heme 

Gliclazide 

Heme 

Gliclazide 
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azabicyclo-octyl ring is closer to heme-Fe and therefore,  6β- 

and 7β-hydroxylation is the preferred route of metabolism in 

*2. The reduced catalytic activity in *2 is consistent with 

pharmacokinetic data where the detection of 6β-hydroxylation 

metabolite is only ~40%.  The position of SRS amino acid 

residues are not altered but in the binding pocket, B-C loop 

amino acid residues are missing in *2. In addition, we show 

that the substrate access channel and a significant change in 

the structural link between substrate binding and the binding 

of redox partners would also partly explain the reduced 

catalytic efficiency. 
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Abstract— In a binary dataset, a rare-class problem occurs
when one class of data (typically the class of interest) is
far outweighed by the other. Such a problem is typically
difficult to learn and classify and is quite common, especially
among biological problems such as the identification of gene
conversions. A multitude of solutions for this problem exist
with varying levels of success. In this paper we present our
solution, which involves using the MetaCost algorithm, a
cost-sensitive “meta-classifier” that requires a cost matrix
to adjust the learning of an underlying classifier. Our method
finds this cost matrix for a given dataset and classification
algorithm, creating a final classification model. Through a
detailed description, a basic evaluation, and the application
to the problem of identifying gene conversions, we show
the effectiveness of this approach. Our novel approach to
generating a cost matrix has proven to be quite effective in
the identification of gene conversions and represents a robust
way to tackle the rare-class data problem.

Keywords: Rare class, cost matrix, gene conversion

1. Introduction
Gene conversion, an important biological process, refers

to the exchange of DNA sequence information between
two genes [1]. Caused through DNA strand breaks, one
gene (the donor) donates part or all of its sequence to
another gene (the acceptor). This can lead to two types
of evolutionary processes: gene conservation and genetic
diversity. By having two genes repeatedly “convert” each
other for the entire sequence, they can remain identical or
highly similar in sequences, despite the fact that they were
duplicated a long time ago. This has been observed in genes
such as ribosomal RNA genes and genes on the human X-
Chromosome [2]. On the other hand, if two genes exchange
only part of their sequences, it can lead to the creation of
new sequences, creating the potential for genetic diversity.
This has been observed in gene families where diversity is
important, such as immunoglobulin genes [3] and human
major histocompatiblity complex genes [4].

The identification of gene conversions is important for
understanding the evolution of duplicated genes and the
cause of certain genetic diseases. However, current gene
conversion identification software has poor performance [2],
with high false negative rates due to the fact that prediction
of gene conversion is a rare-class problem.

Rare-class prediction (also referred to as “imbalanced”
data prediction) is a common problem in classification [5].
In this type of problem, one class of data is far outweighed
by other classes, thus making it difficult for a classification
algorithm to accurately predict this class after learning. This
is typically confronted in a binary class problem, in which
there are two classes, often referred to as the minority
and majority classes. Typically the minority class is the
class of interest but the created classifier performs poorly in
identifying those data members. A typical result is that the
classifier classifies all data members as being majority class
members, due in part to the concept of Occam’s razor [6],
in which the simplest hypothesis is used to create the
classifier. These classification algorithms are also designed
to maximize predictive accuracy, which favors the majority
class.

Many approaches exist for solving the rare-class problem.
These are typically one of two types: data-level approaches
and algorithm-level approaches. Data-level approaches con-
sist of two main ideas: oversampling, in which minority class
members are increased through re-use, and undersampling,
in which majority class members are filtered out. Both strive
to attain a balanced dataset, thus allowing the classifier
the ability to better differentiate between the two classes.
However they both suffer from shortcomings: oversampling
can easily lead to overfitting and undersampling is likely to
remove relevant data objects from the training set. Recent
approaches have attempted to rectify these shortcomings:
SMOTE (Synthetic Minority Oversampling TEchnique) cre-
ates synthetic minority class data members based on existing
ones [7] and a recent undersampling approach uses cluster-
ing to filter out irrelevant majority class data members [8].

The other methods consist of algorithm-level approaches.
The most common is cost-sensitive learning in which the
learning of an underlying classifier is adjusted based on pre-
determined misclassification costs. One of these approaches
is MetaCost [9]. MetaCost takes in training data and a
classification algorithm and adjusts the learning by taking
into account a given cost matrix that assigns punishments
for misclassifications and rewards for correct classifications.
The advantage of MetaCost is that it has a “black box”
approach, any classification algorithm can be used and there
are no limits on types of training data. However, the cost
matrix must be known in advance [10], which is usually
impossible.
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Currently there is no systematic way to determine an ideal
cost matrix for a given dataset and classification algorithm.
We propose a greedy-based approach for determining a cost
matrix. Based on the given training data and the given
classification algorithm, our approach incrementally searches
for a cost matrix, returning the best one it finds to the user.
At worst, the returned cost matrix and classification model
perform as well as an unaltered classification algorithm,
but our evaluations show general improvement in rare-class
datasets. In this paper, we will present a formal, detailed
description of this approach and illustrate why it is effective.
In addition we will show its power through the classification
of a basic, example dataset and how it performs in the
prediction of gene conversions.

2. Methods
2.1 MetaCost

The classification problem is to take a classification al-
gorithm L and train it on a set of training data S, thereby
creating a model M . M is then used to predict the classes
of additional data, based on a learned hypothesis. A training
set S consists of a set of samples, each having a vector of
attributes and an assigned label. An optimal model would
sufficiently learn S so that it can correctly identify every x
in the test data T . However, an optimal model is typically
not possible, so we seek to create an approximation that
achieves the best results.

An attempt that is focused on approximating this optimal
model, especially in regards to rare-class problems, is Meta-
Cost [9]. The basic idea of MetaCost is to take a normal,
unaltered classifier and adjust the learning with a cost matrix.
This is done through a series of steps. The first step is to
take the training data and create multiple bootstrap samples
of the data. These bootstrap samples are then used for
training to create an ensemble of classifiers. The ensemble
of classifiers are then combined through a majority vote to
determine the probability of each data object x belonging
to each class label. Next, each data object in the training
data is relabeled based on the evaluation of a conditional
risk function, and a final classifier is then produced after
applying the classification algorithm to the relabeled training
data.

The key aspect in the MetaCost learning process is to
minimize conditional risk,

R(i|x) =
∑
j

P (j|x)Ci,j . (1)

R(i|x) defines the cost of predicting that data object x
belongs to class label i instead of class label j, P (j|x) is
the probability that data object x belongs to class label j,
and Ci,j is the cost for making such a classification. Ci,j

corresponds to entries in the cost matrix, essentially a variant
of the confusion matrix (Table 1) where i ∈ {0, 1} and

j ∈ {0, 1}. The cost matrix allows one to punish misclas-
sifications and reward correct classifications, for example,
by negative and positive values, respectively. Clearly, the
success of the evaluation of the conditional risk function and
thereby the performance of the MetaCost prediction rests on
the cost matrix. Imaginably a bad cost matrix can distort
the learning and produce a bad classifier. Therefore, it is
imperative to identify a high quality cost matrix.

Table 1: Confusion Matrix
TP FP

True Positive False Positive
FN TN

False Negative True Negative

C =

[
C0,0 C0,1

C1,0 C1,1

]
(2)

2.2 Cost Matrix Optimization
The MetaCost algorithm has input values m, n, and p that

are essentially tweaks or givens of the algorithm once the
type of classifier is determined. To simplify the function call,
we can fix some default values for them, thus, the call to the
MetaCost algorithm becomes a function of S, L, and C and
returns a classification model M . Let us define an evaluation
function Eval(M,T ) that takes as input a generated model
M based on a cost matrix C and produces an evaluation
of its performance on test set T . This evaluation function
can be based on any of the metrics for rare-class predictions
such as F-measures, ROC curves, and G-mean. Assuming
that we have access to the set of all possible cost matrices
(Ci, i ∈ N∗), we can then search for the cost matrix that
achieves the highest evaluation value,

Cbest = argmax
C

Eval(MCi
, T ), (3)

and denote Cbest as the optimal cost matrix for the given
data and classification algorithm.

So the problem is how to find the optimal cost matrix
computationally. While an exhaustive search of all possible
cost matrices can guarantee that we find the optimal cost
matrices, it is not possible. Here we propose a greedy
approach to heuristically find a matrix that produces a high
evaluation value.

Shown in Algorithm 1, the basic idea of the search is to
start with an initial cost matrix and to increment its costs to
find a cost matrix that achieves a better evaluation value. An
initial cost matrix is typically a cost matrix that will create a
model that is the same as the model created by an unaltered
classifier. Our positive class is the minority class.

Starting with this initial cost matrix, the method creates
seven new ones (A0, A1, A2, A3, A4, A5, A6). Each of these
cost matrices represents a different combination of incre-
menting/decrementing the costs (correct classifications are
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Algorithm 1 Greedy-Based Search
Input:
S is the training set
T is the test set
L is a classification algorithm

5: n is the number of iterations to run the algorithm

{0,1} is the set of classes
Let Eval(M,T ) return an evaluation value on how Model M per-
formed on test set T

10: Function GreedyCost(S, T, L, n)

Let I be the initial cost matrix where all punishments/rewards are 0
Let C be the current best cost matrix, initialized to I
Let MC be the current best model, initialized to MetaCost(S,L,C)

15: Let O be the overall best cost matrix, initialized to I
Let MO be the overall best model, initialized to MC

for i = 1 to n do
Let A be a set of cost matrices

20: where
A0 ← C +

[
0 1
0 0

]
A1 ← C +

[
0 0
1 0

]
A2 ← C +

[
−1 0
0 0

]
A3 ← C +

[
0 1
1 0

]
25: A4 ← C +

[
−1 1
0 0

]
A5 ← C +

[
−1 0
1 0

]
A6 ← C +

[
−1 1
1 0

]
Set C and MC to null

30: for j = 0 to 6 do
M = MetaCost(S,L,Aj )
if Eval(M,T ) > Eval(MC , T ) then

C = Aj and MC = M
end if

35: end for

if Eval(MC , T ) > Eval(MO, T ) then
O = C and MO = MC

end if
40: end for

return O, MO

decremented by one and misclassifications are incremented
by one). Of note here is that the cost for correct classifica-
tions of the majority class (negative class) is not adjusted and
left at zero. This is due to the fact that typically a poor clas-
sifier will order most (if not all) data members as belonging
to the majority class. Therefore, there is no need to reward
such behavior and our method has fewer cost matrices to
test. After creating these seven new cost matrices, each one
is used to create a new model through MetaCost, using the
given training data S and classification algorithm L. After
these models have been created, they are evaluated on the
given test set T using the evaluation function Eval(M,T ).
The model that has the highest evaluation value is kept and

its cost matrix is used to initialize the next iteration of cost
matrix creation.

As can be seen in the algorithm, the method keeps
track of two cost matrices, a “current best” cost matrix
and an “overall best” cost matrix. This was done in order
to overcome one of the common problems with greedy
searches, that of finding a local maximum that is lower
than the global maximum. So when a potential poor local
maximum is reached, it can be stored as the overall best
and the method can essentially “look ahead” to see if a
better cost matrix can be found. If a better one is found, the
overall best cost matrix is updated. So conceivably, we can
continue to generate new cost matrices while still keeping
track of a good one. While this does not guarantee that a
global maximum will be found, it does allow for a more
comprehensive search than a typical greedy search.

The parameter n is passed into the function to give a count
of how many times the creation of new cost matrices occurs.
A simple check of whether the overall best matrix is the
same as the current best cost matrix serves as an indication
of whether a maximum (local or global) has been reached.
If not, the number of iterations can be increased. A possible
modification to this algorithm would be to have a set number
of iterations to run after a maximum has been reached.

The search for the best cost matrix can only improve upon
a base classifier. At worst, the method will work as well as
an unaltered classifier. This is due to the fact that a model
that is built by the MetaCost algorithm with the initial cost
matrix is identical to a model that was built using only the
base classification algorithm. So if no better cost matrix is
found, the initial cost matrix will be returned as the best.

One final note is in regards to the use of training and test
data. While it is ideal if they are different, it is not necessary
and training data can be used for both the creation of the
model and evaluation of the cost matrix. Having a separate
set of test data gives the learning process more breadth as
using only one set of training data does bias the classification
model towards this training data. So for evaluation purposes
of the final generated classification model, one must have
an additional set of test data to use that was not part of the
learning process and cost matrix search.

3. Experiment
3.1 Gene Conversion Data and Classification
Programs

Because actual gene conversion data is difficult to obtain,
we created simulated gene conversion data similar to an ap-
proach developed by Marais [11]. Essentially we simulated
the creation of a gene family from a root sequence (through
mutation along a simulated phylogenetic tree) and inserted a
gene conversion event between two of the genes. This way
we could create recent gene conversion events (by having
mutations take place mostly before the gene conversion
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event) and more ancient gene conversion events (by having
more mutations occur after the event). We then created
two sets of data: SET1 which consisted of multiple recent
gene conversions and SET2 which consisted of multiple
ancient gene conversions. Each of these datasets consisted
of multiple gene families (consisting of six genes each) and
one (or no) gene conversion event. For each of these datasets,
we created a large set of training data, a set of evaluation
test data to be used in the greedy-based search, and a set of
final test data to evaluate the final generated classifiers. The
results shown in the next section are of how the classifiers
performed on this final test data, data that was not used in
the learning process.

For our experiments, we used two gene conversion pre-
diction programs, GENECONV [12] and Partimatrix [13].
GENECONV is a program designed for the identification of
gene conversions that gives a prediction of what sequence
fragments have the highest, unique similarity between two
sequences, ranking these predictions by p-value. Partimatrix
uses bipartitions to determine if DNA sequences show evi-
dence of anomalous phylogenetic history, giving support and
conflict scores for each prediction.

For classification, we represented each pair of genes
within a gene family through a feature vector. In this
representation, we can see that gene conversion is a rare-
class data problem. A set of six genes represents 15 gene
pair combinations and at most one of these gene pairs will
have a gene conversion event. Each of these feature vectors
consists of the following attributes: average GC content,
overall sequence similarity, GENECONV prediction global
and pairwise p-values, and Partimatrix conflict and support
scores.

Classification was done through the greedy-based search
for a cost matrix that we detailed in the methods section.
We used the following classification algorithms as the un-
derlying classifiers: NaiveBayes (as implemented by John
and Langley [14]), J4.8 (an implementation of the C4.5
decision tree learner [15]), PART (a combination of rule-
based learning and C4.5 [16]), and JRip (a rule-based learner
based on RIPPER [17]). All classification algorithms were
implemented in weka [18], a collection of machine learning
algorithms.

3.2 Results
In Table 2 we can see the classification results. For our

purposes the positive class is when a gene pair has a gene
conversion and the negative class is when it does not. For
the learning of each set, we created separate training and
test data and then evaluated the final model on a second set
of unique test data.

In SET1, one can see that GENECONV performs quite
well. “GENECONV Strict” has a high accuracy, even higher
than the “Just Say No approach”. However, through our
method we are able to increase the amount of true positives,

Table 2: Simulation Results
SET1

Classifier TP FP Accuracy F-measure
Perfect 139 0 1 1
Just Say No 0 0 0.937 UNDEF
GENECONV Strict 102 4 0.975 0.840
GENECONV LP 123 57 0.955 0.776
Partimatrix 9 137 0.833 0.064
G-or-P 128 191 0.874 0.561
NaiveBayes 122 58 0.954 0.770
PART 107 5 0.978 0.859
J4.8 109 11 0.975 8 0.848
JRip 111 9 0.978 0.864

SET2
Classifier TP FP Accuracy F-measure
Perfect 150 0 1 1
Just Say No 0 0 0.933 UNDEF
GENECONV Strict 1 8 0.930 0.014
GENECONV LP 5 68 0.905 0.045
Partimatrix 15 135 0.880 0.100
G-or-P 19 197 0.854 0.104
NaiveBayes 8 75 0.904 0.069
PART 35 214 0.854 0.175
J4.8 23 160 0.872 0.138
JRip 40 265 0.833 0.176

This table represents the performance of the various classification methods
on datasets SET1 and SET2. The upper half represents the basic classifiers
that do not use the greedy-based approach. Perfect represents a theoretical
optimal classifier and is included for comparison. Just Say No represents
a classifier that classifies all data elements as majority class. GENECONV
Strict uses only global p-values for predictions, whereas GENECONV LP
uses local pairwise p-values (with 0.05 being used as the threshold for
positive classification). Partimatrix represents a prediction based on the
lowest conflict score between a gene pair within a gene family. G-or-P
is a basic unification of GENECONV LP and Partimatrix predictions. The
lower half represents the classification algorithms predictions after using
the greedy-based search for a cost matrix.

increase the accuracy, and most importantly, increase the F-
measure. The best performers are JRip and PART, which
is not surprising as they are rule-based classifiers and rule-
based classifiers are known to perform well on rare-class
data [19]. Both have a higher F-measure than “GENECONV
Strict”, a higher accuracy, and both identify more true pos-
itives. J4.8 does well too and identifies more true positives
than PART, but more false positives as well. Of all the
cost matrix classifiers, NaiveBayes identifies the most true
positives, but is hindered by the number of false positives it
identifies.

In SET2, one can see that ancient gene conversions are
far more difficult to accurately detect, as the mutations
after the conversion makes some difficult to differentiate.
GENECONV performs quite poorly, both in Strict and
LP. Partimatrix identifies more gene conversions and G-or-
P has the best F-measure of these basic classifiers. This
set also shows the shortcoming of using accuracy as a
metric as the “Just Say No” approach would appear to be
the best classifier. Among the cost matrix classifiers, the
NaiveBayes classifier performs quite poorly. It has an F-
measure lower than G-or-P, so it shows no improvement over
a basic classifier (it does not identify more gene conversions
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correctly either). But the rule-based classifiers again perform
quite well, with both identifying more gene conversions and
having higher F-measures than any of the basic classifiers.
In fact, aside from NaiveBayes, all classifiers exhibit both a
higher recall and a higher precision than the basic classifiers,
showing a definite improvement.

Table 3: Final Generated Cost Matrices
SET1 SET2

NaiveBayes -3 2 -2 2
2 0 1 0

PART -4 3 -3 1
5 0 19 0

J4.8 -2 3 0 1
4 0 4 0

JRip -4 1 0 1
6 0 7 0

In Table 3, we can see the cost matrices that were
determined for each classifier by the greedy-based approach
and subsequently used to make gene conversion predictions.
From this table it is quite clear that a cost matrix is highly
dependent on both the classifier and the data being used.
No classifier has the same cost matrix across both datasets
and no dataset has a cost matrix that is best for more than
one classifier. In fact, all cost matrices that were determined
by our approach are unique. All final classification models
were generated after 25 iterations of the greedy-based search
method.

3.3 Additional Analysis
In order to further analyze the improvement our greedy

search method has over an “unaltered classifier,” i.e. a
classifier whose learning has not been altered by a cost
matrix, we generated 10 samples for each gene conversion
dataset and compared the performance of each classifica-
tion algorithm. These samples were created by taking each
dataset, SET1 and SET2, and splitting up the data as 1/2
training, 1/4 evaluation test data (for the evaluation in the
greedy algorithm), and 1/4 for the final test data, which
was not involved in the learning process. For the unaltered
classification the evaluation test data was added back to
training data, so 3/4 of the data was used for training and 1/4
for testing. Since we are dealing with datasets in which the
amount of positive examples is few and the ratio between
positive and negative examples is important, the creation
of these samples was not entirely random. First the dataset
was ordered into positive and negative examples. Then 1/2
of the positive samples were put into the training data, 1/4
in the evaluation test data, and 1/4 into the final test data.
The same is then done with the negative data. This ensures
that each set contains positive data members and that the
ratio is conserved. After running the simulations, we used a

Wilcoxon signed rank test [20] to determine the significance
of improvement.

In Tables 4 and 5, we see the resulting F-Measures,
summarized as average, maximum, and minimum. In the
SET1 simulation results, we can see improvement for each
classification algorithm except NaiveBayes. The others see
improvement in their average, maximum, and minimum F-
Measures (however JRip has a lower maximum). Unfortu-
nately, only PART shows significant improvement by using
the greedy method, generating a p-value of 0.024.

In the SET2 simulation (Table 5), we see F-Measure
improvements for all classification algorithms. However,
the improvement for JRip is misleading. In its unaltered
form, the generated classifiers made no positive predictions,
hence the F-Measure of 0. The classifiers generated with the
greedy method made ONLY positive predictions, generating
an F-Measure of 0.125 each time. Clearly, this is not a
“better” classifier. The other three classification algorithms
showed significant improvement, each generating a p-value
of 0.0027.

Table 4: SET1 Simulation
F-Measure

Classifier Average Max Min
Unaltered

NaiveBayes 0.770 0.796 0.744
JRip 0.874 0.904 0.846

PART 0.858 0.880 0.823
J4.8 0.861 0.883 0.839

Greedy
NaiveBayes 0.766 0.793 0.738

JRip 0.876 0.892 0.857
PART 0.875 0.885 0.862

J4.8 0.873 0.900 0.848

Table 5: SET2 Simulations
F-Measure

Classifier Average Max Min
Unaltered

NaiveBayes 0.105 0.119 0.089
JRip 0.000 0.000 0.000

PART 0.014 0.031 0.000
J4.8 0.000 0.000 0.000

Greedy
NaiveBayes 0.135 0.174 0.125

JRip 0.125 0.125 0.125
PART 0.176 0.185 0.161

J4.8 0.151 0.169 0.140

3.4 Real-World Data
In order to see how the generated classification models

perform on real world data, we used the “Transcription
Elongation Factor A” gene family on the X-Chromosome
that has been shown to exhibit gene conversions [2]. The
three gene family members are located in a large syntenic
region that is conserved between primates and rodents,
indicating that these genes were generated/duplicated before
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Fig. 1: Transcription Elongation Factor A phylogenetic tree
HS = Homo sapien, PT = Pan troglodytes, RM = Rhesus Monkey

(Macaca mulatta)
MM = Mus musculus, RN = Rattus norvegicus

the split of primates and rodents. Thus, the phylogenetic
tree (Figure 1) provides strong evidence for gene conversions
within biological orders (primates and rodents). Interestingly,
gene conversion seems to occur independently in both pri-
mates and rodents after their split but before the further splits
within primates and within rodents.

We used the classification models from SET1 that were
generated with the PART, J4.8, and JRip classification al-
gorithms (NaiveBayes was left out due to its poor per-
formance). Both PART and J4.8 made the same 3 pre-
dicted gene conversions: MM_Tceal3 and MM_Tceal5,
MM_Tceal6 and MM_Tceal5, and RN_TCEAL3 and
RN_TCEAL5. JRip made the same predictions, with the
addition of a gene conversion between HS_TCEAL5 and
PT_TCEAL6 that is a false positive due to the fact that
gene conversion only occurs between genes from the same
species. These predictions are consistent with the phyloge-
netic evidence.

Using the threshold of a p-value of 0.05 as sufficient
evidence that two genes have undergone gene conversion
GENECONV Strict gives evidence for 13 gene conversions
and GENECONV LP for 44. While some gene conversions
do correspond with what is seen in the graph, others do not,
for instance gene conversions between primates and rodents.

Partimatrix does not provide guidelines for a threshold to be
used for predicting gene conversions. However those with
the highest support scores also involve conversions between
primates and rodents.

Unlike the simulated cases where we can use the F-
measure to compare the performance of gene conversion
prediction programs with our ensemble method, it is difficult
to perform this analysis on real data because we do not know
the exact numbers of true or false positives and negatives.
The challenge of the difficulty in performance evaluation on
real world data can be addressed in future work by manual
compilation of a carefully monitored set of genes for which
exact numbers of true or false positives and negatives can
be accurately inferred.

4. Discussion
Due to the complexity and uniqueness of datasets, as well

as the differing performance of classification algorithms,
the best performance can be achieved with a cost-sensitive
classification method when a best cost matrix is found for
both the given data and the given classification algorithm.
Theoretical research on the rare-class problem has shown
that aspects of data that are difficult to quantify (such as the
“complexity of concept”) play a role in classification [10]
and our own results have shown that a cost matrix that
achieves good performance is dependent on both the given
training data and the given classification algorithm. Thus
a cost matrix must be found taking these two entities into
consideration.

A greedy search is efficient but not optimal. While it
cannot be proven that the eventual “overall best” cost matrix
is one that achieves optimal classification results, we have
shown that it will improve upon an unaltered classifier. At
worst, the resulting classification model will perform as well
as a classifier that was generated without MetaCost. This is
more than can be said about other methods for dealing with
rare-class data that can cause overfitting and/or eliminate
relevant data and achieve even poorer results.

One thing we were able to recreate with this method, was
the “black box” approach that MetaCost used. Of importance
was the fact that the details are hidden from the end-user,
with inputs being passed in and a final model being returned,
with little user interaction. Our approach requires only the
same inputs with the simple addition of a value being given
for the number of iterations. At the end of these iterations,
the best model and cost matrix found will be returned to
the user. In addition, our method only requires a “meta-
classifier” that takes in a cost matrix and adjusts the learning
of a classification algorithm according to it. While MetaCost
is a great method for accomplishing this, it can easily be
replaced with a method that might be better suited for a
specific problem domain.

Our future work will focus on improving the search for
a best cost matrix. Simulated annealing [21] and genetic
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algorithms [22] will be experimented with to see if they
achieve better performance in terms of classification. While
these methods can achieve better results than greedy search,
they do require more time as they generate many more
possible solutions. Therefore, we will investigate whether
there is a trade-off between performance gain and increased
searching time when compared to the greedy-based solution.
In addition, we will also look into any improvements to
the MetaCost algorithm that may increase performance (for
instance, using boosting instead of bagging to determine
probabilities as suggested in [23]). Finally, although our
current analysis shows that MetaCost with the greedy search
of a cost-matrix made some improvement in predicting gene
conversion over GENECONV and Partimatrix, it is based on
simulated data and rather limited real data. Future work will
involve the curation and application of more real data on
gene conversion to train and test models in order to further
improve the performance of the prediction programs.
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Abstract - The flow fields in lower lung airways are rich in 

secondary flows in form of vortices. These vortices are known 

to impact the micro-particle transport in lung airways. The 

complex geometry of lung airways plays a significant role on 

the secondary flows generation. Inhaled air temperature may 

also have an impact on the bronchial tube flows and therefore 

to the particle deposition. The steady-state inspiratory air flow 

with and without heat-transfer were simulated in a nine-

generation lung airway model using our in-house flow-solver. 

Particle traces were simulated using our Lagrangian based 

particle tracking software. The flow and particle trace 

simulation results with and without heat-transfer were 

compared. The effects of heat-transfer on the flow fields and 

particle deposition in the lung model were found to be 

insignificant suggesting that, the thermal effects can be 

overlooked when simulating the flow and particle transport in 

the small lung airways.  

Keywords: biomechanics, lung airways, particle deposition, 

lung flow, computational Fluid Dynamics (CFD) 

 

1 Introduction 

 The complexity of lung air flow fields exists mainly due to 

the presence of secondary flows in form of vortices.  These 

vortices are generated as a result of the bifurcating geometry 

of the bronchial tubes. The secondary flows are known to play 

a crucial role in particle transport from inhaled air. The study 

of bronchial tube flows can increase an understanding of the 

effects of the inhalation of harmful particles as well as the 

pulmonary drug delivery to improve human health. Particles 

suspended in the atmosphere are of various sizes and shapes 

[1]. Most of the particles from the atmosphere found inside the 

human lungs range in size from 2-10μm, corresponding to coal 

dust, asbestos fiber, pollen, bacteria, etc [1]. There have been 

some studies identifying the health risks related to inhalation 

of micro- or nano-particles[2-9].   

 The bronchial tube geometry is characterized by 

bifurcations that produce multiple generations with 

asymmetric and nonplanar branching. There are a total of 18 

generations (excluding the alveolus) [10] of airways in the 

human airway tree that consists of 2
17

 distinct tubes. The out-

of-plane branch angles defining nonplanarity are randomly 

distributed to fill the chest cavity without any overlap. The 

effects of nonplanarity for asymmetric three-generation 

bronchial tube flow fields were investigated for three-

generation bronchial tube models by Soni et al. [11]. They 

also demonstrated significant difference between the particle 

deposition in the planar and nonplanar three-generation 

bronchial tube models [12].  

 The flows in small bronchial tubes are laminar with a 

Reynolds number less than 1000 [13]. However, the presence 

of vortices makes these flows quite complicated. The effects 

of secondary flow on particle dispersion were demonstrated by 

Soni et al. [12]. They used particle destination and Finite Time 

Lyapunov (FTLE) maps [14] to visualize particle deposition. 

The flow becomes more complex further down the tree due to 

the accumulative effects of nonplanarity and multiple 

generations. The bronchial tube flows can be categorized as 

primary and secondary flows. The flow in the direction of the 

local axis of the tube is called primary flow.  The flows 

perpendicular to the local axis of the tube are called secondary 

flows. Figure 1 demonstrates the primary and secondary flows 

in the bronchial tubes. Figure 1(a) shows the primary velocity 

vectors at various cross-sections in the nine-generation 

bronchial tube model. The vectors are colored by 

dimensionless velocity magnitude. The secondary flows in 

form of a vortex pair in the second generation are shown in 

Figure 1(b). The cross-flow velocity vectors are plotted on the 

cutting plane which is colored by total velocity magnitude.  

There have been some studies to simulate flows in bronchial 

tubes with more than just few generations in effort to achieve 

flow simulation of fully resolved bronchial tree. Nowak et al. 

[15] presented flow fields and particle transport simulations on 

lung airways with multigenerational symmetric planar model 

for up to 23 generations and a CT-scan model with nine 

generations. Ertbruggen et al. [16] described a lung airway 

model with eight generations containing 17 bifurcations and 

simulated steady-state flow with micro-particle transport. 

Gemci et al. [17] presented a simulation of 17 generations of 

the human lung based on the anatomical model of Schmidt et 

al. [18]. The geometry was only partially resolved, containing 

only 1453 bronchi as opposed to 2
17 

 branches. In more recent 

efforts, Walters and Luke [19] proposed a Flow Path 

Ensemble (FPE) model to simulate flows in a nine-generation 

model with the model truncated so that the overall size of 

simulation was significantly reduced. 

Thermal effects of the inhaled air temperature on the flow 

fields and particle deposition may become important when 

cold air or hot vapor is being inhaled. There are few 

experimental and numerical studies addressing heat-transfer in 

the lung airways [20-23]. The heat-transfer and mass-transfer 

was simulated for hot vapor by Zhang et al. [22]. They also 
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studied the effect of cold weather on the steady state flow 

fields and particle deposition. The impact of temperature 

difference was found to be pronounced in the mouth to trachea 

geometry, whereas the thermal effects were found to be 

deteriorating in downstream generations. The effects were 

evaluated for three-generation, symmetric, planar bronchial 

tube model along with airway from mouth to trachea. In later 

study [23], they investigated heat-transfer and mass-transfer 

for hygroscopic droplets with unsteady flow conditions in 

same lung airway model.  

 

2 Numerical modeling 

 The nine-generation geometry as shown in Figure 1(a), 

given by Walters and Luke [19], based on Weibel’s [24]
 

morphology for generations 4-12 of the human bronchial tree 

was employed in this study.  A single parent tube being one-

generation, two daughter tubes diverging from a parent tube 

defines two generations. A general expression to obtain total 

number of exits based on number of generations can be given 

as Nexit = 2
N-1

, where N is the number of generations and Nexit 

is the number of exits.  The parent tube diameter was taken to 

be 0.0057m. The out-of-plane angles defining nonplanarity are 

randomly distributed between 0
o
 to 180

o
. There are in total 2

8
 

= 256 exits in this model.  

 Steady-state inhalation with Reynolds number of 319 

corresponding to an inlet volumetric flow rate of 20.83 cm
3
/s 

were simulated with and without heat-transfer. The air flows 

were simulated by using the CaMEL flow solver.
25

 CaMEL is 

an advanced computational fluid dynamics flow solver 

specifically developed for large scale simulations at the 

Northrop Grumman Center for High Performance Computing 

at Jackson State University. CaMEL is a highly scalable, 

incompressible, non-dimensional code. CaMEL is a hybrid 

finite volume/element solver, which takes advantage of the 

merits of both the Finite Volume and Finite Element methods 

and avoids their shortcomings. The buoyancy force was 

included in the momentum equation to capture the thermal 

effects while simulating the heat-transfer in the nine-

generation model. A Grashof number of 1388 corresponding 

to the temperature difference of 47
o
 C was utilized. Grashof 

number is dimensionless parameter which provides a ratio of 

buoyancy forces to the viscous forces. The bronchial tube 

walls were assumed to be at the normal body temperature 

(37
o
C) and inhaled air temperature during cold weather 

condition (-10
o
C).  At the inlet, a parabolic velocity and 

uniform temperature profiles were applied. No-slip condition 

with isothermal temperature was applied on the tube walls. At 

the exits, zero static pressure was specified. The 

nondimensional temperature is given by T*=(T-Twall)/(Tin-

Twall), where T is the temperature, Tin is the inlet temperature 

and Twall is the bronchial tube wall temperature. A fully 

unstructured mesh was employed for discretization of the 

nine-generation bronchial tube model. The commercial 

software package Gridgen [26] was utilized to generate high 

quality mesh. The final mesh consisted of approximately 40 

million tetrahedral elements. 

 The particle traces were simulated as a post-processing 

step using a Lagrangian method. Water droplets with a 

diameter of 10μm were released from the inlet of the model. 

Approximately 34000 particles were released at the inlet. The 

particles were released from the nodes of the uniform 

triangular mesh at the inlet. The initial velocities of the 

particles were kept the same as the inlet fluid velocities. Since 

impaction plays an important role for micro-particle transport, 

drag and gravitational forces were included in the equation of 

motion. The fourth-order Runge-Kutta method was used to 

integrate the equation of motion.  

3 Results 

 The results of the flow fields and particle trajectory 

simulations for the nine-generation bronchial tube model with 

and without heat-transfer are shown and compared in this 

section. The comparison of the various metrics is made to 

investigate the thermal impact on the flow fields and particle 

deposition. The localized flows in second-generation in terms 

of primary and secondary velocities are shown in figure 1. A 

symmetric vortex pattern is observed in figure 1(b) due to the 

fact that the second-generation is symmetric with respect to 

the bifurcation plane. Figure 2 shows the primary and 

secondary velocities in the third-generation branching. In 

figure 2 (b) asymmetric pattern of vortices are observed since 

the third-generation branching is locally nonplanar. Now we 

focus on one of the eighth-generation branches. Primary and 

secondary flows are shown at a cross-section of one of the  

  

a) Primary velocities in first bifurcation b) Secondary velocities at cross-section in second 

generation tube 

Figure 1. Bronchial tube flow fields. 
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Figure 4. Temperature distribution in first bifurcation 

 

branches of the eighth-generation in figure 3. It can be 

observed here that, the secondary flows are not dominated by 

the vortices as the flow rate is not large enough to generate 

vortices. 

 In figure 4, dimensionless temperature variation at the 

cutting plane located in the first bifurcation is shown. The 

temperature profiles are also shown at various cross-sections 

perpendicular to the local axis of the tubes. Here, the 

dimensionless inlet temperature is one and at the bronchial 

tube walls it is zero. The temperature profiles are skewed 

towards the center of the bifurcation similar to the velocity 

profiles. This is because high velocity fluid carries the inlet 

temperature towards the center of the bronchial tubes.  

 Now to investigate the impact of heat-transfer on the 

bronchial tube flows, mass flow rate and secondary flow 

intensity comparisons are made as shown in Figure 5. Results 

are extracted at cross-sections located in generation-2, 

generation-3, and generation-8. As the number of generations 

increases, the tube diameter decreases and therefore the mass 

flow entering each branch also decreases as observed in 

Figure 5(a). The secondary velocities at these cross-sections 

can be quantified by measuring intensity of the secondary 

flows. The intensity of the secondary flows is defined as the 

ratio of the averaged local secondary velocities with respect to 

the averaged local primary velocity in a given cross-section. 

The intensities of secondary velocities were also plotted at 

each cross-section location for both with and without heat-

transfer cases. Figure 5(b) shows the variation of the intensity 

of secondary flows. The values of mass flow and intensity of 

secondary flows with and without heat-transfer show minimal 

differences (see figure 5).  

 To further assess the effects of heat-transfer, primary 

velocity profiles were plotted on the line segment passing 

through the middle of the cross-sections to compare the results 

for both cases. In Figure 6(a), the comparison between the 

primary velocities in simulation with and without heat-transfer 

cases in the second-generation is made. The dimensionless 

velocities along the length of the line segment are plotted. 

Similarly, velocity distributions in third- and eighth-

generations are shown in figure 6(b) and 6(c), respectively. 

From figures 6(a)-(c) it can be observed that, the differences 

between the two velocity profiles for all three plots are 

insignificant. This suggests negligible thermal effects on local 

flow fields. 

 Since flows in the bronchial tube are unaffected by the 

temperature difference between inlet and tube walls, it can be 

indirectly implied that the particle deposition will also show 

minimal sensitivity to the temperature differences. However, 

we simulate particle trajectories to study particle deposition in 

order to explicitly investigate the heat-transfer effects on the 

particle deposition. We compare the particle deposition 

efficiencies in each generation for the simulation with and 

without heat-transfer in figure 7. Particle deposition efficiency 

is defined as the ratio of percent particle deposition to the 

incoming particles in each generation. As it was predicted, the 

thermal effects on particle deposition are minimal as the 

particle deposition efficiencies are quite close to each other 

for both cases. In general, the particle deposition efficiency 

increases as we go further down the generations, except in the 

eight-generation. The reason being, most of the particles 

entering the eighth generation are exited from the outlets and 

that result in to the low particle deposition efficiency.                                                                                                                                                                           

Figure 8 shows particle deposition in nine-generation 

bronchial tubes in terms of particle destination and FTLE 

maps. Particle destination map shows the scalar values at 

particles’ release location equal to the generation number it 

deposited to. Figure 8(a) shows the color map of the 

generations for particle destination map. Figures 8(b) and 8(c) 

show the particle destination and FTLE maps, respectively.  

For example, particles released from the dark blue region of 

the particle destination map shows that they deposit in the 

second generation. FTLE map shows the deposition behavior 

of closely seeded particles inside the generation. Higher FTLE 

values (red region) implies that the particles released from 

here are being more dispersed than the particles released at 

lower FTLE values (blue region). This phenomenon can be 

explained in detail from figure 9. We release particles from 

the high FTLE values (purple traces) and low FTLE values 

(magenta traces) and follow their path and how they are being 

affected by the geometry and secondary flows of the nine-

generation bronchial tube as shown in figure 9(a). The particle 

  
c) Primary velocities d) Secondary 

velocities  

Figure 2. Flows in third-generation. 

 

 
 

 

a) Primary velocities b) Secondary 

velocities  

Figure 3. Flows in eighth-generation. 
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Figure 7. Comparison of particle deposition 

efficiency in each generation. 

 

release locations are shown in detail in figure 9(b). In second 

generation, particles interact with the vortices here as shown in 

figure 9(c). Since purple particles are passing through the 

higher cross-flow velocity region, they get more affected by 

the vortex and get dispersed. Eventually, due to the combined 

effects of the vortex and geometry they diverge their paths and 

go to different tube after the first bifurcation. In the third-

generation tube, the magenta particle traces are being more 

affected by one of the vortices and being dispersed (see figure 

9(d)). However, the vortex is not strong enough to diverge the 

                                                                                                       
a) Mass flow variation in generations 

 
b) Secondary flow intensity variation 

in generations 

Figure 5. Mass flow and secondary flow intensity comparison. 

 

 

          

a) Second-generation                        b) Third-generation                               c)  Eighth-generation 

 
Figure 6. Comparison of dimensionless velocity profiles in generations-2, 3, and 8. 

 

 

a)  Color map for destination map 

 

  

          

b) Particle destination map       c) FTLE map 

Figure 8. Particle deposition in bronchial tube model. 
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particles’ path into different next generation tubes. As a result, 

they still travel to the same next generation tube. After the 

third-generation, particles are being more affected by the 

nonplanar, multigenerational geometry than the vortices as the 

vortices get weaker with increasing number of generations. 

 

4 Conclusions 

 Main objective of this paper is to understand and identify 

the importance of thermal effects of the inhaled air 

temperature on the flow and particle deposition in the small 

bronchial tubes. The results suggest that, the effects of the 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

differences between the inhaled air temperature and lung 

tube 

 

                                                                                                 

differences between inhaled air temperature and lung tube 

wall temperature have little impact on the flow fields and 

particle deposition in the small bronchial tubes corresponding 

to the 4-12 generations of lung airway network. Therefore, 

simulating flow and particle transport with heat-transfer do not 

appear to be meaningful for the small bronchial tube models, 

based on this study. 

 We also try to understand the effects of bronchial tube 

geometry with multiple bifurcations on the flows and particle 

deposition. The results showed that particle transport in nine-

generation bronchial tubes is mainly driven by the vortices and 

the nine-generation geometry. It was observed that the impact                

              

 

a) Particle traces in nine-generation bronchial tube model  

                                            

b) FTLE map and particle            c) Vortices in the second-generation                d) Vortices in the third-generation 

 release location                             interacting with particles                                interacting with particles 

Figure 9. Particle traces in the nine-generation bronchial tube model. 
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of vortices is prominent when particles are in first few 

generations where the vortices are stronger compared to the 

ones in further generations. After that, the particle paths are 

influenced mainly by the nonplanarity of the bronchial tube 

geometry. 
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A Simple Nonadditive Model of Water
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Abstract— Liquid water has rich thermodynamic behavior
over a range of temperatures and pressures[1]. Models
of water used in protein folding simulations must be fast
and reflect the underlying hydrogen bond network accu-
rately. Although greatly simplified, current models of water
can account for more then 99% of the CPU time during
numerical simulations[2]. Current models assume simple
additivity of free energy which is incorrect over coupled
degrees of freedom[3], [4] - and in the liquid state all of
the water is coupled. A novel statistical mechanical model
of water is presented encapsulating the essential nonadditive
free energies without recourse to computationally expensive
techniques.

Keywords: model of water, thermodynamic properties, statistical
mechanics, monte carlo simulation

1. Introduction
Liquid water is a system of great significance for the

study of biomolecules[5], [6]. Although pure liquid water
is a poor analog of the aqueous environments found in cells,
in nature, it is nonetheless widely used in both experiment
and numerical simulation. Even simple models of water are
computationally expensive with orders of magnitude more
CPU time spent on the water rather then the biomolecule
itself, in typical simulations[2]. Typically one to a few
layers of molecules are modeled around the biomolecule and
beyond that bulk water is described with a continuum model.
The water molecules are modeled as a set of points, with
fixed distances between each, and interact with one another
and with the biomolecule by a set of energy functions[7],
[8]. Among other, simplified, models of water are treating
water as two dimensional disks[9] and the Mercedes-Benz
model[10]. Simple models, such as the Ising model in mag-
netism, assist fundamental understanding without employing
complex or computationally expensive mathematics.

The first step in many models of liquid water for use with
biomolecules is to model pure water and reproduce physical
properties of liquid water[7], [8]. For the purposes of this
work, the density and specific heat of liquid water over a
broad range of temperatures and pressures is employed.

Instead of using continuous energy functions, a new model
where the bond between adjacent molecules can be classified
in one of a discrete set of states is presented. The character of
each bond is given by an average length, energy and entropy.
Further model parameters employed give rise to long range
interactions: (A) a strain energy parameter which adds a

small energy term if two parallel bonds across a single unit
cell are of dissimilar length and (B) an extra bond entropy
term which adds extra entropy to atoms which more then
one high-entropy bond adjoining them.

Specific heat at constant pressure, cp, and density, ρ,
are computed by standard statistical methods[11] from the
partition function. An average value, x, such as the average
energy E, required above, or the average bond length from
which the density can be computed, is found via a sum
over all states i as follows:

x =
Σxi exp (−Gi/kBT )

Σ exp (−Gi/kBT )
, (1)

where kB is Boltzmann’s constant and T is the temperature.
The Gibbs free energy, Gi, is detailed below.

To compute the specific heat at constant pressure, the
average energy of the system is found via Eq. 1, above,
and the appropriate derivitive is taken at fixed pressure as
follows:

cp =
∂E

∂T

∣∣∣∣
p

. (2)

However, the complete sum over all states of the system is
daunting for even modest size systems: the number of states
is 3N . Most of these states are highly unfavorable. Further,
most are very similar to a very large number of other states.
For small systems, the exact results of sums over all states
is compared with approximations of summing over all types
of states, as detailed below and checked for consistency.

Having three bond lengths implies the oxygen to oxygen
distance distribution would be a collection of delta func-
tions. However, these should be regarded as the centroids
of gaussian-like distributions of possible bond lengths. To
illustrate this, using the Heisenberg uncertainty relation with
the equipartition of energy, it is possible to estimate a lower
limit on the size of the width of such gaussians, in angstroms,
as a function of temperature. At room temperature, 300
Kelvin, this is about 0.05 angstrom, which is about six times
smaller then the experimental width of the nearest neighbor
peak of the oxygen-oxygen distribution function[12], [13].
The details of this calculation are reproduced in appendix
A, below.

2. Contributions to the Free Energy
The Gibbs Free Energy of some state i of the system is

given by, Gi = Ei + PVi − TSi, where E is the energy, P
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the pressure, T the temperature, V the volume, and S the
entropy. The energy, volume and entropy of the states are
adjustable model parameters of each type of bond modeled,
thus for three states nine parameters are required. However
the zero of both energy and entropy are arbitrary, reducing
the number of parameters to seven.

The three states are referred to as short, medium and long
in this article, reflecting the rank ordering of their bond
length parameters. The short bond has the lowest entropy
and energy and the long bond has the highest. Thus the low
temperature anomalies of water[14] are not studied currently
within this model, since that would require one or more extra
states which violate these rules. The goal of this work is to
show that most of the temperature and pressure phase space
can be modeled well with a limited model.

In addition to straightforward local statistical mechanics,
in which only energy and entropy are required, long range
interactions are invoked to model strain energy and the local-
ization of bonds by neighbors. These are termed nonadditive
interactions as they are extra terms on top of the regular
summation of energy and entropies. The two terms lead to
quite different effects.

The first is the strain energy for parallel mismatched
bonds. A small energy penalty is added to the state energy
Ei, for each mismatched pair of bonds.

To give all bonds a physical location, all bonds are placed
in an idealized hexagonal lattice and neighboring bonds, and
the six nearest parallel bonds, are identified for each. This
exercise was carried out by hand for 128 atoms in a 4x4x8
lattice and used to construct computer code which identifies
neighboring bonds and parallel bonds for lattices of arbitrary
size. Periodic boundary conditions are employed.

The second term is the extra bond entropy. A small
entropy term is added when two or more non-ground state
bonds meet at an oxygen atom. Six parameters are employed
to account for two, three or four of either the medium
or long bonds meeting at an oxygen. What about mixed
states? A long bond can be treated as a medium bond if
it will increase the extra bond entropy. For example, if
one short, one medium and two long bonds meet at an
oxygen, the larger of the extra bond entropy due to two
long or three medium bonds will be used. In future work, a
single parameter controlling the strength of these interactions
will be employed from which all possible combinations of
bond entropies will be derived. There is no unique way to
determine such a parameter and many possibilities are being
considered. Further, due to the tiny magnitudes of some of
these parameters, they may be dropped altogether and only
four, or perhaps three or four, higher entropy bonds meeting
at an oxygen will warrent consideration for extra bond
entropy. However, this is of great interest when increasing
the number of states, or generalizing this model in any way.
For the moment, only rank ordering of the six parameters
is enforced such that: the extra bond entropy must increase

as the number of non-ground state bonds increases and (b)
the extra bond entropy is greater for an equal number of
long bonds over medium bonds. The total number of free
parameters is 14, although as will be seen below, some of
these parameters are quite tiny - four orders of magnitude
smaller then the bond entropies.

3. Scaling the System
Even for the 128 atom system described above (256

bonds) the number of terms in the partition function is
3256 ≈ 10122. Since this would take longer then the age of
the universe to compute on all CPUs in existence, some kind
of approximation must be made. First a very small system
was created, a six atom oxygen ring with 18 bonds for
which the partition function could be computed exactly and
compared with various methods of sampling. The method
arrived at is to sample each combination of numbers of
short, medium and long bonds some large number of times,
weighing each triplet of numbers (e.g. the number of short,
medium, long bonds) by the appropriate multinomial coeffi-
cient. This is checked to ensure the two results are consistent
and then the sampling algorithm is scaled to the larger
systems. All possible triplets of number of types of bonds
are sampled, although for large enough systems, sampling
over various fractions of each could replace the numbers
(1% short bonds, 3% medium bonds and 96% long bonds
would be a sampled state instead of, say, 2 short 4 medium
and 250 long bonds, for example).

4. Results
Three different pressures are considered, 0.013 MPa, 400

MPa and 1000 MPa. The lowest and highest pressures avail-
able from a thorough set of experiments[1] were employed
and the middle number was chosen such that the density of
the 400 MPa data should fall about half way between the
two extremes. With only the three states considered and the
fourteen adjustable parameters, excellent agreement to either
density or specific heat and adequate fits to the other physical
property are possible. In the data below, the closer fit is to
density, as seen in Fig. 2 below. The excellent agreement
with density across temperature and pressure is superior to
the results of the TIP-5p model[7]. The TIP-5p model, along
with the SPC/E[8] model are the most commonly employed
models for molecular dynamics[7].

The effect of introducing the extra bond entropy and the
strain is to improve the goodness of fit (chi-squared) by
a factor of 3.5 - despite many of the extra bond entropy
parameters being very small, see Table 1 below.

5. Conclusions
A simple three state model of liquid water yields excellent

agreement with experimental density measurements, and
adequate agreement with experimental specific heat data
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Fig. 1: Number of long, medium and short bonds at medium
(400 MPa) pressure as a function of temperature. Note the
crossover from a plurality of short to medium bonds at a
temperature near 350 K. At higher pressure, the short bond
state is more highly favored, with both the medium and
long bonds suppressed. At low pressure, the longer bond is
significantly more favored at the expense of the short bond,
with about equal propensity for medium length bonds.

over a broad range of temperatures (273-373 kelvin) and
pressures (0.013 MPa - 1000 MPa). The model employs two
novel nonadditive terms: a (generally small) extra entropy
term added at the intersection of multiple high-entropy bonds
and a strain energy term for mismatched parallel bonds.
Despite some terms being small, these nonadditive terms
improve the goodness of fit by a factor of three and a half.

6. Future Work
A study of physical properties of small molecules in water

shall be employed to determine similar parameters for a
small set (as small as possible) between water and various
atoms of biological relevance. Such a set of parameters
would then be employed to model the water around and
between proteins for the purposes of protein folding, drug
design and docking. By replacing traditional means, either
the run-time of simulations can be greatly reduced or the
quantity of water modeled around proteins greatly increased.
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Fig. 2: Density in units of kilograms per cubic meter versus
temperature in kelvin for liquid water at three pressures: low
(0.013 MPa), medium (400 MPa) and high (1000 MPa). The
higher pressure result in correspondingly higher densities.
At each pressure, the density is nearly linear in temperature
with a small negative slope. The calculated values are
represented by squares (at low pressure), upright triangles
(at medium pressure) and left pointing triangles (at high
pressure). Agreement is within the size of the symbols at
high and medium pressure and only slight differences exist
at the lowest pressure, the largest of which is an 0.5%
difference at the lowest temperature.

8. Appendix A
The Heisenberg uncertainty relation is that the product

of the uncertainties in position and momentum must exceed
half the rationalized Plank’s constant. Applying this to the
axis of the bond, for convenience labeled the x-axis, gives:

∆x∆px > ~/2. (3)

The x-momentum is the product of mass times velocity
(since any velocity here is far below the speed of light
thus relativistic effects are negligible). All that is needed
is a relation between momentum and position to give a
lower bound on the uncertainty in position. There is a
relation in energy, but to employ it, a specific form of
potential (binding) energy is required. For this purpose,
an approximation is introduced: that the bond acts like a
single harmonic oscillator and thus the potential energy is
given by 1

2kx
2, where k is the spring constant and x is

the displacement from equilibrium position. More complex
relations such as the Lennard-Jones (6-12) potential can be
considered, but these are well approximated by a harmonic
oscillator when the energy is far below the dissociation
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Fig. 3: Specific heat at constant pressure of liquid water in
units of joules per gram-kelvin versus temperature in kelvin
for three different pressures: low (0.013 MPa), medium (400
MPa) and high (1000 MPa). With only three states, the
calculated data reflects the correct magnitudes in specific
heat but is unable to account for the more abrupt changes at
low temperature.

energy, which should be the case in question (liquid water
at room temperature).

The equipartition of energy theorem requires each the
degree of freedom to have the same energy as given below:

1

2
kBT =

p2x
2m

=
1

2
kx2. (4)

Combining these relations by setting ∆x = x and ∆px =
px, we find:

x >
~

2(mkBT )0.5
(5)

and

k2 < kBT/~. (6)

Plugging in known values at room temperature, the mini-
mum value of x is about 0.05 angstroms, which is about six
times smaller then the experimental width from the radial
distribution function. It is worth noting that for a single,
isolated harmonic oscillator, the wavefunctions can be found
exactly along with the uncertainties in both position and
momentum. In that case, equality in the Heisenberg relation
holds, meaning the wavefunctions are the “tightest” possible.
It is not surprising that a fluid cannot be modeled as a
collection of isolated single harmonic oscillators.

Table 1: Model parameters for short, medium and long bonds
of liquid water. All enthalpies, ∆H , have units of kcal/mol
and all entropies are dimensionless “pure” entropies (to pro-
duce entropies in the proper units, these values need only be
multiplied by Boltzmann’s constant in the appropriate units).
The bond lengths, < x >, are in angstroms and the extra
bond entropies xbs, are also unitless. The energy, entropy of
the short bond is set to zero without loss of generality[11].
The subscript of the extra bond entropy parameter denotes
the number of such bonds meeting at a particular oxygen
atom. The strain energy is 2.22×10−4 kcal/mol-K. Although
fourteen free parameters are employed, three of the six extra
bond entropy parameters are very small - three or four orders
of magnitude less then the typical change in entropy from
state to state of a single bond.

Parameter long medium short

∆H 3.25e-3 6.21e-4 0
∆S 4.47e-3 2.89e-3 0
< x > 3.37 3.01 2.71
xbs2 7.32e-7 6.83e-7 0
xbs3 3.84e-5 5.36e-6 0
xbs4 1.51e-4 1.83e-5 0
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Abstract: 
In recent years, the new trend is towards bio-fuel. One of these 

biofuels is ethanol (ethyl alcohol), which could be produced 

economically by the controlled fermentation of biomasses. The 

results of the alcoholic fermentation of beet sugar molasses 

and wheat milling residues (Akalona) were fed into a 

computer program. The kinetic parameters for these 

fermentation reactions were determined. These parameters 

were put into a kinetic model. Next, the model was tested, and 

the results obtained were compared with the experimental 

results of both beet molasses and Akalona. The deviation  of  

the   experimental  results  from  the   results obtained from 

the model was determined. An acceptable deviation of 1.2% 

for beet sugar molasses and 3.69% for Akalona  was obtained. 

Thus, the present model could be a tool for chemical engineers 

working in fermentation processes both with respect to the 

control of the process and the design of the fermenter.  

 

Keywords: Modeling, computation, biofuel, computer 

program, alcoholic fermentation. 

 

Nomenclature: 
ns       = Substrate utilization coefficient 

p = Product concentration (kg/m
3
) 

P0 = Initial product concentration (kg/m
3
) 

Pm = Ethanol concentration above which cells do 

not grow (kg/m
3
) 

P`m = Ethanol concentration above which cells do 

not produce ethanol (kg/m
3
) 

p =  Concentration driving force (kg/m
3
) 

qp  =  Specific ethanol production rate (g product/g 

cell/h) 

rs =  Reaction rate 

S  =  Substrate concentration (kg/m
3
) 

S0 =  Initial substrate concentration (kg/m
3
) 

Sm =  Substrate concentration calculated from the 

model (kg/m
3
) 

t  =  Time (h) 

V0  =  Maximum specific rate of ethanol production 

rate at zero ethanol concentration (g ethanol/g 

substrate/h) 

X  =  Biomass concentration (kg/m
3
) 

  =  Growth associated constant (g ethanol/g cell) 

  =  Non-growth associated constant (g ethanol/g 

cell/h) 

  =  Specific growth rate of cells (h
-1

) 

o, 1 =  Specific growth rate of cells in the presence of 

ethanol (h 
-1

) 

max  =  Maximum specific growth rate of cells (h 
-1

) 

~  =  Kinetic parameter in Bovee model 

 

Main nomenclature for the computer program: 
FOPTIM = Subroutine that defines the 

objective function 

SMIN = Subroutine that finds the minimum 

value for the objective function 

 

1. Introduction: 
Biofuels are a wide range of fuels which are in 

some way derived from biomass. The term covers solid 

biomass, liquid fuels and various biogases [1]. Biofuels are 

gaining increased public and scientific attention, driven by 

factors such as oil price spikes, the need for increased 

energy security, concern over greenhouse gas emissions 

from fossil fuels, and government subsidies. 

 

Bioethanol is an alcohol made by fermenting the 

sugar components of plant materials and it is made mostly 

from sugar and starch crops. With advanced technology 

being developed, cellulosic biomass, such as trees and 

grasses, are also used as feedstock for ethanol production. 

Ethanol can be used as a fuel for vehicles in its pure form, 

but it is usually used as a gasoline additive to increase 

octane and improve vehicle emissions. Bioethanol is widely 

used in the USA and in Brazil. 
 

Biofuels provided 1.8% of the world's transport 

fuel in 2008. Investment into biofuels production capacity 

exceeded $4 billion worldwide in 2007 and is growing [2].       
 

In the simulation of chemical and biochemical 

processes, the prediction of data has a dominant importance. 

The success or failure of this calculation depends on the use 

of a favorable mathematical model and upon reliable 

experimental data obtained in industry. Further, the optimal 
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automatic bioreactor control requires a mathematical model 

adapted to the potency of reliable sensors. 

 

James F. Bartes, et al [3] provided a nonlinear 

predictive integrating temperature model for a fermentation 

process. The model specifies or represents relationships 

between attributes or variables related to the temperature of 

the fermentation process, including relationships between 

inputs to the fermentation process and resulting outputs of 

the fermentation process. The nonlinear predictive 

integrating temperature model may be based on heat balance 

of the fermentation process, including a balance between 

available cooling and current fermentation heat generation. 

The model variables may also include aspects or attributes of 

other processes or sub-processes that have bearing on or that 

influence operations of the fermentation process. 

 

In biochemical processes, the mathematical model 

is a relationship describing the kinetic behavior which 

relates the biological rate of substrate consumption to 

substrate and product concentrations. The model has several 

parameters that can be estimated by fitting them to the 

experimental data. 

 

The decrease in growth rate and the cessation of 

growth due to the depletion of substrate may be described 

by the relationship between  and the residual growth 

limiting substrate, represented in the following equation [4]: 

                     
sk

s

s 
 max

                       (1) 

ks is numerically equal to the substrate concentration when µ 

is one-half max and is a measure of the affinity of the 

organisms. The formation of a growth-linked product may 

be described by the equation: 

 

                            dp/dt = qp x                         (2)   

 

y p/x is the yield of product in terms of substrate consumed 

(yp/x = dp/dx). 

 

              Combining the above two equations: 

                        qp =yp/x µ                          (3) 

 

The relationship between the specific ethanol 

production rate and the specific growth rate of cells can be 

represented by the following equation [5]: 

                            qp= (αµ) + β                     (4) 

The constants  and  are 2.2-2.9 g ethanol/g cell 

and 0.25-0.5 g ethanol/g cell/h, respectively. The data show 

that the overall good ethanol production rate was mainly 

contributed by the high specific growth rate. 

Two other kinetic models were also proposed to describe the 

kinetic pattern of ethanol inhibition on the specific rates of 

growth and ethanol fermentation [6]: 

µ1 /µo = l-(P/Pm)
α
       (for growth)                        (5) 

vi /vo 
= 1-(p /P¯m)

β
    (for ethanol production).  (6) 

 

The maximum allowable ethanol concentration 

above which cells do not grow was predicted to be 112 g/l. 

The ethanol-producing capability of the cells was 

completely inhibited at 115 g/l ethanol. On the other hand, 

there was a threshold concentration of ethanol (26 g/l) 

below which there was no inhibition. 

 

At a high value of  ( > 3), the inhibitory effect 

of ethanol was less pronounced, the ratio 1/0 remained 

almost unchanged (close to unity) even though p/pm 

increased from 0 to 0.3. 

 

This kinetic model seemed to be useful for 

representing the kinetics of alcohol fermentation. The model 

parameters (, , pm and p’m) depend on the microbial 

species, the physiological conditions of the micro organism 

and the status of the culture medium. 

 

Four  types  of  dependence  of  1  on  the  ethanol 

concentration p are as follows: 

(1) Linear relationship: 

1 = 0 - k1 p =  0 (1 – p/pm)                   (7) 

where k1 is an empirical constant. 

The above relationship was found to fit the kinetics 

of cellulose hydrolyzate to ethanol by Saccharomyces 

cerevisiae. 

 

(2) Exponential relationship: 

µ1 = µo exp (-k2P)                                   (8) 

where k2 is an empirical constant which depends on the 

method of cultivation (batch or continuous) (dimension l/g). 

 

     (3) Hyperbolic relationship: 

3

01
/1

1

kp
                       (9) 

where k3 is a constant (g/l). 

 

      (4) Parabolic relationship: 

        µ1 = µ0 (1-p/pm)
0.5                                          

(10) 
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     or                                    

µ1= µ0 – (αp/b - p)                      (11) 

 

      At similar p (b - p = b), the relationship becomes linear. 

 

      A generalized non-linear equation is: 

µ1 = µ0 (1-p/pm)
n       

                    (12) 

       

From the literature 

Pm = 68 g/l, p'm = 112 g/l, or Pm = 92.7 g/l, p'm = 114.5 g/l  

 

The maximum specific growth rate (max) could be 

calculated using experimental data for the exponential 

growth phase according to the definition: 

 

       µ= 1/t In[(Xi+ l)/Xi]            (h
-1)            (13)          

 

The values of max were determined using linear 

regression analysis upon the experimental growth curves. 

 

td = O.693/µmax                            (14) 

 

                   Y x/s = dX / - ds                             (15) 

 

Yx/s = biomass yield coefficient from the sugar utilized.  

                    Yp/s = dp / -ds          (g/g)            (16)  

                    yp/x = Yp/s IYx/s                         (17) 

 

yp/x = ethanol yield coefficient with respect to biomass 

formed. 

 

The values of Yx/s and Yp/s were calculated from 

experimental data using linear regression analysis. The 

conversion yield Y (% of theoretical) was calculated from 

the relationship: 

                     

                            Y = Yp/s /0.538                     (18) 

where 0.538 is the theoretical ethanol yield coefficient for 

the sucrose or glucose consumed.  

       

The productivity of fermentation was calculated 

from: 

               h l / g0max

p obtain  totime

PP
rP




         (19) 

 

A particular test [7] was performed to determine 

the alcoholic inhibition constant in the reaction kinetic 

model. It was deduced that the alcohol concentration had no 

substantially different effect on the metabolic activity of the 

immobilized cells as opposed to free ones. To evaluate the 

substrate utilization coefficient, ns, experimental 

measurements of the amount of substrate consumed, S, 

and ethanol produced, P, in the reactor were carried out 

and substituted in the form: 

-S = ns P                                 (20) 

 

2. Selection of the kinetic model: 
A relationship describing the kinetic behavior of 

alcoholic fermentation was investigated by Bovee [8] in the 

form: 

                      rs = dS/dt = k S
α
 p

β
                    (21) 

 

Using the yield relation between product and 

substrate, it is possible to describe, in both batch and 

continuous cultures, the ethanol and sugar concentration 

versus time. This pattern has been successfully tested on 

several fermentations performed by yeasts, including 

Saccharomyces Cerevisiae used in the experimental part of 

the present work, and a bacterium. 

 

This simple relationship is proposed as a tool for 

process control alcoholic fermentation. Parameters  and  

were correlated to the activation or inhibition effects of the 

substrate and product. Parameter k increases with the initial 

sugar concentration. 

 

The constraint of this model is: 

 

p =   ᷉(So -S)+Po                           (22) 

 A flexible digital computer program, SUGAR, was 

developed in the present work, to fit the model's parameters 

to the experimental data, by minimizing the following 

objective function which was proposed by Bovee [8]. 

 

Q = I / N2 


N

i 1
 [(Siexp - Sm)

2
+ (Piexp -Pm)

2
]   (23) 

where Siexp and Piexp are the experimental values of substrate 

and product, and Sm and Pm are the values calculated by the 

model. The parameters obtained can then be used for the 

calculations needed to design bioreactors. 

 

3. Program "SUGAR" for kinetic 

calculations: 
The program “SUGAR” is written in FORTRAN-

77 code for the VAX II computer with a DEC version 4.5 

operating  system. “SUGAR” consists of the main program, 
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four subprograms and one minimization routine "SMIN". 

The flow diagram of SUGAR is shown in Fig. 1. 

 

The input data consists of the experimental data of 

substrate and product concentrations, time and number of 

data sets. The parameters k,  and  are now calculated by 

minimizing the objective function. The substrate 

concentration is calculated by using the Runge - Kutta 

method. The input data to the program are the experimental 

results of N. A. Mostafa [9] and are given in Fig. 2 for one 

run. The output data of the program are the values of the 

computed parameters α, and k and the calculated data and 

the deviation between experimental and calculated data. 

These outputs are given in Fig. 3. 

 
Fig. 1: Flow diagram of “SUGAR” program 

   

9            129.166      000.350      0.2187 

 

003.0     125.000      001.530 

024.0     100.000      007.040 

048.5     046.450      019.350 

096.0     012.220      022,880 

120.0     010.500      026.300 

123.0     007.600      023.900 

144.0     004.270      022.500 

147.0     004.650      025.000 

168.0     004.090      022.800 
 

       Fig. 2: Input data to the program 

 

4. Results and discussion: 
The model so far reached is satisfactory enough 

when compared to other models [8]. The obtained results 

from the model, as shown from Figs. 4 and 5, can be 

evaluated as follows: 

 

(1) For beet sugar molasses: 

The model satisfies the experimental results of beet 

sugar molasses with a value for the standard deviation 

(objective function) of 1.2. This value is to be compared 

with the value of the Bovee model [8] which showed the 

range of 0-1. This difference between the two values of the 

deviation ranges may be due to: 

(a)  Bovee's work was based on pure glucose, an 

ideal substance for the kinetic study, whereas 

molasses, on which the present work is based, is 

a non-pure residue and is expected not to give as 

ideal results as given by pure glucose. 

(b) In Bovee's model, the effect of the yeast produced 

is not taken into consideration because it is 

assumed to be low. On the contrary, this is the 

condition of the present work where the 

experimental results indicated that the used S. 

Cerevisiae grows rapidly, giving a high cell 

density compared to other yeasts. Thus, it affects 

the results. 

 

(2) For Akalona hydrolyzate: 
Applying the model on the results of Akalona 

hydrolyzate gave a deviation value of 3.69 compared to 1.2 

for beet sugar molasses. This may be explained as follows: 
(a)  Molasses fermentation gives rise to mainly one 

sugar (sucrose) but Akalona hydrolyzate 

contains many sugars, as indicated by the 

analysis of Akalona hydrolyzate and by the 

literature [9]. This may be a reason for the 

deviation of the error range for Akalona 

hydrolyzate from its value for molasses. 

    (b) Akalona hydrolyzate contains strange substances 

due to acid hydrolysis of the cellulosic content 

[10,11], which have an  inhibitory effect on the 

yeast strain (S. Cerevisiae). The degree of 

substrate inhibition was found to be higher for 

bagasse hydrolyzate reported for ethanol 

fermentation of pure sugar. This, in turn, 

affects the value of the kinetic       parameters, 

thus leading to a higher value for deviation. 

(c) As mentioned for beet sugar molasses, the 

relatively large amount of yeast produced 

affects the value of the standard error. 
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ALFA = 0.000500000024       BETA = 0.004067549016          KAPPA = 1.5000000 

I     T       SE        S    DELS      PE       P   DELP 
1      3.0  125.00000  125.79620  -0.79620   1.53000    1.08898   0.44302 
2    24.0  100.00000    98.56013   1.43987    7.04000    7.31240  -0.27240 
3    48.5    46.45000    46.79315  -0.34315  19.35000  18.67634   0.67366 
4    96.0    12.22000    17.97811  -5.75811         22.88000  25.57680  -2.69680 
5  120.0   10.50000    12.22000  -1.72000  26.30000  22.88000   3.42000 
6  123.0      7.60000    10.50000  -2.90000  23.90000  26.30000  -2.40000 
7  144.0      4.27000      7.60000  -3.33000  22.50000  23.90000  -1.40000 
8  147.0      4.65000      4.27000   0.38000  25.00000  22.50000   2.50000 
9  165.0      4.09000      4.65000  -0.56000  22.80000  25.00000  -2.20000 

 

Fig. 3: Output data of the program 

 

 

                                           

Fig. 4: Experimental and calculated results, 

            from the model for fermentation of  

            sugar beet molasses 

  

 
  Fig. 5: Experimental and calculated results for   

              fermentation of Akalona hydrolyzate 

 

Conclusions: 
The values of the kinetic parameters of the 

Bovee model [8] were determined from the experimental 

results [9] of alcoholic fermentation of beet sugar 

molasses and Akalona. The computer simulation of the 

model showed a value of 1.2 as standard deviation for 

beet sugar molasses and 3.69 for Akalona. Thus, this 

model with its optimized values of ,  and k can be 

used as a tool for process control alcoholic fermentation 

of beet sugar molasses and Akalona. 
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Abstract - The simulation of some epidemic models was 

made using computational software such as Maple and 

Sage, and the results were analytical or numerical 

solutions. The performance of each program was compared 

and these results could be applied to model the current 

spread of disease in the world. The obtained graphics show 

the behavior of the models in some hypothetic cases.   

 

Keywords: Epidemic Models, Computational Software: 

Maple and Sage, SI model, SIR model, SEIR model, Vector 

Borne Model.  
 

1 Introduction 

  Currently, the epidemics reach high level of spread of 

disease as a result of the globalization, and sometimes the 

behavior is unknown and the control can be very 

challenging. Due to this, epidemic models have been 

developed to predict the outbreak and the proliferation of 

the infection.  

Nevertheless, these models are not lineal and the solution 

cannot be obtained analytically, that is why only numerical 

solutions are gotten through the use of computational 

software such as Maple and Sage. In previous studies, the 

nonlinear models have been considered only from the point 

of view of computation of the so called basic reproductive 

number, using computer algebra[1,2,3,4,5].  

The objective of this paper is to compare the performance 

of these two software: Maple[6] and Sage[7], modeling the 

SI model, SIR model, SEIR model and Vector Borne 

model, and contrast the results and the benefits of each one.  

 

2 Problem 

2.1 SI Model 
In the SI Model the equations are: 

(1)
 

(2) 

Where, β is the contact or infection rate of the disease, and 

x(t) and y(t) are susceptible and infected individuals 

respectively.  

 

2.2 SIR Model 

In the SIR Model the equations are: 

(3)
 

(4) 

(5) 

Where, β is the contact or infection rate of the disease, g 

represents the mean recovery rate; x(t), y(t) and z(t) are 

susceptible, infected and recovered individuals respectively. 

 

2.3 SEIR Model  

In the SEIR Model the equations are: 

 (6) 

 (7) 

 (8) 

 (9) 

Where, β is the contact or infection rate of the disease, σ is 

the transition rate of the exposed individuals to the infected 

one, g represents the mean recovery rate; x(t), y(t), z(t) and 

w(t) are susceptible, exposed, infected and recovered 

individuals respectively. 

 

2.4 Vector Borne Model 
In Vector Borne Model the equations are: 

 
(10) 

 (11) 

 (12) 

 
(13) 

 
(14) 

 
(15) 
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Where, βm,h  is the contact or infection rate of the disease 

due to mosquitoes over humans, βh,m is the contact or 

infection rate of the disease in humans when mosquitoes 

spread the infection ,  gh   represents the mean recovery rate 

in humans, and gm the mean recovery rate in mosquitoes; 

xh(t), yh(t) and zh(t) are susceptible, infected and recovered 

individuals respectively, and xm(t), ym(t) and zm(t) are 

susceptible, infected and removed mosquitoes respectively. 

 

3 Method 

 

In this section, the algorithms using Maple are presented in 

the first column, and in the second one, using Sage. 

3.1 Algorithms using 

Maple 

3.2 Algorithms using 

Sage 

  

 

4 Results 

With the previous algorithms it was possible to obtain the 

following results using Maple and Sage: 

 

4.1 Results using Maple 

 

4.1.1 SI Model 
For the case of a closed population of constant size N=n+a, 

where n is the initial number of susceptible and a is the 

initial number of infected individuals, we have the 

following analytic solution 

(16)   

 (17) 

For the case of a closed population with variable size 

N(t)=N+μ·t, we have the analytic solution, n equation 18. 

    (18) 

where a is the initial number of infected individuals, and 

erf represents the errors function defined as  

               (19) 

A numerical illustration, for the case with closed 

population with constant size is made possible using Maple 

with the following commands 

sys1:=diff(x(t),t)=-beta*(x(t))*(y(t)),diff(y(t),t)=beta*(x(t) 

*y(t)): 

 fcns1:={x(t),y(t)}: 

p1:=dsolve({sys1,x(0)=45400,y(0)=2100},fcns1,type=num

eric,method=classical): 

odeplot(p1,[[t,x(t)],[t,y(t)]],0..300); 

 

And the result is showed in the illustration 1 

 

Illustration 1. Result SI Model, closed population with 

constant size 

A numerical illustration for the case of population with 

variable size is as follows in equation 20: 

        

 

      (20)

  

Problem 

Equations 

Dsolve rk4 

Solution 

Plot 

Initial Conditions 

Graphic 

Problem 

Equations 

Dsolve 

Initial Conditions 

Solution 

Odeplot 

Graphic 
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The corresponding graphic is showed in illustration 2  

 

Illustration 2. Result SI Model population with variable 

size 

 

4.1.2 SIR Model 
A numerical illustration, for the case with closed 

population with constant size is illustrated as it follows  

 

sys:=diff(x(t),t)=-beta*(x(t))*(y(t)), 

diff(y(t),t)=beta*(x(t))*(y(t))-g*(y(t)),diff(z(t),t)= g*(y(t)):  

fcns:={x(t),y(t),z(t)}: 

p:=dsolve({sys,x(0)=45400,y(0)=2100,z=2500},fcns,type=

numeric,method=classical): 

odeplot(p,[t,x(t)],0..300,numpoints=25); 

 

And the results are showed in the illustration 3 and 4 

 

Illustration 3. Result SIR Model, susceptible individuals 

 

Illustration 4. Result SIR Model 

 

4.1.3 SEIR Model  
A numerical illustration, for the case with closed 

population with constant size is made using the next 

command  

sys2:=diff(x(t),t)=-beta*(x(t))*(z(t)),diff(y(t),t=beta*x(t))-

sigma*(y(t),diff(z(t),t)=sigma*(y(t))-

g*(z(t)),diff(w(t),t)=g*(z(t)):  

fcns2:={x(t),y(t),z(t),w(t)}: 

p2:=dsolve({sys,x(0)=45400,y(0)=2100,z=2500,w(0)=1000

0},fcns2,type=numeric,method=classical): 

odeplot(p2,[t,x(t)],[t,y(t)],[t,z(t)],[t,w(t)]0..300); 

 

And the results are presented in illustration 5 

 

Illustration 5. Result SEIR Model 

4.1.4 Vector Borne Model 
A numerical result, for the case with closed population 

with constant size of individuals and mosquitoes is made 

through the following command 
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And the results can be observed in illustration 6 

 

Illustration 6. Result Vector Borne Model 

 

 

 

4.2 Results using Sage 

4.2.1 SI Model 
In Sage the algorithm for a numerical illustration, in the 

case with closed population with constant size, is the 

following one 

 

 

And the initial conditions provides the illustration 7 

Si_ode(45400, 2100, 300) 

 
Illustration 7. Result SI Model  

 

4.2.2 SIR Model 
The algorithm for a numerical illustration, in the case with 

closed population with constant size is  
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The initial conditions are changed and the results are 

showed in illustration 8 and 9. 

sir_ode(45400, 2100, 2500, 300) 

 

Illustration 8. Result SIR Model 

sir_ode(45400,2100,2500,300,beta=1/50000) 

 
Illustration 9. Result SIR Model with different beta  
 

plot1 = sir_ode(45400, 2100, 2500, 150) 

plot2 = sir_ode(45400, 2100, 2500, 150, 

gamma=1/10^2, colors=['gray','purple','orange']) 

show(plot1 + plot2) 

 

The result is showed in the illustration 10.  

 

Illustration 10. Result SIR Model for both cases 

 

4.2.3 SEIR Model 
For the case of a closed population with constant size, it’s 

possible to obtain a solution through the following 

algorithm 
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The initial conditions give the results showed in the 

illustration 11 
seir_ode(45400, 9000, 3100, 2500, 300) 

 

Illustration 11. Result Vector Borne Model 

4.2.4 VECTOR BORNE MODEL 

 

A numerical result, for the case with closed population 

with constant size of individuals and mosquitoes is made 

through the following algorithm 
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The initial conditions produce the following graph 

 
 

5 Conclusions 

 
In this paper, several epidemic models were considered and 

the solutions were obtained through the application of two 

different software: Maple and Sage. The mathematical 

calculus and the speed, besides the computational 

language, were better in Maple. However the graphics of 

Sage gave a better view of the behavior of the models, even 

though Sage is very strict about its syntax. On the other 

side, Maple has a lot of commands to improve the graphics, 

therefore with a basic understanding, its performance is 

way better than Sage.  

In addition, Maple is software which needs a license for its 

use, and Sage is free software that is available to everyone 

who wants it, only with an internet connection. Even so, 

Sage still has a lot of problems with the server, and not 

always is working good.    

The epidemic models studied in this work could be useful 

to model some of the epidemics worldwide, due to easier 

incensement of the illness at the present time, and we hope 

that this model can predict the conduct and prevent the 

proliferation of the epidemics.  
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METABOLIC NETWORKS USING MAPLE 
 

DIEGO IGNACIO VELEZ JARAMILLO 
COMPUTATIONAL AND THEORICAL PHYSICS GROUP 

LOGIG AND COMPUTACIONAL GROUP 
ENGENERING PHYSCIS PROGRAM 

EAFIT UNIVERSITY 
MEDELLIN, COLOMBIA 

 
Abstract - In this article is simulated the reconstruction of 

metabolic networks by means of an algorithm in maple that 

represents the genome and its form of expression. The 

metabolic networks are represented by means of graphs, 

which are constructed from their matrices of adjacency (first 

squared that represents the connections between elements). 

Using the adjacency matrix also constructs a graph of density 

by means in which the algorithm for the reconstruction of the 

gene is applied. 

Keywords: Genome, graphs, metabolic networks, molecular 

physiology, maple.  

 

1 Introduction 

   
 A gene is an organized linear sequence of nucleotides that 

contains the necessary information for the synthesis of a 

macro-molecule with specific cellular function, normally 

proteins. The proteins occupy a place of maximum 

importance between constituent molecules of the alive beings, 

practically all the biological processes depend on the 

presence or the activity of this type of molecule. Due to this 

the importance of studying the form in which the genes 

manipulate this information and the form that the 

macromolecules express themselves. Also the expression 

form can be manipulated to take macro-molecules to a wished 

protein.  

2 Problem 

  
 Show how from the genomes is reconstructed molecular 

physiology [1,2]. 

 
 

2.1 Molecular Physiology treat 
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3 Method 

1. Represent metabolic networks as graphs, defined 

by its adjacency matrices 

2. Represent the adjacency matrix as a graph of density 

3. Represent the genome using the following 

algorithm for image reconstruction. 

 

The following algorithm represents the genome and how it 

manipulates information to reconstruct the molecular 

physiology. 
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4 Results 

 

>  
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Metabolic network Taken for analysis 
 

 
>  
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5 Conclusions 

 

In this article I simulate the reconstruction of metabolic 

networks by means of an algorithm that represents the 

information codified within a gene. By means of this 

information it is possible to know the form that a macro-

molecule is processed and representing it by means of a dens 

dad graph. In the development process many reconstructions 

were realized beginning by graphs of low complexity in which 

was observed that the realized reconstructions were exact, as 

the complexity of the interactions are increased and these 

behave in a asymmetric form, it's observed that the 

reconstructions move away a little from their original 

structure. These discrepancies are acceptable considering that 

conserve the central structures. This can be interpreted like the 

variation between phenotypes from an original genotype. 
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screening of Citrus limon cultivars infected by the causal 
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Abstract - The mathematical survey of the different studied 

cultivars, using a polynomial model, permits to describe the 

resistance state of the infected plants. The polynomial 

interpolation at 5 degrees appears to be the most adequate for 

this mathematical model. Comparison of R
2
 values showed 

that the polynomial regression at the 5 degree gives the best 

results. The statistical analysis confirm those obtained by the 

polynomial model. This polynomial model have the advantage 

to give a strict evaluation of the state of the resistance of the 

cultivar tested and not a relative estimation as its in the case 

of the different mathematical and statistical others classic 

tools usually used to evaluate the state of the plant resistance. 

The computing model is able to distinguish between the three 

resistances levels of Citrus limon cultivars tested.  

Keywords: Biomath, Modelling, Citrus limon, Phoma 

tracheiphila  and Bioinformatic  

 

1 Introduction 

  Plant diseases are responsible of 14.1% of the world 

crop loses which represent $220 billion of dollars. These 

phytopathological damages imply several others problems in 

different sectors concerning human health, the environment 

and some social and economic aspects of our life [1]. In order 

to have an efficient solution to control the causal agents of 

these diseases it is very important to understand the 

mechanism of these illnesses very well [2, 3].    

 In phytopathology, the Mathematical tools used offer 

models describing the process of the infection [4]. These 

mathematical models allow to describe the pathological 

processes and therefore to foresee the most efficient control 

methods. The mainly mathematical tools used to model the 

plant diseases are: Disease progress curves, Linked 

Differential Equation (LDE) and Area Under disease Progress 

Curve (AUDPC). Statistical analyses are also employed in the 

studies of epidemiology of plant diseases. Each tool is utilized 

for an acute appropriate purpose to model some aspects of the 

disease development.  

 The specificity of the host-parasite relationships 

determine the variables and the adequate mathematical model 

to be used. On the basis of these chosen mathematical tools 

the most Known model developed in the phyotopathological 

studies are: Monomolecular, Exponential, Gompertz and 

Logistic models. The logistic model which was proposed 

firstly by Veshulst in 1838 to represent human population 

growth was after developed by Van der Plank (1963) [5], to 

being more appropriate for most polycyclic diseases. This 

growth model is the most widely used for describing 

epidemics of plant disease [3,6]. 

 Using the logistic model alone or combined with others 

tools many plant diseases were described. In the case of the 

Citrus disease „„Mal secco‟‟, there is no reports referring to 

the development of a model allowing to test the resistance 

degree of the susceptible infected host plants. The causal 

agent of the „„Mal secco‟‟, Phoma tracheiphila (Petri) [Kanc 

et Ghik.], is responsible of many important losses in the Citrus 

crop orchards and it‟s the most destructive fungal disease of 

lemon plantation worldwide [2]. As fungicides treatments 

showed non efficient results to control this pathogen, the 

research of resisting cultivars remains the most efficient 

solution to decrease the losses inflicted by the pathogen [7].  

2 Material and methods 

2.1 Biological Material 

 Plants belong to Citrus limon cultivars and a highly 

virulent pathogenic isolate of the causal agent of Mal secco 

were used. The green house inoculation method used is its 

described by Hajloui et al (2000) [8]. 120 inoculation points 

in total are assessed per plant. A scale of six classes is used to 

evaluate the reaction of tested plants. The classes are 

numbered from 0 to 5.  
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2.2 The Mathematical Model 

2.2.1 Polynomial interpellation 

 

 The cumulative percentage frequency of each class is 

calculated for all the tested plants. The calculation of the 

cumulative frequency is determined as described below: 

Yi=  /120]*100 

 

Yi= The cumulative frequency at the respective class, Xi.  

Xi= class „i‟‟ varying from “0” to “5” 

120, it‟s the number of the inoculation points tested.  

The representative curve of the cumulative percentage 

frequency for the different tested plants it‟s a polynomial. The 

degree of the polynomial is fixed referring to the theorem of 

Lagrange. This is approved using the data of the inoculation 

test and the calculation of the coefficient of determination 

“R
2
”.  

 

f(xi) = a xi
 5
+b xi

 4
+c xi

 3
+d xi

 2
+e xi

 1
+f  

To determine the coefficients of the polynomial function a 

linear system of six equations is used: 

 

 Y0 = a x0
 5
+b x0

 4
+c x0

3
+d x0

2
+e x0

1
+f  

 Y1= a x1
 5
+b x1

 4
+c x1

3
+d x1

2
+e x1

1
+f  

 Y2= a x2
 5
+b x2

 4
+c x2

3
+d x2

2
+e x2

1
+f  

 Y3= a x3
 5
+b x3

 4
+c x3

3
+d x3

2
+e x3

1
+f  

 Y4= a x4
5
+b x4

 4
+c x4

3
+d x4

2
+e x4

1
+f  

 Y5= a x5
5
+b x5

 4
+c x5

3
+d x5

2
+e x5

1
+f  

 

To calculate the coefficients a, b, c, d, e and f, we use 

Gaussian elimination method [9].  After the coefficients are 

determined, the polynomial is used to calculate the area under 

the curve of the infected plant by integrating f(x) from 0 to 5: 

 

2.2.2 Statistical analysis 

For data analysis of the artificial inoculated plants, the 

biosoftware Statisica version 5.1 was used. Newman and keul-

Keuls test at p=0,05 of Anova order 1 was   performed. 

 

2.2.3 Computing the plant resistance level 

Mathematical description of the resistance level of the 

infected plants is based on the characteristics of their 

polynomial regression curve. Three types of polynomial curve 

can be described: 

 

Type A: with an upper concave convection 

Type B: with a mixed convection curve 

 Type C: with a lower concave convection 

 

The parametric analysis of each polynomial curve by 

calculating its derivative near the convection points, allows 

distinguishing between the three types.  

 

    f‟(xi) = 5a xi
4
+4b xi

3
+3c xi

2
+2d xi+e 

 

The derivative calculation for each polynomial regression 

curve is performed from the point xi =1 to the point xi =4. A 

linear regression curve to fit the calculated values of the 

derivative is determined using these formulations: 

 

                               yi‟= axi+b 

 

a=  

 

b= -
 a  

 

with : 

= means of xi 

= means of y‟i 

 

The adjustment of the fitted linear derivative regression 

curve is appreciated using its R‟
2
 value. Higher value of R‟

2
 

characterizes both the type A and C while the type B is 

determined by its R‟
2 

as equal or less than 0,5. The coefficient 

„„a‟‟ is positive for type A and negative for type C. 

 

 

2.3 Algorithm building 

In order to determine the coefficients a, b, c, d, e and f, we 

use Gaussian elimination method: 

 

INPUT : A(n, n), b(n)  

OUTPUT: x(n) as the solution  

 

for k=1 to n-1  

for i = k+1 to n  

factor = A(i , k)/A(k , k)  

for j=k+1 to n  

A(i , j) = A(i , j) – factor*A(k ,j)  

end  

b(i)=b(i)-factor*b(k)  

end  

end  

x(n)=b(n)/A(n,n)  

582 Int'l Conf. Bioinformatics and Computational Biology |  BIOCOMP'11  |



for i=n-1 to 1  

sum=0  

for j=i+1 to n  

sum=sum+a(i,j)*x(j)  

end  

x(i)=(b(i)-sum)/a(i,i)  

end 

 

After the coefficients are determined, the polynomial is used 

to calculate the area under the curve of the infected plant by 

integrating f(x), from 0 to 5. We use Simpson‟s method to 

compute the area under the regression polynomial curve: 

 

INPUT : p(x), a (lower limit of integration), b (upper limit of 

integration), n (the number of subintervals to divide interval 

[a,b], n must be divisible by 3)  

OUTPUT: Integral of p(x) from a to b  

 

SECTIONS = n/3  

h = (b-a) / n  

APPROX = 0  

for i=1 to SECTIONS:  

x0 = a + 3 * (i–1) * h  

x1 = x0 + h  

x2 = x1 + h  

x3 = x2 + h  

APPROX = APPROX + p(x0) + 3*p(x1) + 3*p(x2) + p(x3)  

end  

INTEGRAL = 3 * h/8 * APPROX 

 

To discriminate between the three types of the regression 

polynomial curves determined by the mathematical model we 

elaborated this Algorithm: 

 

INPUT : p(x)= ax
5
+bx

4
+cx

3
+dx

2
+ex+f 

OUTPUT: Fitted Line (y= 'a x+ 'b ), R
2
 and Decision 

 

Step 1: for i=1 to 4 

      xi=i 

 end 

 

Step 3: Find the derivative of p(x) 

          )(' xp = 5ax
4
+4bx

3
+3cx

2
+2dx+e 

 

Step 4: for i=1 to 4 

      yi= )(' ip  

 end 

Step 5: Find 

_

x (the average of xi) 

                   for i=1 to 4 

             sum=sum+xi 

                   end 

                   

_

x =sum/4 

Step 6: Find 

_

y (the average of yi) 

       for i=1 to 4 

             sum=sum+yi 

                  end 

      
_

y =sum/4 

Step 7: Find 'a  (the coefficient of x for the fitted line) 

        for i=1 to 4 

              sum1=sum1+ ))((
__

yyxx ii   

             sum2=sum2+
2

_

)( xxi   

      end 

           'a =sum1/sum2 

 

Step 8: Find 'b  (the constant term of the fitted line) 

 'b =
__

xay  

 

Step 9: Find 
iy



 for all i=1,…,4 

      for i=1 to 4 

             
iy



= 'a .
i+ 'b  

                  end 

 

Step 10: Find R
2
 

        for i=1 to 4 

              sum1=sum1+
2

_^

)( yyi  

             sum2=sum2+
2

_

)( yyi   

      end 

           R
2
=sum1/sum2 

 

Step 11: If (R
2 
<= 0.5) Then  

    the tested plant is classified as tolerant 

 

    Else If (a>0) Then 

      the tested plant is classified as sensible 

    

   Else If (a<0) Then 

    the tested plant is classified as resistance 

     

   End If 

 

2.4 Results and discussion 

The greenhouse artificial inoculation of the tested lemon 

cultivars was surveyed on the basis of severity of the disease 

symptoms following foliar inoculation. Three Citrus cultivars; 

Eureka, Interdonato and Monachello were used in this test. 

All the tested plants developed the pathological symptoms 

caused by the parasite after the incubation period. Cultivars 

Eureka and Monachello expressed, relatively, the highest and 

the reduced degree of the disease index. However, 
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Interdonato, showed an intermediate index of the disease 

severity. Statistical analysis indicate a significant differences 

between the three inoculated cultivars at p=0,05. According to 

this analysis, the tested plants were ranked in three different 

groups of resistance (Table 1). 

 

Table 1: Infection severity rating of lemon cultivars. 

 

Cultivars Severity of the disease Ranked group 

Eureka 4,216 I  

Interdonato 2,225 II 

Monachello 0,8 III 

 

I= sensible, II= Tolerant and III= Resistant 

 

Calculation of the coefficients of the polynomial regression 

curves by the biomathematical model for the three resistance 

groups is resumed in the table 2. 

 

Table 2: Parameters of the fitted polynomial curves 

 

Cultivars Regression curve area 

Eureka y = 0,187x
5
 - 1,736x

4
 + 6,701x

3
    

- 12,43x
2
 + 13,944x + 2,5 

119,17 

Interdonato y = 0,263x
5
 - 2,534x

4
 + 7,638x

3
    

- 5,798x
2
 + 0,430x + 47,5 

297,85 

Monachello y = 0,208x
5
- 3,159x

4
 + 18,611x

3
    

- 54,340x
2
 + 82,847x + 41,666 

455,43 

 

The polynomial‟s coefficients determined by the bio-

mathematical model were in concordance with its obtained by 

Mathematica uses Hermite interpolation technique to find 

fitting curves to a given sets of data [10].  

Elevated value of R
2
, determined by the model for all the 

groups of resistance, indicates the strength of fit between the 

polynomial regression curve and the percentage of the 

cumulative frequency. The area under the curve (AUC) 

calculated for the group I was the lowest. The group II and III 

were characterized but their respective increased value of the 

AUC.  

Drawing the representative fitted curve, it was also found 

that the type A of the polynomial is correlated with the group I 

of resistance. While the type B was attributed to the group II  

of resistance. The type C is associated with the group III of 

resistant plant (Figure 1).  

The algorithm build recognize the different studied groups 

and attribute to the tested plant its level of resistance. The tests 

performed on citrus limon cultivars using the biomathematical 

model are in perfect concordance with those obtained by the 

usually statistical tools. 

The mathematical model is able to evaluate the resistance of 

the infected plant without using comparative methods. The 

model describes the repartition of the different classes of the 

disease to evaluate more precisely the reaction of the host 

infected by the parasite. 

 

 

 
  Figure 1:  The polynomial regression fitted curves  

 

 

The response of the studied cultivars, as it‟s recorded and 

analyzed by the mathematical model reflects the natural 

behavior of the tested plant in the orchards. 

Taking into account the obtained results, the model proved 

to be an efficient new method for the resistance screening in 

the host parasite biological interaction system of citrus limon 

cultivars and their pathogenic fungi  Phoma tracheiphila. 

 

3 Conclusions 

 The factors most likely to influence the results of the 

phyopathological tests are mainly the techniques of the 

inoculation and the methods of the analysis used. As the 

procedures vary between the laboratories the results also 
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differ even for the same tested biological sample. In order to 

overpass these difficulties and standardize the protocols of the 

disease assessment, the biomathematical model offer an 

appropriate solution.  

 Extending the results of this study to others groups of 

resistance in Citrus plants its needed to cover the whole 

specter of the host plants of the parasite, from the very 

susceptible one to the highly resistance. 
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The Genetic Code, 8-Dimensional Hypercomplex 
Numbers and Dyadic Shifts 

  

Sergey V. Petoukhov 
  Department of Biomechanics, Mechanical Engineering Research Institute of RAS, Moscow, Russia 

Abstract - The article is devoted to algebraic features of 
structural phenomena of molecular ensembles of the genetic 
code. Matrix forms of presentations of the genetic code 
allow showing deep relations of the genetic code with dyadic 
shifts and algebras of 8-dimensional hypercomplex 
numbers. Hadamard matrices and orthogonal systems of 
Rademacher and Walsh functions, which are well-known 
formalisms from discrete signal processing, participate in 
this discovery of hidden structural features of the genetic 
code. The described results are useful to understand a non-
casual character of the genetic code systems, which has a 
deep algebraic nature. The results lead to new theoretical 
approaches in the field of algebraic biology.  
 
Keywords: Code, Hypercomplex Numbers, Dyadic Shifts 
 
1 Introduction 
 

 biological meaning of genetic informatics is reflected 
in the brief statement: "life is a partnership between 
genes and mathematics" [22]. We are trying to find 

math which is a partner of the genetic code. One of the 
possible directions of search is to use matrix forms of 
presentation and analysis of ensembles of molecular 
elements of the genetic code. Matrix representations and 
methods are widely and successfully used in the theory of 
error-correcting coding and processing of information, 
theoretical physics, computer science, the theory of 
hypercomplex numbers, etc. In this regard, a scientific field 
called "Matrix genetics" exists, which studies the matrix 
presentation of the genetic code, including through 
borrowing matrix methods from the field of digital signal 
processing [10, 11, 14, 15, 17]. Our results are a part of 
"algebraic biology", which gave rise to thematic conferences 
and international societies; the journal “Bulletin of 
Mathematical Biology” identifies this area as a separate 
category. 

This article is devoted to author’s results on algebraic 
features of structural phenomena of molecular ensembles of 
the genetic code. More precisely it shows relations of the 
genetic code with dyadic shifts, algebras of 8-dimensional 
hypercomplex numbers, Hadamard matrices, orthogonal 
systems of Rademacher and Walsh functions and the 
sequency theory by Harmuth [6-9].  

 

 Symbols of genetic letters from a 
viewpoint of binary-opposite attributes 

C A G U/T

BIOCOMP. Manuscript received March 9, 2011. This work was 
supported in part by the Russian Federal Agency of Science and Innovations 
(the contract № 02.740.11.0100) and by the Russian Federal Agency on 
Education (the contract № P377).  

 

2 Genetic matrices, dyadic shifts, 
Rademacher functions and            
8-dimensional hypercomplex numbers 
 

The four letters of the genetic alphabet A (adenine), C 
(cytosine), G (guanine), U/T (uracil in RNA or thymine in 
DNA) represent specific poly-atomic constructions. The set 
of these four constructions bears the substantial symmetric 
system of distinctive-uniting attributes (or, more precisely, 
pairs of "attribute-antiattribute"). The system of such 
attributes divides the genetic four-letter alphabet into the 
following three pairs of letters, which are equivalent from a 
viewpoint of one of these attributes or its absence: 1) С = U 
& A = G (according to the binary-opposite attributes: 
“pyrimidine” or “non-pyrimidine”, that is purine); 2) А = С 
& G = U (according to the attributes “keto” or “amino”);           
3) С = G & А = U (according to the attributes: three or two 
hydrogen bonds are materialized in these complementary 
pairs). The possibility of such division of the genetic 
alphabet into three binary sub-alphabets is known from the 
work [12]. We utilize these known sub-alphabets in the field 
of matrix genetics which studies matrix forms of 
presentation of the genetic code. Let us mark these three 
kinds of binary-opposite attributes by numbers N = 1, 2, 3 
and ascribe to each of the four genetic letters the symbol 
“0N” (the symbol “1N”) in a case of presence (of absence 
correspondingly) of the attribute under number “N” in this 
letter. As a result we obtain the representation of the genetic 
four-letter alphabet in the system of its three “binary sub-
alphabets corresponding to attributes” (Fig. 1). 

№1 01 – pyrimidine (one molecular ring); 
11 – purine (two rings in a molecule) 

01 11 11 01 

№2 02 – amino; 
12 – keto 

02 02 12 12 

№3 03 – a letter with three hydrogen bonds; 
13 – a letter with two hydrogen bonds 

03 13 03 13 

 
Fig. 1. Three binary sub-alphabets according to three kinds of 
binary-opposite attributes in a set of nitrogenous bases C, A, G, U. 

 
On the basis of the idea about a possible analogy between 

discrete signals processing in computers and in a genetic 
code system, one can present the genetic 4-letter alphabet in 
the following matrix form [C  A; U  G] (Fig. 2). Then the 
Kronecker family of matrices with such alphabetical kernel 
can be considered: [C  A; U  G](n), where (n) means the 
integer Kronecker (or tensor) power [11, 14, 15, 17]. The 
matrix [C  A; U  G](3) contains 64 triplets in a strict order 
(Fig. 2).  

A
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 0 1 

 
[C A; U G] 

= 

 
0 

C 
0 

A 
1 

 
1 

U 
1 

G 
0 

 
   000 (0) 001 (1) 010 (2) 011 (3) 100 (4) 101 (5) 110 (6) 111 (7) 

  000 
(0) 

CCC 
000 (0) 

CCA 
001 (1) 

CAC 
010 (2) 

CAA 
011 (3) 

ACC 
100 (4) 

ACA 
101 (5) 

AAC 
110 (6) 

AAA 
111 (7) 

  001 
(1) 

CCU 
001 (1) 

CCG 
000 (0) 

CAU 
011 (3) 

CAG 
010 (2) 

ACU 
101 (5) 

ACG 
100 (4) 

AAU 
111 (7) 

AAG 
110 (6) 

  010 
(2) 

CUC 
010 (2) 

CUA 
011 (3) 

CGC 
000 (0) 

CGA 
001 (1) 

AUC 
110 (6) 

AUA 
111 (7) 

AGC 
100 (4) 

AGA 
101 (5) 

  011 
(3) 

CUU 
011 (3) 

CUG 
010 (2) 

CGU 
001 (1) 

CGG 
000 (0) 

AUU 
111 (7) 

AUG 
110 (6) 

AGU 
101 (5) 

AGG 
100 (4) 

  [C A; U G](3) = 100 
(4) 

UCC 
100 (4) 

UCA 
101 (5)) 

UAC 
110 (6) 

UAA 
111 (7) 

GCC 
000 (0) 

GCA 
001 (1) 

GAC 
010 (2) 

GAA 
011 (3) 

  101 
(5) 

UCU 
101 (5) 

UCG 
100 (4) 

UAU 
111 (7) 

UAG 
110 (6) 

GCU 
001 (1) 

GCG 
000 (0) 

GAU 
011 (3) 

GAG 
010 (2) 

  110 
(6) 

UUC 
110 (6) 

UUA 
111 (7) 

UGC 
100 (4) 

UGA 
101 (5) 

GUC 
010 (2) 

GUA 
011 (3) 

GGC 
000 (0) 

GGA 
001 (1) 

  111 
(7) 

UUU 
111 (7) 

UUG 
110 (6) 

UGU 
101 (5) 

UGG 
100 (4) 

GUU 
011 (3) 

GUG 
010 (2) 

GGU 
001 (1) 

GGG 
000 (0) 

  
Fig. 2. Genetic matrices [C A; U G] and [C A; U G](3) with 

binary numerations of  their columns and rows on the base of the 
binary sub-alphabets № 1 and № 2 from Fig. 1. Matrix cells 

contain a symbol of a multiplet, a dyadic-shift numeration of this 
multiplet and its expression in decimal notation. Decimal 

numerations of columns, rows and multiplets are written in 
brackets. Black and white cells contain triplets with strong and 

weak roots correspondingly (see the text). 
 
All the columns and rows of the matrices on Fig. 2 are 

binary numerated and disposed in a monotonic order by the 
following algorithm which uses biochemical features of the 
genetic nitrogenous bases and which can be used in bio-
computers of any organism really. Numerations of columns 
and rows are formed automatically if one interprets 
multiplets of each column from the viewpoint of the first 
binary sub-alphabet (Fig. 1) and if one interprets multiplets 
of each row from the viewpoint of the second binary sub-
alphabet. For example, the column 010 contains all the 
triplets of the form "pyrimidine-purine-pyrimidine"; the row 
010 contains all the triplets of the form “amino-keto-amino”. 
Each of the triplets in the matrix [C A; U G](3) receives its 
dyadic-shift  numeration by means of modulo-2 addition of 
binary numerations of its column and row. Here one should 
explain that this kind of addition is one of the main 
operations in digital signal processing; by definition the 
modulo-2 addition of two numbers written in binary notation 
is made in a bitwise manner in accordance with the rules: 
                 0 + 0 = 0, 0 + 1 = 1, 1+ 0 = 1, 1+ 1 = 0             (1) 
 
For example, the triplet CAG receives its dyadic-shift 
numeration 010 (or 2 in decimal notation) because it belongs 
to the column 011 and the row 001. The series of binary 
numbers 
                 000, 001, 010, 011, 100, 101, 110, 111             (2) 
 
forms a diadic group, in which modulo-2 addition serves as 
the group operation [9]. The distance in this symmetry group 
is known as the Hamming distance. Since the Hamming 
distance satisfies the conditions of a metric group, the diadic 
group is a metric group. The modulo-2 addition of any two 
binary numbers from (2) always results in a new number 

from the same series. The number 000 serves as the unit 
element of this group. The reverse element for any number 
in this group is the number itself. Changes in the initial 
binary sequence (2), produced by modulo-2 addition of its 
members with any binary numbers (2), are termed diadic 
shifts [1, 9]. If any system of elements demonstrates its 
connection with diadic shifts, it indicates that the structural 
organization of its system is related to the logic of modulo-2 
addition. This article gives some evidences that the genetic 
code is related to the logic of modulo-2 addition. 

Black and white cells in the genomatrix [C A; U G](3) 
reflect the following peculiarities of the genetic code. A 
combination of letters on the two first positions of each 
triplet is termed a “root” of this triplet; a letter on its third 
position is termed a “suffix”. The set of 64 triplets contains 
16 possible variants of such roots. Taking into account 
properties of triplets, the set of 16 possible roots is divided 
into two subsets with 8 roots in each. The first of such octets 
contains roots CC, CU, CG, AC, UC, GC, GU, GG. These 
roots are termed "strong roots" [13] because each of them 
defines four triplets with this root, coding values of which 
are independent on their suffix. For example, four triplets 
CGC, CGA, CGU, CGG, which have the strong root CG, 
encode the same amino acid Arg, although they have 
different suffixes (Fig. 3). The second octet contains roots 
CA, AA, AU, AG, UA, UU, UG, GA. These roots are 
termed “weak roots” because each of them defines four 
triplets with this root, coding values of which depend on 
their suffix. An example of such a subfamily in Fig. 3 is 
represented by four triplets CAC, CAA, CAU and CAC, two 
of which (CAC, CAU) encode the amino acid His and the 
other two of which (CAA, CAG) encode the amino acid 
Gln. 

 
THE STANDARD CODE 

8 subfamilies of triplets with strong 
roots (“black triplets”) and the amino 
acids, which are encoded by them 

8 subfamilies of triplets with weal roots (“white 
triplets”) and the amino acids, which are encoded 

by them 
CCC, CCU, CCA, CCG   Pro CAC, CAU, CAA, CAG    His, His, Gln, Gln 
CUC, CUU, CUA, CUG  Leu  AAC, AAU, AAA, AAG  Asn, Asn, Lys, Lys 
CGC, CGU, CGA, CGG  Arg   AUC, AUU, AUA, AUG   Ile, Ile, Ile, Met 
ACC, ACU, ACA, ACG  Thr AGC, AGU, AGA, AGG   Ser, Ser, Arg, Arg 
UCC, UCU, UCA, UCG  Ser  UAC, UAU, UAA, UAG   Tyr, Tyr, Stop, Stop 
GCC, GCU, GCA, GCG  Ala UUC, UUU, UUA, UUG   Phe, Phe, Leu, Leu 
GUC, GUU, GUA, GUG  Val  UGC, UGU, UGA, UGG    Cys, Cys, Stop, Trp
GGC, GGU, GGA, GGG  Gly GAC, GAU, GAA, GAG   Asp, Asp, Glu, Glu 

THE VERTEBRATE MITOCHONDRIAL CODE 
CCC, CCU, CCA,  CCG  Pro CAC, CAU, CAA, CAG     His, His, Gln, Gln 
CUC, CUU, CUA,  CUG  Leu  AAC, AAU, AAA, AAG    Asn, Asn, Lys, Lys 
CGC, CGU, CGA,  CGG  Arg AUC, AUU, AUA, AUG    Ile, Ile, Met, Met 
ACC, ACU, ACA,  ACG  Thr AGC, AGU, AGA, AGG    Ser, Ser, Stop, Stop 
UCC, UCU, UCA,  UCG  Ser UAC, UAU, UAA, UAG    Tyr, Tyr, Stop, Stop 
GCC, GCU, GCA, GCG  Ala UUC, UUU, UUA, UUG    Phe, Phe, Leu, Leu 
GUC, GUU, GUA, GUG  Val UGC, UGU, UGA, UGG    Cys, Cys, Trp, Trp 
GGC, GGU, GGA, GGG  Gly GAC, GAU, GAA, GAG    Asp, Asp, Glu, Glu 

 
Fig. 3. The Standard Code and the Vertebrate Mitochondrial Code 
possess the basic scheme of the genetic code degeneracy with 32 
triplets of strong roots and 32 triplets of weak roots (Initial data 

from http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi.) 
 
How these two subsets of triplets with strong and weak 

roots are disposed in the genomatrix [C A; U G](3) (Fig. 2) 
which was constructed formally on the base of the genetic 
alphabet and Kronecher multiplications without any mention 
about the degeneracy of the genetic code and about amino 
acids? Can one anticipate any symmetry in their disposition? 
It should be noted that the huge quantity 64! ≈ 1089 of 
variants exists for dispositions of 64 triplets in the (8x8)-
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matrix. One can note for comparison, that the modern 
physics estimates time of existence of the Universe in 1017 
seconds. In such a situation an accidental disposition of the 
20 amino acids and the corresponding triplets in a (8x8)-
matrix will give almost never any symmetry in their 
disposition in matrix halves, quadrants and rows. 

But it is phenomenological fact that the disposition of the 
32 triplets with strong roots (“black triplets” in Fig. 2) and 
the 32 triplets with weak roots (“white triplets”) has a 
symmetric character unexpectedly (see Fig. 2). For example 
the left and right halves of the matrix mosaic are mirror-anti-
symmetric to each other in its colors: any pair of cells, 
disposed by mirror-symmetrical manner in these halves, 
possesses the opposite colors. One can say that each row of 
this mosaic matrix corresponds to an odd function. In 
addition each row of the mosaic matrix [C A; U G](3) has a 
meander-line character (the term “meander-line” means here 
that lengths of black and white fragments are equal to each 
other along each row). But the theory of discrete signal 
processing uses such odd meander functions for a long time 
under the name “Rademacher functions”. Rademacher 
functions contain elements “+1” and “-1” only. Each of the 
matrix rows presents one of the Rademacher functions if 
each black (white) cell is interpreted such that it contains the 
number +1 (−1). Fig. 4 shows a transformation of the mosaic 
matrix [C A; U G](3) (Fig. 2) into a numeric matrix in the 
result of such replacements of black and white triplets by 
means of numbers “+1” and “-1” correspondingly. 
 

1 1 −1 −1 1 1 −1 −1  
1 1 −1 −1 1 1 −1 −1  
1 1 1 1 −1 −1 −1 −1  
1 1 1 1 −1 −1 −1 −1  
1 1 −1 −1 1 1 −1 −1  
1 1 −1 −1 1 1 −1 −1  
−1 −1 −1 −1 1 1 1 1  
−1 −1 −1 −1 1 1 1 1  

 

Fig. 4. Rademacher form R of presentation of the genomatrix [C A; 
U G](3) from Fig. 2. A relevant system of Rademacher functions is 
shown at the right side. 
 

The Rademacher form R of the genomatrix [C A; U G](3) 
(Fig. 4) can be decomposed into sum of 8 sparse matrices r0, 
r1, r2, r3, r4, r5, r6, r7 (Fig. 5) in accordance with the principle 
of dyadic-shifts numerations of cells and triplets from Fig. 2. 
More precisely any sparse matrix rk (k=0, 1, …, 7) contains 
entries “+1” or ”-1” from the matrix R on Fig. 4 in those 
cells which correspond to cells with the same dyadic-shift 
numeration “k”  of triplets on Fig. 2; all the other cells of the 
matrix rk contain zero. 

The author has revealed that this set of 8 matrices     
r0, r1,…, r7 (where r0 is identity matrix) is closed relative to 
multiplication and it satisfies the table of multiplication on 
Fig. 6. 

            

The multiplication table on Fig. 6 is asymmetrical relative 
to the main diagonal and corresponds to the non-
commutative associative algebra of 8-dimensional 
hypercomplex numbers. This matrix algebra is non-division 
algebra because it has zero divisors. It means that such non-
zero hypercomplex numbers exist whose product is equal to 

zero. These genetic 8-dimensional hypercomplex numbers 
are different from Cayley’s octonions 
(http://en.wikipedia.org/wiki/Octonion). The algebra of 
Cayley’s octonions is non-associative algebra and 
correspondingly it does not possess a matrix form of its 
presentation (each of matrix algebras is an associative 
algebra). The known term “octonions” is not appropriate for 
the case of the multiplication table on Fig. 6 because this 
term is usually used for members of normed division non-
associative algebra (http://en.wikipedia.org/wiki/Octonion).  

 
R = r0+r1+r2+r3+r4+r5+r6+r7 = 

 
1   0   0   0   0   0   0   0 
0   1   0   0   0   0   0   0 
 0   0   1   0   0   0   0   0
 0   0   0   1   0   0   0   0
 0   0   0   0   1   0   0   0
 0   0   0   0   0   1   0   0
 0   0   0   0   0   0   1   0
 0   0   0   0   0   0   0   1

 
 
 
+ 

0  1  0  0  0  0  0  0 
1  0  0  0  0  0  0  0 
0  0  0  1  0  0  0  0 
0  0  1  0  0  0  0  0 
0  0  0  0  0  1  0  0 
0  0  0  0  1  0  0  0 
0  0  0  0  0  0  0  1 
0  0  0  0 0  0  1  0 

 
 
 
+ 

0   0   -1   0    0   0   0    0 
0   0    0   -1   0   0   0    0 
1   0    0    0    0   0   0    0 
0   1    0    0    0   0   0    0 
0   0    0    0    0   0  -1   0 
0   0    0    0    0   0   0  -1 
0   0    0    0    1   0   0    0 
0   0   0    0     0   1   0    0 

 
 
 
+ 

0   0   0   -1   0   0   0    0 
0   0  -1    0   0   0   0    0 
0   1   0     0   0   0   0    0 
1   0   0     0   0   0   0    0 
0   0   0     0   0   0   0  -1 
0   0   0     0   0   0  -1   0 
0   0   0     0   0   1    0   0 
0  0    0    0  1  0   0   0 

 
 
 
 
+ 

 
0   0   0   0  1   0   0   0 
0   0   0   0  0   1   0   0 
0   0   0   0  0   0  -1  0 
0   0   0   0  0   0   0  -1 
1   0   0   0  0   0   0   0 
0   1   0   0  0   0   0   0 
0   0  -1  0  0   0   0   0 
0   0  0 -1  0  0  0   0 

 
 
 
+

0   0   0   0   0   1   0   0 
0   0   0   0   1   0   0   0 
0   0   0   0   0   0   0  -1 
0   0   0   0   0   0  -1  0 
0   1   0   0   0   0   0  0 
1   0   0   0   0   0   0  0 
0   0   0  -1  0   0   0  0 
0   0  -1  0  0  0  0  0 

 
 
 
+ 

0   0   0   0   0   0   -1   0 
0   0   0   0   0   0    0   -1 
0   0   0   0  -1   0   0    0 
0   0   0   0   0  -1   0    0 
0   0  -1   0  0   0    0    0 
0   0   0  -1  0   0    0    0 
-1  0  0   0   0   0    0    0 
0  -1  0  0  0   0   0    0 

 
 
 
+

0   0   0   0   0   0   0   -1
0   0   0   0   0   0  -1   0 
0   0   0   0   0  -1   0   0 
0   0   0   0  -1   0   0   0 
0   0   0  -1   0   0   0   0 
0   0  -1   0   0   0   0   0 
0  -1   0   0   0   0   0   0 
-1  0  0   0  0   0  0   0 

 

Fig. 5. The dyadic-shift decomposition of the Rademacher form R 
(Fig. 4) of the genomatrix [C A; U G](3) into sum of 8 sparse 

matrices r0, r1,…, r7.  
 

 1 r1 r2 r3 r4 r5 r6 r7

1 1 r1 r2 r3 r4 r5 r6 r7
r1 r1 1 r3 r2 r5 r4 r7 r6
r2 r2 r3 -1 -r1 -r6 -r7 r4 r5
r3 r3 r2 -r1 -1 -r7 -r6 r5 r4
r4 r4 r5 r6 r7 1 r1 r2 r3
r5 r5 r4 r7 r6 r1 1 r3 r2
r6 r6 r7 -r4 -r5 -r2 -r3 1 r1
r7 r7 r6 -r5 -r4 -r3 -r2 r1 1 

 Fig. 6. The multiplication table of basic matrices r0, r1,… , r7 
(where r0 is identity matrix)  which corresponds to the                    

8-dimensional algebra over the field of real numbers. It defines the 
8-dimensional numeric system of genetic R123-octetons. 

 
For this reason we term these hypercomplex numbers, 

which are revealed in matrix genetics, as “dyadic-shift 
genetic octetons” (or briefly “octetons”). In addition we term 
such kinds of matrix algebras, which are connected with 
dyadic-shift decompositions, as dyadic-shift algebras (or 
briefly DS-algebras). The author supposes that DS-algebras 
are important for genetic systems. All the basic matrices r0, 
r1,…, r7 are disposed in the multiplication table (Fig. 6) in 
accordance with dyadic-shift numerations of cells on Fig. 2.  

Below we will describe another variant of genetic 
octetons which is connected with Hadamard genomatrices. 
For this reason we term the first type of genooctetons (Fig. 
4-6) as R123-octetons (here R is the first letter of the name 
Rademacher; the index 123 means the order 1-2-3 of 
positions in triplets).  

A general form of R123-octetons (Fig. 5) is the following: 
 

            R123 = x0*1 + x1*r1 + x2*r2 + x3*r3 + x4*r4 +  
                       x5*r5 + x6*r6 + x7*r7                                       (4) 
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where coefficients x0, x1,.. , x7 are real numbers. Here the 
first component x0 is a scalar. Other 7 components x1*r1, 
x2*r2, x3*r3, x4*r4, x5*r5, x6*r6, x7*r7 are non-scalar units 
but imaginary units. Some properties of these octetons lead 
to the idea that for a system of genetic coding the main 
significance belong not to the entire set of possible real 
values of coordinates of 8-dimensional hypercomplex 
numbers but only to the subset of numbers  20, 21, 22,.., 2n,.. 
[16]. It seems that for genetic systems DS-algebras are 
algebras of dichotomous biological processes and systems. 

3 Permutations and the DS-algebra 
The theory of discrete signal processing pays a special 

attention to permutations of information elements. This 
paragraph shows that all the possible permutations of 
positions inside all the triplets lead to new mosaic 
genomatrices whose Rademacher forms of presentation are 
connected with the same DS-algebra (Fig. 6).   

A simultaneous permutation of positions in triplets 
transforms the most of the triplets in cells of the initial 
genomatrix [C A; U G](3). For example, in the case of the 
cyclic transformation of the order 1-2-3 of positions into the 
order 2-3-1, the triplet CAG is transformed into the triplet 
AGC, etc. Because each of the triplets is connected with the 
binary numeration of its column and row, these binary 
numerations are also transformed correspondingly; for 
example, the binary numeration 011 is transformed into 110. 
The six variants of the order of positions inside triplets are 
possible: 1-2-3, 2-3-1, 3-1-2, 3-2-1, 2-1-3, 1-3-2. The initial 
genomatrix [C A; U G]123

(3) is related with the first of these 
orders (Fig. 4). Other five genomatrices [C A; U G]231

(3),     
[C A; U G]231

(3),  [C A; U G]231
(3),  [C A; U G]231

(3), [C A; U 
G]231

(3), which correspond to other five orders, are shown on 
Fig. 7 (subscripts indicate the order of positions in triplets). 

In these genomatrices on Fig. 7 black-and-white mosaics 
of each row corresponds again to one of Rademacher 
functions. The replacement of all the triplets with strong and 
weak roots by entries “+1” and “-1” correspondingly 
transforms these genomatrices into their Rademacher forms 
R231, R312, R321, R213, R132. Each of the Rademacher forms 
R231, R312, R321, R213, R132 can be again decomposed into sum 
of 8 sparse matrices r0, r1, r2, r3, r4, r5, r6, r7 in accordance 
with dyadic-shift numerations of its cells (see details in 
[16]). Each of the 6 sets with eight sparse matrices r0, r1, r2, 
r3, r4, r5, r6, r7 is unique and different from other sets (r0 is 
identity matrix in all the sets).  

Unexpected facts are that, firstly, each of these sets is 
closed relative multiplication and, secondly, each of these 
sets corresponds to the same multiplication table from Fig. 6.  

It means that this genetic DS-algebra of 8-dimensional 
hypercomplex numbers possesses at least 5 additional matrix 
forms of its presentation. Our results demonstrate that this 
DS-algebra of genetic R-octetons possesses a wonderful 
invariance relative not only to all the variants of positional 
permutations in triplets but also to some other permutations 
which are connected with Gray code and dyadic-shift 
transformations [16]. All the properties of R123-octetons hold 
true in the cases of different matrix forms of presentation of 
R-octetons with the same multiplication table (Fig. 6). 
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Fig. 7. Five genomatrices [C A; U G]231

(3), [C A; U G]312
(3),                          

[C A; U G]321
(3), [C A; U G]213

(3),  [C A; U G]132
(3),  which 

correspond to orders of positions in triplets 2-3-1, 3-1-2, 3-2-1, 2-1-
3, 1-3-2 relative to the genomatrix [C A; U G]123

(3) on Fig. 2. Black 
and white cells contain triplets with strong and weak roots 

correspondingly. Binary numerations of columns and rows are 
shown. 

 
The analysis of evolution of variants (or dialects) of the 

genetic code from the viewpoint of the DS-algebra of the R-
octetons has allowed revealing two phenomenological rules 
[16]: 

Rule #1. In all the organisms with sexual reproduction 
only those triplets can be involved in the evolutionary 
changing their correspondence to amino acids or to stop-
signals, which possess dyadic-shift numerations 4, 5, 6, 7 in 
the genomatrix [C A; U G](3) (Fig. 2); in other words, only 
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those triplets can be involved which are connected with the 
basic matrices r4, r5, r6, r7 (Fig. 5) of genetic R-octetons. 
    Rule #2. In all the dialects of the genetic code only triplets 
with dyadic-shift numerations 2, 6, 7 can be start-codons. In 
other words, only those triplets can be start-codons, which 
are connected with the basic matrices r2, r6, r7 (Fig. 5) of 
genetic R-octetons. 

4  Hadamard genomatrices and another                 
DS-algebra  

By definition a Hadamard matrix of dimension “n” is the 
(n*n)-matrix H(n) with elements “+1” and “-1”. It satisfies 
the condition H(n)*H(n)T = n*In, where H(n)T is the 
transposed matrix and In is the identity (n*n)-matrix. Rows 
of Hadamard matrices are termed Walsh functions. 
Hadamard matrices are widely used in error-correcting 
codes such as the Reed-Muller code and Hadamard codes; in 
the theory of compression of signals and images; in spectral 
analysis and multi-channel spectrometers with Hadamard 
transformations; in quantum computers with Hadamard 
gates; in a realization of Boolean functions by means of 
spectral methods; in the theory of planning of multiple-
factor experiments and in many other branches of science 
and technology. The works [10, 14, 15] have revealed that 
Kronecker families of genetic matrices are related with some 
kinds of Hadamard matrices (“Hadamard genomatrices”) by 
means of so termed                U-algorithm. This paragraph 
describes that the dyadic-shift decompositions of Hadamard 
genomatrices lead to special 8-dimensional hypercomplex 
numbers. For the U-algorithm, phenomenological facts are 
essential that the letter U in RNA (and correspondingly the 
letter T in DNA) is a unique letter in the genetic alphabet in 
the two following senses: 

• Each of three nitrogenous bases A, C, G has one 
amino-group NH2, but the fourth basis U/T has not 
it. From the viewpoint of existence of the amino-
group (which is very important for genetic 
functions) the letters A, C, G are identical to each 
other and the letter U is opposite to them; 

• The letter U is a single letter in RNA, which is 
replaced in DNA by another letter T.  

This uniqueness of the letter U can be utilized in genetic 
computers of organisms. Taking into account this unique 
status of the letter U, the author has revealed the existence of 
the following formal “U-algorithm”, which demonstrates the 
close connection between Hadamard matrices and the matrix 
mosaic of the genetic code [10, 14, 15, 17]. 

By definition the U-algorithm contains two steps: 1) on 
the first step, each of the triplets in the black-and-white 
genomatrix (for example, in the genomatrix [C A; U G](3) on 
Fig. 2) should change its own color into opposite color each 
time when the letter U stands in an odd position (in the first 
or in the third position) inside the triplet; 2) on the second 
step, black triplets and white triples are interpreted as entries 
“+1” and “-1” correspondingly. For example, the white 
triplet UUA (see Fig. 2) should become the black triplet (and 
its matrix cell should be marked by black color) because of 
the letter U in its first position; for this reason the triplet 
UUA is interpreted finally as “+1”. Or the white triplet UUU 

should not change its color because of the letter U in its first 
and third positions (the color of this triplet is changed twice 
according to the described algorithm); for this reason the 
triplet UUU is interpreted finally as “-1”.  
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Fig. 8. The Hadamard genomatrices H123, H231, H312, H321, H213, 
H132 which are received from the genomatrices [C A; U G]123

(3),   
[C A; U G]231

(3), [C A; U G]312
(3), [C A; U G]321

(3), [C A; U G]213
(3),  

[C A; U G]132
(3) (Fig. 2 and 7) by means of the U-algorithm. 

Brackets contain dyadic-shift numerations of cells in decimal 
notation by analogy with matrices on Fig. 2 and 8. Black color and 

white color of cells mean entries “+1” and “-1” in these cells 
correspondingly. 

 
By means of the U-algorithm, all the genomatrices              [C A; U 
G]123

(3), [C A; U G]231
(3), [C A; U G]312

(3),               [C A; U G]321
(3), 

[C A; U G]213
(3),  [C A; U G]132

(3) (Fig. 2 and 7) are transformed 
into relevant numeric genomatrices H123, H231, H312, H321, H213, 

H132 on Fig. 8. 
One can make the dyadic-shift decomposition of each of 

these six Hadamard genomatrices H123, H231, H312, H321, H213, 
H132 (Fig. 8) by analogy with the described decompositions 
of the genomatrices R123, R231, R312, R321, R213, R132. In the 
result six new different sets of 8 sparse matrices h0, h1, h2, 
h3, h4, h5, h6, h7 arise (where h0 is identity matrix). It is 
unexpectedly but each of these six sets for Hadamard 
genomatrices is closed relative to multiplication. Moreover 
each of these sets h0, h1, h2, h3, h4, h5, h6, h7 corresponds to 
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the same multiplication table on Fig. 9 [16]. 
 

 1 h1 h2 h3 h4 h5 h6 h7 
1 1 h1 h2 h3 h4 h5 h6 h7 
h1 h1 -1 h3 -h2 h5 -h4 h7 -h6

h2 h2 h3 -1 -h1 -h6 -h7 h4 h5 
h3 h3 -h2 -h1 1 -h7 h6 h5 -h4

h4 h4 h5 h6 h7 -1 -h1 -h2 -h3

h5 h5 -h4 h7 -h6 -h1 1 -h3 h2 
h6 h6 h7 -h4 -h5 h2 h3 -1 -h1

h7 h7 -h6 -h5 h4 h3 -h2 -h1 1 
 

Fig. 9. The multiplication table for the dyadic-shift decompositions 
of Hadamard genomatrices H123, H231, H312, H321, H213, H132 (Fig. 

8). 
 

The existence of the multiplication table (Fig. 9) means 
that a new 8-dimensional DS-algebra or a new system of          
8-dimensional hypercomplex numbers exists on the base of 
these Hadamard genomatrices which are connected with six 
different matrix forms of presentation of this hypercomplex 
system. We term these new 8-dimensional hypercomplex 
numbers as H-octetons (here “H” is the first letter in the 
name Hadamard) because they differ from R-octetons (Fig.  
6) and Cayley’s octonions. The six Hadamard genomatrices 
H123, H231, H312, H321, H213, H132 are different matrix forms of 
presentation of the same H-octeton whose coordinates are 
equal to 1 (x0=x1=…=x7=1).  

     Numeric presentations of genetic sequences are useful to 
study hidden genetic regularities [3, 4, 44, 17, etc.]. On the 
base of the described results, new approaches of numeric 
presentations of genetic sequences can be proposed for such 
aims taking into account additionally known applications of 
hypercomplex numbers to analysis of genetic sequences [2, 
5, 20, 21, 23, etc.]. It seems appropriate to interpret genetic 
sequences as sequences of 8-dimensional vectors where 
genetic elements are replaced by their special numeric 
presentations which are connected with the described DS-
algebras. Then Hadamard spectrums, dyadic distances and 
some other characteristics of these vector sequences can be 
studied. If the quantity of vector elements in a genetic 
sequence is not divisible by 8, the remaining short vector 
can be extended to an 8-dimensional vector by adding to its 
end of the required number of zeros by analogy with 
methods of digital signal processing.  

The DS-algebra of H-octetons (Fig. 9) is the non-
commutative associative non-division algebra. It has zero 
divisors: for example (h3+h4) and (h2-h5) are non-zero H-
octetons, but their product is equal to zero. The quantity and 
the disposition of signs “+” and “-“ in the multiplication 
table on Fig. 9 are identical to their quantity and disposition 
in a Hadamard matrix. In addition, indexes of basic matrices 
are again disposed in the multiplication table (Fig. 9) in 
accordance with the dyadic-shift numeration on Fig. 2.  

It should be noted that Hadamard matrices play important 
roles in many tasks of discrete signal processing; they are 
devoted to tens of thousands of publications (see a review in 
[19]). Only a few symmetrical Hadamard matrices are 
usually used in the field of discrete signal processing. But 
dyadic-shift decompositions of these “engineering” 
Hadamard matrices do not lead to any 8-dimensional 
hypercomplex numbers in contrast to the asymmetrical 
Hadamard genomatrices described in our article. Moreover 
the author knows no publications about the facts that 
Hadamard matrices can be the base for matrix forms of 
presentation of 8-dimensional hypercomplex numbers. It 
seems that the genetic code has led the author to discovering 
the new interesting fact in the field of the theory of 
Hadamard matrices about the unexpected relation of some 
Hadamard matrices with multidimensional DS-algebras and 
their systems of hypercomplex numbers. This fact can be 
useful for many applications of Hadamard genomatrices for 
simulating of bioinformation phenomena, for technology of 
discrete signal processing, etc. A great number of Hadamard 
(8x8)-matrices exists (according to some experts, their 
number is equal to approximately 5 billion). Perhaps, only 
the genetic Hadamard matrices, which represent a small 

subset of a great set of all the Hadamard matrices, are related 
with multidimensional DS-algebras but it is an open 
question now.  

Why living nature uses just such the genetic code that is 
associated with Hadamard genomatrices? We suppose that 
its reason is related with solving in biological organisms the 
same information tasks which lead to a wide using of 
Hadamard matrices in digital signal processing and in 
physics.  

 

5 Discussion 
 
The author has revealed a close relation of the genetic 

code with 8-dimensional hypercomplex numbers (first of all, 
R-octetons and H-octetons) and with dyadic shifts and 
Hadamard matrices. This relation is interesting in many 
aspects. Some of them are the following. 

Walsh functions play the main role in the fruitful 
sequency theory by Harmuth for signal processing [6-9]. 
Rows of Hadamard genomatrices correspond to special 
kinds of Walsh functions which define special variants of 
sequency analysis. The author believes that this “genetic” 
sequency analysis can be a key to understand important 
features not only of genetic informatics but also of many 
other inherited physiological systems (morphogenetic, 
sensori-motor, etc.). In comparison with spectral analysis by 
means of sine waves, which is applicable to linear time-
invariant systems, the sequency analysis is based on non-
sinusoidal waves and it is used to study systems which are 
changed in time (biological systems belong to such systems) 
[7, 9]. Genetic DS-algebras can also be useful in a 
realization of the famous idea by Boole on algebraic theory 
of laws of thinking. The author believes that mechanisms of 
biological morphogenesis are closely associated with spatial 
and temporal filters from the field of sequency analysis for 
genetic systems. Taking into account the sequency theory by 
Harmuth together with our data about Hadamard 
genomatrices and genetic H-octetons, one can assume that 
biological evolution can be interpreted largely like the 
evolution of physiological spatial and temporal filters of the 
sequency theory.  

The notion “number” is the main notion of mathematics. 
In modern theoretical physics, systems of 8-dimensional 
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hypercomplex numbers (mainly, Cayley’s octonions and 
split-octonions) are one of important objects. The discovery 
of the relation of the genetic code with special types of     
8-dimensional hypercomplex numbers allows generating of 
heuristic associations between theoretical physics and 
mathematical biology. The described DS-algebras can be 
useful for development of algebraic biology [16]. 

        

[9]  H. F. Harmuth, Information theory applied to space-
time physics. Washington: The Catholic University of 
America, DC, 1989. 

       Bioinformatics should solve many problems about 
inherited properties of biological bodies: 

• Noise-immunity property of genetic coding; 
• Management and synchronization of a huge number 

of inherited cyclic processes; 
• Doubling of bio-information (mitosis, etc); 
• Compression of inherited biological data; 
• Spatial and temporal filtering of genetic information; 
• Primary structure of proteins; 
• Multi-channel informatics; 
• Hidden rules of structural interrelations among parts 

of genetic systems; 
• Laws of evolution of dialects of the genetic code, 

etc.  
The principle of dyadic shifts and DS-algebras of genetic 
octetons can be useful for many of these problems.  

In addition, one can mention about known facts of 
analogies between the genetic code and the symbolic system 
of ancient Chinese book “I Ching” (see a review in [17]). 
This symbolic system is a base of many branches of Oriental 
medicine including acupuncture, Tibetan pulse diagnostics, 
etc. which use ancient ideas of "I Ching" about inherited 
physiological systems. Using dyadic shifts for studying not 
only the genetic code but also the mysterious tables of “I 
Ching” reveals the hidden regularities and symmetrical 
patterns in this ancient system [16]. Results of matrix 
genetics give new approaches for better understanding the “I 
Ching”. 
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“It seems as though biologists are extraordinarily fond of randomness. A population is defined as one, 
randomly mating, interbreeding unit, although truly random mating would hardly be practicable in a 
reasonably large population. Similarly, spontaneous mutations are viewed as randomly sustained base 
substitutions, in spite of our knowledge of mutational hot spots. I suspect that this extraordinarily strong 
belief in randomness stems from our too strong faith in the power of natural selection.” 
 

 S. Ohno, [24] 
 

 
Abstract - To asses the degree of randomness 
and complexity of randomly generated 
sequences, in an in vitro selection experiment by 
Keefe and Szostack [1], we calculated the 
Kolmogorov complexity, the algorithmic 
redundancy, and the Shannon entropy of the 
sequences. We built an alignment-free 
phylogenetic tree, employing the algorithmic 
information distance between each pair of 
sequences to construct the distance-matrix. The 
tree represents the history of the set of molecular 
sequences, and allows us to follow in more detail 
how chemical function improves with respect to 
the original sequence. We remark the fact that in 
directed evolution, the highly predominant 
changes are between neighboring codons. Thus, 
the amino acid changes in the protein are not 
arbitrary, but dictated by the amino acid 
assignments in the code. 
 
Keywords: Kolmogorov complexity, Shannon 
entropy of the sequences, algorithmic 
redundancy, phylogenetic tree, non-biological 
proteins. 
 
 

1.     Introduction 
 
          The frequency of occurrence of functional 
proteins in collections of randomly generated 
sequences is an important constraint on models 
of the evolution of biological proteins. 
Therefore, the experimental determination of this 
frequency, by isolating proteins with a specific 
function from a large random-sequence library of 
known size, is a relevant endeavor in this field. 
In an effort to substantiate the hypothesis that 
primordial functional proteins originated from 
random sequences, Keefe and Szostak [1] used 
in vitro selection of messenger RNA displayed 
proteins to sample a large population of distinct 
randomly generated sequences. 
 
          Starting from a library of 6 x 1012 
polypeptides, each containing 81 contiguous 
randomly chosen amino acids, they selected 
functional proteins by enriching for those that 
bind to ATP. As a result, following eight rounds 
of selection, they obtained four new ATP-
binding protein families, designated A, B, C, D 
(Fig. 3a of their paper), that appear to be 
unrelated to each other or to anything found in 
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the current databases of biological proteins. One 
of these proteins (Family B) was optimized by 
directed evolution for improved binding affinity. 
DNA sequencing of the output from this 
selection revealed a distant clone (clone 18-19) 
that differed from the consensus sequence at 15 
out of 80 positions, and bound ATP with far 
greater affinity and specificity than all other 
clones from that round of selection. From this 
experiment, Keefe and Szostak [1] estimate that 
roughly 1 in 1011 of all random-sequence 
proteins have ATP-binding activity. 
 
      The X-ray crystal structure of the nucleotide 
binding domain for protein 18-19 was originally 
solved by Lo Surdo et al. [2] and found to adopt 
a novel zinc-nucleated a/b-fold not yet observed 
by nature. As described in detail in [3], the 
structural comparison of protein 18-19 with the 
databank of biological protein folds revealed that 
the de novo evolved protein shared certain 
structural features with some proteins found in 
nature. However, unlike many naturally 
occurring proteins, protein 18-19 requires high 
concentrations of free ligand in order to remain 
stably folded and soluble.  
 
      In   two recent publications, Szostak´s group 
examined the extent to which a de novo evolved 
protein, originally selected on the basis of ligand 
binding affinity, could be evolved to remain 
stably folded in the absence of exogenous ligand 
[3].These authors designed an in vitro selection 
experiment using mRNA display to isolate 
variants of protein 18- 19 that remained bound to 
an ATP agarose affinity resin in the presence of 
increasing concentrations of chemical 
denaturant. In the second publication [4], they 
used structural and functional studies to 
investigate the in vitro evolutionary processes in 
greater detail.  We refer the reader to the original 
papers for further details. 
 
      Since proteins acquire functionality 
(meaning) throughout evolution, to complement 
the mentioned works, we consider the 
construction of a phylogenic tree (Fig. 1) for the 
evolved proteins in the earliest experiment [1]. 
The tree represents the history of the set of 
molecular sequences, and allows us to follow in 
more detail how chemical function improves 
with respect to the original sequence. It is 
commonly believed that to infer such a tree one 
must first arrange the sequences  relative to each 
other in a way that presents the best available 
hypothesis of homology at each and every 

position in those molecules; i.e., an optimal 
multiple sequence alignment (MSA).  There are 
nonetheless alternative approaches to molecular 
phylogenetic inference that do not involve prior 
MSA (reviewed in [5]). These involve two steps: 
the calculation of a matrix of pairwise distances 
among unaligned molecular sequences, followed 
by generation of a tree using a distance-based 
method such as neighbor joining [6]. The 
fundamental difference from alignment-based 
methods lies mainly in the first step; i.e., how 
pair wise distances in the underlying distance 
matrix are defined. The majority of alignment-
independent approaches involve information 
theory and the Kullback-Liebler discrepancy or 
relative entropy; they are based on the statistical 
properties of of n-grams.  Or in compression 
methods, employing the algorithmic information 
(also called Kolmogorov complexity) shared by 
two sequences (see Discussion).  A notable 
example of this last approach is the paper by Li 
et al. [7], who employed the algorithmic 
information distance between a pair of sequences 
[8,9], to construct a distance-matrix for building 
a whole mitochondria genome phylogeny 
without first aligning the sequences. Our 
approach is closely related to theirs, differing 
mainly in the software employed to estimate the 
algorithmic distance. 
 
      The simplest way to describe our 
methodology is in the context of the following 
linguistically motivated question: Is it possible to 
identify the subject treated in a text in a way that 
permits its automatic classification among many 
other texts in a given corpus?  As shown by 
Benedetto et al. [10] among others, the answer is 
positive. For DNA sequences, a solution to this 
kind of problem was delineated by Loewenstern 
et al. [11] as follows: 
 
     “If we took a corpus of DNA sequences, we 
could gain insight into the degree of similarity 
between a test sequence and the corpus by 
compressing the corpus with the test sequence 
appended, and subtracting the size of this 
compressed file from the size of the compressed 
corpus alone. We could classify a test sequence 
by following the above procedure with two 
different sample populations of text, assigning 
the test sequence to the label of the population 
with which it compressed best”  
   

Here, we follow this idea to classify 
pseudorandom amino acid sequences. 
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2. Materials and Methods 
 
Alignment-free Sequence Comparison 
Algorithms: 
 
      In a former publication [12] we introduced 
the WinGramm Suite [13]. It consists of a set of 
programs aimed to calculate  informational and 
algorithmic quantities, such as n-gram entropies, 
context-free grammatical complexity, and 
algorithmic distance, as well as surrogate 
statistics, in order to reveal the information 
content, the complexity or the redundancy 
embodied in symbol sequences [14, 15, 16, 17, 
18]. 
 
      Here, we have employed the WinGramm 
Suite to obtain the phylogenetic classification of 
non-biological amino acid sequences. For this 
end, we applied our programs to: 
 
1) Calculate the context-free grammatical 

complexity, algorithmic distance and 
redundancy, Shannon entropy and surrogate 
statistics of the protein sequences.  
 

2) Build a phylogenetic tree to classify these 
sequences, taken from different clones in 
the directed evolution experiment. 
 

 
3. Results 
 
Classification of Pseudorandom Proteins: 
 
          Globular proteins have amino acid 
sequences which are highly complex, 
indistinguishable from pseudorandom sequences 
[19]. In that paper the authors estimated the 
Shannon entropy and applied two compression 
algorithms (one of them is included in the 
WinGrammm Suite) to estimate the algorithmic 
complexity of a large, non-redundant, set of 
protein sequences finding that proteins are fairly 
close to pseudorandom sequences. They found 
an entropy reduction due to correlations of about 
1 %, corroborated with compression algorithms, 
which indicates that proteins have approximately 
99 % of the complexity of random polypeptides 
with the same amino acid composition. These 
results give support to the conclusion of Pande et 
al. [20], White and Jacobs [21], and others that 

protein sequences are “slightly edited random 
sequences”.  
 
        To set up our problem, we consider a 
sample of 17 sequences from the set generated 
by Keefe and Szostack [1], in their original in 
vitro selection experiment (appearing in the 
supplementary information file of the paper). All 
of the sequences have the following structure:  
 

MDYKDDDDKKT 
(Random)81WSASCHHHHHHMGMSGS. 

 
             From each of these sequences, we 
dropped the short invariant segments encoding 
affinity tags for purification, at the beginning and 
end, retaining the 81 amino acid random 
segment. The first 13 sequences were obtained 
from round 8, belonging to families A, B, and C, 
which have 4 sequences each. The thirteenth 
sequence constitutes the single representative of 
family D. The last 4 sequences were acquired 
from round 18 (Table 1). With the help of the 
WinGramm Suite [13] we calculated the 
algorithmic distance between each sequence pair, 
and obtained the distance matrix (supplementary 
information Table 2).  From this matrix we built 
the phylogenetic tree (Fig. 1). Comparing this 
tree with the information in Fig. 3a of [1], we 
noticed a mistake in their figure: Family A 
should read Family C and vice versa. Professor 
Szostak acknowledged the misprint (personal 
communication). The tree displays the right 
assignment of sequences to families and, 
correctly, allocates the sequences of generation 
18th with family B (see above). 
  
    To asses the degree of randomness and the 
complexity of the experimentally evolved 
sequences, we calculated the grammatical 
complexity, the corresponding S-measure (also 
called Z-score), the algorithmic redundancy and 
the Shannon entropy of the random segments 
(Table 1). From the S-measure of the 
complexity, S(K), defined by the difference 
between the original value of  K and its mean 
surrogate value, divided by the SD of the 
standard surrogate values: 
 

surr

surrorig KK
S

σ

−
= , 

 it is clear that the evolved sequences are as 
random as their surrogates. Saver = 1.6191 SD. 
For the families with more than one member (A, 
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B and C), we concatenated the strings in each 
group and compared the resulting string with a 
sequence, of the same length, constructed from 
concatenated random surrogates. For example, 
for Family A, we constructed the sequence FA 
concatenating the strings in the family: (08-05), 
(08-07), (08-09), (08-48) (Table 1). We 
compared the grammatical complexity of FA , 
K(FA), with the complexity of the string SA , 
K(SA), which was constructed from the 
concatenation of standard-random surrogates of 
each sequence in the family. Although, both FA 
and SA were built from pseudorandom 
sequences, the complexity of FA is much lower 
than the complexity of SA because the sub words 
of FA are very similar among themselves, and 
the sub words of SA are independent 
pseudorandom sequences. Thus, the complexity 
of FA is a good deal lower than the average 
complexity of its surrogates (Table 1). The 
sequence FA can be considered to be the 
“corpus” of family A. Thus, an unknown 
sequence may be identified as belonging or not 
to family A, after compressing it with this 
“corpus”. While the average algorithmic 
redundancy of the 17 sequences is very low, 1.4 
%, the same quantity of the concatenated 
sequences is high: 42.2 %, 45.6 %, and 44. 4 % 
for FA, FB, and FC , respectively (Table 1). 
However, the average Shannon entropy (Haver) 
of the evolved sequences and of the 
concatenated sequences is almost the same 
(Table 1). Haver differs from its maximum value, 
Hmax, only in 0.18398 bits. This is due to the fact 
that, contrary to the algorithmic quantities, H 
depends only on the composition of the 
sequence, except for finite size effects [22, 23], 
and not on the order of the symbols. 
 
        As we mentioned above, the experiment 
shows that starting from random amino acid 
sequences, after a few rounds of Darwinian 
evolution in vitro, it is possible to select a 
functional protein. Nonetheless, the final protein 
which carries a biochemical function (in a 
suitable environment), not only looks as random 
as the starting polypeptide  without function, 

from which it was generated, but has 
informational parameters that confirm this fact 
(Table 1). 
   
 
4. Discussion and Conclusions 
 
 
         Biological sequences encode information, 
and the occurrence of evolutionary events 
separating two sequences sharing a common 
ancestor will result in the loss of the shared 
information. Sequences which do not share 
common ancestor will not share more 
information than would be expected at random. 
Therefore, we consider that the appropriate 
distance matrix was the one defined by be the 
algorithmic information distance between a pair 
of sequences. Because this distance is based on 
Kolmogorov complexity (estimated by the 
grammar complexity), that was designed to 
measure the information content of individual 
objects. Here, we made a new application of this 
concept, since concatenating the sequences of a 
family we measure the information content of the 
family. Then we compute the shared information 
between the new sequence and the family. 
  
         The further optimization of sequence 18-19 
described in [4] consist of twelve single-base 
mutations, seven of which are transitions. 
Therefore, the increased stabilization and 
solubility of the protein is highly influenced by 
the structure of the genetic code. In the vicinity 
of a functional protein, in protein space, it is not 
very difficult to get improvements by fine-tuning 
it. This is so because, although DNA base 
mutations are random, each codon does not have 
the same probability to mutate to any of the other 
61 sense codons. In short-term natural evolution 
and in directed evolution, the highly 
predominant changes are between neighboring 
codons. Thus, the amino acid changes in the 
protein are not arbitrary, but dictated by the 
amino acid assignments in the code. 

 
. 
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Table 1 Grammatical Complexity, S-values, algorithmic redundancy and entropy for  pseudorandom 
protein sequencesa 
 

a The labels of the first 17 sequences are the same as in the additional information from Keefe and Szostack 
[1]. The last three sequences were obtained by concatenating the sequences of the corresponding family, as 
explained in the text. 
 
In the first column, K is the grammar complexity; the 2nd and 3rd columns are average values of K, for 
standard and pair-conserving surrogates [12, 13]. S (K) is the S-measure of K, R is the algorithmic 
redundancy in % and H is the entropy in bits. 
 

 
Sequence 

 
K 

 
<K>sd-surr 

 
<K>pair-Surr 

 

 
S (K) 

 
R % 

 
H bits 

A8-05 81 79.9 81 0.9047 0.74600 4.13920994 
A8-07 81 80.1 80.5 1.2853 1.12359 4.14729973 
A8-09 81 79.6 80.7 0.7905 1.25000 4.13801925 
A8-48 81 79.9 80 0.8162 0.99751 4.11634521 
B8-01 78 80 81 2.5276 2.62172 4.1396914 
B8-04 78 80.7 80 3.9185 3.22580 4.15270775 
B8-08 78 80.3 80 3.5941 2.86426 4.13992263 
B8-10 79 80.4 81 2.0314 1.61893 4.14920872 
C8-06 80 80 81 0.6031 0.49751 4.13510411 
C8-11 80 80.3 81 0.0000 0.0000 4.12701735 
C8-17 80 80.6 81 0.3331 0.24937 4.13212155 
C8 -19 81 80.6 80.5 0.8160 0.49627 4.12905168 
D8-20 81 80.6 79 1.0938 0.87172 4.12407239 
18-01 78 80.3 81 3.6191 2.98507 4.14924243 
18-02 81 80.7 80 0.9047 0.74626 4.17014976 
18-03 78 80.4 79 2.2447 2.74313 4.12228268 
18-19 79 80.5 81 2.0417 1.37328 4.13367787 
Average 79.70 80.28 80.45 1.6191 1.43591 4.13794837 
SQR 1.2727 0.3141 0.6643 1.1743 1.01817 0.01276136 
FA 171 296.1 299 31.38664 42.2490 4.13989713 
FB 165 299.5 301.7 28.4291 45.67007 4.1497239 
FC 168 300.8 301 37.8086 44.426 4.13400159 
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Fig. 1 Phylogenetic tree for the non-biological protein sequences from the experiment performed by Keefe 
and  Szostak (2001). 
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Abstract:  In this paper we introduce the 
general notion of matrix associated with 
basic building blocks of protein amino acid 
and discuss the fundamental properties of 
these matrices. We further apply general 
amino acid matrix to a special amino acid 
Euclidean distance matrix introduced by 
Graham [1] and study the basic properties of 
this matrix and provide statistical discription 
to amino acid distances.  
 
Keywords: Amino acid, Euclidean distance, 
genetic code, codons, symmatric matrix. 
 
1. Introduction 
 
It is well known that the genetic code is 
encoded in combinations of the four 
nucleotides found in DNA and then RNA. 
DNA contains the complete genetic 
information that defines the structure and 
function of an organism. Proteins are formed 
using the genetic code of the DNA. Three 
different processes are responsible for the 
inheritance of genetic information and for its 
conversion from one form to another:  
 

• Replication: a double stranded 
nucleic acid is duplicated to give 

identical copies. This process 
perpetuates the genetic information.  

• Transcription: a DNA segment that 
constitutes a gene is read and 
transcribed into a single stranded 
sequence of RNA. The RNA moves 
from the nucleus into the cytoplasm.  

• Translation: the RNA sequence is 
translated into a sequence of amino 
acids as the protein is formed. 
During translation, the ribosome 
reads three bases (a codon) at a time 
from the RNA and translates them 
into one amino acid  

 
These processes are called the Central 
Dogma of Molecular Biology. The genetic 
code in messenger ribonucleic acid (mRNA) 
is composed of A, C, G and U (U for uracil). 
A mathematical view of genetic code is a 
map  
 

g: C → A, 
 
where C = {(x1x2 x3): x i ∈ R = {A, C, G, 
U}} = the set of codons and A = {Ala, Arg, 
Asp, …, Val, UAA, UAG, UGA}= the set 
of amino acids and termination codons. A 
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codon is three bases in a DNA or RNA 
sequence which specify a single amino acid.  
 
 
One noticeable feature of the genetic code is 
that some amino acids are encoded by 
several different but related base codons or 
triplets. There are 64 triplets or codons. 
Three triplets (UAA, UAG, and UGA) are 
stop codons-no amino acids corresponds to 
their code. The remaining 61 codons 
represent 20 different amino acids. These 
genetic code triplets of three bases in mRNA 
that encode for specific acids during the 
translation process have some interesting 
and mathematical logic in their organization. 
An examination of this logical organization 
may allow us to better understand the logical 
assembly of the genetic code and life.  
 
In next section, we introduce the general 
notion of matrix associated with amino acids 
and discuss the fundamental properties of 
these matrices. In section 3, we further apply 
general amino acid matrix to a special amino 
acid matrix with Euclidean distances 
introduced by Graham [1] and study the 

basic properties of this matrix and frequency 
distributions of the amino acid distances. 
 
2. Symmetric Matrix Associated 
with Amino Acids 
 
The 20 standard amino acids in the genetic 
code display a much higher structural 
diversity than the four nucleibases within 64 
codons. Although the occurence of 20 coded 
amino acids and their contribution to the 
origin and evolution of the genetic code 
have been subjected to a wide range of 
excellent investigations, it has been unclear 
what principle governs the selection of the 
20 amino acids into the genetic code [2, 3]. 
It was shown in [7] that amino acids 
distribution within the genetic code is 
symmetric along the two possible 
evolutionary axes through the framework of 
Quasi-28-gon model.  
 
In this section, we arrange the 20 amino 
acids in a 20x20 square matrix. 
Abbreviations of the 20 amino acids are 
represented by the notations summarized in 
table below. 

 
Table 1.  Amino Acid Abbreviations 

 
3-letter notation 1-letter notation 
Tyr Y 
His H 
Gln Q 
Arg R 
Thr T 
Asn N 
Lys K 
Asp D 
Glu E 
Gly G 
Phe F 
Leu L 
Ala A 
Ser S 
Pro P 
Ile I 
Met M 
Val V 
Cys C 
Trp W 
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Table 2.  Amino Acid Matrix 

 
 Y H Q R T N K D E G F L A S P I M V C W 

Y YY YH YQ YR YT YN YK YD YE YG YF YL YA YS YP YI YM YV YC YW 

H HY HH HQ HR HT HN HK HD HE HG HF HL HA HS HP HI HM HV HC HW 

Q QY QH QQ QR QT QN QK QD QE QG QF QL QA QS QP QI QM QV QC QW 

R RY RH RQ RR RT RN RK RD RE RG RF RL RA RS RP RI RM RV RC RW 

T TY TH TQ TR TT TN TK TD TE TG TF TL TA TS TP TI TM TV TC TW 

N NY NH NQ NR NT NN NK ND NE NG NF NL NA NS NP NI NM NV NC NW 

K KY KH KQ KR KT KN KK KD KE KG KF KL KA KS KP KI KM KV KC KW 

D DY DH DQ DR DT DN DK DD DE DG DF DL DA DS DP DI DM DV DC DW 

E EY EH EQ ER ET EN EK ED EE EG EF EL EA ES EP EI EM EV EC EW 

G GY GH GQ GR GT GN GK GD GE GG GF GL GA GS GP GI GM GV GC GW 

F FY FH FQ FR FT FN FK FD FE FG FF FL FA FS FP FI FM FV FC FW 

L LY LH LQ LR LT LN LK LD LE LG LF LL LA LS LP LI LM LV LC LW 

A AY AH AQ AR AT AN AK AD AE AG AF AL AA AS AP AI AM AV AC AW 

S SY SH SQ SR ST SN SK SD SE SG SF SL SA SS SP SI SM SV SC SW 

P PY PH PQ PR PT PN PK PD PE PG PF PL PA PS PP PI PM PV PC PW 

I IY IH IQ IR IT IN IK ID IE IG IF IL IA IS IP II IM IV IC IW 

M MY MH MQ MR MT MN MK MD ME MG MF ML MA MS MP MI MM MV MC MW 

V VY VH VQ VR VT VN VK VD VE VG VF VL VA VS VP VI VM VV VC VW 

C CY CH CQ CR CT CN CK CD CE CG CF CL CA CS CP CI CM CV CC CW 

W WY WH RQ WR WT KN WK WD WE WG WF WL WA WS WP WI WM WV WC WW 

 
It’s easy to see that this matrix A is a 20x20 
square matrix and A is symmetric since the 
matrix A is the same as its transpose AT. The 
symmetric matrix has a number of properties 
[5] that we only list a few main results here. 
 

• If A is a square symmetric matrix, 
then the eigenvalues of A are all 
real. 

• If A is a square symmetric matrix, 
then the power of matrix A is also 
symmetric. 

 
 
3. Amino Acid Distance Matrix 
 
In this section, we consider a square matrix. 
The entries of this matrix are given by the 
amino distances. The amino acid distance 
(physicochemical) was introduced by 
Granham [1] as follows: 
 
 

Dij  = [ α (ci - cj)2 + β (pi - pj)2 + γ (vi - vj)2 ] 1/2 

where c = composition, p = polarity, and v = 
molecular volume. In a Euclidean space 
having these properties as axes, Dij would be 
the distance between amino acids. The 
properties are not assumed to be mutually 
independent; the axes are made orthogonal 
to facilitate distance calculations. Each 
property is weighted by dividing the mean 
distance found with it along in the formula.  
The constants α, β, γ are squares of the 
inverses of the D’s as indicated in [1]. The 
similarity between any two amino acid may 
be measured by this distance. It was 
observed that if the distance between a pair 
of amino acids is large, the similarity of the 
two is small and then the corresponding 
mutational deterioration will be serious. On 
the contrary, the small distance for a pair of 
amino acids suggests a weak deterioration in 
their mutual mutations. Evidently it leads 
DijT = 0 if i = j.  All other distances were 
determined in [1]. We arrange all the 
distances in a matrix A as follows: 
 

Int'l Conf. Bioinformatics and Computational Biology |  BIOCOMP'11  | 605



  
 

Table 3.  Euclidian Distance of Amino Acids 

 
 

Since D is defined as a Eucleadian distance, 
we have following properties: 
 

• D (a, a) = 0, reflective property 
 

• D( a, b) = D (b, a), symmetric 
property 
 

• D(a,c) ≤ D(a, b) + D(b, c), triangle 
inequality 

 
for any amino acids a, b, and c. The equality 
may hold true for special amino acids. It’s 
trivial to note that 20 distances hold 0 due to 
reflective property. Due to symmetric 

property, we have 190 distances of 20 amino 
acids. It’s also easy to see that the minimum 
distance occurs at  
 

D(Ile, Leu) = 5 and 
 
maximum distance occurs at   
 

D(Trp, Cys) = 215. 
 
All other distances are in between 5 and 
215. The frequency of distance distribution 
is illustrated below. It shows that 190 
distances are approximately divided into two 
parts between 5 to 121 and then 121 to 215. 

 Y H Q R T N K D E G F L A S P I M V C W 

Y 
0 83 99 77 92 143 85 160 122 147 22 36 112 144 110 33 36 55 194 37 

H 
83 0 24 29 47 68 32 81 40 98 100 99 86 89 77 94 87 84 174 115 

Q 
99 24 0 43 42 46 53 61 29 87 116 113 91 68 76 109 101 96 154 130 

R 
77 29 43 0 71 86 26 96 54 125 97 102 112 110 103 97 91 96 180 102 

T 
92 47 42 71 0 65 78 85 65 59 103 92 58 58 38 89 81 69 149 128 

N 
143 68 46 86 65 0 94 23 42 80 158 153 111 46 91 149 142 133 139 174 

K 
85 32 53 26 78 94 0 101 56 127 102 107 106 121 103 102 95 97 202 110 

D 
160 81 61 96 85 23 101 0 45 94 177 172 126 65 108 168 160 152 154 181 

E 
122 40 29 54 65 42 56 45 0 98 140 138 107 80 93 134 126 121 170 152 

G 
147 98 87 125 59 80 127 94 98 0 153 138 60 56 42 135 127 109 159 184 

F 
22 100 116 97 103 158 102 177 140 153 0 22 113 155 114 21 28 50 205 40 

L 
36 99 113 102 92 153 107 172 138 138 22 0 96 145 98 5 15 32 198 61 

A 
112 86 91 112 58 111 106 126 107 60 113 96 0 99 27 94 84 64 195 148 

S 
144 89 68 110 58 46 121 65 80 56 155 145 99 0 74 142 135 124 112 177 

P 
110 77 76 103 38 91 103 108 93 42 114 98 27 74 0 95 87 68 169 147 

I 
33 94 109 97 89 149 102 168 134 135 21 5 94 142 95 0 10 29 198 61 

M 
36 87 101 91 81 142 95 160 126 127 28 15 84 135 87 10 0 21 196 67 

V 
55 84 96 96 69 133 97 152 121 109 50 32 64 124 68 29 21 0 192 88 

C 
194 174 154 180 149 139 202 154 170 159 205 198 195 112 169 198 196 192 0 215 

W 
37 115 130 102 128 174 110 181 152 184 40 61 148 177 147 61 67 88 215 0 
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Figure 1.  Frequency of Euclidean Distance of Amino Acids 
 
 
 

 
 

Figure 2.  Circular Chart of Euclidean Distance Amino Acids  
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Furthermore we found that distances of 
amino acids that the equality of triangle 
inequality occur at 
 
D(S, K) = D(S, H) + D(H, K),  
(121 = 89 + 32) 
 
D(S, K) = D(S, Q) + D(Q, K),  
(121 = 68 + 53) 
 
or 
 
D(Ser, Lys) = D(Ser, His) + D(His, Lys),  
(121 = 89 + 32) 
 
D(Ser, Lys) = D(Ser, Gln) + D(Gln, Lys),  
(121 = 68 + 53) 

with an equal sum of 121.  
 
All other distances of three amino acids do 
not form equality of triangle inequality.  
 
The amino acid distance 121 between Ser 
and Lys is located at the centroid position 
(20/3, 20/3) of lower triangle (0, 0), (20, 0), 
(0, 20) of amino acid matrix. The centroid of 
a rigid triangular object is its center of mass: 
the object can be balanced on its centroid in 
a uniform gravitational field. The centroid 
cuts every median in the ratio 2:1, i.e. the 
distance between a vertex and the centroid is 
twice the distance between the centroid and 
the midpoint of the opposite side. 

It appears that three amino acids Ser-His-
Lys and Ser-Gln-Lys form a pair of 
interesting tripeptides SHK and SQK.  

Our study showed a close relation between 
amino acid distance and symmetric matrix 
through a Eucleadian distance. It is hoped 
that these relationships will help us further 
explore the protein evolution. Life is based 
on a repertoire of structured and interrelated 
molecular building blocks that are shared 
and passed around. The same and related 
molecular structures and mechanisms show 
up repeatedly in the genome of a single 
species and a cross a very wide spectrum of 

divergent species. The matrices are storages 
of digital data. The matrices appear in 
various dimensions with different shapes. 
Many literatures on mathematics and 
biological systems have merged in recent 
years [5, 6] to further advance our 
understanding of life and its evolutions. 
Mathematical rules, physics laws, chemical 
properties, biological structures and 
functionalities and environmental impact are 
the govern bodies of living and nonliving 
worlds.    
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Abstract - SCOPE (Semi  Classical  Open  Source  Protein  
Energy)  is  an  open-source  program  that  has  been  
implemented in the Object-Oriented C++ language, capable  
of  computing  none-bonded  energies  for  protein  structures  
from first principles. SCOPE is also capable of manipulating  
protein  structures  within  the  Rotamer  space  instead  of  the  
typical Cartesian space. This approach simplifies calculation  
of  the  transitional  force  field  through  elimination  of  
unnecessary terms such  as  bond  lengths,  bond angles,  and  
other  peptide  geometrical  constraints.  Elimination  of  
unnecessary  force  calculation  is  beneficial  in  improving  
computational performance while the OO approach results in  
better  program  maintenance  and  customization  for  other 
projects. Finally, the calculation of forces has been compared  
and confirmed with respect to other commonly used programs  
such as CHARMM and Xplor-NIH. Further development  of  
SCOPE  can  be  very  beneficial  in  refinement  of  
computationally  modeled structures,  or potentially  Ab-Initio  
calculation  of  structures  from  first  principles  without  any  
reliance on homology modeling.

Keywords: protein structure generation, non-bonded energy, 
protein folding, protein structure refinement

1 Introduction
  Proteins  play  a  critical  role  in  maintaining  the 
homeostatic  functions  of  a  biological  cell  and  are  often 
referred to as the working molecules of a cell  [1]. Although 
proteins  are  prevalently  recognized  for  their  enzymatic 
activities, they are also involved in structural or mechanical 
functions,  as well  as regulatory  functions  [1].  Given that  a 
protein  must  be folded  into its  native structure  in order  to 
carry out its particular function, it is of no surprise that mis-
folded proteins are linked with disease  [2]. Certain cancers, 
cystic  fibrosis  and  amyloid  diseases  such  as  Alzheimer's, 
Parkinson's, and Type II Diabetes are such examples  [2-5]. 
Understanding  the  mechanisms involved  in  protein  folding 
and protein structure prediction has never been so important. 
Collaborations  between  experimental  and  computational 
fields  have  the  potential  to  aid  in  a  number  of  different 
applications  that  will  not  only  accelerate  treatments  and 
therapies for a number of diseases, but will also replace the 
use  of  costly  and  time  consuming  approaches  with  faster, 
cheaper computer simulations [6-9].

A  protein's  structure  often  dictates  its  function  and 
therefore  investigation  of  structure  of  biologically  active 
proteins   has  intrigued  scientists  for  several  decades  [7]. 
Within the last 25 years, the combination of both novel and 
powerful  experimental  and  theoretical  techniques,  have 
contributed to a number of important advances in elucidating 
protein folding mechanisms; yet there are still challenges that 
need to be overcome in order to obtain a complete solution 
[7].  Currently,  the  “protein  folding  problem”  is  often 
described as 3 different problems: (1) the folding code – what 
thermodynamic  balance  of  inter-atomic  forces  dictates 
protein  structure;  (2)  protein  structure  prediction  – how to 
predict  a  protein's  native  structure  given  its amino  acid 
sequence; and (3) the folding process - the kinetics associated 
with how proteins fold quickly [6]. 

The concept of an energy landscape is fundamental to 
the mechanism of protein folding  [10]. The thermodynamic 
hypothesis of protein folding states that a protein will fold to 
a certain form because it is the most favorable [11]. Here  an 
open source software program, SCOPE (Semi Classical Open 
Source Protein Energy), is presented which allows the user to 
recreate  structures  and  explore  the  calculated  non-bonded 
energy potentials associated with those structures using only 
the  initial  structure  and  its  dihedral  angles  as  input. 
Furthermore,  due to formulation  of  protein  structure  in the 
rotamer  space,  several  of  the traditional  force-terms are no 
longer  required.  The  simplified  force  field  can  result  in  a 
smoother and more manageable energy landscape. 

2 Methods

2.1 Program Details

 SCOPE utilizes  an  object  oriented  approach  and  is 
written  in  C++. The  class  structure  starts  from  the 
fundamental  Atom class  and  through  compositional 
inheritance  constructs  the  AminoAcid,  and  finally  the 
PolyPeptide objects. The AminoAcid class contains an array 
of Atoms to represent an amino acid, while the PolyPeptide 
contains an array of amino acids which constitute a protein. 
The AminoAcid class is a factory class which constructs  all 
20 amino  acids;  it  contains  the  attributes  of  the  backbone 
atoms, as well as the φ, ψ, and ω angles, which are part of the 
REDCRAFT engine  [12]. Because  backbone atoms are  the 
same for  all  amino acids except  proline,  there  is  only  one 
array of atoms that contains the backbone atoms. The proline 
amino acid differs from all other amino acids in that it has no 
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amide  hydrogen  and  its  sidechain  is  linked  back  to  the 
backbone atoms. Therefore, in the case that a proline amino 
acid is created, the array of atoms containing backbone atoms 
for  all  other  amino  acids  is  modified  by  converting  each 
hydrogen backbone atom into a Cδ; the coordinates  of  the 
backbone  atoms  are  then  updated  accordingly.  When  the 
protein is created  by the use of  φ and  ψ angles, there is an 
assumption of  a  perfect  geometry,  this translates to perfect 
bond lengths and favorable bond angles for all atoms of each 
residue.

The 20 different amino acids inherit the factory amino acid 
class (Fig. 1). Each class contains the appropriate side chain 
atoms as well as the χ angles for that particular amino acid. 
For example, Glycine has a side chain with a single hydrogen 
atom and no χ angle. Each amino acid class contains the same 
functions  that  will  rotate  their  χ angles  and  update  the 
positions of  the side-chain  atoms. The side-chain atoms of 
each amino acid records their own coordinates to a .pdb file.

2.2 Implementation

SCOPE expects two input files from the user. The first 
input file is a DIANA[13] file (.ang) whose format contains 
the dihedral angles of each residue; if available, the angles are 
listed in the following order: φ, ω, χ, and finally the ψ angle 
(Fig. 2). A protein is then generated one amino acid at a time 
by reading in each residue and rotating its angles so that they 
correspond to the values of the coinciding DIANA file. 

The second input file is a protein structure file (.psf) which 
contains information related to the topology of the molecule. 
This topology file provides a rich set of information such as 

which 3 atoms make a bond angle, and which 4 atoms make a 
dihedral  angle.  Both  CHARMM  [14] and  Xplor-NIH  [15] 
create  a  .psf  file  compatible  with  SCOPE's  requirements. 
SCOPE utilizes the topology  information to calculate Van der 
Waals energy and electrostatic energy of the protein.  These 
energies  are then output to the command line along with a 
.pdb file of the recreated protein.
 

Because of our previous assumption of perfect geometry 
during protein construction, SCOPE refrains from calculating 
the  energies  associated  with  bonded  terms.  As  mentioned 
previously, SCOPE calculates the non-bonded Van der Waals 
and electrostatic energy terms seen in CHARMM and Xplor-
NIH simultaneously. This is accomplished through a series of 
loops that compares each atom with every other atom. The 
algorithm  begins  by  comparing  the  first  atom  to  all other 
atoms, one at  a time and computing a potential  energy for 
each comparison. Similarly, the second atom is compared to 
all other atoms, except the first atom, one at a time and an 
energy  term  is  computed  for  each  comparison. These 
comparisons  and  energy  calculations  continue  for  all 
remaining atoms so that no duplicate calculations are made, 
thereby alleviating  unnecessary  calculations  that  would 
needlessly increase computational demands.

 The  Van  der  Waals  term  is  used  to  measure  the 
attraction and repulsion of two atoms. The 12 – 6 Lennard-
Jones  Potential  is  used  to  calculate  its  value(1). In  this 
equation, σij represents the sum of the Van der Waals radii of 
the two atoms ( σ ij =σ i +σ j ); εij signifies the well depth of 

the  graph  calculated  as  ε ij=√ε i ε j ;  and  rij denotes  the 

distance between the two atoms(1).  The sigma and epsilon 
values for each atom are the same value in the CHARMM 
program. The Van der Waals potential can also be calculated 
using different number of bond exclusions.  The default value 
is the 1-4 atom exclusion, which means 4 atoms with three 
bonds separating them are excluded from the calculation.  A 
flag  can  be  set  when  the  program  is  executed  to  exclude 
nothing  (every  atom  to  atom  calculation),  1-2  atom 
exclusions  (2  atoms  with  a  single  bond),  or  1-3  atom 
exclusions(3  atoms  with  2  bonds  are  excluded).  These 
exclusions are cumulative so a 1-4 atom exclusions includes 
the exclusion of 1-2 atoms and 1-3 atoms. 

LJ=ε ij σ ij

r ij

6

−2 σ ij

rij

12

 (1)

The electrostatic term is used to determine the electrical 
charge  between  two  atoms.  The  electrostatic  potential  is 
found using Coulomb's Law (2). The charge of each atom is 
denoted by qij; ε0 symbolizes the permittivity of vacuum; just 
as in the Lennard-Jones equation,  the distance between the 
two atoms is represented by rij.

Figure 1: A UML diagram of the class structure for amino  
acids

Figure 2: Example fo a DIANA formatted file
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E=
q i q j

4 πε0 rij

 (2)

Both  the  Van  der  Waals  and  electrostatic  energy  terms 
include  a  distance  constraint  (rij).  This  is  to  account  for 
instances  where  the  distance  between  two  atoms  may  be 
extremely large; in such a case, non-bonded energies are not 
calculated but set to zero instead.

2.3 Testing Strategy

Initially,  SCOPE's  ability  to  generate  structures  was 
tested.  This  was  accomplished  by  creating  a  peptide  of  5 
residues in MolMol [16], which is referred to as 5RES, with φ 
and  ψ  angles  rotated  to  values  different  from  that  of 
MolMol's  default  φ and  ψ angle  values.  The  residues 
comprising 5RES were chosen randomly, with the exception 
of proline, which was specifically placed in the center of the 
peptide for its properties discussed previously (section 2.1). 
Next  the two input files required by SCOPE (DIANA and psf 
file) were created. The DIANA input file was constructed in 
MolMol and a structure file was created using the CHARMM 
program.  These  files  were  then  input  into  SCOPE.  The 
resulting .pdb file generated by SCOPE was then compared to 
the  original  5RES  .pdb  created  in  MolMol  by  calculating 
backbone root  mean square deviation (RMSD) and also by 
comparing φ and ψ dihedral angles between the two.

Next,  SCOPE's  ability  to  construct  energetically 
favorable  structures  was  tested  using  12  different  proteins 
(1A1Z,  1DP3,  1TGR,  2J5Y,  1A1W,  3LAY,  1G10,  1J4V, 
2EZM, 2EZN, 2MOB, 2PTV) from the Protein Data Bank 
(PDB) [17]. These particular proteins were selected so that it 
would be able to test a variety of  secondary structures(i.e., 
alpha-helical,  beta-strand,  and  alpha-beta  mix).  Both  a 
DIANA  file  (using  MolMol)  and  a  structure  file  (using 
CHARMM) were created in order to generate a SCOPE .pdb 
file for each of the 12 PDB proteins. The resulting SCOPE 
generated .pdb file was then compared to its original .pdb file 
for each protein by calculating the backbone RMSD between 
the two. 1000 similar structures for each protein were created 
by perturbing or randomly altering the φ and ψ angles of the 
DIANA file; the resulting perturbed structures were all within 
6Å of the SCOPE generated protein. Next, the Van der Waals 
potential was calculated for the SCOPE generated protein as 
well  as  the  1000  perturbed  structures  for  each  protein 
(therefore,  1001  structures  for  each  protein)  using  both 
SCOPE and CHARMM. Similarly, the electrostatic potential 
was calculated in both SCOPE and CHARMM .

3 Results

3.1 Structure Generation

In order  to test SCOPE's ability to generate structures 
comparable  to  other  programs,  5RES  peptide  generated  in 
MolMol  was  compared  to  the  5RES  peptide  generated  in 
SCOPE.  The  resulting  backbone  RMSD  between  the  2 

structures is 0.019Å. Comparison of φ and ψ angles between 
the two structures, as well as the peptide sequence, are listed 
in Table 1.   The difference in the angles  shown is due to 
numerical  precision  error  between  MolMol  and  Scope. 
MolMol will read in the coordinates of the atoms but when 
displayed within MolMol many of the coordinates have slight 
differences in the hundredths and thousandths place.  Some 
examples of these numerical precision errors are listed table 
1.  

Table 1: Peptide of 5 residues(5RES) created MolMol to test  
the φ and ψ  angles assigned in MolMol to the φ and ψ angles  

created with SCOPE.

Residue Original ϕ Original ψ SCOPE ϕ SCOPE ψ
TYR 180 150 180 149.956
GLN 90 60 90.041 59.985
PRO 30 29.926
LYS -30 0 -29.927 -0.001
ALA -60 180 -59.954 180

3.2 Protein Model Generation & Non-bonded 
Energy Evaluations

The previously mentioned 12 proteins were used to test 
SCOPE's accuracy in representation of protein structures and 
calculation  of  potential  energies.    For  each  protein, 
comparisons  between  the  protein  obtained  from  the  PDB 
(original)  and  the  same  protein  generated  by  SCOPE 
(SCOPE)  were  made  by  calculating  the  backbone  RMSD 
between the two. The resulting structural similarity results are 
shown in Table 2. 

Table 2: The different calculations of backbone RMSD 
between 12 test proteins obtained from the PDB and the same  

proteins recreated using SCOPE.

Protein Secondary 
Structure

Size
(Amino Acids)

BB RMSD to 
DIANA  file

1A1Z α 83 0.633
1DP3 α 55 0.226
1TGR α 52 0.468
2J5Y α 61 0.318
1A1W α 83 0.654
3LAY α 79 0.631
1G10 α/β 102 0.548
1J4V β 101 0.441
2EZM β 101 0.667
2EZN β 101 0.676
2MOB α/β 94 0.536
2PTV β 96 0.354

Each SCOPE generated protein was then perturbed into 1000 
structures.   The  phi  and  psi  angles  were  rotated  by  +/-  2 
degrees  to  create  1000  different  structures  within  6 
angstroms.  The  Van  der  Waals  and  electrostatic  potential 
energies  were  calculated  separately  in  both  SCOPE and 
CHARMM for each of the 1000 derivative structures. Figure 
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3 displays  the  correlation  for  the  Van  der  Waals  potential 
calculated by CHARMM and SCOPE for protein 3LAY and 
figure  4  reveals  the  correlation  between  the  electrostatic 
potential calculated by CHARMM and SCOPE for the same 
protein  (3LAY).   Figures  5  –  8  contain  the  correlation 
between  the  Van  der  Waals  potential  and  the  electrostatic 
potential calculated by CHARMM and SCOPE for  proteins 
1G10 and 1J4V.

4 Discussion
SCOPE's  ability  to  generate  structures  comparable  to 

those  constructed  in  MolMol  is  demonstrated  using  the 
constructed  5RES  peptide  and  12  proteins  representing 
different  structural  categories  and  sizes.  In  all  of  these 
exercises,  the  constructed  structures  by  SCOPE are  nearly 
identical to their original counterparts generated by MolMol. 
The  subtle  differences  that  are  observed  are  due  to  more 
precise  representation  of  structures  by  SCOPE.  Inherently, 

Figure 3: The Van der Waals Correlation between the  
CHARMM program and SCOPE for protein 3LAY.

Figure 4: The electrostatic Potential between the CHARMM 
program and SCOPE for protein 3LAY.

Figure 5: The Van der Waals Potential between the 
CHARMM program and SCOPE for protein 1G10.

Figure 6: The electrostatic Potential between the CHARMM 
program and SCOPE for protein 1G10.

Figure 7: The Van der Waals potential correlation between  
the CHARMM program and SCOPE for protein 1J4V

Figure 8: The Electrostatic potential correlation between the  
CHARMM program and SCOPE for protein 1J4V
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PDB file  format  imposes  a  limited  numerical  precision  in 
representing  the atomic  coordinates  in  the  Cartesian  space. 
The backbone RMSD between the 5RES peptide generated in 
MolMol and the 5RES peptide generated in  SCOPE is very 
low (0.019Å). 

 It  is  important  to  note  that  due  to  peculiarities  of 
MolMol,  the  φ angles  of  prolines  are  not  computed  and 
therefore not reported in the DIANA format. Manual editing 
of the DIANA file is to capture the  φ angle of prolines. In 
some instances other violations of standard peptide geometry 
causes a significant distortion of structures. For example, our 
preliminary  calculations  of  backbone  RMSD  between 
original  proteins  and  that  same  protein  generated  with 
SCOPE  (data  not  shown)  revealed  problematic  values  (in 
excess of 15Å), which is explained using the 3LAY protein as 
an example. 3LAY contains two  prolines at residues 20 and 
43  of  the  protein.  After  carefully  examining  these  specific 
residues  some interesting observations were made as to why 
there  appeared  to  be  such  huge  diversions  in  backbone 
RMSD. In the case of residue 20, the original structure has an 
ω angle of –165 degrees, yet  SCOPE was not able to rotate 
the  ω angle  accordingly.  With  regard  to  residue  43,  the 
original  structure  contains a  φ angle  that  is  rotated  to  -53 
degrees, yet the corresponding  φ angle generated in SCOPE 
defaults to -72.3 degrees. Because MolMol does not calculate 
the  φ angles of  proline, the Diana file created from MolMol 
does not write out a  φ angle for the  proline and the angle is 
not rotated properly.   To circumvent the issue, our solution 
was to add the φ angle to the proline in the DIANA file and 
rotate the ω angles in the original structure to be 180 degrees. 
These  changes  allowed  for  a  reduction  in  the  backbone 
RMSD from 0.855Å to 0.631Å (Fig. 9).

Protein  representation  in  rotamer  space  has  some 
distinct  advantages.   One  such  advantage  is  related  to  the 
reduced  set  of  information  that  is  needed  to  reconstruct  a 
protein  structure.   The  backbone  only  will  have  dihedral 
angles φ, ψ, and ω. If an all atom version is used then the x, y, 
z coordinates of 7 atoms need to be known for a total of 35 
different parameters.  So in the backbone alone, the rotamer 
representation reduces the number of parameters from 35 to 
3.

The use of rotamer space to construct a protein also has 
some  disadvantages,  which  primarily  relate  to  the  loss  of 
information. Bond angles created under the rotamer geometry 
in both MolMol and SCOPE may differ from the bond angles 
that are present in the original file obtained from the Protein 
Data  Bank. This  was  observed  when  bond  angles  were 
calculated between all bond angles for 3LAY, demonstrating 
bond angles that differed by as much as 65 degrees. Another 
problem may  arise  with  bond  lengths.  When bond  lengths 
were compared between all bond lengths for 3LAY, although 
small,  the  maximum  difference  was  0.07Å.  The  major 
differences in bond angles and possibly bond lengths led to 
major differences in atom coordinates, further contributing to 
high values in backbone RMSD (data not shown). 

To  alleviate  this  issue,  structures  made  manually  in 
MolMol (not input as a .pdb file) use the perfect  geometry 
assumption.  This  allows  for  structures  to  be  created  in 
MolMol  and  then  compared  to  structures  generated  by 
SCOPE. Using the amino acids of  residues  18 –  66 of  the 
3LAY structure,  since  a  proline is  located  centrally  to  the 
structure, a protein in MolMol was manually created and then 
the structure was re-created in SCOPE. Comparisons between 
the two structures  revealed a backbone RMSD of  0.290  Å 
(Fig. 10). Therefore by assuming perfect geometry for bond 
lengths, bond angles, and the ω angles SCOPE can accurately 
depict the structure.

Figure 9: Comparisons between the 3LAY protein from 
MolMol created by the DIANA file (seen here in red) and the  

same protein generated by SCOPE using the DIANA file  
(seen here in yellow) after modifications produced a reduced  

backbone RMSD (0.631Å). Figure 10: Residues 18 – 66 created by MolMol and SCOPE 
with an RMSD of 0.290.
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Our initial non-bonded energy calculation comparisons 
between the CHARMM and SCOPE programs revealed large 
differences between the two. After further investigation it was 
realized that the coordinates of the atoms in CHARMM and 
the coordinates  of the atoms in SCOPE contained different 
levels of accuracy. Though the difference in accuracies was 
only in a few decimal places, the energy spike was magnified 
since atoms at close distances cause the Van der Waals term 
to become basically exponential(1). Once the accuracy was 
fixed  to the same number  of  decimal  places,  however,  the 
non-bonded energies became extremely correlated.

In fact for all proteins, both non-bonded energies were 
very  strongly  correlated  between  CHARMM  and  SCOPE 
with R2 values ranging from 0.99 to 1.0 and 0.96 to 0.99 for 
Van der  Waals and electrostatic  energies  respectively (data 
not  shown).  Because  correlations  in  non-bonded  energies 
between the CHARMM and SCOPE programs were highly 
similar, these findings were demonstrated using only proteins 
3LAY, 1G10, and 1J4V as examples  (Figs. 3 - 8). . 

Not all of the protein's non-bonded energy terms have a 
perfect  linear correlation. The reason for the discrepancy is 
that  SCOPE  does  not  use  an  N-terminus  residue  or  a  C-
terminus residue of the protein while CHARMM, creates the 
protein with both terminal residues. As a result, the energies 
from the HT2, HT3, OT1, and OT2 atoms are ignored but the 
HT1  atom is  calculated  in  CHARMM leaving  only  the  H 
atom on the first residue to be calculated in  SCOPE. Some 
proteins have the same coordinates for the H atom and the 
HT1 atom resulting in a higher correlation while the proteins 
that  differed  in  the  coordinates  resulted  in  the  lower 
correlations.

Future  work  on  the  SCOPE  program  will  start  with 
adding on to the forcefield.  The next term to be added will be 
a  hydrogen-bond  term  that  can  be  used  to  help  with 
refinement  of  protein  structures.  Also,  the  addition  of  a 
Levenberg-Marquardt  minimization  algorithm will  facilitate 
refinement of protein structures.  

SCOPE is a simple open source program that uses only 
structure and angle files to reconstruct proteins and output an 
energy analysis of the newly created structure.  Because the 
program is written in C++, users are given the flexibility to 
make modifications, such as adding extra energy terms, that 
are relevant to the task at hand. SCOPE's utility can also be 
expanded  by  using  it in  combination  with  other  protein 
folding programs, such as REDCRAFT, in order to determine 
energetically favorable structures. 
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Abstract— Protein structure prediction is the problem of

finding the functional conformation of proteins given only

their amino acid sequence. The HP model is an abstract

formulation of this problem, which captures the fact that

hydrophobicity is the major driving force in the protein

folding process. It represents a hard combinatorial opti-

mization problem, widely addressed with metaheuristics.

The conventional energy function of the HP model does

not provide an effective discrimination among candidate

solutions. Therefore, alternative energy formulations have

been proposed. We inquire into the effectiveness of several

of such alternative approaches. The discrimination potential

of each of the studied functions is analyzed as well as their

impact on the behavior of a basic local search algorithm.

1. Introduction
Proteins are at the heart of cellular function, carrying most

of the key processes associated with life. The functional

properties of a protein are dictated by its three-dimensional

conformation. To fully understand the biological roles of a

protein it is imperative, therefore, to determine its structure.

The Protein Structure Prediction (PSP) problem aims to

determine the native conformation of proteins given only

their linear chain of amino acids. Such a structure is as-

sumed to be the one minimizing the overall free energy

[1]. Solving PSP at atomic resolution requires a prohibitive

computational effort even for relatively small proteins. Thus,

simplified protein models have emerged as valuable tools for

studying the most general principles of the folding process.

One of such simplified formulations of PSP is the HP

model [2, 3]. However, even a so abstract model represents

a hard combinatorial optimization problem which has been

proved to be NP-complete [4, 5]. This has widely motivated

the use of metaheuristics to address this problem [6].

Metaheuristics rely on an effective evaluation scheme to

guide the search process. However, the conventional energy

function of the HP model enables a very poor discrimination.

Thus, no preferences can be set among potential solutions,

leading the search to be oriented almost at random. This

problem is expected to have a major impact on the perfor-

mance of local search algorithms. The low discrimination

This research was partially funded by CONACyT project 99276.

of the conventional function produces large plateaus in the

energy landscape, on which local search strategies could fail

to detect a promising search direction [7].

Alternative HP energy functions have been proposed to

improve the performance of search algorithms [7]–[12]. Nev-

ertheless, there are no reported results on the advantages of

using most of such approaches. In this paper, a comparative

study is presented where seven different formulations of

the HP energy function are considered. The discrimination

potential of these approaches is first analyzed. Then, the

effectiveness of each of the studied functions to guide the

search process is evaluated. A basic local search algorithm

was adopted for this sake.

This paper is organized as follows. The HP model is

defined in Section 2. In Section 3, the studied approaches are

described. Our experimental results are discussed in Section

4. Finally, Section 5 concludes.

2. The HP model

Amino acids, the building blocks of proteins, can be clas-

sified on the basis of their affinity for water. Hydrophilic or

polar amino acids (P ) are usually found at the outer surface

of proteins. By interacting with the aqueous environment,

these residues contribute to the solubility of the molecule.

In contrast, hydrophobic or nonpolar residues (H) tend to

pack on the inside of proteins, where they interact with one

another to form a water-insoluble core. These properties of

the amino acids represent, therefore, one of the major driving

forces responsible for the folded state of proteins.

In the Hydrophobic-Polar (HP) model, proposed by Dill in

1985 [2, 3], proteins are represented as sequences of the form

S ∈ {H,P}L, where L denotes the number of amino acids.

The subsets of H and P residues in S are here referred to as

SH and SP , respectively. Valid conformations are modeled

as Self-Avoiding Walks of the HP sequence S on a lattice.

That is, 1) lattice nodes are labeled by the amino acids, 2)

a lattice node can be assigned to at most one residue and 3)

adjacent residues in S are also adjacent in the lattice. This

study focuses on the two-dimensional square lattice.

By emulating hydrophobic interactions, the HP model

aims to find a valid conformation where the number of H-

H topological contacts (HHtc) is maximized. Two residues
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si, sj ∈ S are said to form a topological contact, denoted by

tc(si, sj), if they are nonconsecutive in S (i.e., |i− j| ≥ 2)

but adjacent in the lattice. The free-energy function in the

HP model is defined as the negative of HHtc; maximizing

HHtc is equivalent to minimize such an energy function.

Formally, PSP in the HP model is defined as the prob-

lem of finding the conformation c∗ ∈ C(S) such that

ED85(c
∗) = min{ED85(c) | c ∈ C(S)}, where C(S) is

the set of all valid conformations of S. ED85(c) denotes the

free energy of conformation c, which is given by:1

ED85(c) =
∑

si,sj∈SH

e(si, sj) (1)

where

e(si, sj) =

{

−1 if tc(si, sj)
0 otherwise

An example of the optimal conformation for an HP protein

of length L = 20 on the square lattice is shown in Figure 1.
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Fig. 1: Optimal conformation for sequence HPHPPHHPH-

PPHPHHPPHPH of length L = 20. Black and white balls

denote H and P residues, respectively. H-H topological

contacts (HHtc) have been numbered. The free energy of

this conformation is ED85(c) = −9, since HHtc = 9.

Despite its apparent simplicity, finding the optimal confor-

mation for a protein in the HP model is a hard combinatorial

optimization problem, proved to be NP-complete [4, 5].

3. Alternative HP energy functions

This section describes the alternative HP energy functions

considered for this study. A three-letter acronym has been

assigned to each of the studied approaches. The acronyms

are based on first author’s initial and publication year.

3.1 Krasnogor et al., 1999 (K99)

In the conventional HP energy function, only H-H topo-

logical contacts (HHtc) contribute to the quality assessment

of conformations. Given two conformations with the same

HHtc value, it is possible, however, that one of them has bet-

ter characteristics (more compact) than the other. Krasnogor

1The acronym D85 is used to distinguish this conventional function from
the other approaches considered in this study.

et al. [7] proposed the following distance-dependent energy

function:

EK99(c) =
∑

si,sj∈SH

e(si, sj) (2)

where

e(si, sj) =

{

−1 if tc(si, sj)
−1/(d(si, sj)

k|SH |) otherwise

where d(si, sj) denotes the distance between residues si and

sj . In [7], the value of k = 4 was used for the square lattice.

In [7], no significant improvements were achieved when

using the modified energy function. As the authors pointed

out, the superiority of the approach is expected to become

more evident for larger instances and, particularly, when

local search strategies are implemented. The relevance of

using this proposal needs to be further investigated.

3.2 Custódio et al., 2004 (C04)

The conventional HP energy function maximizes only

H-H interactions, thus the positioning of P residues is not

directly optimized. This may result in unnatural structures

for sequences with long P segments and, especially, when

P segments are located at the ends of the chain.

Custódio et al. [8] proposed a modified energy function

based on the assumption that it may be preferable for an

H residue to have a P neighbor than to be in contact

with the aqueous solvent. In the proposed function, the

energy of a conformation is computed as the weighted

sum of the number of hydrophobic-hydrophobic (HHc),

hydrophobic-polar (HPc) and hydrophobic-solvent contacts

(HSc).2 Formally:

EC04(c) = ω1HHc + ω2HPc + ω3HSc (3)

where ω1, ω2 and ω3 denote the relative importance of HHc,

HPc and HSc.

In [8], the proposed function allowed to improve the

performance of a genetic algorithm for some of the adopted

test cases.

3.3 Lopes and Scapin, 2006 (L06)

Lopes and Scapin [9] proposed an energy function which

is based on the concept of radius of gyration. The radius of

gyration is a measure of the compactness of conformations;

the more compact the conformation, the smaller the value

for this measure. The proposed function is given by:

EL06(c) = HnLB ·RadiusH ·RadiusP (4)

The HnLB term comprises the number of H-H topological

contacts (HHtc) and a penalty factor which accounts for the

violation of the self-avoiding constraint. Formally:

HnLB = HHtc− (NC · PW ) (5)

2A free lattice location is said to be occupied by the solvent.
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where NC is the number of collisions and the penalty weight

PW can be computed as PW = (0.033 · L) + 1.33 [13].

Before defining the RadiusH and RadiusP terms, let us

first define RgH as the radius of gyration for H residues:

RgH =

√

√

√

√

√

∑

s∈SH

[

(xs − X̄)2 + (ys − Ȳ )2
]

|SH |
(6)

where xs and ys are the coordinates of residue s while X̄ and

Ȳ denote the mean coordinates for H residues. Analogously,

we can compute RgP , the radius of gyration for P residues,

by considering only P rather than H residues in (6).

The RadiusH term measures how compact the hydropho-

bic core of the conformation is. This term is given by:

RadiusH = MaxRgH −RgH (7)

where MaxRgH is the radius of gyration of a totally

unfolded conformation; i.e., the maximum possible RgH
value.

Finally, the RadiusP term aims to push P residues away

from the hydrophobic core. Given the previously defined

RgH and RgP measures, the RadiusP term is computed

as:

RadiusP =

{

1 if (RgP −RgH) ≥ 0
1

1−(RgP−RgH)
otherwise

(8)

RadiusP lies in the range [0, 1]. A value of (RgP −
RgH) > 0 means that P residues are more exposed than H
residues. This is a convenient scenario, so the RadiusP term

has no contribution to the final energy value (RadiusP = 1).

Otherwise, (RgP − RgH) < 0 suggests H residues to be

more spread than the P ones, so the energy value of the

conformation is decreased. Note that (4) is to be maximized.

In [9, 13], no results are provided on the impact of using

this function rather than the conventional approach.

3.4 Berenboym and Avigal, 2008 (B08)

Berenboym and Avigal [10] proposed an alternative en-

ergy function, called by them the global energy. In this func-

tion, each pair of nonconsecutive H residues contributes to

the energy value, even if they are not topological neighbors:

EB08(c) =
∑

si,sj∈SH

e(si, sj) (9)

where

e(si, sj) =

{

−1

(xsi
−xsj

)2+(ysi
−ysj

)2
if |i− j| ≥ 2

0 otherwise

In [10], the effects of using a local search operator

within a genetic algorithm were investigated for both, the

conventional and the proposed energy functions. However,

an explicit comparison to demonstrate the advantages of

using a particular energy function was not reported.

3.5 Cébrian et al., 2008 (C08)

Cébrian et al. [11] proposed an alternative formulation of

the HP energy function which measures the deviation from

the unit distance (i.e., topological contact distance) for each

pair of H residues. Let d(si, sj)
2 = (xsi

− xsj
)2 + (ysi

−
ysj

)2 be the distance between residues si and sj , and let

dv(si, sj) = d(si, sj)
2−1 denote its deviation from the unit

distance. The energy value of a conformation c is given by:

EC08(c) =
∑

si,sj∈SH

dv(si, sj)
k (10)

where k ≥ 1 is a parameter of the function, whose larger

values give more weight to unit distances. We used k = 2,

since this value seems to provide the best behavior based

on the results reported in [11]. EC08(c
∗) = 0 would refer

to the ideal (potentially unrealistic) scenario where all pairs

of H residues are at a unit distance in conformation c∗.

In [11], no experimental results were reported about the

benefits of using the proposed energy function instead of

the conventional one.

3.6 Islam and Chetty, 2009 (I09)

Islam and Chetty [12] proposed a modified HP function

based on two measures: H-compliance and P -compliance.

H-compliance measures the proximity of H residues

to the center of a hypothetical rectangle enclosing all H
residues, denoted by the reference point (xr, yr). Formally:

H-comp(c) =

∑

s∈SH

(xr − xs)
2 + (yr − ys)

2

|SH |
(11)

where xs and ys denote the lattice coordinates of the s
residue.

P -compliance is a measure of how close P residues are

to the boundaries of a hypothetical rectangle enclosing all P
residues, defined by xmin, xmax, ymin and ymax. Formally:

P -comp(c) =

∑

s∈SP

min

{

|xmin − xs|, |xmax − xs|,
|ymin − ys|, |ymax − ys|

}

|SP |
(12)

Finally, the energy of a given conformation c is defined

as:

EI09(c) = αED85(c) + H-comp(c) + P -comp(c) (13)

where ED85(c) is the conventional HP energy function (see

Section 2) and α is a high value integer constant to ensure

this will be the dominant term in (13). We used α = 10, 000.

In [12], the advantages of using the proposed energy

function were demonstrated for a 85-length HP benchmark

sequence. However, the impact of using this function should

be carefully investigated for a larger set of test cases.
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4. Experimental Results
In this section, we investigate the effectiveness of the stud-

ied approaches. Note, however, that even when an alternative

evaluation function is used, the goal of the optimization

process remains to maximize HHtc, which is the singular

objective in the HP model. In this study, the exclusive

purpose for using alternative energy functions is to guide the

search process in a more effective manner. Table 1 presents

the 9 HP benchmark sequences adopted for this study.

Table 1: Benchmarks, length (L) and optimal value (HHtc∗).
Sequence L HHtc∗

S1 HPHP2H2PHP2HPH2P2HPH 20 9

S2 P2HP2H2P4H2P4H2P4H2 25 8

S3 P3H2P2H2P5H7P2H2P4H2P2HP2 36 14

S4 P2HP2H2P2H2P5H10P6H2P2H2P2HP2H5 48 23

S5 H2(PH)4H3P(HP3)3(P3H)3PH4(PH)4H 50 21

S6 P2H3PH8P3H10PHP3H12P4H6PH2PHP 60 36

S7 H12PHPH(P2H2P2H2P2H)3PHPH12 64 42

S8 H4P4H12P6(H12P3)3HP2H2P2H2P2HPH 85 53

S9 P6HPH2P5H3PH5PH2P4H2P2H2PH5P

H10PH2PH7P11H7P2HPH3P6HPH2

100 48

4.1 Degree of discrimination

The discrimination strategy directly impacts the perfor-

mance of search algorithms. That is, if it is not possible to

set preferences among solutions the search process will be

guided practically at random.

The degree of discrimination that each of the studied func-

tions provides is investigated. We analyzed the distribution

of ranks that these approaches induce on a set of candidate

solutions. A ranking expresses the relationship among a set

of items according to a given property. In the context of this

study, potential conformations are ranked according to their

quality. The first rank is assigned to the best solution, the

next rank to the second best solution, and so on. Solutions

with the same quality will share the same rank.

We adopted the relative entropy (RE) measure proposed

by Corne and Knowles [14]. Given a set of n ranked

solutions (there are at most n ranks, and at least 1), the

relative entropy of the distribution of ranks D is defined as:

RE(D) =

∑

r

D(r)

n
log(

D(r)

n
)

log(1/n)
(14)

where D(r) denotes the number of solutions with rank r.

RE(D) tends to 1 as approaching to the ideal situation

where each solution has a different rank (i.e., the maximum

possible discrimination). On the other hand, when all the

solutions share the same ranking position (i.e., the poorest

discrimination), RE(D) takes a value of zero.

In this experiment, 1, 000 different valid structures were

generated at random. For each of the studied energy func-

tions, these solutions were evaluated and ranked to finally

compute the RE measure. We performed 100 repetitions of

this experiment for all the benchmarks. The box plots in

Figure 2 present the overall statistics of this experiment.

D85 K99 C04 L06 B08 C08 I09

0.2

0.4

0.6

0.8

1

R
E

 

 

mean

Fig. 2: Relative entropy (RE). Overall statistics.

From Figure 2, it is possible to note that the conventional

HP function, D85, achieved the lowest RE values. This

confirms the poor discrimination capabilities of this function,

which has been the main factor motivating the exploration of

alternative approaches. C04 showed the worst performance

among the alternative functions. Function L06 achieved high

RE values most of the time, but the outliers indicate a low

performance of this function for some of the benchmarks.

Finally, it is important to remark the high discrimination

provided by functions B08, K99, C08 and I09.

The above results can be better understood by analyzing

Figure 3. This figure presents the histograms with the

distribution of ranks achieved by each function for the first

repetition of this experiment regarding sequence S1. From

this figure, it is possible to note how poor the distribution

of ranks achieved by function D85 is. Only five different

ranking positions were enough to classify the 1, 000 gener-

ated solutions. It can be seen a peak where there are almost

400 solutions sharing the same rank. In fact, no matter the

amount of generated solutions, the maximum number of

ranks which can be assigned through function D85 is 9, since

HHtc∗ = 9 for this benchmark sequence (S1). The second

worst scenario is presented by function C04, where less than

40 different ranking positions were required, out of which

two were each assigned to at around 100 conformations.

Functions L06 and I09 showed an increased discrimi-

nation, since about 720 and 650 ranking positions were

occupied to classify the totality of solutions, respectively. In

the case of function I09, a maximum of eight solutions were

assigned to the same rank. On the other hand, the histogram

for L06 presents a high peak indicating that there are about

250 equally ranked conformations. Function L06 is defined

as the product of three terms, out of which one corresponds

to HHtc (see Section 3.3). All solutions for which HHtc = 0
will have the same energy value, 0. To some extent, this can

be seen as a drawback. Function L06 will not be able to

discriminate among these solutions even if some of them

have better chances than others to further improve.

Finally, the histograms for B08, K99 and C08 confirm

the high degree of discrimination these approaches provide.

We can see that function C08 allowed roughly 950 different

ranks to be assigned. B08 showed the strongest discrim-

ination among all the studied functions, followed by K99.

The corresponding histograms for these functions reveal that

almost all solutions were mapped to a different rank. Only

a few ranks were assigned to at most two solutions.
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Fig. 3: Density of the distribution of ranks achieved by the

studied evaluation functions. Sequence S1, run 1.

4.2 Search performance

We implemented a Steepest Descent Hill Climbing algo-

rithm (SDHC) to evaluate the effectiveness of the studied

energy functions at guiding the search process. SDHC is

a parameter-free algorithm, whose motivation in this study

is to avoid affecting (neither negatively nor positively) the

performance of the approaches through parameter settings.

Given that SDHC is a local search technique, functions pro-

viding a finer discrimination are expected to perform better.

As pointed out by Krasnogor et al. [7], a poor discrimination

will produce large plateaus in the energy landscape, on

which local search strategies could fail to identify a descent

direction. Algorithm 1 describes the implemented SDHC.

The algorithm starts with a valid conformation generated

at random, denoted by c. Once c is generated, we identify c′,
the best conformation among all defined in the neighborhood

of c, N(c). Then, solutions c and c′ are compared with

respect to their energy values. At this point is where the

Algorithm 1 Steepest Descent Hill Climbing (SDHC).

BEGIN SDHC()

1: c← getRandomV alidSolution()
2: loop

3: c′ ← getBest(N(c))
4: if E(c′) < E(c) then

5: c← c′

6: else

7: Stop()
END

different energy functions come to play a decisive role in

the behavior of the algorithm. If c′ has a better energy value

than c (E(c′) < E(c)), then a replacement occurs and the

process repeats. Otherwise, the process ends, since given

the current solution and the adopted neighborhood it is not

possible to achieve an improvement (c is locally optimal).

An internal coordinates representation with absolute

moves was adopted [15]. Candidate conformations are en-

coded as sequences in {U, D, L, R}L−1, denoting the up,

down, left and right possible locations for a residue with re-

gard to the preceding one (solutions are decoded to Cartesian

coordinates for evaluation). The implemented neighborhood

structure N(c) is defined by all solutions that can be reached

through 1-variable perturbations of c. Given a sequence of

length L, the size of such a neighborhood is |N(c)| =
3(L−1). However, only valid conformations are considered.

It is important to remark that the aim of using the SDHC

algorithm is not to improve the state-of-the-art results for

this problem. In this study, SDHC serves only as a tool to

measure the impact of using each of the energy functions.

The behavior of the SDHC algorithm was evaluated

when using each of the studied functions. A total of 100

independent executions were performed for all the adopted

benchmarks. The results of this experiment are presented

in Figure 4. Each plot in this figure shows the average

number of H-H topological contacts (HHtc) achieved by the

algorithm as the search progressed (iteration by iteration).

From Figure 4, it is possible to derive some general

conclusions. The poorest performance for this experiment

was presented by function C08, whose results were even

worse than those of function D85 in most of the considered

test cases. This behavior can be explained by the fact

that function C08 is not consistent with the conventional

objective of the HP model. As stated at the beginning

of Section 4, even when alternative functions are used to

guide the search process, the goal remains to maximize

HHtc; or, which is equivalent, to minimize function D85.

The alternative function should not contradict D85 when

discriminating among potential conformations, otherwise we

will probably be pursuing a different optimum. Nevertheless,

given two conformations c1 and c2, it is possible the case

where ED85(c1) < ED85(c2) but EC08(c1) > EC08(c2),
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Fig. 4: Results of the SDHC algorithm. Achieved number of H-H topological contacts (HHtc) at each iteration. Average

of 100 independent executions.

which is a contradiction.3 An example of this scenario is

presented in Figure 5. This can be seen as a drawback,

so function C08 is not expected to steer the search in an

effective manner. Such an important issue needs to be further

explored for all the studied approaches.

c1: ULLDRDLDLLDDRURRURU c2: LUUULURRRDRDLLDRRRU

�����

�����

�����

�����

��
�
��

��
�
��

��
	
��

Fig. 5: C08 contradicts D85, since ED85(c1) = −7 <
ED85(c2) = 0 but EC08(c1) = 5548 > EC08(c2) = 5308.

.

As expected, function D85 showed a low performance for

3Note that the case where ED85(c1) = ED85(c2) but E(c1) 6= E(c2)

is not a contradiction. This is a convenient scenario, since the aim of using
the alternative function E is to enable a more fine-grained discrimination.

this experiment. For all instances, the algorithm achieved the

lowest number of iterations due to the poor discrimination

this function provides. Function D85 exposed the second

worst overall behavior. C04 reached slight improvements,

but its limited performance was comparable with that of

function D85 in some cases. Note that functions D85 and

C04 were previously identified in Section 4.1 because of

their low discrimination capabilities. To some extent, this ex-

plains the poor performance presented by these approaches.

Functions K99 and B08 behaved similarly for the smallest

benchmarks, but their performance curves diverged as the

size of the problem was increased. The results of B08

deteriorated for the largest test cases, while the increasing

performance of K99 allowed this function to compete at the

top of the ranking. L06 obtained very competitive results

most of the time. Finally, we can highlight the outstanding

behavior that function I09 consistently showed for all the

considered test cases. Our results indicate that the best

performers were I09, L06 and K99, in this order.

Functions I09, K99, B08 and C08 were all identified

in Section 4.1 to provide a strong discrimination. How-

ever, only K99 and I09 are among the best performers of
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this experiment. That some equally discriminative functions

performed better than others suggests that more important

than the strength is the effectiveness of the discrimination

(intensity does not imply effectiveness).

5. Conclusions and Future Work
The conventional energy function of the HP model enables

a very poor discrimination among potential conformations.

Nevertheless, an effective evaluation scheme is an essential

requirement for metaheuristics in order to guide the search

process towards promising regions of the solutions space.

Alternative HP energy functions have been proposed to

enhance the performance of search algorithms. However, for

most of these approaches there are not reported experimental

results where the benefits of their usage are demonstrated.

This paper presented the results of a comparative study

where seven different formulations of the HP energy function

were considered. Our first experiment was concerned with

the analysis of the degree of discrimination that each of

these functions provides. The obtained results confirmed the

poor discrimination capabilities of the conventional function,

which has been the main motivation for exploring alterna-

tive approaches. All the alternative functions demonstrated

to provide a more fine-grained discrimination. The most

discriminative function according to our results is B08,

followed by the K99, C08 and I09 approaches, in this order.

In our second experiment, we evaluated the impact of us-

ing the studied functions on the performance of a parameter-

free local optimizer. The aim of using a parameter-free

algorithm was to avoid influencing the behavior of the

approaches through parameter settings. In general, most of

the alternative functions allowed to increase the performance

of the implemented algorithm. As expected, the conventional

D85 function exhibited a low performance for this experi-

ment. However, the C08 approach behaved even worse for

most of the adopted test cases. On the other hand, functions

I09, L06 and K99 consistently achieved very competitive

results, being the best performers in this test.

From this study, it is possible to derive some general

conclusions. First, intensity of discrimination does not neces-

sarily imply effectiveness at guiding the search process. Even

when functions I09, K99, B08 and C08 were all identified to

provide a strong discrimination, only I09 and K99 behaved

favorably. In contrast, B08 and particularly C08 presented

a limited search performance. That the less discriminative

approaches (D85 and C04) showed a low overall perfor-

mance confirmed, however, that a tighter evaluation scheme

is important to improve the behavior of search algorithms.

The fact that D85 consistently exposed a poor perfor-

mance supports the relevance of exploring the use of al-

ternative approaches. To the best of our knowledge, this

research is producing the first results that have been reported

in this direction. Nevertheless, this research is in progress.

The preliminary results presented in this paper suggest that

functions I09, L06 and K99 are very promising approaches

for studies on the HP model. However, the impact of using

these approaches needs to be further investigated for more

sophisticated search algorithms. Also, it is important to

extend this study to the three-dimensional cubic lattice, or to

other lattice configurations (for example, the face-centered

cubic lattice), in order to generalize our conclusions.
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Abstract – Expressed Sequence Tags (ESTs) are short 

DNA sequences generated by sequencing the transcribed 

cDNAs coming from a gene expression. They can provide 

significant functional, structural and evolutionary 

information and thus are a primary resource for gene 

discovery. EST annotation basically refers to the analysis 

of unknown ESTs that can be performed by database 

similarity search for possible identities and database 

search for functional prediction of translation products. 

Such kind of annotation typically consists of a series of 

repetitive tasks which should be automated, and be 

customizable and amenable to using distributed computing 

resources. Furthermore, processing of EST data should be 

done efficiently using a high performance computing 

platform. In this paper, we describe an EST annotator, 

EST-PACHPC, which has been developed for harnessing 

HPC resources potentially from Grid and Cloud systems 

for high throughput EST annotations.  The performance 

analysis of EST-PACHPC has shown that it provides 

substantial performance gain in EST annotation.  

Keywords: Expressed Sequence Tag, High Throughput EST 

Annotations, EST Data Mining, Grid and Cloud Computing, 

Performance Evaluation.  

BIOCOMP 2011 

I. INTRODUCTION 

High-end computing facilities such as grids and 

clouds [8] are the key to enabling bioinformatics 

projects in the next generation sequencing era. Different 

research groups both nationally and internationally 

could benefit by sharing research data, computing 

platforms and experiment results cost-effectively. Many 

research laboratories will have many terabytes if not 

petabytes of data to transfer, store and analyse. Handling 

and analysing such huge amount of genomic data 

require fast and reliable computer networks as well as a 

huge amount of computation power and storage. 

Although high-end supercomputers are now easily 

available to a broad scientific community, users without 

in depth I.T. knowledge are often forced to cope with 

many low-level details when using those machines for 

scientific investigations. Cloud technologies in 

particular promise to provide seamless access to high 

performance computer clusters through the abstractions 

of services and brokers that hide the details of the 

underlying software and hardware infrastructure. In this 

paper, we describe an expressed sequence tag (EST) 

annotator, EST-PAC
HPC

, which has been developed for 

EST annotation on a high performance computing 

platform. 

 

BLAST [13] is probably the most worldwide used 

bioinformatics tool for sequence alignment and BLAST 

searching of ESTs is a key component task of EST 

annotation. A typical EST annotation procedure often 

needs to perform BLAST searching for a large volume 

of ESTs repeatedly on different genomic databases. 

Thus, such procedure should be executed on a HPC 

platform to leveraging the power of parallel processing. 

There are a number of programs and hardware solutions 

for efficient high-throughput BLAST searching in Grids 

[4] and Clouds [5]. However, there is a lack of generic 

software solutions for personalized management, 

presentation and mining of the search results. For this 

reason, downstream analysis remains a task to be solved 

in ad hoc ways by different users. On the other hand, 

other EST annotators [17] have concentrated on 

providing an intergraded annotation and data mining 

environment but have failed to handle the high 

throughput computational requirement of EST 

annotation. EST-PAC
HPC

 is a fully functional EST 

annotator, which performs using HPC resources 

potentially from various grid and cloud systems. 

 

The rest of this paper is organized as follows. Section 

2 provides the background knowledge of EST 

annotation. It also describes the EST-PAC and EST-

PAC
HPC

 software packages. Section 3 explains the 

approach taken by EST-PAC
HPC

 for high throughout 

BLAST searching. Section 4 covers the performance 

evaluation of EST-PAC
HPC

 for EST annotation using 

BLAST searching on a HPC platform. The experimental 
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test-bed, workload construction and results of the 

performance evaluation are discussed. Finally, Section 5 

presents the conclusions and our future work.  

II. BACKGROUND 

An expressed sequence tag (EST) is a short DNA 

sequence, usually 200 to 500 nucleotides long, that is 

generated by sequencing the transcribed cDNA 

sequence of an expressed gene. ESTs were used for the 

first time as a primary resource for human gene 

discovery [1]. Since then, there has been an exponential 

growth in the generation and accumulation of EST data, 

with approximately 69 million ESTs now available in 

public databases (GenBank 01 March 2011, all species). 

Since ESTs can provide significant functional, structural 

and evolutionary information, there are a lot of 

worldwide biological projects and laboratories that 

continually produce ESTs for different researching 

tasks. Many EST sequencing projects are underway for 

numerous organisms and extensive computational 

strategies have been developed to organize and analyse 

both small- and large-scale EST data for gene discovery, 

transcript and single nucleotide polymorphism analysis 

as well as functional annotation of putative gene 

products [17]. 

 

With the decreasing cost of DNA sequencing 

technology and the vast diversity of biological 

resources, researchers increasingly face the basic 

challenge of annotating a huge amount of EST data from 

a variety of species. EST annotation basically refers to 

the analysis of unknown ESTs that can be performed by 

database similarity search for possible identities and 

database search for functional prediction of translation 

products. Such kind of annotation typically consists of a 

series of repetitive tasks, which should be automated, 

and all these operations should be self-installing, 

platform independent, easy to customize and amenable 

to using distributed computing resources. Furthermore, 

processing of EST data should be done efficiently on 

high performance computing platforms.   

A. EST-PAC 

EST-PAC was developed as a web oriented multi-

platform software package for EST annotation which 

can run on a single compute-server [19]. It has 

integrated the BLASTALL suite [13], EST-Scan2 [10] 

and HMMER [7] in a relational database system 

accessible through a web portal. The system allows 

users to customize annotation strategies and provides an 

open-source data-management environment for research 

and education in bioinformatics.  

 

 

Fig. 1 Workflow and interfaces available in EST-PAC 

 

The core of EST-PAC consists of an open source 

relational database management system that uses 

Structured Query Language, MySQL 5 [11], and a 

number of PHP 5 [15] programs, which allow the 

storage and management of ESTs using a web interface. 

The workflow of ESTs annotation is shown in Fig.1. 

User login is available for visualization and query, with 

additional privileges to run annotation tools. Sequences 

in FASTA format [9] are loaded into the database 

through a web interface and annotation tasks can be 

requested. A set of continuously running programs 

checks the database and extracts sequences to be 

processed using the BLASTALL suite, ESTScan2 or, 

HMMER. 

 

The coding content of the EST can be evaluated with 

the Hidden Markov Model approach of ESTScan2 and 

the predicted translation products can then be compared 

against protein sequence databases. A report can be 

obtained from a web query page. As all results are 

stored in a relational database, users are able to query on 

every value returned by the annotation process. An 

interface is also available to assist the construction and 

storage of database queries. In addition to the public 

databases which can be downloaded and installed 

locally or accessed through web based blast services 

such as NCBI [12], users have the possibility to create 

their own databases from EST-PAC in order to make 

more precise and relevant comparisons.  

B. EST-PAC
HPC

 

We have extended EST-PAC into EST-PAC
HPC

 

which can utilize HPC resources such as computer 

clusters in Grids; and with a potential of using clouds 

resources for bioinformatics computing. The web portal 

approach of EST-PAC
HPC

 has enabled biologists who 

are not IT specialists to benefit directly from the use of 

high-performance computing technology. EST-PAC
HPC

 

supports both high throughput and high performance 

computation of the selected bioinformatics applications. 
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To achieve high throughput computation, bioinformatics 

jobs from many users can run on different processors of 

a cluster concurrently. This solution has shortened the 

service waiting time. To achieve high performance 

computation, many of the submitted bioinformatics jobs 

can run on multiple processors of a cluster as parallel 

applications.  

 

As shown in Fig. 2, an Apache [3] web-server with 

MySQL database system and PHP language script 

interpreter form the backbone of the EST-PAC
HPC

 Bio-

Server, which is currently providing computation 

services to the Bioinformatics Research Group [6] at 

Deakin University. The heart of EST-PAC
HPC

 lays on its 

novel job-scheduling mechanism that integrates 

transparently with most of the existing cluster and grid 

resource managers such as PBS [16] and Sun Grid 

Engine [18]. Currently, the openMPI [14] parallel 

programming environment is adopted for parallel 

computation.  

 

 

Fig. 2 Architecture of EST-PACHPC running as a bioinformatics 
computation server at Deakin University 

 

A web-portal interface is provided in EST-PAC
HPC

 to 

release biologists from performing tedious I.T. tasks 

such as hardware setup, software installation and 

configuration as well as data management. Most 

importantly, it hides completely the details of 

bioinformatics application deployment in the underling 

HPC platform. Fig. 3, Fig. 4 and Fig. 5 are the snapshots 

extracted from EST-PAC
HPC

 web portal; each of them 

shows the main functions, EST sequence handling and 

EST annotation correspondingly. 

 

Fig. 3 Main page of the EST-PACHPC web portal 

 

Fig. 4 Web page showing major functions for EST sequence handling 

 

Fig. 5 Web page showing EST annotation job deployment 
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III. HIGH THROUGHPUT EST ANNOTATION IN EST-PAC 
HPC 

As mentioned in Section II, the core operation in EST 

analysis is a database similarity search, which assigns 

possible identities to the unknown ESTs. This can be 

done by the BLAST program. There are many publicly 

available resources for users to carry out BLAST 

operations that can be found such as a free resource 

from the National Centre for Biotechnology 

Information, NCBI-Blast [13] on the one side, to a pay-

per-use resource from Windows Azure Blast [5] on the 

other.  

 

The NCBI-Blast server, which is backed by a high-

end supercomputer, provides a real time and high 

performance BLAST service to users. However, this 

free service has restricted users from carrying out high 

throughput BLAST searches. A submitted BLAST job 

of more than 50 sequences will be penalized in term of 

its dispatch time as the server is shared world wide. 

Besides, users’ search results will not be kept in the 

NCBI databases indefinitely. The pay BLAST service 

from Windows Azure seems to be a flexible and cost-

effective solution for carrying out high-throughput 

BLAST despite that it is still a trial service from Azure. 

Nevertheless, those service providers do not mean to 

provide EST annotation service to users. The 

downstream result analysis remains a task to be solved 

in ad hoc ways by users.  

A. EST annotation: An ad hoc approach 

Assuming BLAST is used to carry out the sequence 

similarity search, the basic steps of performing a high-

throughput EST annotation are as follows: 

 

1. Obtain and prepare copies of known genomic 

databases.  

2. Obtain and prepare ESTs (short sequences). 

3. Carry out BLAST search of ESTs on the known 

genomic databases.  

4. Post-process BLAST search results: this refers to 

i) store results into DBMS system for further data 

mining process; and ii) visualize BLAST search 

results for ESTs analysis. 

5. If necessary, repeat step 3 and 4 by replacing 

BLAST with different search tools such as EST-

Scan2 and HMMER for coding region detection of 

DNA and protein sequence alignment.  

 

Fig. 6 shows a workflow of high-throughput EST 

annotation via an ad hoc approach. As can be seen, users 

(mostly biologists) have to cope with many low-level 

details of BLAST parallelization as well as handling of 

annotation post-processing, which is tedious and time 

consuming. 

 

 

 

 
 

Fig. 6 Workflow of high-throughput EST annotation 

B. EST annotation: The HPC-PAC
HPC

 approach 

The web-portal interface provided in EST-PAC
HPC

 

has simplified the tasks of Step 1 and Step 2 as 

described in the previous subsection (See Fig. 7). Once 

EST data are uploaded to the system, users can easily 

deploy an EST annotation, as corresponding to Step 3, 

via the web-portal (See Fig. 8). The running of BLAST 

searches on a computer system, e.g. HPC clusters, is 

completely transparent to users. The current 

implementation of EST-PAC
HPC

 has provided a job-

scheduler, which can be integrated to most of the 

existing cluster and grid resource managers such as PBS 

and Sun Grid Engine, thus harnessing HPC resources 

potentially from various grids and clouds. Results of the 

BLAST searches are permanently stored in the MySQL 

DBMS and can be visualized in real time via the web-

portal (See Fig. 9). 

 

 

Fig. 7 Web page showing uploading of EST data  
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Fig. 8 Web page showing EST annotation job deployment  

 

Fig. 9 Web page showing a BLAST search result of an EST  

IV. PERFORMANCE EVALUATION 

The previous section has demonstrated how 

accessibility and user-friendliness could be improved by 

using EST-PAC
HPC

 for EST annotation. In this section, 

we provide a performance evaluation of the system that 

aims to show how HPC resource can reduce the time of 

high-throughput EST annotation and thus to improve the 

productivity of biological researchers.   

A. Experimental Testbed  

The HPC hardware used in this study is a cluster of 

10 compute-nodes (each with 8 CPU cores @ 1.6GHz 

and 8GB of RAM) where the EST-PAC
HPC

 web-portal 

and the MySQL DBMS are running on two separated 

workstations. The compute-nodes are networked by 

Cisco (Topspin) 10Gbs Infiniband PCI network 

interface. All of the compute-nodes are running the 

Linux CentOS operating system. Also, the Sun Grid 

Engine resource manager is used. 

B. Experiments  

Two major sets of experiment were performed. In the 

first experiment set, we calibrated our HPC cluster for 

its speedup performance by using some constructed 

workloads. The workloads were made up of mouse 

ESTs ranging from 2000 to 10000 sequences. BLAST 

search of these workloads were than performed against 

the mouse genome database. In the second experiment 

set, we measured the job escape time, which is the total 

execution time of BLAST search plus the total database 

storage time of BLAST search result. The experiment 

was performed for each of the entries shown in TABLE 

1 for two cases. The first is to run on a computer server 

without HPC cluster. The second is to run on a computer 

server which is backed by a HPC cluster.   

C. Results  

Fig. 10, Fig. 11 and Fig. 12 have captured the 

outcome of the first experiment set, that is, a calibration 

of our 10 nodes (80 CPU cores) HPC cluster for high-

throughput EST annotation. Fig. 10 shows a linear 

incremental relationship of EST annotation time of jobs 

against the EST sizes when the EST annotations were 

run on a single computer server. Fig. 11 shows that the 

job escape time of EST annotations decrease as the 

number of CPU used increase; and the job escape time 

of EST annotations increase as the EST size increase. 

Finally, Fig. 12 is the speedup representation of Fig. 11. 

The speedup is defined here as follow: 

 

𝑺𝒑𝒆𝒆𝒅𝒖𝒑 =
𝑱𝒐𝒃 𝑬𝒔𝒄𝒂𝒑𝒆 𝑻𝒊𝒎𝒆  (𝑺𝒊𝒏𝒈𝒍𝒆 𝑪𝒐𝒎𝒑𝒖𝒕𝒆𝒓 𝑺𝒆𝒓𝒗𝒆𝒓)

𝑱𝒐𝒃 𝑬𝒔𝒄𝒂𝒑𝒆 𝑻𝒊𝒎𝒆 (𝑪𝒐𝒎𝒑𝒖𝒕𝒆𝒓 𝑺𝒆𝒓𝒗𝒆𝒓 𝒘𝒊𝒉𝒕 𝑯𝑷𝑪 𝑪𝒍𝒖𝒔𝒕𝒆𝒓)
 

 

 

TABLE 1 SPECIFICATIONS OF INPUT EST SEQUENCES AND SEARCH DATABASES 

Unknown ESTS Genomic Databases 

Source Nucleotide Length Total Sequences Source Storage Size 

Mouse 65 500000 Mouse 3.5 GBytes 

Mouse 65 1000000 Mouse 3.5 GBytes 

Seal Upto 2500 11232 All-organism 13 GBytes 

Wallaby Upto 2000 14837 All-organism 13 GBytes 
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This calibration has also shown that reasonable speedup 

of EST annotation is achievable even for data sets of 

small number of EST sequences. However, we believe 

that there is still room for improvement in the speedup, 

especially in handling the concurrence of DBMS update 

operations.  

 

 
 

Fig. 10 Job Escape Time of EST annotation against EST size   

(Single computer server) 

 

Fig. 11 Job Escape Time of EST annotation against No. of Compute-

Node with different EST sizes (Computer server with HPC cluster)   

 

Fig. 12 Speedup of EST annotation against No. of Compute-Node with 
different EST sizes (Computer server with HPC cluster)   

 

Fig. 13 Job Escape Time of Mouse EST annotations against Mouse 

Genomic Database   

 

Fig. 14 Job Escape Time of Seal and Wallaby EST annotations against 

All-organism Genomic Database   
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Fig. 13 and Fig. 14 present the results obtained from 

the second experiment set. A promising improvement 

has been achieved in each of the EST annotations. Job 

escape time for the annotation of the Wallaby ESTs can 

be reduced from 20 days to less than 2 days. 

V. CONCLUSIONS AND FUTURE WORK 

We have extended the EST annotation software 

package EST-PAC to EST-PAC
HPC

 which can harness 

HPC resources potentially from various grid and cloud 

systems for high throughput EST annotations. The 

performance gain is substantial. The web-portal based 

approach of EST-PAC
HPC

 can remove the burden of 

biologists from performing tedious I.T. tasks such as 

hardware setup, software installation and configuration 

as well as data management. Even more, it also hides all 

the details of high performance computing from the 

users. In conclusion, EST-PAC
HPC

 provides an open 

framework for rapid prototyping of data mining and on-

line visualization of sequence data, presenting an 

expandable data-management environment for research 

and education in bioinformatics. 

 

Currently, we are extending the job-scheduling 

mechanism and the HPC job scheduler of EST-PAC
HPC 

to make it become cloud-enabled. Preliminary work has 

begun to study Amazons Elastic Compute Cloud (EC2) 

for HPC [2]. 
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Abstract-Modeling of the collagen 1(XI) amino 

propeptide (NPP) domain was performed to better 

understand how dimerization and glycosaminoglycan 

binding are coordinated. The program MODELLER 

was used to generate a homology model of collagen 

1(XI) NPP domain based on the crystal structure of 

the closely related NC4 domain of collagen 1 (IX) 

(PDB:2UUR) to a root mean square deviation (rmsd) 

of 0.785 Å resolution. A model of collagen 1(XI) 

NPP domain dimer was constructed in two 

alternative templates; 1) the thrombospondin dimer 

template (PDB:1Z78), and 2) by submission of two 

monomer subunits based on PDB:2UUR to ClusPro. 

Calculation of relative binding energy for the 

interaction between each collagen α1(XI) NPP model 

and glycosaminoglycans as ligands was performed 

using AutoDock4. Results support a higher affinity 

between heparan sulfate and the dimer compared to 

the monomer. Sequential point mutation studies in 

the putative binding site (147-KKKITK-152) 

indicated the importance of each basic lysine residue 

in the binding of heparan sulfate. Two orders of 

magnitude change in binding affinity was predicted 

when comparing wild type to the mutation K152A. 

 

Keywords: collagen, heparin, molecular interaction, 

glycosaminoglycan, protein  

 

 

1 Introduction 
 

Collagen is a triple helical protein comprising 

approximately 25% of the protein contained in the 

human body. The triple helix of collagen is unique 

due to its formation from three left-handed helical 

strands to compose the right-handed triple helix. The 

strands that make up this triple helix have the 

sequence Gly-Xxx-Yyy; where approximately 30% 

of the Xxx and Yyy are proline and hydroxyproline, 

respectively [1-3].  To date more than 27 different 

collagens have been reported in the literature, of 

which 16 have non-collagenous domains attached to 

the extended collagen triple helix. Collagen type XI 

is a minor fibrillar collagen involved in regulating the 

diameter of collagen fibrils [1,4].  Composed of three 

different left-handed helical strands α1, α2, and α3, 

each of the alpha chains contains non-collagenous 

domains. The α1 amino terminal non-collagenous 

domain (NPP) is proteolytically cleaved at a much 

slower rate than α2 or α3 and is therefore resident on 

the surface of collagen fibrils for an extended period 

of time in tissues [1].  Currently, a protein data base 

structure file is not publically available for the Npp 

α1, but a recently published structure for the NC4 

domain of collagen IX is available that demonstrates 

remarkable structural similarity to collagen XI [5].  

The NPP domain is included in a family of laminin, 

neurexin, sex hormone binding globulin (LNS) 

domains, in which a crystal structure of 

thrombospondin has also recently appeared in the 

literature in a monomer and dimer form [6]. 

 There is experimental evidence to support the 

hypothesis that the Npp domain of collagen α1(XI) 

interacts with glycosaminoglycans such as heparan 

sulfate. This interaction is proposed to be significant 

in determining the thickness of the fibril as it forms 

[4].  These interactions occur at a glycosaminoglycan 

binding within collagen α1(XI) consisting of 147-

KKKITK-152. Independently, experimental evidence 

indicates the formation of an NPP α1(XI) dimer. 

Using a combination of homology modeling and 

protein-protein docking, a computational model for 

the α1(XI) NPP was created.  Models were used in 

the docking program AutoDock4 to calculate the 

energy of interaction between collagen α1(XI) NPP 

(monomer and dimer) with the heparan sulfate ligand 

[7]. The results of the docking study provide a 
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theoretical inhibition constant (Ki), molecular binding 

energies, and predicted atomic interactions such as 

hydrophobic, electrostatic, and hydrogen bonding.  

The conservation and importance of each basic 

lysine residue in the putative binding site (147-

KKKITK-152) were further evaluated by point 

mutations. Each positively charged residue was 

suspected to be critical for glycosaminoglycan 

binding and was analyzed by computational docking 

analysis of the point mutants in AutoDock4. 

 

2 Methods 
 

2.1 Collagen α1(XI) NPP homology model 

monomer 
 

The sequence for Collagen α1(XI) NPP was 

submitted to BLAST against available PDB 

structures for template identification [8].  Blast 

returned two possible templates; thrombospondin 

(PDB:1Z78) and the NC4 domain of collagen α1(IX) 

(PDB:2UUR) [5,6,8].  The sequences for each 

template were aligned independently to the Collagen 

α1(XI) NPP domain, and then collaboratively using 

the ‘salign’ command in MODELLER [9].  

Homology models for Collagen α1(XI) NPP domain 

using both 2UUR and 1Z78 as templates were then 

created using the MODELLER method with disulfide 

bonding specified between Cys 25–Cys 207 and Cys 

146–Cys 200 [1,9].  The returned models were 

evaluated using PROCHECK for areas of high 

energy, restricted points on the Ramachandran plot, 

and residue clashes [10].  Loop rebuilding and energy 

minimization were performed in MODELLER, while 

corrections to amino acids contained in restricted 

areas of the Ramachandran plot were amended in 

Chimera [11].  An rmsd was calculated for the 

homology model generated from each template 

(2UUR & 1Z78), using Chimera [11].  The homology 

model created from 2UUR (HM1) was selected as the 

best model based on sequence alignment, query 

match, E value, and an rmsd of 0.785Å from template 

structure. Swiss Deep View was used to make the 

following single-point mutations into the Collagen 

α1(XI) NPP domain putative binding site: K147A, 

K148A, K149A, and K152A [12]. 

 

2.2  Collagen α1(XI) homology model dimer  
 

A dimer model of the Collagen α1(XI) NPP was 

created with MODELLER and ClusPro using the 

thrombospondin dimer (PDB:2ES3) as a template. 

The homology model was created by the same 

process as the monomer model with the exception 

that a repeated sequence of Collagen α1(XI) NPP was 

used. Model evaluation was performed using 

PROCHECK, Verify3d, and Ramachandran plot 

analysis.  A second dimer model was created by 

submitting two identical homology model monomers 

to the ClusPro server [13].  The overall lowest energy 

model was selected from the balanced interaction 

cluster.  

 

2.3  Docking Studies  
 

Docking studies between the Collagen α1(XI) NPP 

monomer homology model, single-point putative 

binding site mutants, MODELLER dimer, and the 

ClusPro dimer with the glycosaminoglycan heparan 

sulfate ( dissacharide, decasaccharide, and Arixtra, a 

low molecular weight heparin) as the ligand were 

performed using AutoDock4 [7]. The AutoDock 

standard conditions for a large run were used with a 

grid spacing of 0.379 Ǻ.  Binding energies were 

evaluated using WordPad, with residue interactions 

visualized using Chimera [11]. 

 

3 Results 
 

3.1  Homology model  
 

BLAST search results indicated that the NC4 domain 

of collagen IX (PDB:2UUR) was the best template 

with an E value of 5.0 x 10
-5

. Alignment and model 

creation was performed using MODELLER with 

PDB:2UUR as a template. The computational model 

of the Collagen α1(XI) NPP monomer from 2UUR 

was found to have an rmsd of 0.785 Å (Fig. 1a) 

[5,11].  Point mutations were introduced into the 

putative binding site sequentially using Swiss Deep 

View. Docking interactions using a heparan sulfate 

disaccharide and Collagen α1(XI) NPP monomer 

models indicated that all lysine residues were 

necessary for best binding and lowest estimated 

inhibition constant (Table I). Submission of the wild 

type structural monomer to ClusPro, resulted in 

clusters returned based on hydrophobic, electrostatic, 

van der Waals + electrostatic, and balanced 

interactions. Without previous dimerization 

knowledge the lowest energy balanced model with a 

weighted score of -918.2 was selected, as 

recommended by ClusPro (Fig. 1b) as the optimal 

dimer model [13-16].  
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Fig. 1: Structural depictions of: a) Homology model monomer built from the template 2UUR; b) Lowest energy 

balanced interaction dimer from ClusPro [5,13].
 

 

 
Table I 

Monomer homology model and mutant interactions between heparan sulfate disaccharide. 

Model 

Estimated Free 

Energy 

(kcal/mol) 

Estimated Ki 

Hydrogen bond 

residue 

 interactions 

Polar residue 

interactions 

Wild Type -8.08 1.20 μM 
ARG119, 

LYS149 

ARG119, 

LYS149 

K147A -8.37 727.94 nM 
PHE118, 
LYS152 

PHE118, 
LYS152 

K148A -8.41 687.57 nM LYS152 LYS152 

K149A -7.42 3.64 μM LYS148 LYS148 

K152A -5.34 121.85 μM - LYS149 

*The estimated inhibition constant (Ki) describes the binding affinity for the ligand to the receptor.  This is not to be confused with the 
dissociation constant (Kd) that provides insight into how easily the receptor-ligand complex separates into its individual components, the receptor 

and ligand. 

 
 

3.2 Binding Studies  

Docking results for heparan sulfate and each dimer 

model confirmed the hypothesis that dimerization 

increases affinity for glycosaminoglycans relative to 

the monomer, as shown in Table II.  

 

 

Table II 

Interactions between ClusPro dimer and a heparan sulfate disaccharide, decasaccharide, and Arixtra[7,13-16].
 

Ligand 

Est. Free 

Energy of 

Binding 

(kcal/mol) 

Est. Ki 

Electrostatic 

Energy 

(kcal/mol) 

Total 

Intermolecular 

Energy (kcal/mol) 

Hydrogen bond 

residue 

interactions 

Polar residue 

interactions 

Heparan sulfate 

disaccharide 
-17.53 142.31 fM -10.57 -12.65 - 

LYS73, 

ASN122, 
LYS149 

Heparan sulfate 

decasaccharide 
-21.13 327.17 aM -22.22 -23.18 LYS148 

LYS73, 

ARG97, 
ARG119, 

LYS148, 

TYR197 

Arixtra -7.93 1.53 µM -5.07 -7.92 LYS73 

LYS72, 

ARG97, 

ASP125 

 

4 Discussion 

 
Point mutation docking studies revealed that K148A 

had the lowest estimated binding energy, providing a 

preliminary hypothesis that K148 is the least critical residue 

involved in binding of glycosaminoglycans. Furthermore, 

K152 appears to be the most important residue in the 

putative binding site involved in glycosaminoglycan 

a b 
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interaction as evidenced by a predicted two orders of 

magnitude increase in the Ki. Initial experimental results 

suggest that a greater affinity for glycosaminoglycans 

occurs upon dimerization or oligomerization of Collagen 

α1(XI) NPP. Binding results for heparan sulfate 

dissacharide, decasaccharide, and Arixtra support the 

experimental results of increasing affinity for 

glycosaminoglycans upon dimerization of the Collagen 

α1(XI) NPP. While it is clear that they are coordinated, it is 

still unclear whether dimerization is facilitated upon 

interactions with glycosaminoglycans or alternatively, if 

dimerization occurs prior to binding, and subsequently 

facilitates interaction with glycosaminoglycans.  

 

5 Conclusion 

 
To date there is no crystal structure available for the 

Collagen α1(XI) NPP domain. Using computational 

modeling, we have created a homology model based on the 

NC4 domain of collagen IX (PDB:2UUR) as a template. 

The resulting model was used investigate 

glycosaminoglycan binding and provided insight into 

protein:glycosaminoglycans interactions. In silico prediction 

provided preliminary insight into the importance of K152 in 

the binding interactions with glycosaminoglycans, from a 

100 fold decrease in binding affinity compared to that of the 

wild type. 

Furthermore, dimerization of the Collagen α1(XI) NPP 

domain has been observed experimentally to increase the 

binding affinity to glycosaminoglycans. This experimental 

result was successfully replicated through the modeling of a 

dimer and docking interactions of heparan sulfate and its 

derivatives. Additional studies are being conducted to 

determine if glycosaminoglycan binding induces 

dimerization, or alternatively, if increased affinity for 

glycosaminoglycans is a result of Collagen α1(XI) NPP 

dimerization. 
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Abstract - Although a number of scientific advances have  
been made in the area of structural biology, a few obstacles  
continue  to  impede  our  ability  to  quickly  and  efficiently  
characterize  protein  structure-function  relationships.  
Probability  Density  Profile  Analysis  (PDPA) is  a  method  
which rapidly quantifies the structural novelty of a protein,  
based  on  the  statistical  analyses  of  a  minimal  amount  of  
empirical  data.  Here  we  present  findings  related  to  the  
sensitivity and range of applicability of PDPA. Our results  
support  the  conclusion  that  two dimensional  PDPA (2D-
PDPA) can reliably be utilized for identification of a protein  
structure  to  within  3Å  of  the  known  structure,  using  a  
library of existing structures. Furthermore, the sensitivity of  
2D-PDPA  has  been  tested  using  proteins  containing  
different  secondary  structural  characteristics  (α,  β,  and 
α/β) and  our  preliminary  investigations  support  the  
conclusion  that  2D-PDPA  is  equally  applicable  to  all  
general classes of proteins.
 
Keywords: Residual  Dipolar  Couplings,  Parzen  Density 
Estimation, Probability Density Profile Analysis, Structural 
Homology Detections

1 Introduction
Proteins are often referred to as the working molecules of 

a cell, performing many important structural, functional and 
regulatory  processes  [1].  Yet,  revealing  the  function  of 
proteins  is  a  particularly  challenging  problem.  Sequence-
based approaches are an option, but identifying functionally 
characterized homologs is only feasible for less than half of 
the proteins predicted from genome sequencing projects [2] 
and is often compounded by the fact that proteins tend to be 
multi-functional [3]. Since a protein's structure often dictates 
its  function,  an  alternative  approach  is  to  determine  the 
structure  of  the  protein  of  interest  in  order  to  identify 
functionally important sites [3]. This is believed to provide a 
solution for many of the remaining proteins, since structure 
is more evolutionarily conserved than sequence [2, 3]. 

Although  the  characterization  of  any  protein  adds  to 
repositories  of  structural  data,  most  structural  biologists 
would concur that novel structures are particularly important 
for  a  number  of  reasons:  they  generate  models  of  similar 
proteins for comparison; identify evolutionary relationships; 
further contribute to our understanding of protein function 
and  mechanism;  and  allow  for  the  fold  of  other  family 
members to be inferred [4-6]. Considering the evolutionary 
mechanisms responsible for the generation of new structures 
in proteins, it has been speculated that there may be a limited 

number  of  unique  protein  folds  -  as  few as  ten  thousand 
families [7-9]. Currently the Protein Data Bank (PDB; [10]) 
consists  of  nearly  68,000  protein  structures,  but  less  than 
1,400  families  are  represented  and  approximately  no  new 
fold  families  have  been  reported  since  2008  [11,  12]. 
Ideally, solved protein structures for new protein families [6] 
would be used as templates for in silico structure prediction 
methods [4, 13] and the results of both solved and predicted 
structures would in turn be used to infer function [2, 14, 15]. 
However, such an approach requires new, efficient and cost-
effective  computational  methods  for  target  selection  and 
structure determination. 

Traditional methods of structure determination, such as 
X-ray  crystallography  and  NMR  spectroscopy,  are 
expensive  and  time-consuming  techniques.  Previously  we 
presented  a  method,  referred  to  as  Probability  Density 
Profile  Analysis  (PDPA),  which  rapidly  quantifies  the 
structural novelty of a protein using only a minimal amount 
of empirical data. PDPA is a potentially important tool that 
provides  investigators  with  fast,  cost-effective,  easy  to 
interpret  results  while  also  further  contributing  to  our 
understanding of structure-function relationships in proteins. 
The interpretation of PDPA scores, as well as the effective 
applicable range of PDPA, had not been known previously. 
In  this  report,  we  provide  the  means  to  interpret  PDPA 
results and establish both the sensitivity and applicability of 
this method [19, 23].

2 Methods

2.1 Residual Dipolar Coupling (RDC)

Residual Dipolar  Couplings  are  the  result  of  dipolar 
interactions in  a  partially  ordered  system  [16]  and are 
defined in Equation (1):

Dij=Dmax . 〈 3cos2
−1
2 〉  (1)

In this equation,  Dij is the magnitude of calculated RDC 
in hertz that is between two ½ spin nuclei in the presence of  
a magnetic field; θ signifies the angle between the magnetic 
field vector and the inter-spin vector (nuclei i and j); brackets 
represent the time average for a specific coupling; and  Dmax 

denotes the maximum magnitude of a coupling that is further 
defined in Equation (2).
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Dmax=− 0

4  i j h

22 r ij
3  (2)

In Equation (2), µ0 signifies the magnetic permeability; γi 

and γj are the gyromagnetic ratios of two nuclei (i and j); r is 
the  intranuclear  distance  between  two  nuclei;  and  h is 
Planck's constant.

The RDC equation can be manipulated into a matrix form 
(Equation (4)) as shown in Equation (3):

Dij=v ij . S . v ij
T  (3)

S=[
S xx S xy S xz

S xy S yy S yz

S xz S yz S zz
]  (4)

   
A  unit  vector  that  joins  two  corresponding  nuclei  is 

represented by vij and S is the traceless and symmetric Saupe 
order  tensor  matrix  (OTM)  [17].  S  can  be  further 
decomposed  into S=RS ' RT such  that  R is  a  Euler 
rotation  matrix,  whose  columns are  the eigenvectors  of  S; 
and  S'  (Equation  5)  is  a  traceless  diagonal  matrix  of  the 
eigenvalues of S, whose diagonal elements S' xx,S' yy ,S' zz  
are the principle order parameters (POP).  

S =[
S ' xx 0 0

0 S ' yy 0
0 0 S ' zz

]  (5)

  
The  rotation  matrix  R  can be  decomposed into  three 

different rotations related to x, y and z as shown in Equation 
(6):

R , ,=Rz Ry  Rz  (6)

                      
Using  the  previous  equations,  the  order  tensor  can  be 

rewritten  in  five  parameters:  S' xx ,S' yy ,α,β,γ .  This 
particular  parameterization  is  used  in  our  experiment  to 
generate RDC data sets.

2.2 1D-PDP Analysis

Our initial work with PDPA was conducted using  One 
Dimensional  Probability  Density  Profile  Analysis  (1D-
PDPA)  and was  based on unassigned  RDC data from one 
alignment  medium  [18].  This proof of  concept  established 
the  feasibility  of  identifying  homologous  structures  from 
unassigned  RDC data,  however  it  lacked  the  potential  for 
large scale applications. In summary, 1D-PDPA established 
structural  similarity  on  the  basis  of  comparing  the 
distribution of experimental  and computed RDC data.  1D-

PDPA requires a  collection  of  experimental  unassigned 
RDCs as well as a library of potential structures.

2.3 2D-PDPA

2D-PDPA extends the analysis of 1D-PDPA by utilizing 
RDC data from two alignment media. The additional set of 
experimental  RDC data  has  obvious  advantages  over  1D-
PDPA. 2D-PDPA limits the search space to seven parameters 
[19] and is capable of generating a more accurate and unique 
PDP  for  a  given  structure.  A  2D-PDPA  analysis  session 
requires a collection of RDC data from two alignment media 
along  with  a  library  of  homologous structures.  A  two 
dimensional  Parzen  density  estimation  (or  kernel  density 
estimation) is used to generate a two dimensional PDP (2D-
PDP) by considering both alignment  media  [19]. Figure  1 
illustrates  a  sample  2D-PDP  for  the  protein  Pf2048,  a 
structure  which  has  not  yet  been  characterized.  The two 
dimensional distribution of RDCs that is generated from the 
experimental data is denoted as the query PDP (qPDP) and is 
used, in addition to the estimated order tensors, as input to 
the 2D-PDPA. Incorporation of RDC data from the second 
alignment medium requires an extension of the search space 
by three more variables representing possible orientations of 
the second alignment medium with respect to the first one. 
Traditional  inclusion  of  these  three  additional  variables 
would  have  increased  computation  time  by  a  factor  of 
2.5657e+09.  This  intractable  increase  in  computation  time 
has been eliminated based on new technology that has been 
recently introduced [19, 20].

Figure 1. An example 2D-PDP signature for a protein (Pf2048) of 
unknown structure. 

2D-PDPA  calculates  PDP  for  every  rotation  and  a 
scoring method is used to find the best structure in terms of 
the  similarity  to  the qPDP. To calculate  fitness  scores  we 
consider three metric systems: Manhattan Block, Chi-Square, 
and Modified Chi-Square. The Manhattan Block method is 
defined in Equation (7):

S qPDP , cPDP =
i∈M

∣qi−ci∣  (7)

 
In Equation (7), qi represents the ith value of qPDP and ci 

represents the ith value of computed PDP (cPDP). M denotes 
the number of sampled points in both query and calculated 
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PDP sets. The Chi-Square method is defined in Equations (8) 
and (9):


2

i  qi , ci =
q i−c i

2

q i

 (8)

  


2
qPDP , cPDP=∑

i ∈M
 i

2
q i , c i  (9)

  
In Equation (8), qi represents the ith value of qPDP and ci 

represents  the  ith value  of  cPDP.  Due  to  the  asymmetric 
nature of the χ2 metric 2

A , B≠
2
B , A  , a modified 

Chi-Square has been introduced and shown in Equation (10):


2

m qPDP , cPDP=
[

2
 qPDP , cPDP

2
cPDP , qPDP  ]

2
 (10)

In equation (10), mχ2 denotes the modified χ2 metric and 
qPDP and  cPDP represent the experimental and computed 
PDPs, respectively.  The modified  χ2 metric is a symmetric 
measure  of  distance  and  it  therefore  constitutes  a  formal 
metric space. During our early investigations,  no preference 
was given to any one of the scoring metrics described above. 
However, based on the investigation that is presented here, 
the  Manhattan Block metric was able to demonstrate slightly 
better  results  (shown  in  Figure  3a-c)  in  terms  of  the 
distribution of scores over bb-rmsd and as well as greater R2 

values. 

2.4 Data Preparation

In this experiment,  three reference proteins of different 
sizes and structural types (Table 1) were utilized in order to 
assess the sensitivity and selectivity of 2D-PDPA. This step 
is necessary due to the influence of secondary structures on 
orientation of the backbone N-H vectors. Traditionally, RDC 
data from helical  regions have  been  reported to carry less 
information  relative  to  other  secondary  strcutres.  The 
proteins listed in (Table 1), were obtained from PDB  [10]; 
Figure  2 provides  a  cartoon  representation  of  each  of  the 
structures listed in Table 1.

Table 1. Protein structures obtained from the Protein Data Bank.
Protein Secondary 

Structure
Number of 
Residues

CATH 
Classification

1A1Z α 91 1.10.533

1OUR  β 114 2.60.120.400

1GB1 α/β 56 3.10.20.10

For each protein structure listed in  Table 1, a set of one 
thousand  structural  variations  were  created  by  randomly 
altering the backbone  φ  and  ψ torsion angles. Each dataset 
represented structural variations in the range of 0-8  Å with 
respect  to  the  corresponding  reference  structure  and  were 
generated in the PDB file format. To obtain the RDC data for 
the three reference proteins, we utilized REDCAT [21]. The 
assignment  information  was  discarded  prior  to  providing 

these  data  to  2D-PDPA.  The  PDB files  were  exported  in 
REDCAT [21]  to  retrieve  the  RDC data  in  the  2D-PDPA 
program.  Two  sets  of  15N-1H backbone  RDC  data, 
representing  two typical  alignment  media,  were  calculated 
for each reference protein by using REDCAT and the initial 
order  parameters  shown  in  Table  2.  The  RDC sets  were 
calculated  separately  under  three  conditions:  with  one  set 
containing  no  error,  the  second  set  corrupted  through  the 
addition of uniform noise in the range of ±1Hz, and the third 
set consisted of randomly eliminating 15% of RDC data that 
is normally expected during pragmatic conditions. The first 
set serves to simulate the ideal conditions (no error) versus 
the  real  conditions  (±1Hz  and  15%  of  RDC gap  for  the 
second and third sets).

1A1Z 1OUR 1G1B

Figure 2. Illustrates the structures listed in Table 1.

Table 2. List of initial order parameters used to calculate two RDC 
sets.

Sxx Syy Szz Alpha Beta Gamma

Set1 3.00e-4 5.00e-4 -8.00e-4 0º 0º 0º

Set2 -4.00e-4 -6.00e-4 1.00e-3 40º 50º -60º

The 2D Parzen Density Estimation [18] program was used to 
analyze RDC data and to create  the  2D Probability Density 
Profile (2D-PDPA) [16] finger prints of each protein.  Order 
tensors were calculated in two ways: First, the optimal 2D 
order  tensors  are  obtained  from  REDCAT using  structure 
and  calculated  RDC  data;  Second,  order  tensors  are 
estimated using RDC data from two alignment media  [22]. 
These  two  approaches represent  a  transition from ideal  to 
more pragmatic conditions. 

3 Results and Discussion

3.1 Experiment 1

The  main  objective  of  this  experiment  was to  identify 
differences between the various metrics in order to establish 
the  most  appropriate  metric  for use.  Experiment  1  used 
protein  1GB1 and  its  corresponding  calculated  RDC data, 
using no error or noise to demonstrate the ideal conditions. 
The experiment was repeated 3 times with different metrics 
each  time.  Order  tensor  matrices  were  obtained  from 
REDCAT [21] for each RDC set (Table 3).

The relationship between 2D-PDPA structure scores and 
bb-rmsd for the one thousand variable structures generated is 
shown for each metric in  Figure 3; the corresponding least 
squares  regression  logarithmic  line  and  R2  values  are  also 
shown for  each  metric.  For bb-rmsd values  up  to 2.5Å,  a 
linear correlation between PDPA scores and bb-rmsd exists 
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(Figure 3).  For structures  with bb-rmsd greater  than 2.5Å, 
PDPA scores  remain  in  the  same  range:  [0.8-1]  for 
Manhattan Block, [2-3] for Modified Chi-Square,  and [10-
15]  for  Chi-Square  (Figure  3).  For  all  metrics  tested,  the 
Manhattan Block obtained the highest R2 value (0.65, Figure
3). Therefore,  the Manhattan-Black metric  was selected and 
utilized exclusively for all remaining experiments. 

Table 3. List of order parameters for each RDC set (alignment  
medium) obtained from REDCAT. 

Order 
Tensor

No Error
(1G1B)

±1Hz Error
(1G1B)

15 RDC 
Gap

(1G1B)

±1Hz Error
(1A1Z)

±1Hz Error
(1OUR)

Sxx1 3e−4 2.966e−4 2.967e−4 3.091e−4 3.022e−4

Syy1 4e−4 5.08e−4 5.061e−4 4.985e−4 5.053e−4

Sxx2 7.99e−5 9.624e−5 9.726e−5 8.665e−5 −3.235e−5

Sxy2 3.89e−4 3.863e−4 3.795e−4 3.936e−4 4.05e−4

Sxz2 5.42e−4 5.412e−4 5.428e−4 5.44e−4 6.325e−4

Syy2 −1.70e−4 −1.784e−4 −1.82e−4 −1.856e−4 −5.998e−5

Syz2 5.414e−4 5.445e−4 5.396e−4 5.369e−4 4.348e−4

Figure 3. Calculated 2D-PDPA scores vs bb-rmsd using different  
scoring methods for 1GB1 protein: (a) Block scoring method, (b)  

Chi-square scoring method, and (c) Modified chi-square scoring  
method. 

3.2 Experiment 2

The  objective  of  this  experiment  was  to  study  the 
behavior of 2D-PDPA as a function of experimental noise. 
Experiment 2 used 1GB1 and calculated the RDC data using 
±1Hz  error  to  demonstrate  noisy  conditions.  Order  tensor 
matrices  were obtained from REDCAT  [21] for each RDC 
set (Table 3).

Figure 4 shows the relationship between the 2D-PDPA's 
score  (Manhattan-Block  distance)  for  one  thousand 
structures  and their corresponding bb-rmsd with respect  to 
the original structure; the least squares regression line and R2  

for the data are also shown in Figure 4.

Figure 4. Calculated 2D-PDPA scores vs bb-rmsd using  
Manhattan Block metric for 1GB1 with ±1hz error added. 

This experiment was repeated by randomly removing 15 
(28%) RDC values from both synthetic RDC data sets. Order 
tensor matrices were obtained from REDCAT for each RDC 
set (Table 3). The plot of the 2D-PDPA scores using block 
metric against the bb-rmsd is seen in Figure 5 along with the 
least squares regression line and R2  value. The PDPA scores 
increase  as  a  result  of  the random removal  of  RDC data, 
however a correlation still  exists between PDPA score and 
bb-rmsd (R2= 0.573, Figure 5).

Figure 5. Calculated 2D-PDPA scores vs bb-rmsd using  
Manhattan Block metric for 1GB1 with 15 (28%) of RDC data  

removed from RDC sets.
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3.3 Experiment 3

Experiment 3 used protein 1A1Z, which is an  α−helical 
structure,  and  calculated  the  RDC  data  with ±1Hz  of 
uniformly  added  error.  Order  tensors  were  obtained  from 
REDCAT for each RDC set (Table 3).  Figure 6 shows the 
correlation  between  the  bb-rmsd of  the  structures  and  the 
2D-PDPA scores; leasts squares linear regression line and R2 

values are included. 

Figure 6. Calculated 2D-PDPA scores vs bb-rmsd using  
Manhattan Block metric for 1A1Z with ±1hz error added. 

3.4 Experiment 4

Experiment  4  used  protein  1OUR  and  calculated  the 
RDC data using ±1Hz error to demonstrate noisy conditions. 
Order tensor matrices were obtained from REDCAT [21]for 
each  RDC set  (Table  3).  Figure  7 shows the  relationship 
between one thousand 2D-PDP structure scores and bb-rmsd 
with  the  Manhattan  Block  metric.  The  least  squares 
regression line and the R2 value are also shown in Figure 7. 

Figure 7. Calculated 2D-PDPA scores vs bb-rmsd using  
Manhattan Block metric for 1OUR with ±1hz error added. 

4 Conclusion
2D-PDPA is a powerful method which can be utilized to 

identify homologous structures using  only  a minimal set of 
experimental  data  prior  to  a  full  structure  determination 
protocol.  Therefore, 2D-PDPA  is  a  viable  method  for 
ascertaining  a  protein's  structural  novelty  to  within  3Å, 
relative  to  the  existing  library  of  structures.  The  main 
contribution  of  our  method  demonstrates  the  correlation 

between  scored  PDP  and  bb-rmsd  of  the  corresponding 
structure. This also confirms the reliability of the 2D-PDPA 
identification  and  scoring,  up  to  a  threshold  of  3Å.  To 
conduct our experiments we chose 3 structures representing 
three distinct  CATH families. The experiment repeated for 
RDCs with no error and RDCs with error and missing data 
has  confirmed  2D-PDPA's  capability  for  pragmatic 
conditions. In all cases, the correlation between bb-rmsd and 
calculated PDP scores are clear. In the case of noisy RDCs 
data,  our  experiments  show  a  slight  shift  of  2D-PDPA's 
score, yet a correlation is maintained. A-priori determination 
of score thresholds allows for interpretation and reliability of 
the 2D-PDPA's performance. The observed threshold of 3Å 
also extends the use of the presented method to confirmation 
of computationally modeled structures. A hybrid approach of 
2D-PDPA based selection of best computed structures can be 
envisioned,  which  allows  for  combined  strengths  of 
computational  and  experimental  methods  of  structure 
determination while maintaining low cost.  
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Mimicking Transcription Process to Recognise Promoters in E.coli
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Abstract— Promoter prediction is a computationally in-
teresting and complex problem. Various groups have tried
promoter prediction with different sequential and structural
features of promoters. The structural aspects of DNA in pro-
moter recognition are gaining popularity of late. First step
in transcription process is the binding of RNA polymerase
with the promoter. Here in this work, a preliminary study of
interactions between RNA polymerase and specifically the
binding sites within the promoter is carried out. Interaction
values between RNA polymerase and DNA are used to
identify the -35 and -10 binding sites in the promoter. A
set of windows around these regions are extracted. Bi-gram
features of these windows are used to test the validity of
using such interactions in promoter recognition. Two types
of encoding, Electron-ion interaction potential (EIIP) and
amino acid-base pair inetraction values are used to quantify
the interaction between RNA polymerase and the promoter.
Current results are comparable to earlier results obtained
with n-grams. The experiments seems to point to a signal
global in nature is much more efficient than local signal in
promoter recognition. The results also confirm that the basic
interactions between RNA polymerase and DNA (promoter)
have the capability to identify the promoters in a whole
genome.

Keywords: Classification ; EIIP encoding ; amino acid-base pair
integration; machine learning

1. Introduction
Promoter prediction is complex and several groups of re-

searchers have attempted to solve this problem by extracting
different features which can be used to characterize the pro-
moters. Some of the features that have been used for this task
are position weight matrices [1], [2], [3], n-mers [4], [5], [6]
which are statistical in nature. There are methods that have
used DNA structural features such as enthalpy [7], thermal
stability [8], stress induced duplex destabilization [9], roll-
angle [7], base stacking energy [10] etc. Ponomarenko et
al. have listed a wide variety of structural properties [11].
A wide range of classifiers such as neural networks [13],
[1], SVM [12], hidden Markov model [14] and graph based
induction [15] are also used.

Even though there is a huge amount of work done,
the promoter prediction problem is far from being solved.
The accuracy of predictions is not very high. In case of
eukaryotes a group of promoters called GC rich promoters

are easier to predict than other promoters which are not GC
rich. We want to investigate this problem from the point of
view of the basic chemical interactions that arise between the
RNA polymerase and the promoter irrespective of the nature
of the promoters present in the genome. As a consequence,
DNA-RNA polymerase interactions and bi-grams are used
in the promoter identification in this work.

1.1 DNA-RNA Polymerase Interaction
In prokaryotes, the first step in transcription is the binding

of RNA polymerase with the promoter. RNA polymerase
is a large molecule consisting of five subunitsα1, α2, β,
β′ and ω. In order to bind promoter-specific regions, the
core enzyme requires another subunit, sigma (σ). The sigma
factor greatly reduces the affinity of RNAP for nonspecific
DNA while increasing specificity for certain promoter re-
gions, depending on the sigma factor. This way, transcription
is initiated at the right region. The complete holoenzyme
therefore has 6 subunits:α1α2ββ′ωσ ( 480 kDa). The
structure of RNAP exhibits a groove with a length of 55
(5.5 nm) and a diameter of 25 (2.5 nm). This groove fits
well the 20 (2 nm) double strand of DNA.

Promoter specific transcription on RNA polymerase is
conferred byσ subunit. Based on sequence analysis theseσ

factors are divided into two broad classesσ-70 factors and
σ-54 factors. Four highly conserved regions are identified
by aligningσ70 family of proteins [16], [17], [18]. Of these
regions 2 and 4 are highly conserved and basic in nature
and regions 1 and 3 exhibit low conservation and are acidic
in nature. The secondary structures of regions 1 and 2 are
predicted to beβ-sheets with helices and regions 3 and 4
are predicted to be helical [19].

A series of studies revealed that sub-region 2.4 (located
at the C-terminal end of region 2) interacts directly with
promoter -10 hexamer elements, whilst sub-region 4.2 (lo-
cated at the C-terminal end of region 4) interacts directly
with promoter -35 hexamer elements. A number of studies
using a variety of primary and alternativeσ factors from
E.coli and B.subtilis have identified residues of region 2.4
(a sub region of region 2) interacting with -10 hexamer
and these interactions are depicted in figure 1 [20], [21],
[22], [23]. Genetical analysis studies explain the interactions
between the residues of RNA polymerase and nucleotides
of -35 region in DNA [24], [25]. Figure 2 illustrates these
interactions between the residues ofσ4.2 region and the -35
region of the promoter. Eventhough a lot of other interactions
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are involved, only the interactions between RNA polymerase
and the binding sites is considered here as a starting point.

Figure 1: Pictorial depiction of the interactions between -10
binding site and amino acids ofσ subunit.

Figure 2: Pictorial depiction of the interactions between -35
binding site and amino acids ofσ subunit.

A systematic study of n-grams in promoter prediction for
n = 2, 3, 4, 5 [6] was carried out by us. We have obtained
68% promoter prediction accuracy for E.coli withn = 3. We
got a very good prediction of promoters on forward-strand
of E.coli taken from NCBI data base [6].

The main difference between the work that is being
proposed in this paper and the work reported by Sobha et
al. [6] is that in this paper emphasis is on identifying the
binding sites through interaction between the DNA and RNA
polymerase whereas in the later work it is just the occurrence
of n-grams in the whole promoter without distinguishing the
binding sites and non-binding sites.

2. Approach
A preliminary study of DNA-RNA polymerase interaction

information in promoter recognition is performed by us
[26]. We have attempted to compute the interaction through
cross-correlation between promoter and RNA polymerase
sigma subunit. We have not considered the three-dimensional

aspect of RNA polymerase then. Hence, the results of
classification were not good for promoters. Here, in this
paper we have tried to identify a subset of amino acids
in RNA polymerase sigma subunit that takes part in the
interaction between promoter and RNA polymerase. These
appear mostly as part ofα helix in σ2 andσ4 regions ofσ
subunit.

Interaction between RNA polymerase and promoter is
quantified in two ways. One is by computing the cross-
correlation between the DNA and RNA polymerase sig-
nals converted into numerical sequences. Second one is
by considering the the values obtained considering the
interaction between amino acids and nucleotides. Cross-
correlation between the residues of sigma subunits of RNA
polymerase which interact with -10 and -35 hexamer regions
are converted into numerical sequence using the EIIP values
for the amino acid [27]. Similarly the nucleotides which take
part in this interaction are also converted into numerical
sequences using EIIP encoding [28]. Since we have no
knowledge about the nucleotides which interact with the
amino acids in a sigma subunit, we have followed the spacer
scheme of Ma et al. [13]. They have considered a varying
space of 15-21 bp (7 bp) between -35 and -10 regions and
3-11 bp (9 bp) between -10 region and TSS. In the same
way, we have constructed our sigma subunit segment of
length 80, consisting of zeroes except at the positions -35,
-31 and -13, -12, -11, -10 positions with different spacings
between them. This would result in a set of 63 combinations.
Maximum correlation coefficient of the 63 combinations is
chosen to fix the spacers between -35 and -10 regions and
also between -10 region and TSS. Once the spacers are fixed,
we can identify the binding regions in a promoter. Windows
of certain length are extracted around these binding sites.
Bi-gram features of these windows are extracted as features
for a multi-layer feed forward neural network to train and
identify the promoters in a genome.

3. Methodology
E.coli promoter data set is used for experimentation. We

consider sequences of length 80 bp with 60 base pairs
upstream of the Transcription Start Site (TSS) and the rest
downstream [12]. Positive data set consists of 669 promoter
sequences of length 80 bp [12]. Negative data sets of Gordon
et al. who have chosen these in a biologically meaningful
way by taking sequence fragments outside the promoter
region. They also have built negative data sets with 709
sequence fragments from coding region and 709 sequence
segments from intergenic portions.

3.1 Feature Extraction
Features are extracted in two stages. In the first stage,

DNA-RNA polymerase interaction is used. In the second
stage, windows around binding sites are identified and bi-
gram features of these are extracted. These features are used
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as input for a multi-layer feed forward network to learn about
promoter. Here, the promoter recognition is posed as a binary
classification problem.

3.1.1 Step 1: Identification of binding sites using DNA-
RNA polymerase interaction

From literature the amino acids that interact with -10 and
-35 binding regions are identified. The residues that interact
with -35 binding site are taken from the work of Campbell et
al. [25]. Similarly the residues that participate in interaction
with -10 binding site are taken from the work of Malhotra
et al. [23]. These are depicted in Figure 1.

In order to compute the interaction between DNA and
RNA polymerase, we have chosen the cross-correlation
as the means. Cross-correlation between the two can be
computed by converting both DNA and RNA polymerase
sequences into numerical sequences. In this method the
amino acid residues and nucleotides are encoded into nu-
merical format using EIIP values [27], [28]. EIIP encoding
is chosen since it can be used to encode both amino acids
and nucleotides. Table 1 lists the EIIP values of the relevant
amino acids and nucleotides.

Table 1: EIIP values for amino acids [27] and nucleotides
[28].

Amino acid EIIP Nucleotide EIIP

Tyrosine(Y) 0.0516 A 0.1260
Tryptophan(W) 0.0548 T 0.1335
Glutamine(Q) 0.0761 G 0.0806
Threonine(T) 0.0941 C 0.1340
Arginine (R) 0.0959

Another way of encoding using values provided by Man-
del et al. [29]. Mandel et al. [29] have analyzed protein-dna
complexes to extract all non-homologous pairs of amino
acid-base pairs that are in close contact. A quantitative
measure of the likelihood of the interaction between each
pair of amino acid and base is computed. A score can be
computed by summing up the individual measures of amino
acid-base pairs assuming additivity in their contributions to
binding. This score can be used a measure of the compat-
ibility between the protein and its dna target. Table 2 lists
these amino acid-base pair interaction values.

Table 2: Amino acid-base pair interaction values [29].
G A T C

Trp -1.96 -3.93 -1.96 -3.93
Tyr -2.87 -2.87 0.54 0.13
Gln -0.09 1.16 0.31 -3.09
Thr -3.46 -0.06 -0.06 -1.16
Arg 2.74 0.34 1.25 -3.93

In order to obtain the interaction between promoter and
residues in the sigma subunit,similar(j) defined in 1 is
computed.

similar(j) = min(Σabs(s1 − s2)); j = 1, 2, 3, . . . , 63 (1)

Here j=1 denotes the spacing between -35 and -10 regions
as 15, and spacing between -10 and TSS as 3 bp. Similarly,
j=2 denotes spacing between -35 and -10 regions as 16, and
spacing between -10 and TSS as 3 bp and so on. Final j=63
denotes spacing between -35 and -10 regions as 21, and
spacing between -10 and TSS as 11 bp. These are listed in
Table 3.similar(j) will be close to zero ifs1 and s2 are
close to each other. That is, if we supposes1 as promoter
ands2 as the set of residues that interact with the promoter,
when they are compatible with each other, thensimilar(j)
values will also be zero.

Table 3: Spacing between -35 and -10 binding sites (SP35)
and -10 and TSS (SP10) for different j values.

j SP35 (bp) SP10 (bp)

1 15 3
2 16 3
.. .. ..
7 21 3
8 15 4
.. .. ..
63 21 11

The values of the 63 combinations for various spacings
between -35 and -10 regions and -10 and TSS can be treated
as the compatibility between the sigma subunit and promoter
binding regions. Of the 63 combinations obtained from the
above calculations, the highest score is considered to arrive
at the spacers between binding sites. Fixing up the spacers,
binding sites can be identified.

3.1.2 Step2: Bi-gram feature extraction

Regions with high information content are selected,
specifically 17 positions around the -35 binding site and
11 positions around the -10 binding site and 7 positions
around the transcription start site are extracted. A bi-gram
is a combination of contiguous two letters. DNA consist of
four bases and therefore 16 bigrams (AA, AT, AG, AC,
TA, TT, TG, TC, GA, GT, GG, GC, CA, CT, CG, CC)
are formed [6]. For each window 16 bigrams are computed.
In total 48 bi-gram features are obtained for all the three
windows. Two types of experiments are performed. One in
which the original 48 bigram features are given as input
features to the multi-layer feed-forward (MLFF) perceptron.
The output of the neural network is≥ 0.5 if the given
sequence is predicted as a promoter. Second one in which the
bi-gram feature values for each of the windows are combined
together into 16 bigram features. Simulations are done using
SNNS package [30].
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3.2 Training and Testing
Bi-gram features extracted from the windows around the

binding sites and TSS are used as input features for the
MLFF neural network. We have carried out 5-fold cross-
validation procedure in which the total data set is divided
into 5 parts. In each fold, 1 part will form the test set while
the remaining four will be used for training. Precision (Pr),
Sensitivity (Sn) and Specificity (Sp) are used as measures of
classification performance. Specificity is the proportion of
the negative test sequences that are correctly classified and
sensitivity is the proportion of the positive test sequences
that are correctly classified. Precision is the proportion of
the correctly classified sequences of the entire test data set.

3.3 Extension to Whole Genome Promoter Pre-
diction

The real test for any promoter recognition is it’s ability to
identify promoters in a whole genome. Towards this end, we
have usedsection1 and section3 of E.coli. Total genome
of E.coli is divided into 400 sections. Out of these sections
two sectionssection1 and section3 are chosen to extend
the promoter recognition algorithm. These are chosen for
the purpose of comparison with the results obtained using
n-gram features [6]. A sliding window of 80 bp is used
to segment these sections into segments of size 80 bp. We
consider a sliding window of length 80 extracting segments
from the start of the DNA sequence considered, that is, 1–
80, 2–81, 3–82 and so on. These are represented as the bi-
gram feature vectors which are used by the neural network
classifier. Each of the segments gets classified as promoter
(P) or non-promoter (NP). If a segmentm − (m + 79) is
classified as a promoter, then the nucleotidem is annotated
as P and if it is classified as non-promoter thenm is
annotated asNP . This process of annotation is continued for
the entire sequence to get a sequence ofP ’s andNP ’s. We
propose that if a contiguous segment of length more than a
certain threshold has allP ’s then we annotate that region as
promoter region otherwise as non-promoter region. For the
verification purpose we have considered thesection1 and
section3 of E.coli [31]. It also denotes the set of promoters
present in these segments.

4. Discussion
Table 4 shows the average of 5-fold cross validation

results for both 48 bigram features as well as 16 bigram
features extracted usingsimilar(j) (refer to equation 1).
Sensitivity and specificity using 48 bigram-features are close
to what was obtained using bi-grams for the entire pro-
moter [6] than the ones obtained with 16-bigram features.
But section1 and section3 results using 48 features and
16 features extracted from the windows usingsimilar(j)
values present a different scenario. False-positives, that is
non-promoters identified as promoters are much less with 16

features compared to 48 features. This fact is evident from
figures 3 and 4. In these figures X-axis has a moving window
of size 80 bp and y-axis shows the output of the neural
network for each window. Only output greater than 0.5 is
considered as a promoter. It is not only an output greater
than 0.5 that is essential we also need to have a stretch of
continuous ones over a threshold value of 20-25 is required
to annotate the stretch of base pairs as as a promoter. In
this context, we could identify a clear stretch of positives
with 16 features compared to 48 features. These results
are comparable to what was obtained using n-grams [6].
We have also carried out one more experiment wherein the
nucleotides in the windows are straightaway used as input
features to the neural network after converting them into
numerical values using EIIP codes. This experiment results
are not as good as the results obtained with bi-grams.

Table 4: Classification results usingsimilar(j)features.
SetA: Bi-grams from each window used separately and SetB:
Bi-grams from each window combined together.

Features Number Pr Sp Sn

SetA 48 79.15 86.92 62.76
SetB 16 76.47 86.53 55.14
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Figure 3:section1 of E.coli tested with 48 bi-gram features.
X-axis has a moving window of size 80 bp and y-axis shows
the output of the neural network for each window.
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Figure 4:section1 of E.coli tested with 16 bi-gram features.
X-axis has a moving window of size 80 bp and y-axis shows
the output of the neural network for each window.

As in the case of n-grams extracted from the whole pro-
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moter, we have obtained satisfactory results with the features
extracted from the interaction between promoter and certain
residues of sigma subunit. Through this interaction, we have
extracted the binding sites and the windows around the
binding sites and TSS. Whole genome promoter prediction
results using 16 bi-gram features in fact assures that the
binding sites that are extracted are of relevance since we
obtain similar results as in the case of bi-grams extracted
from the whole promoter. Results obtained with 16 features
compared to 48 features indicates that a global signal is
much more powerful than a local signal.

Annotation of samesection1 and section3 of E.coli
obtained with features extracted from interactions derived by
Mandel et al. is done and the results of the annotation for
section1 is shown in Figure 5. Similar results are predicted
by these features also. But, the stretch of promoters is about
15-25 only. None of these results are predicting as well as
3-grams [6].
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Figure 5:section1 of E.coli tested with 16 bi-gram features
extracted from interactions proposed by Mandel et al. X-axis
has a moving window of size 80 bp and y-axis shows the
output of the neural network for each window.

Moreover, frequency analysis of the binding sites ex-
tracted using EIIP and Mandel values, indicates a marked
bias towards certain bases in positions -35 and -31 and also
-13, -12, -11 and -10. Table 5 and Table 6 represent the
frequency of occurrence each base pair at each position in -
35 binding site. The consensus at the -35 binding site of
each position using EIIP gives a closer similarity to the
general consensus TTGACA observed in literature. Since
EIIP values for T and C are close, that could explain some
distribution between T and C at -35 position and -31. In
case of interactions obtained through Mandel’s values, since,
Glutamine favours A in comparison to the others, we could
observe, a bias towards A. So is Arginine at position -31
which favours G.

The annotation results of these sections of E.coli compare
with that of results obtained using 3-grams in the earlier
work [6]. The distinct aspect of this work is the identification
of the binding sites through the interactions between RNA
polymerase and the binding sites of the promoter. If the
binding sites were not identified correctly, the resulting bi-
grams around the windows would not lead to the correct

Table 5: Frequency of occurrence of bases in -35 binding
site for promoters using Mandel et al. interaction values

-35 -34 -33 -32 -31 -30

A 0.503 0.282 0.298 0.230 0.018 0.242
T 0.381 0.285 0.367 0.430 0.228 0.317
G 0.113 0.175 0.089 0.094 0.753 0.145
C 0.0014 0.257 0.243 0.245 0.000 0.296

Table 6: Frequency of occurrence of bases in -35 binding
site for promoters using EIIP encoding forinteraction

-35 -34 -33 -32 -31 -30

A 0.051 0.291 0.260 0.341 0.052 0.294
T 0.412 0.375 0.288 0.323 0.374 0.269
G 0.000 0.224 0.309 0.224 0.000 0.291
C 0.537 0.109 0.142 0.112 0.574 0.145

identification of the promoters. This was verified through
experiments where the binding sites were incorrectly iden-
tified and the resulting classification accuracy of promoters
was down to 45%. Only in the case of correct identification,
we get to identify binding sites correctly hence can identify
promoters much better.

5. Conclusions
Promoter recognition is attempted using the interactions

between RNA polymerase and promoter. Experiments with
similarity and cross correlation between RNA polymerase
and promoter are tried. Experiments used to obtain similarity
and cross-correlation using EIIP values show that a global
signal (Figure 4) is rather more effective than a local signal
(Figure 3). Eventhough the test data results indicate a higher
sensitivity value, generalization capability of the 16 features
is better than 48 features. The results also point to the fact
that similarity measure between the signal is more efficient
in promoter recognition. Interactions derived using amino
acid-base pairs are not as powerful as the signal derived
using EIIP values. The analysis of frequency distribution
of bases in the binding sites shows that EIIP values have
a distribution closer to the predicted consensus sequence
compared to amino acid-base pair interactions. Additivity
of interactions is assumed in these cases. Whether there
is a stable conformation possible, with a lower inetraction
value is to be investigated further. And also addition of
more interactions to the set will increase the accuracy much
further. A committee machine using these different features
can be designed to annotate a segment as a promoter or a
non-promoter based on voting. In addition the same sections
are used for annotation with GLIMMER and Genemark
packages which annotate the coding regions in the given
DNA segment. Most of our promoters identified are occur-
ring upstream of these coding regions giving credence to our
annotation scheme.

Same arguments can be extended for eukaryotes in which
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lot of transcription binding factors (TBP) bind to a promoter
before a RNA polymerase is summoned. In this case, the
interaction between TBPs and promoter can be modeled
through the protein-promoter binding interactions and can
be use to identify the promoters.

The main aim of the work is to prove the efficacy of the
interaction between the RNA polymerase and the DNA in
identifying the promoters in a whole genome. Eventhough
the n-gram features are being used, it is very important
to correctly identify the binding site regions through the
interaction between DNA and RNA polymerase to get good
accuracies. Hence, the main assumption that the interaction
between DNA and RNA polymerase is proven to be very
useful in promoter identification.
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Abstract - The emergence of a large number of bio 

medical datasets on the Internet has resulted in the need for 

flexible and efficient approaches to integrate information 

from multiple bio medical data sources and services. Thus 

data are scattered in different web sites and web databases. 

User struggling hard and for them it is extremely difficult for 

them to find accurate data from the web efficiently. In this 

paper, we tried to present our approach to establish an 

architecture which will automatically generate web data 

integration, optimize the composition, and execute the 

required output efficiently. While data integration techniques 

have been applied to the bio medical data domain, the focus 

has been on answering specific user queries. Thus we have 

found the indication towards large scale data integration. So 

the issue arises for which data integration architecture can 

be used. There are so many proposed large scale data 

integration architecture are available. Among all of them we 

designed our paper based on the MetaQuerier architecture. 

It’s large scale integration over web databases. MetaQuerier 

architecture has five basic processes which will be clarified 

in this paper briefly. We used this architecture to implement 

our bio medical data integration and try to generate a well 

structured output. Here our first task is to explore the 

MetaQuerier architecture and secondly we will explore the 

design in terms of bio medical data.  

 

Keywords: MetaQuerier architecture, Data crawling, 

Source clustering, Schema etc. 

I. INTRODUCTION 

Biologists are now faced with the problem of integrating 

information from multiple heterogeneous public sources with 

their own experimental data contained in individual sources. 

The selection of the sources to be considered is thus critically 

important. There is a compelling demand for the integration 

and exploitation of heterogeneous biomedical information for 

improved clinical practice, medical research, and 

personalized healthcare across the EU. The ultimate goal of 

the project is to provide uninhibited access to universal 

biomedical knowledge repositories, large-scale 

information-based biomedical research and training.  

 

Now-a-days new treatments come about as a result of 

other, earlier discoveries. They are often unconnected to each 

other, and in various field. Sometimes the research was done 

for non-medical purpose and only by accident contributes to 

the field of medicine. Like the discoveries of penicillin. But 

now  all the treatment has to be done through research. In the 

terms of Bio-Medical, we are considering the data from 

medical diseases , different kind of elements of human being 

and analysis of various medicine, the experiments and result 

obtained from them, analyzing zinc, proteins, bacteria and 

many more for advance research. For example, changes in 

genomic DNA, presence of various protein modification, 

mRNA and protein levels etc. The possibilities from 

bio-medical data integration are enormous. For example, the 

central tumor suppressor protein p53 provides a potential 

target for new anti-cancer drugs. By integrating the datasets 

from different laboratory various result of protein p53 like its 

characteristic, behavior, effect, mutations, etc. in one single 

database.  

    Data for bio-medical researches integrated from the web. 

Data can be stored on the WEB in different form. The data 

can be non-structured or semi structured in the web. Like 

plain text files, HTML text files, native XML. Data might be 

found in online libraries, catalogues, etc. Databases in the 

research repositories are like genome databases, scientific 

databases, environmental databases, etc. There might be web 

services, semantic web, and knowledge base system. There 

are Ontologies, which are structurally and semantically 

research domain description with associated data. The 

following charts are important for our paper. Here we have 

shown some biomedical data sets. There are unlimited bio 

medical datasets. Here our main focus actually to introduce 

the fact that bio medical data are needed to be integrated and 

also it is possible to be integrated. So in order to clarify our 

paper we focus on specific data sets which are in the group of 

Protein. 

Database systems except from the web must have to 

inter-operate, cooperate and coordinate with each other. 

These data have to shared, exchanged and ultimately 

integrated. In this regard our target to see the sights of the  
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Table 1: Contains an example of Bio-medical data and 

attributes. [2] 

 
 

MetaQuerier architecture. MetaQuerier architecture is one of 

the most recent data integration architecture. The following 

figure will give some basic idea about the data flow and data 

manipulation inside the MetaQuerier mechanism. 

 
 Figure 1: MetaQuerier: System Architecture. [1] 

 

The above figure 1 is the complete scenario of the 

MetaQuerier architecture. Based on the MetaQuerier 

mechanism, our goal has two directions– First, to make the 

deep Web systematically accessible, it will help users find 

online databases useful for their queries. Second, to make the 

deep Web uniformly usable, it will help users query online 

databases [1]. In this paper we first describe the work flow of 

MetaQuerier engine and then explore the bio medical data 

inside MetaQuerier. At the end, Integration of related works 

will clarify the necessity of MetaQuerier in bio medical data 

integration. Actually the necessity of an efficient data 

integration engine arises due to the extremely huge volume of 

queryable databases. One side the data collection are 

dynamic another side they are non systemic. 

To our knowledge, our goal of integration at a large scale 

has largely remained unexplored. The MetaQuerier engine 

actually integrates data from the web. One of the critical 

issues is that data are not predefined. Data are flourishing in 

every moment and datasets are getting larger. Since datasets 

are not predefined data discovery become dynamic. If one 

user search for different types of protein for example, for the 

next search he or she will not get the same datasets from the 

web resources. So this is a challenge while data searching. 

That‟s why we need data crawler. Another major issue which 

steps in more complexity situation is that data are needed to 

be integrated on the fly. The engine will work at a time [1].  

II. RELATED WORK 

Our complete work has two basic direction and stands. 

One part deals with MetaQuerier engine and other part focus 

on bio medical data and how MetaQuerier engine will 

manipulate bio medical data. What do we understand about 

bio medical data? There exist a large number of bio medical 

datasets on the web in various formats. There is a need for 

flexible and efficient approaches to integrate information 

from these datasets. Unlike other domains, the bio medical 

domain has hold web standards, such as XML and web 

services. There exists a large number of bio medical data 

sources that are either accessible as web services or provide 

data using XML. For the bio medical data sources that 

provide their data as semi-structured web or text documents, 

we can use wrapper- based techniques to access the data.  

For example, when a user queries the UniProt1 website for 

details of a protein, the user provides a uniprotid and gets 

back the information about the protein. The emergence of the 

large number of information providing services has 

highlighted the need for a framework to integrate information 

from the available data sources and services. In this paper, we 

describe our approach to automatically compose integration 

procedure to create new information-providing the 

MetaQuerier engine.  

When the MetaQuerier receives a request based on bio 

medical data to create a new web service, it generates a 

parameterized integration that accepts the values of the input 

parameters such as protein name or its id and then retrieves 

and integrates information from relevant web pages, and 

returns the results to the user. The parameterized integration 

procedure is then hosted as a new web page what is known as 

data crawling. The discoveries of the pages according to the 

user requirement are dynamic and they are absolutely 

unsorted. This is the key challenge in composing web data for 

a new web based on the fly integration. 

To further clarify these consider the example shown in 

Figure 2. We have access to three web services where each 

providing protein information for different organisms. We 

would like to create a new web service that accepts the name 

of an organism and the id of a protein and returns the protein 

information from the relevant web service. Given specific 

values of the input parameters, traditional data integration 

systems can decide which web service should be queried. 

However, without knowing the values of the parameters, the 

traditional integration systems would generate a procedure 

that requires querying all three web services for each request.  
 

 
 

 

Figure 2: Protein Information. [2] 
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The key contribution of our approach is to extend the 

existing techniques to generate parameterized integration 

technique that can answer requests with different sets of 

values for the input parameters. 

Now the key issue arises when it‟s needed to optimize the 

web data and in order to reduce the deep web data for 

optimizing the number of user request sent to existing data 

sources we need the help of MetaQuerier. Thus when data 

optimization with user satisfaction will be needed 

MetaQuerier will be in action. The existing optimization 

techniques means the MetaQuerier will utilize the searchable 

user query to filter out unnecessary source requests and/or 

reorder the joins to produce more efficient ordered web data. 

However, as we show with a detailed example later in the 

paper, the MetaQuerier techniques are enough when we 

apply them to the task of data integration.  

Next section will describe each of the processes of the 

MetaQuerier techniques in more detail, show how they can 

be applied to the bio medical domain. We begin by describing 

a motivating example that we use throughout the paper to 

provide a detailed explanation of various concepts. Next, we 

discuss how existing data integration techniques can be 

extended to model web sources as data sources and 

reformulate web data creation requests into parameterized 

integrated data.  

In MetaQuerier there are five basic processes. First is 

Database crawler, second Interface Extraction, third source 

clustering, fourth Schema Matching and fifth Result 

Compilation. [1] 

There are three parts of the complete MetaQuerier. Front 

end, back end and deep web repository.  But before 

understand the parts of MetaQuerier we need to understand 

its starting and action point. As it handles large volume of 

data, first, such integration is dynamic: Since sources are 

blooming and evolving on the Web, they cannot be statically 

configured for integration. Second, it is absolutely unsorted: 

Since queries are submitted by users for different needs, they 

will each interact with different sources. Thus, toward the 

large-scale integration, the MetaQuerier must achieve dual 

requirements–Dynamics discovery and on the fly integration. 

To our knowledge, MetaQuerier is the first one to present the 

overall system issues of building large scale integration. Next 

section we will elaborate about MetaQuerier architecture. [1] 

III. SYSTEM DESCRIPTIONS 

On the way towards bio-medical data integration, we have 

accounted the large scale of data and these data can be found 

on the web database. But data are not predefined. It means, 

we are doing a deep web searching as user‟s request but 

sources are not in a single domain, which we are calling 

“dynamic discoveries‟” and “on-the-fly” integration. Based 

on the processes used in MetaQuerier, we have structured the 

idea of bio-medical data integration. We will now describe 

the whole system of the application. [1] 

The MetaQuerier was developed for large scale 

integration. In its way of integration, it basically search and 

collect the database on the web, extract the required data from 

the database and gather it into its own database and show 

users the output as requested.  To understand the system 

easily, we have divided the whole process into five major 

parts. On sequence, Data Crawling, Interface extraction, 

Source clustering, Schema Matching, Query Translation, 

Source Selection, and Result Compilation. Data Crawling, 

Interface extraction, Source Clustering, Schema Matching all 

these processes work at the back-end. Query Translation, 

Source selection and Result Compilation all these work on 

front-end. In this interim paper we are giving a short brief for 

ease of understand bio-medical data integration. [1] 

A. Data Crawling 

Collect data from enormous web environment is the main 

part of the challenge that we face while data integration. So 

actually we need data crawler. There is a difference between 

data crawler and web crawler. Existing and available search 

engines are efficient for necessary site searching. They search 

based on the root pages and also check user keywords as 

interface keyword [3]. Here if we go in that process we will 

be in the messy situation of managing terabyte of data. So in 

the MetaQuerier our task to find web pages that are 

exclusively important for us including the databases involved 

with these sites. Thus MetaQuerier design data crawling in 

two different segments to face the challenge of dynamic 

discovery. The first segment named site crawler and second 

segment is shallow crawler [1]. Together these two segments 

MetaQuerier named the data crawler as site based crawler. 

For site crawler the efficiency of query interfaces are very 

important.  

Query interfaces are important because based on the 

interface keyword crawler will filter web sites. It will 

minimize unsorted and unnecessary data. Suppose the 

following interface can use to find more appropriate and 

mandatory data while search wed sites. The more keyword 

will be used from the interface the more data filtering will be 

in action. Since we are not focusing on how efficient interface 

can be designed here, we just discuss the important of query 

interfaces and its necessity for data integration. In this paper 

we are actually trying to explore one of the important uses of 

data integration in the field of bio medical research. Site base 

crawler will go through the root pages and will indentify IP 

addresses and shallow crawler will follow these IP addresses 

and will search web servers which will be found from site 

crawler [1].  

 

Bio-medical Data SearchBio-medical Data Search

Search

Bio-medical Keywords

Founder

Category

Producer

Bar Code

Refine your search(Optional)

Used Only

Format

Onlooker’s Age

Language

Production Date

Sort Result By

All Formats

All ages

All Languages

All Dates

Featured Item

e.g. 2008

Keyword(s) Start of Keyword(s)

First Name/initials Start of Last Name

Category Word(s) Start of Category

Reset

 
 

Figure 3: Sample Search Interface. [9] 
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B. Interface Extraction 

Interface extraction basically extracts the required data 

from the query interfaces. Query interface sometimes share 

similar or common query patterns but sometimes it shares 

different query patterns. In case of different query patterns 

the problem arises due to some hidden information or 

attributes. Hidden attributes are not visual on interface that‟s 

why its extraction normally out of interaction at the 

beginning. Thus for the hypothesized syntax, in metaQuierer 

the determined structure are rationalize by asserting the 

creation of query interfaces as guided by some hypothetical 

syntax [5].  Therefore handle this hypothetical syntax 

effectively creates new problem. So it‟s needed to be 

visualizing as a visual language whose composition conforms 

to a hidden non-prescribed, grammar. In this case 

MetaQuerier solve the problem in terms of parsing the visual 

language. Here the MetaQuerier approach is to introduce a 

parsing paradigm by assuming that there exists hidden syntax 

to describe the layout and semantic of query interfaces. 

Specifically, we develop the subsystem IE as a visual 

language parser, given a query interface in HTML format; IE 

tokenizes the page, parses the tokens, and then merges 

potentially multiple parse trees, to finally generate the query 

capability. [1,4] 

Finally after parsing Interface Extraction basically extracts 

query capabilities from the query interfaces. The 

semantically related labels and elements of a search interface 

are viewed as logical attributes, though they are scattered in 

the html text or into the database without formal definitions. 

Therefore, attributes have to be identified by grouping 

associated labels and elements. Moreover, beyond the labels 

and elements, a significant amount of semantic/meta 

information for attributes exists on the query interfaces [5].  

For example, in figure 4, “invention date” implies the 

Attribute is semantically a date data type, and its two 

elements are used to specify a range query condition with 

different roles in specifying the condition. Unlike the 

conventional database schemas, such semantic/meta 

information is “hidden” from computers and not formally 

defined on query interfaces. As such, the “hidden” 

information about each attribute needs to be revealed and 

defined to enrich the schema matching. [5] 
 

 

Query InterfaceQuery Interface

E90A

Membrane Protein

January 1900

Protein Name

Protein Type

Invention Date

 
  Figure 4: Sample query interface. 

 

C. Source Clustering 

Before move on to Schema Matching we need to 

understand Source Clustering. Source clustering collaborates 

with source selection which works in front end. These two 

processes help schema matching to get actual scenario. After 

determining query capabilities based on query interfaces 

source clustering sorted data as mediated process which 

provides data towards schema process. Here the second 

challenge of MetaQuerier after the dynamic discovery, the on 

the fly integration comes in action. Source Cluster actually 

clusters sources according to subject domain. Going towards 

data integration, we need clustering sources by their query 

capabilities, specifically, given a set of query capabilities 

representing structured sources, our task is thus to construct a 

hierarchy of clusters, each representing an object domain of 

“structurally-consistent” sources. Thus we need to cluster the 

query interfaces into subject domains.  

Domain elements and constraint elements have the 

following characteristics: 

 Textboxes cannot be used for constraint elements. 

 Radio buttons or checkboxes or selection lists may 

appear as constraint elements. 

 An attribute consists of a single element cannot have 

constraint elements. 

 An attribute consisting of only radio buttons or 

checkboxes does not have constraint elements. 
 

Based on these characteristics, a simple two-step method 

has to be used to differentiate domain elements and constraint 

elements. First of all, we have to identify the attributes that 

contain only one element or whose elements are all radio 

buttons, or checkboxes or textboxes. Such attributes are 

considered to have only domain elements. Then an Element 

Classifier is needed to process other attributes that may 

contain both domain elements and constraint elements. [1,9] 

D. Schema Matching 

The schema of a database system is its structure described 

in a formal language supported by the database management 

system. In a relational database, the schema defines the 

tables, the fields in each table, and the relationships between 

fields and tables. Schemas are generally stored in a data 

dictionary. Although a schema is defined in text database 

language, the term is often used to refer to a graphical 

depiction of the database structure. Schema matching is the 

process of identifying that two objects are semantically 

related while mapping refers to the transformations between 

the objects. 

 

 

Figure 5: Schema matching for data integration. 

 

   In data integration process, schema matching find out the 

semantic domain values among the attributes, which we have 

found through query interfaces. In MetaQuerier, the 
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subsystem “Schema matching” was developed for the large 

scale databases, which stored the discovered matching 

elements in the deep web repository. Schema Matching is an 

important process which use data from query capabilities 

and organize the data as per requirement. It provides data to 

source selection and Query Translation has the urge such 

data for translate user‟s query and finally send it to users at 

the front-end. What MetaQuerier actually does, it redesigns 

the process in terms of complex matching instead of one by 

one process. [7] 

E. Query Translation 

Query Translation is a front-end process. We know that 

with all those massive sources, the deep Web is clearly an 

important frontier for data integration. In particular, to enable 

query mediation for effective access of Web databases, it is 

critical to automatically translate queries across their query 

interfaces. Such translation is, in essence, to match and 

express query conditions in terms of what an interface can 

“say”: Each query interface consists of a set of constraint 

templates. For complete query translation, first we need to 

extract constraint templates from a query interface. Second, 

from given source and target constraint templates, we need to 

find matching templates. Specifically, the deep Web is of 

large scale and of a dynamic nature as the sources are 

changing and new ones are emerging. Also, it is very diverse, 

with various sources. Users will thus interact with “ad-hoc” 

or unplanned sources to satisfy their various information 

needs. This large-scale, dynamic, and unplanned nature 

mandates effective integration to enable “on the fly” query 

translation. That is, the mapping technique should be able to 

translate queries for unseen sources, where no pre-configured 

translation knowledge can be assumed. In the MetaQuerier, 

query translation will translate the user‟s query to query 

interface. [6] 

F. Source Selection 

From the large scale database, following the typical 

approach to data integration we define a common mediated 

schema for all the data sources, then to match and map the 

data sources to this mediated schema [1].  The target user 

may understand the concepts in their own domain, means 

they know how and where to search, but may not know the 

data on other domains. In case of this problem, we need to 

choose which sources to include in the data integration and 

what mediated schema to use. So our goal is to develop 

“source selection” subsystem to choose a set of data sources 

and a global mediated schema over these resources.  

G. Result Compilation 

This is the final process of data integration which 

essentially aggregates query results to the user. Result 

Compilation compiles data results from different sources into 

coherent pieces. For establishing result compilation, we need 

to build it for extracting data from schema matching and 

matching other attributes across different sources.[1] 

IV. PROCESSES WITH BIO MEDICAL DATA 

In this section we describe an extension to the existing data 

integration techniques to solve the problem of generating 

parameterized integration plan for new bio medical web 

services. Most Life Sciences web services are 

information-providing services. We can treat 

information-providing services as data sources with binding 

restrictions. Data integration systems require a set of domain 

relations, a set of source relations, and a set of rules that 

define the relationships between the source relations and the 

domain relations. 
 

 
 

Figure 6: Relationships between Domain Concepts and 

Data Sources. [2] 
 

In order to utilize the existing web services as data sources, 

we need to model them as available data sources and create 

rules to relate the existing web services with various concepts 

in the domain. Typically, a domain expert consults the users 

and determines a set of domain relations. The users form their 

queries on the domain relations. We have two domain 

relations with the following attributes: 

 Protein (id, name, location, function, sequence, 

pubmedid, taxonid) 

 ProteinProteinInteractions (fromid, toid, taxonid, 

source, verified) [2]. 
 

The Protein relation provides information about different 

proteins. The Protein-Protein Interactions relation contains 

interactions between different proteins. As the id attribute in 

the Protein relation is the primary key, all other attributes in 

the Protein relation functionally depend on the id attribute. 

For the Protein Protein Interactions domain relation, the 

combination of fromid and toid forms a primary key. [2] 
 

 
Figure 7: Integration Plan of a Desired Web Service [2] 
 

A. Database Crawler 

On a search interface, an attribute may have multiple 

associated elements and they may be related in different 

ways. There can exist four types of element relationships: 

range type, part type, group type (multiple checkboxes/radio 

buttons are sometimes used together to form a single 

semantic concept/attribute) and constraint type. For example, 

in Figure 8, the relationships between the elements of 

Production Year are of range type. 
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Figure 8: Example of element relations. 

 

When an attribute has multiple associated elements, we 

shall classify them into two types: domain elements and 

constraint elements because they usually play different roles 

in specifying a query. Domain elements are used to specify 

domain values for the attribute while constraint elements 

enforce some constraints to domain elements. For example, 

element “Exact phrase” is a constraint element while the 

textbox following Title keywords is a domain element. 

Consider two interfaces. One interface contains an 

attribute protein Production date, and another interface 

contains an attribute protein production year, and they should 

be matched in terms of their semantics. But we cannot match 

them by only using names because they do not have exactly 

the same attribute name. However, if we can identify that the 

elements of both attributes are of range type, it would 

increase the confidence of matching them. When a user 

specifies a query on the global attribute Title of a 

MetaQuerier interface, during the query translation the query 

value should be mapped to the domain element of 

Bio-Medical keywords instead of the constraint element 

“Exact phrase”. [3] 

B. Interface Extraction 

Labels and elements are the basic components of a search 

interface, but it is insufficient to just extract individual labels 

and elements because many applications rely on the logical 

attributes formed by related labels and elements. In order to 

extract logical attributes, it is essential to determine the 

semantic associations of labels and elements. However, there 

are no explicit definitions of such associations in the HTML 

text of the search interface. We observe that labels and 

elements that represent the same attribute have a certain 

layout pattern and are usually close to each other and that in 

most cases they have some similar information in common. 

On the basis of this, we develop a three-step approach to 

tackle the problem of automatic interface extraction or in 

other words attribute extraction. 

1) Extracting Individual Labels and Elements 

This is the first step of our automatic attribute extraction 

method. Given a search interface, the extraction starts with its 

“<FORM>” tag. Each element itself contains its values (if 

available). Four types of input elements are considered: 

textbox, selection list, and checkbox and radio button. When 

a row delimiter like “<BR>”, “<P>” or “</TR>” is 

encountered, a „|‟ is appended to the Interface expression. 

This process continues until the “</FORM>” tag is 

encountered. In this process, some irrelevant texts may be 

included in the INTERFACE EXPRESSION even though 

some efforts are made to identify and discard them. [8] 

2) Identifying the Names of Exclusive Attributes 

Exclusive attributes are actually the ones whose names 

may appear as values in some elements, such as a group of 

radio buttons or a selection list. Correctly recognizing such 

attributes automatically is difficult because they do not 

appear on search interfaces as descriptive texts. [5] 
 

 
 

 
 

Figure 9: Examples of exclusive attributes. [9] 

 

Exclusive attributes appear frequently on real Web search 

interfaces. A significant flaw of existing approaches for 

interface extraction is that they do not extract exclusive 

attributes.  

The names of exclusive attributes are often the most 

commonly used attribute names of a domain. The basic idea 

is that we consider multiple interfaces in the same domain at 

the same time rather than separately. Then we use the 

extracted labels from all search interfaces of the same domain 

to construct a vocabulary for the domain. Finally we use the 

vocabulary to automatically identify and extract the names of 

exclusive attributes. 

3) Grouping Labels and Elements 

This step is to group the labels and elements that 

semantically correspond to the same attribute, and to find the 

appropriate attribute label/name for each group. For example, 

label “Bio-Medical Keywords”, the textbox, the three radio 

buttons and their values below the textbox all belong to the 

same attribute and this step aims to group them together and 

identify label “Bio-Medical Keywords” as the name of the 

attribute. 

C. Source Clustering 

Going towards MetaQuerier, we need clustering sources 

by their query schemas, i.e., attributes in their query 

interfaces.  

 

Table 2: Translation Rules. 

 

 

r1 [category; contain; $s]  emit: [source; all; $s] 

r2 [name; contain; $t]  emit: [name; contain; $t] 

r3 [concentration range; between; $s, $t]  $p = 

ChooseClosestNum($s), emit: [concentration; 

less than; $p] 

r4 [onlooker‟s age; between; $s]  $r = 

ChooseClosestRange($s), emit: [age; between; 

$r] 
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For instance, for the advanced query interface of 

amazon.com, the query schema is specifically, given a set of 

query schemas representing structured sources, our task is 

thus to construct a hierarchy of clusters, each representing an 

object domain of “structurally-homogeneous” sources [1]. 

Apparently, we are focusing on Bio-Medical data. We 

explain a particular method of source clustering, which is 

quite efficient in terms of domain attributes. 

1) Deriving information from Attributes  

In our proposed interface schema model, we recommend 

four types of information for each attribute are defined: 

domain type, value type, default value and unit. These 

meta-data are only for domain elements of each attribute.  

Domain type: Domain type indicates how many distinct 

values can be used for an attribute for queries. Four domain 

types are defined in our model: range, infinite and Boolean. 

[9]   

Value type: Each attribute on a search interface has its 

own semantic value type even though all input values are 

treated as text values to be sent to Web databases through 

HTTP. [9] 

Default value: Default values in many cases indicate some 

semantics of the attributes. A default value may occur in a 

selection list, a group of radio buttons and a group of 

checkboxes. It is always marked as “checked” or “selected” 

in the HTML text of search forms. Therefore, it is easy to 

identify default values. [9] 

Unit: A unit defines the meaning of an attribute value 

(e.g., kilogram is a unit for weight). Different sites may use 

different units for values of the same attributes. For example, 

one search interface may use “Milligrams” as the unit of its 

Concentration attribute, while another may use “Liters” for 

its Concentration attribute. [9] 

2) Translation Rules 

Firstly, we have to consider another term named, query 

mediation. Query mediation works have been mainly 

focusing on mediating queries across multiple sources and 

thus abstract the problem as a paradigm of answering query 

using views. In particular, they assume each source has a 

wrapper, which encapsulates the tasks of extracting query 

capability, schema matching and constraint mapping for that 

source. The main focus of query mediation is thus on how to 

decompose a user query into sub-queries across multiple 

sources. In contrast, we have to focus on query translation 

between two sources other than mediating queries across 

multiple sources. In particular, we are dealing with the 

mapping of constraint heterogeneity. For our scenario of 

large scale integration, we have to on-the-fly translated 

queries and thus need the following mapping techniques.  

Secondly, Schema mapping aims at translating a set of data 

values from one source to another one, according to given 

matching. Therefore, schema mapping only concerns about 

the equality relation between different schemas, based upon 

which data is converted. In particular, no constraint 

heterogeneity is considered in schema mapping. In contrast, 

constraint mapping focuses on translating specific queries 

other than the data values.  

3) Discussion 

We have proposed a generic type-based search-driven 

translation framework, which is well suited for the 

requirements of the on-the-fly constraint mapping among 

large scale data sources and our concern here is mainly 

focused on Bio-Medical Data. 

V. CONCLUDING DISCUSSION 

This paper contains the core proposal we made through 

MetaQuerier architecture. Actually, the issue over here is that 

bio-medical data integration is an example of data 

integration. There are so many proposed data integration 

process. Our target is to deploy MetaQuerier as efficient data 

integration architecture and show one of its implementation. 

We proposed that we can use data integration for bio medical 

data or in the field of bio informatics. Here one part mainly 

gives idea about the MetaQuerier architecture and its sub 

processes and how each of the processes work. Although it‟s 

not focused how we can improve this MetaQuerier, we 

considered MetaQuerier is one most efficient data integration 

engine/design.  

Inside the subsystem of metaquirer there are some 

conceptual changes of many common things to improve the 

efficiency of handling extremely huge and unsorted data. The 

three basic process of back-end were discussed elaborately. 

Other two processes are just briefly discussed. Our future 

work to make real time implementation based on some 

specific requirement and based on some ongoing bio medical 

research. 
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Abstract - In post-genomic era, bioinformatic tools allow us to 

explore and reconstruct the precise gene interaction network. 

To deduce the function of uncharacterized gene, genetic 

network by co-regulatory analysis from an expression data is 

a foremost approach. In this study, we report comprehensive 

identification of co-expressed MYB gene modules in rice. MYB 

transcription factor family is involved in phenylpropanoid and 

flavonoid biosynthesis and various other metabolic and 

developmental processes. By a reiterative database 

exploration, 249 potential OsMYB genes were retrieved. 

Computational analysis has shown the presence of several 

other functional domains including WD domain, G-beta 

repeat, response regulator receiver domain, BTB/POZ 

domain, SWIRM/Zinc finger domain and many more. Several 

studies have pointed out their involvement in a range of 

biological processes, revealing that a large number of MYB 

genes are transcriptionally regulated under conditions of 

biotic and/or abiotic stress. To investigate the existence of 

MYB co-regulatory network, a whole genome MYB expression 

study was carried out in rice. We identified the existence of 

co-expression clusters comprising phylogenetically related 

MYB genes, suggesting that specific sets of MYB genes might 

act in co-regulatory network. Thus, the co-expression 

networks identified in this study illustrate gene cooperation 

pathways that have not been identified by classical genetic. 

Keywords: MYB gene, clusters analysis, Oryza Sativa  

1 Introduction 

  These are Plant growth and development are regulated 

by the coordinated expression of thousand of genes. To infer 

the function of uncharacterized genes, coexpression analysis 

of gene-to-gene is a useful approach. Regulation of gene 

expression is highly complex process, influenced by genotype 

environment interactions. The huge biological information 

available publically forms a foundation for system biology 

study nowadays [2]. System networks are often analyzed 

using visualization and analysis of network to deduce gene 

function, pathway components and links between and genes 

[1]. Network can be analyzed by direct and module based 

methods as in graph [8]. On the basis of gene-to-gene 

correlation coefficient derived from microarray hybridization 

data, cluster-based analysis give the idea of co-expressed gene 

or connections between genes that respond simultaneously to 

various stimuli [7]. For network study, expression profiling 

data are seems as highly useful resource. Microarray gene 

expression data is analyzed by a variety of bioinformatics 

techniques. In addition to commonly studied gene-specific 

expression patterns, gene expression analysis can be used to 

elucidate module and system-level organization of the 

transcriptome. Gene clustering method for module detection 

based on similarity of expression levels in different set of 

condition (gene co-expression networks) were used in many 

studies [9]. Several clustering algorithms have been 

developed for this purpose. Here, we report comprehensive 

identification of coexpression gene modules of MYB genes in 

rice. Several studies have indicated that MYB significantly 

involved in stress induced responses in Arabidopsis thaliana 

and other plants also. Several studies have pointed out their 

involvement in a range of biological processes, revealing that 

a large number of MYB genes are transcriptionally regulated 

under biotic and/or abiotic stresses [6]. In computational 

biology, use of network has greatly changed the analytical 

ability of researcher. In the present studies an attempt has 

been made to study this relationship of MYB genes in rice 

under abiotic stresses conditions. In our study, analysis of the 

MYB genes expression helped us to understand the cellular 

process where they involved, their interaction with other 

genes and their products. 

2 Materials and Methods 
  

2.1 MYB domain identification and Phylogenetic 

Analysis 

 Myb domain was retrieved by searching for PFAM ID 

PF00249 as a query in Rice at TIGR 

(http://rice.plantbiology.msu.edu/). Only the longest one was 

saved, when more than one alternative splicing sequence was 

found for the same locus. Phylogenetic tree for MYB proteins 

were constructed by iTOL (http://itol.embl.de/) to know the 

conserved pattern between rice MYB genes. 
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Figure 1. Profile plot for the differentially expressed genes found in our study 

 

2.2 Expression Profiling of MYB and cluster 

analysis 

 To analyze the genome-wide expression profiles of rice 

OsMYB genes, microarray analysis was carried out using 

Affymetrix rice whole genome array. Expression data of 

MYB expression under abiotic stress were extracted from 

result of 12 hybridization experiment GSE6901 retrieved 

from GEO Database. .CEL files were downloaded and 

subjected to Genespring GX 10 (Agilent Technologies Inc, 

Santa Clara CA) and normalized with the PLIER16 algorithm 

(3) for further analysis. Obtained expression value were log2 

transformed, probes having two fold up - down regulation 

were taken. Hierarchical clustering was performed by average 

linkage and Euclidean distance algorithm using GeneSpring 

GX 10. 

3 Results 

3.1 Identification of MYB genes and Phylogenetic analysis 

 By a reiterative database exploration 249 potential 

OsMYB domains in rice were retrieved. Non-redundant 

dataset for MYB genes in rice genome were used as input for 

further analysis. Computational analysis of 249 identified 

MYB has shown the presence of several other functional 

domains including WD domain, G-beta repeat, response 

regulator receiver domain, BTB/POZ domain, SWIRM/Zinc 

 

 

 

finger domain and many more. Phylogenetic analysis 

performed with the Maximum Likelihood method using all 

249 proteins containing a single or double MYB domain, 

divided the genes into 3 main phylogenetic groups. Other 

subgroups and smaller clades were identified within each 

group, based upon bootstrap values. 

 

 

Figure 2. Clustering of upregulated OsMYB genes. Red 

boxes highlight the presence of co-expressed MYB gene 

clusters. 
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Table 1. Some up regulated MYB genes in three abiotic stress 

conditions. 

Probes IDs (Cold stress)      

 

Locus ID                 2 Fold 

Upregulation 

Os.57355.1.S1_x_at LOC_Os01g58550 4.7924976 

 

Os.5335.1.S1_at LOC_Os04g49450 3.9795542 

 

Os.11800.1.S1_at LOC_Os01g50100 3.7111404 

 

Os.12342.1.S1_at LOC_Os12g04204 3.4641871 

 

Os.10172.1.S1_at LOC_Os02g41510 3.2356162 

 

Probes IDs (Drought 

stress)      

 

Locus ID                 2   Fold 

Upregulation 

Os.12633.1.S1_s_at LOC_Os11g26790 7.9102745 

 

Os.34372.1.S1_at LOC_Os06g48300 6.630616 

 

Os.51775.1.S1_at LOC_Os12g05210 6.3568006 

 

Os.25409.1.S1_at LOC_Os06g45184 5.8992395 

 

OsAffx.29958.1.S1_at LOC_Os09g21180 5.7759666 

 

Os.54934.1.S1_at LOC_Os05g37060 5.6580715 

 

Os.51763.1.S1_x_at LOC_Os01g12690 5.57427 

 

Probes IDs (Salt stress)      

 

Locus ID                 2   Fold 

Upregulation 

Os.12633.1.S1_at LOC_Os11g26790 6.636118 

 

Os.51775.1.S1_at LOC_Os12g05210 5.7613506 

 

OsAffx.29958.1.S1_at LOC_Os09g21180 5.308271 

 

Os.34372.1.S1_at LOC_Os06g48300 5.186286 

 

Os.25409.1.S1_at LOC_Os06g45184 5.0420284 

 

 

3.2 Expression profiling and Clustering analysis result

 Microarray data analysis was done by employing .CEL 

file to GeneSpring. Profile plot of all 2866 up and down 

regulated genes crossed all statistical test was made (Figure 

1). 

Differentially expressed genes were analyzed to extract MYB 

genes showing expression in drought, salt and cold stress 

conditions. We found 158 MYB genes out of 249 showing 

differential expression. Drought, salt and cold stresses 

upregulated (≥ 2 fold) 102, 72 and 16 MYB genes,  

respectively. Table 1 shows the up-regulated MYB genes 

found in our study. Clustering analysis of the upregulated 

MYB genes indentified in this study was performed to pinpoint 

genes with similar expression profiles between different stress 

conditions. Understanding of this functional network structure 

of MYB genes, such as gene regulatory and biochemical 

networks, systems biology is the area that has to be explored 

and the area that we believe to be the main stream in 

biological sciences in this century [4].  

4 Conclusions 

 Our approach has identified co-regulated MYB gene 

networks that have potential role in abiotic stress response of 

rice. This will contribute to illustrate the functions of gene 

cooperation pathways not yet identified by classical genetic 

analyses. We defined the existence of OsMYB gene clusters 

comprising both phylogenetically related and unrelated genes 

that were significantly co-expressed, suggesting that specific 

sets of MYB genes might act in co-regulatory networks. 
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Abstract - Gene Expression Comparative Analysis allows bio-
informatics researchers to discover the conserved or specific 
functional regulation of genes. This is achieved through 
comparisons between quantitative gene expression 
measurements obtained in different species on different 
platforms to address a particular biological system. 
Comparisons are made more difficult due to the need to map 
orthologous genes between species, pre-processing of data 
(normalization) and post-analysis (statistical and correlation 
analysis). In this paper we introduce a web-based software 
package called EXP-PAC which provides on line interfaces 
for database construction and query of data, and makes use of 
a high performance computing platform of computer clusters 
to run gene sequence mapping and normalization methods in 
parallel. Thus, EXP-PAC facilitates the integration of gene 
expression data for comparative analysis and the online 
sharing, retrieval and visualization of complex multi-specific 
and multi-platform gene expression results. 

Keywords: Gene Expression, Normalization, Clusters, 
Statistical Algorithms 

 

1 Introduction 
Comparative analysis is a fundamental tool in biology due 

to the influence of evolutionary and selective forces in shaping 
biological systems. Conservation among species greatly assists 
the detection and characterization of functional elements 
because important functional elements tend to be most 
conserved during evolution, whereas inter-species differences 
are likely indicators of biological adaptation. Comparative 
gene expression Analysis allows researchers to investigate the 
conserved or specific functional regulation of genes. Its basic 
principle is to group datasets based on gene evolutionary 
relatedness and isolate the components that behave in similar 
or different ways. Thus, comparing the regulation of genes in 
related organisms can assist the investigation of gene function. 
The microarray approach [1] is the most common method of 
collecting gene expression data currently being used in 
bioinformatics. More recently high throughput sequencing 
methodology is allowing an alternative approach for the 
estimation of gene expression. Data from microarray or 
sequencing experiments must be stored digitally using one of 
the many gene expression file formats before being analyzed 

using statistical algorithms and analysis. Normalization is a 
key part of gene expression microarray analysis since 
unnatural variations can be introduced during the data 
collection and digitization process. Thus, this data must 
typically be corrected, standardized and cross-referenced 
before being compared and analyzed.  
 

Here, we present a web based package called EXP-PAC 
using the PHP/MySQL paradigm for the collaborative, 
integrative and comparative analysis of related gene sequences 
and gene expression experiments. The implementation also 
makes use of high performance computing to assist the 
integration, and analysis, of multiple gene expression datasets 
with common normalization methods and the inter-specific 
mapping of reference sequence datasets. Although the 
mapping of gene sequences between species has been 
performed and made available for a number of model 
organisms, for example in the Homologene database 
(http://www.ncbi.nlm.nih.gov/homologene), our package 
enables the rapid integration of sequence data collected from 
uncommon animal species, for which orthologous genome 
maps may not yet be referenced in public databases, and 
addresses the need of researchers working on a more diverse 
set of organisms or specific biological systems. For example 
we have developed an implementation of EXP-PAC dedicated 
to the integration and comparative analysis of gene expression 
during lactation in the mammalian lineage, which is accessible 
through the International Milk Genomics Consortium Web 
Portal (www.imgconsortium.org).  
 

2 Gene expression comparative 
analysis 

 Gene expression comparative analysis is usually performed 
in the following three steps as illustrated in Fig. 1.  

1. Data is collected in a wet-lab using a gene expression 
platform (cDNA, high throughput sequencing, 
Microarrays, etc.).  

2. Collected data is converted to a digital format and any 
un-natural variation is removed. 

3. Data analysis is used to group together similar datasets 
to locate components putatively responsible for 
biological functions. 
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Fig. 2. The structure of the EXP-PAC system 

 

 
 

Fig. 1. The three stages of gene expression comparative 
analysis 

 
2.1 Comparative transcriptome mapping 

Before comparative gene expression analysis can proceed, the 
genes of one organism need to be cross-referenced to the 
related genes of another species. This is usually done through 
the identification of similarity by sequence similarity search 
algorithms such as BLAST [2]. Bi-directional reciprocal best 
hits often need to be identified and investigated for validation 
and identification of problematic gene family member 
assignment. Online access to sequences and maps greatly 
facilitates analysis of such gene family relationships and 
correct attribution of orthologous relationships for the 
construction of inter-genome maps. Although precompiled 
reference gene mapping data may be already available for a 
growing list of model organisms (Homologene), researchers 
working on non-model organism need to address the issue of 
cross-referencing genes. Our software package is built as an 
extension of an EST-PAC, a previously described package for 
the annotation of biological sequences [3]. Among other 
annotation tools, this package automates the management of 

sequence similarity search algorithms and the analysis of 
results through a web interface using a database and job 
management system. More recently we have implemented a 
new version allowing the use of high performance computing 
platform to optimize the performance of sequence similarity 
searches which is an important addition for the execution of 
multiple full genome searches required for the construction of 
inter-specific gene mapping as the execution time for bi-
directional reciprocal mapping growth quadratically with the 
number of species. Once systematic sequence comparisons 
have been done, additional scripts can be deployed to compile 
cross-reference tables. The Unigene 
(http://www.ncbi.nlm.nih.gov/unigene) database maintains 
representative sequences for the genes of model organisms 
and, since many commercial gene expression platforms 
reference Unigene identifiers, we typical use these sequence 
references when available and build cross-references for other 
species or gene expression platforms using available cDNA 
libraries or transcript sequences predicted from related 
genome sequences.  
 
3  EXP-PAC 
 
EXP-PAC is a web-based system developed for the 
comparative analysis of gene expression. The EXP-PAC 
system combines the features of EST-PAC [3] with an on-line 
tool extension for the storage, analysis and visualization of 
gene expression data providing interfaces to facilitate SQL 
query based post-analysis of results (see Fig. 2.). EST-PAC is 
a sequence analysis framework, which provides online 
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Fig. 3.  EXP-PAC gene expression analysis workflow 
 

interfaces for the storage of sequence data, the secure 
management of sequence annotation programs through 
embedded tools and, interfaces for the retrieval of sequence 
annotations. A new embedded high performance computing 
version of EST-PAC (EST-PACHPC) allows the cross 
referencing of transcriptome sequence catalogs through 
sequence similarity searches with the BAST program 
(companion paper in BIOCOMP11). 
 

3.1 Annotation, data export and file sharing 

The system allows the uploading of extendible gene 
annotation file formats associated with different gene 
expression platforms. This is necessary because gene 
annotation formats vary between gene expression platforms 
and data depositories. In addition, all data files uploaded in 
the system are archived and can be retrieved and downloaded 
from the interface, allowing data sharing and traceability.  
 

3.2 Gene expression data upload and analysis 

EXP-PAC provides users with the ability to upload a number 
of gene expression file formats (raw microarray data, SOFT 
[4], MAGE-tab [5], etc.) that may be available from 
download in gene expression databases [4, 6] or generated in 
the lab. Affymetrix microarray data files (also called CEL 
files) can be uploaded and automatically normalized with the 
R statistical scripting language using different established 
normalization methods for the Bioconductor package; 

including RMA [7], MAS5 [8], GCRMA [9] and PLIER [10] 
(Fig. 3.). EXP-PAC supports normalization through a 
distributed platform which uses the Sun Grid Engine [11] in 
order to speed up microarray data management and analysis 
for this common platform. By specifying the location of a 
bash script supported scheduler, normalization methods can 
be distributed over multiple nodes reducing the time taken for 
the normalization process. Other types of datasets can be 
normalized independently. Raw and normalized data can be 
uploaded and compared. Results from statistical analysis, 
obtained for example in the specialized Bioconductor 
package for R, can also be uploaded from tab-delimited files. 
Meta-data can be edited to group samples and adjust graphic 
display and color. Gene expression, associated gene 
annotation and statistical data can then be queried using an 
interface dynamically generated from the uploaded data. In 
addition, through creation of a sequence to probe ID map, it is 
possible for a user to perform comparisons on multiple 
species or experiments, retrieving the expression of likely 
orthologous genes (identified in the EST-PAC sequence 
similarity database) throughout a set of experiments in related 
species.  
 

3.3 Query interface 

EXP-PAC provides users with a web interface through which 
gene expression data can be queried (Fig 4.). A number of 
gene expression filtering methods are provided including; fold 
change, intensity levels, group average, probe ID and 
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Fig. 4.  EXP-PAC query interface 
 

annotation. Returned probes can be ordered by selected probe 
intensity; displayed in descending order. Graphs are also 
produced to visualize the gene expression levels of each 
probe. A query builder tool allows users to create more 
complicated queries through generic interfaces that map to the 
SQL language. Using this tool, users create a database view by 
specifying tables and columns from list boxes. Created 
database views can be filtered using alphabetical and numeric 
values and operators. The results from created SQL queries 
can be saved or exported as a comma delimited text file. 
Visualization tools for investigating the distribution of gene 
expression data are provided to validate the normalization 
process. Users may also retrieve gene expression data across 
different species and experiments using pre-compiled 
reference maps of related probes and genes.  
 

4 Conclusions 
 In this paper, we have presented an on-line framework for 
gene expression research. Compared to available gene 
expression software packages, EXP-PAC is unique in that it 
provides a method for the integration of cross-species gene 
expression experiments allowing comparative analysis and a 
method to perform high performance computing for reference 
sequence mapping and some common normalization methods. 
Most importantly, the EXP-PAC software package provides 
researchers with a simple way to manage and analyse gene 
expression and sequence data. SQL based analysis allow users 
to perform broad searches of stored datasets. In addition it is 
easy to integrate R scripts into the EXP-PAC system, allowing 
support for new and specialized methods and algorithms for 
gene expression or sequence analysis. Thus, EXP-PAC 
enables the development of analysis strategies integrating 
multiple experimental platforms in different species and 
provides an online workbench for comparative gene 
expression analysis. 
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ABSTRACT 
    Affymetrix gene expression microarray is a popularly 
used platform for differential analysis. The analysis 
pipeline includes five steps: background correction, 
normalization, PM-only correction, and summarization, 
and differential analysis. Using publicly available 
microarray data, we compared the performance of five 
summarization methods: Median, Mean, Median Polish, 
Robust Linear Model, Li-Wong. Our evaluation criterion 
was reproducibility between studies designed to answer 
same scientific questions. Our analysis shows that mean 
value summarization gives smaller number of transcripts 
with inconsistent fold change direction while maintaining 
reproducibility comparable to competing complex 
methods. We conclude that after raw data has been 
preprocessed by the most popularly used pipeline (Robust 
Multiple Regression (RMA) background correction, 
quantile normalization, and PM-only correction), mean 
value summarization may convey a better representation 
of the true expression levels of target transcripts. The 
study suggests that the selection of bioinformatics 
algorithms needs to be application oriented. Sometimes 
simple initiative approach is probably better. 
 
1 INTRODUCTION 
    Microarray technology, based on DNA hybridization to 
measure expression levels of mRNA or to detect Single 
Nucleotide Polymorphism (SNP) and copy number, has 
become an invaluable tool in biomedical research since the 
mid 1990s [1, 2]. One of the popular gene expression 
microarray platforms is Affymetrix where a target 
transcript is typically represented by a probe set consisting 
of 11-16 pairs of short oligos. Each pair consists of a 
perfect match (PM) and a mismatch (MM) oligo. The PM 
probe exactly matches the sequence of a particular standard 
genotype, while the MM differs in a single substitution in 
the central (13th base), intended to distinguish noise caused 
by non-specific hybridization. Transcript expression level 
is a summarization of the signal of individual probes in the 
corresponding probeset [3]. 

Data analysis for Affymetrix microarray generally 
consists of four preprocessing steps: background 
correction, normalization, PM correction and 
summarization. Background correction removes noise 
signals arising from many sources, such as non-specific 
binding, processing bias in wash stage or optical noise 
from the scanner. Normalization rescales intensity from 
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multiple chips to the same level so that gene expression 
levels on different chips can be comparable. PM correction 
controls for non-specific binding between probe and non-
target sequences. The summarization step estimates the 
transcript expression level based on intensity measures of 
probes in the corresponding probe set.  
    There is a rich source of algorithms available to pre-
process raw data from Affymetrix gene expression array. A 
relatively complete list of currently available preprocessing 
steps was tabulated by Irizarry R.A. [4] and Harr B. [5]. 
However, some of these have become obsolete given the 
accumulating evidence of poor performance. For example, 
MAS and subtractmm methods for PM correction were 
shown to consistently yield negative signals, which 
indicates that use of MM probes for detection of non-
specific binding is unreliable [3, 6]. The widely used 
background correction method, robust multi-array average 
(RMA), relies solely on PM values [3]. GCRMA [7] was 
developed to take the effect of GC content on different 
probes into consideration. Bolstad et al. [8] compared 
several normalization methods and showed that quantile 
normalization has advantages in both speed and bias. 
Nowadays, the following pre-processing pipeline, RMA or 
GCRMA background correction—quantile normalization 
—pmonly correction—median polish or Li-Wong 
summarization, has become a standard [4, 5, 9].  
    The performance of various pre-processing methods is 
generally evaluated using spike-in and dilution data series 
[3, 4, 10, 11], MAQC data series [12-15], or based on the 
classification power of the number of differentially 
expressed genes obtained [16]. When using spike-in data, 
the differentially expressed genes are known in advance 
and assumed to be the true targets. However, this 
assumption is not safe in biological questions since it is 
unknown whether a gene expression difference reflects a 
true biological difference or not. This is especially 
important in microarray data analysis because of the high 
background noise and the various sources of variation 
(including but not limited to differences in probe labeling 
efficiency, RNA concentration, and hybridization 
efficiency). Moreover, many known comparison studies are 
based on a single dataset or specific controlling samples. 
This is potentially susceptible to the data structure of 
specific type (or group) of sample, or specific type (or 
batch) of microarray chip. MAQC [12] project spearheaded 
by FDA involved multi-platform and cross-lab comparison. 
However, it is actually based on fixed controlling RNA 
samples. Several existing publications on MAQC project 
did not discuss the performance of different summarization 
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methods in true data. It is hard to design a single trail that 
can take all potential confounding factors into 
consideration. In this paper, we compared the performance 
of different summarization pipelines by applying 
competing algorithms on microarray dataset pairs that are 
publicly available and can be used to answer the same 
scientific questions. We aimed to identify the method(s) 
that yield(s) consistent results between the pairs. In the 
following, we first present experimental design and 
evaluation metrics. We then discuss and conclude the study. 
 
2 METHODS 
2.1 Experiment Design 
    The experiment contains three levels of cross validation. 
The first level is different datasets pairs extracted from 
research results, which sheds a light on the possible 
performance difference caused by data structure of specific 
samples. The second level is different microarray platforms, 
which helps to avoid platform specific influence. The last 
level is the use of two different differential analysis 
algorithms, which takes the possible impact of algorithms 
specific effect on the competing methods into consideration. 
    Specifically, we identified three dataset-pairs (six 
datasets in total) from respective Affymetrix microarray 
platforms. The preprocessing pipeline is fixed to RMA—
quantiles—pmonly, and only different summarization 
methods were compared. Five summarization algorithms 
primarily available in the latest Affymetrix built-in 
processing method [17], including median (Avgdiff), mean, 
median polish [10], robust linear model (RLM) [18, 19] 
and Li-Wong (dChip) [20], were compared for 
reproducibility between datasets extracted to address the 
same questions. Two other summarization methods, MAS 
[21] and playerout [22], were not discussed because they 
are less common these days (Table 1).  

Two differential analysis algorithms (significance 
analysis of microarray (SAM) and CyberT) were 
implemented to the processed datasets to get the final result. 
SAM [23] estimates t statistics by adding a small constant 
s0 to denominator to minimize coefficient of variation at 
low expression level. CyberT [24] uses regularized t-test in 
the Bayesian probabilistic framework. We also utilized 
GeneGo webtool to investigate the impact of competing 
methods on consistency of inferred biological pathways.  
 
2.2 Datasets Pairs 
    Raw data were downloaded from the NCBI Gene 
Expression Omnibus (GEO) website. Sample annotations 
were parsed from the sample description files or the 
description column contained in each GSM sample. The 
three dataset pairs used in our analysis are summarized in 
Table 2 and details are presented below. 
 
Pair a - GSE6956 [25] and GSE17356 [26] were designed 
to investigate biological factors that predispose African 
American (AA) men to prostate cancer when compared to 
European American (EA) men. GSE6956 contained 89 
samples from prostate tumor tissue samples (n=69) and 
non-tumor tissue samples (n=20). We used the array data of 
69 tumor samples for our study. Samples in GSE17356 are 
primary prostate cancer epithelial cell cultures (n=27). 

Table 1. Summarization methods 
Summarization 
Method 

Author Year R Package Discussed 
in Paper 

Mean - - - yes 
Median 
(Avgdiff) 

Affymetrix 1999 expresso 
[17] 

yes 

MAS Affymetrix 2002 expresso 
[17] 

no 

Median Polish Irizarry RA 
et al 

2003 expresso 
[17] 

yes 

Li-Wong Li C, Wong 
WH 

2001 expresso 
[17] 

yes 

playerout Emmanuel.
N.Lazaridis 

2002 expresso 
[17] 

no 

Robust Linear 
Model (RLM) 

Sboner A et 
al 

2009 threestep 
(affyPLM) 

yes 

 (n=27). Group1 are prostate cancer samples isolated from 
AA men. Group2 are samples isolated from EA men. 
Fifteen genes were shown to be differentially expressed 
between AA an EA prostate cancer patients in both studies 
(See Table IV in paper reporting GSE17356 [26]). The 
common scientific question is “Which genes are 
differentially expressed between AA and EA men with 
prostate cancer”. 
 
Pair b - GSE6532 [27] is a series with multiple data sources 
and platforms. It was designed in an effort to identify a 
gene classifier for predicting clinical prognosis of 
Tamoxifen-treated estrogen receptor positive (ER+) breast 
cancer patients. GSE6532 has a total of 741 samples 
(Supplementary Table 1). For comparative analysis we 
used 56 samples tested on U133A platform from the John 
Radcliffe Hospital (OXFT) and 81 samples from London, 
United Kingdom, Uppsala University Hospital (KIT). For 
both datasets, only ER+ breast cancer patients treated with 
Tamoxifen were used in our analysis. Group1 is defined as 
individuals with distant metastasis free survival (DMFS) 
<=3 years, and Group2 are those with DMFS>=5 years. 
The common scientific question is “In Tamoxifen-treated 
ER+ breast cancer patients, which genes are differentially 
expressed between individuals with DMFS <=3 and >=5 
years”.  
 
Pair c - GSE5460 [28] was designed to investigate the 
ability of global gene expression in primary breast tumors 
to predict receptor status, histological and other 
characteristics of the tumors. It contains 129 breast cancer 
samples from PLUS2 platform. GSE2109 is from 
expression project for oncology (expO) contributed by the 
International Genomics Consortium (IGC). A total of 2158 
samples from roughly 100 tumor tissues are represented, of 
which 360 samples are from female breast cancer tissue. 
Since detailed phenotypic information is available for the 
two studies, we arbitrarily narrowed down sample 
phenotype to grade III ductal carcinoma to minimize the 
difference between pairing datasets. In the remaining part, 
ER+ samples were set as Group1 and estrogen receptor 
negative (ER-) samples as Group2. The common scientific 
question is “In grade III ductal carcinoma, which genes are 
differentially expressed between ER+ and ER- individuals”. 
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Table 2. Construction of comparing datasets 
Datasets 
Pair 

GSE number Microarray 
Platform 

Probe set  
Number 

Group1 status Group2 status Group1 
number 

Group2 
number 

Pair a GSE6956 
GSE17356 

HG-U133A 2.0 22277 AAa EAa 34 35 
14 13 

Pair b GSE6532KIT 
GSE6532OXFT 

HG-U133A 22283 ER+ & TAM 
DMFS<=3 b 

ER+ & TAM 
DMFS>=5 b 

21 35 
24 57 

Pair c GSE2109 
GSE5460 

HG-U133PLUS2 c 22283 ER- ER+ 65 48 
45 18 

a African American and European American men with prostate cancer 
b Tamoxifen (TAM) treated estrogen positive (ER+) breast cancer with distant metastasis free survival (DMFS)  <=3 and >=5 years 
c Plus2 is basically a combination of HG-U133A and HG-U133B. Only HG-U133A probe sets were extracted out from Plus2 for the 
analysis due to a large number of non-gene targeting probe sets in HG-U133B part.
 
2.3 Summarization Algorithms 
    Five summarization algorithms (mean, median, median 
polish, robust linear model (RLM), and Li-Wong) were 
compared in the R environment. A complete list of the 
processing steps is listed in Table 3. Two differential 
analysis methods (SAM and CyberT) were used to get p 
value (use default option). FDR was obtained by applying 
q-value [29] function with default options. The relevant 
software package was downloaded from the 
BioConductor website.  
 
Median 
   The median value of probes in a probe set was used to  
represent summary expression level. The median method 
gives result same as the result by avgdiff approach 
provided in affymetrix built-in processing method [17] . 
 
Mean 
    The mean value of probes in a probe set was used to 
represent summary expression level. 
 
Median Polish 
    The model of median polish can be written as 

, where 	 represents the 
measure after background correction, normalization, and 
log2 transformation of the PM intensity,  represents the 
log2 scale expression value found on array ,  represents 
the log scale affinity effects for probes , and  
represents random error. Implementation of median polish 
method is available in expresso function of R package 
affy. 

 

 
Li-Wong 
    Li-Wong method has the following model: 

, and . Here  and 
 denote the PM and MM intensity values for array  

and probe pair for this gene, j is the baseline response of 
probe pair  due to nonspecific hybridization,  is 
expression index for the gene in array ,  is the rate of 
increase of the MM response of probe pair ,  is the 
additional rate of increase in the corresponding PM 
response, and   represents random error. The rates of 
increase are assumed to be nonnegative. The model for 
individual probe responses can be written as 

.In the case of PM-only correction,  
 is simply replaced by . Implementation 

of Li-Wong method is available in expresso function of R 
package affy. 
 
Robust Linear Model 

The RLM method was developed by Hampel F.R.[19]. 
Use of RLM as summarization method was provided in 
threestep function of affyPLM R package (an extension of 
the base affy package).  

 
2.4 Performance Metrics 
    Assume datasets A and B have  and  probe sets 
differentially expressed at significance level . They 
share  probe sets in common. Among  probe 
sets,  values have different fold change (FC) 
direction (i.e., the probe set is up-regulated in one dataset 
and down-regulated in another), and  have the same 
direction. The inconsistent FC proportion (IFP) and 
reproducibility are defined as following 

Table 3. Processing flow for raw CEL file 
 Background  

correction 
Normalization PM correction Summarization Differential Analysis 

Tool 

Analysis 
Method RMAa Quantiles PM-only 

Median (avgdiff) 

SAM 
CyberT 

Mean 
Median Polish 
Robust Linear Model (RLM) 
Li-Wong (lw) 

a For RLM method, RMA2 background correction method is used (RMA is not available in threestep function and it is not easy to 
reproduce). 
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Table 4. Number of consistent pathways with p<0.05 

a Median Polish        b Robust Linear Model      c Li-Wong      d Only probe sets from HG-U133A used 
 

             

2.5 Pathway Consistency and TAP-k Score 
Ranking 
    We fetched the top 1000 significant probe sets from 
each dataset and conducting pathway analysis using the 
GeneGo web tool (GeneGo Inc.). Pathways with P value 
less than 0.05 from the two comparing datasets were used 
for pathway consistency analysis. 
    Threshold Average Precision (TAP-k) [30], a metric 
used in bioinformatics area for comparing retrieval 
efficacy of different search engines, is used to measure 
pathway level consistency. To use TAP-k, a reference 
pathway database was constructed to represent the “true” 
pathways. In our study, a reference pathway is defined as 
those appeared >=3 times among the pathway consistency 
analysis results by using the five summarization methods. 
TAP-k score is used to rank summarization method based 
on concordance rate with the reference pathways.  
 
3 RESULTS 
3.1 Reproducibility and Inconsistent Fold 
Change Direction Proportion 

Figure 1 shows the comparison result of the five 
summarization methods using two differential analysis 
tools. There are five plots for each pair to show the trend: 
IFP vs.  (the number of consistent probe sets), 
Reproducibility vs.  , IFP vs. p-value, 
Reproducibility vs. p-value, and  vs. p-value. In 
datasets pairs a and b, where HG-U133A2 and HG-
U133A were respectively used, mean value 
summarization showed a constantly lower inconsistent 
fold change proportion (IFP) than competing methods 
(red line in Figure 1 a-1, a-3, b-1, b-3). The same 
tendency is observed when using either SAM (solid red 
line) or CyberT (dashed red line) as differential analysis 
tool. The reproducibility of mean strategy is comparable 
to other methods at different significance levels (Figure 1 
a-4, b-4). Li-Wong summarization method produced more 
consistent probe sets when SAM is used (cyan line in 
Figure 1 a-5, b-5), but at the cost of high IFP (cyan line in 
Figure 1 a-3, b-3) and hence poor performance in the plot 
of IFP versus  (cyan line in Figure 1 a-1, b-1). 
Moreover, the performance of Li-Wong method is more 
sensitive to the two differential analysis strategies 
currently used. As indicated in Figures 1 a-5 and b-5 
(cyan color), Li-Wong identified more consistent probe 

sets when SAM (solid line) is used, but this is not 
reproduced when applying CyberT (dashed line) method.  
Median summarization strategy performs worse in all the 
three dataset pairs we considered here.  
    Pair c has an overall low IFP (near zero when p<0.05) 
and high reproducibility. In Figure 1 c-5, RLM (Blue) and 
Li-Wong (Cyan) methods identified more consistent 
probe sets than other methods when same p value cutoff 
standard is used. However, when plotting reproducibility 
vs. , we see slightly better performance of median 
polish (Green) and mean (Red) methods (Figure 1 c-2).  
All summarization methods have IFP near to zero when 

 is less than 1000 (Figure 1 c-1).  
 
3.2 Genego Pathway Consistency Analysis 
    The reference pathways constructed in the TAP-k score 
ranking test of each dataset pairs were provided as 
supplementary materials. The performance of five 
summarization methods ranked by TAP-k score is 
illustrated in Figure 2 a, b, c. 
    GeneGo pathway consistency analysis showed largely 
variable performance of competing methods depending on 
both the comparing dataset and differential analysis 
method used. In general, our analysis shows mean and Li-
Wong methods have better performance in identifying 
more consistent pathways on pairs a and b. In pair c, 
median and median polish has the best performance 
(Table 4).  
    Mean method (Red) ranked first or second in three 
dataset pairs and its performance is more stable than 
competing methods. RLM (Blue) and Li-Wong (Cyan) 
have high TAP-k score in pair a, but the performance is 
not reproduced in pair c. No obvious alteration in ranking 
was observed between SAM and CyberT. 
 
4 DISCUSSION 

The comparison study of Kerby Shedden [16] based on 
one ovary tumor dataset and one colon tumor dataset 
(both used HG-U133A platform) showed that Trimmed 
mean and Li-Wong methods are more sensitive---detect 
more genes at a given FDR level. However, the number of 
significantly differentially expressed genes detected at 
given FDR level highly depends on the differential 
analysis algorithm used. Li-Wong strategy by SAM 
returned nearly double number of probe sets at a given 
significance level (same when FDR is used) than by 
CyberT (Supplementary Table 2). Moreover, certain 
truncation (in the manner recommended by the developers 
of each method) was implemented in Kerby Shedden’s 

Dataset pair Platform SAM CyberT 
median mean mpa RLMb lwc median mean mpa RLMb lwc 

GSE6956 VS. 
GSE17356 

HG-U133A2 54 84 50 67 100 60 65 68 66 67 

GSE6532OXFT VS. 
GSE6532KIT 

HG-U133A 52 103 69 57 86 51 96 52 48 70 

GSE2109 VS. 
GSE5460 

HG-U133PLUS2d 96 77 90 55 68 90 78 82 48 65 
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target the same genes as platform HG-U133A, we only 
used the probe sets that were covered by HG-U133A 
when analyzing pair c. This also helps to make the 
comparison with the other two pairs consistent. The 
datasets in pair c showed excellent performance in both 
lower IFP and higher reproducibility than the other two 
pairs. We also observed much more number of consistent 
probe sets in pair c. This might be resulted from the large 
biological difference between ER- and ER+ breast 
cancers [28]. Thus the differentially expressed transcripts 
are more easily identifiable. Mean strategy only has 
slightly better performance (comparable to median polish) 
in plot of reproducibility versus . Its performance in 
other plot and pathway consistency analysis is not 
superior to competing methods. A possible explanation is 
that in situations where obvious biological differences 
exist, the consistency is less affected by the 
summarization methods used. 

It is intriguing that mean summarization, a remarkably 
simple algorithm with the lowest time complexity, 
outperform (dataset pairs a and b) or comparable to (pair c) 
several competing algorithms. Similar argument can be 
found in the 70-gene signature for breast cancer prognosis 
classification developed by Van’t Veer et al. [32]. The 
group sorted the differentially expressed genes between 
relapsed and relapse free breast cancer patients by p value 
and picked the top 70 most significant genes, and used the 
mean expression levels of these 70 genes in relapse free 
group as the signature. This simple strategy has not yet 
been outperformed by other more sophisticated strategies 
[33].  A possible explanation is that complex algorithms 
with too specific kinds of adjustment result in “fit to noise” 
under circumstances where high background noise exists. 
Methods such as Li-Wong iteratively fit a model to the 
probe data from multiple microarrays to exclude outliers. 
These iterations may cause signal distortion. It might help 
to increase the reproducibility of “disease-caused” 
differentially expressed transcripts, but at the cost of high 
proportion of inconsistent results. 
    Note that we used p value rather than FDR as cutoff 
standard because different datasets generate very different 
number of probe sets at the same FDR level. Pair b has 
actually no common probe sets when set FDR to <0.1. 
Additionally, the p values obtained from SAM and 
CyberT are based on regularized t test (by using adjusted 
variance). We thus use p value to do the comparison 
while similar results were obtained when using FDR as 
cutoff standard (obtained by qvalue algorithm [29]).  
 
5 CONCLUSION 
    In the present work, we compared the performance of 
five summarization algorithms on their ability to lower 
IFP and improve reproducibility. While maintaining 
comparable reproducibility, mean summarization strategy 
gives smaller proportion of probe sets with inconsistent 
FC direction in two datasets pairs than several currently 
widely used summarization approaches. Its performance 

is weakened in the paired datasets where high biological 
difference may exist between comparison groups. 
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Abstract - Gene set analysis has enhanced the microarray 
data analysis field with biological insights. The first 
introduced and widely used Over-representation analysis 
(ORA) method, has the limitation of the requirement of a 
predetermined differentially expressed genes list. To 
overcome this limitation, distribution based analysis (DBA) 
methods were developed with different analysis steps and null 
hypothesis. To understand the advantages and limitations of 
these methods, we present a comprehensive survey and 
evaluate the performance for nine commonly used gene set 
analysis tools. Methods testing self-contained hypothesis 
generally have better sensitivity and specificity than methods 
testing competitive hypothesis. But most of the methods have 
bias towards larger gene sets with self-contained methods 
more severe. Therefore, better sensitivity and specificity is 
obtained at the tradeoff of bigger bias in self-contained 
methods, and vice versa in competitive methods. We propose a 
combined performance plot to compare these methods, among 
which GSA demonstrated superiority over others. 

Keywords: Pathway analysis, microarray, gene set analysis.  

1 Introduction 
 In the last decade, microarray technology largely 
expedited the biological discovery in basic, clinical and 
translational research. Initially, the analysis of microarray 
data was focused on differential expression analysis, where a 
list of genes that show statistically significant expression 
difference between conditions can be identified. However, 
biologists still face difficulties in correlating the target genes 
with biological significance, e.g. identification of signaling 
pathways that were differentially activated or repressed is 
often more interesting than a list of gene names. A gene set 
contains multiple genes sharing similar biological properties, 
e.g. gene ontology terms, signaling pathway, and 
chromosome location. The advantage of analyzing genes as a 
set is that it can detect coordinate changes that are usually 
moderate or weak at single gene level. To achieve a 
biologically relevant interpretation, the target gene list is 
usually compared to a reference gene list, which is typically 
all the genes on the microarray, for enrichment of certain 
gene ontology terms or biological pathways. We refer this 
method as over representation analysis (ORA). Because of the 
arbitrary selection of cutoff at the gene list identification step, 
important findings might be missed and the results are not 

stable. A number of cut-off free gene set analysis methods, 
which provide statistical methods to analyze multiple genes, 
were introduced later on to prevent any arbitrary cutoff. These 
tools are often denoted as distribution based analysis (DBA). 
 Recently, Nam et al. [1] thoroughly summarized and 
classified 26 gene analysis tools based on their null 
hypothesis and statistical methods. But the advantages and 
limitations of these methods are not completely understood. 
Tian et al. [2] suggested that tests based on both null 
hypotheses should be considered equally. Goeman et al. [3] 
further classified gene set analysis methods into three 
categories, self-contained, competitive and mixed. Dinu et al. 
[4] recently compared three self-contained analysis tools, 
SAM-GS [5], global test [6] and ANCOVA global test, and 
concluded that SAM-GS has slightly higher power.  But none 
of them has conducted thorough performance comparison. 
We evaluated these tools, and systemically compared their 
performance using statistical simulation.  
 
2 Methods 
 
2.1 Analysis Tools 

In the current study, we have compared GSEA [7] (both 
gene permutation and phenotype permutation), 
Tian/sigPathway (both gene permutation and phenotype 
permutation), ErmineJ [8] ORA, ErmineJ GSR, GSA [9], 
SAM-GS, SAFE [10], global test and PAGE [11]. Within 
these tools, there are 4 tools (Global_Test, SAFE, SAME-GS, 
and Tian_Pheno) testing the self-contained hypothesis, 5 tools 
(ErmineJ_GSR, ErmineJ_ORA, GSEA_Gene, PAGE, and 
Tian_Gene) testing the competitive hypothesis, and 2 tools 
(GSA, GSEA_Pheno) are mixed.  
 
2.2 Simulation Method 

 Given the diversity of methods implemented in each 
tool, it is very interesting to examine whether their 
performance is also different.  We developed a testing 
framework to systemically compare the performance using 
statistical simulation. We collected 464 signaling and 
metabolic pathways from KEGG and BioCarta, which are two 
commonly used canonical pathway databases. For testing 
purpose, we created 50 pseudo-pathways, each consisting of 
20 pseudo-genes, which are differentially expressed between 
conditions. The major reason to include real pathways is to 
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generate some false positives so that we can assess the 
performance of each tool. 
 The simulation data were generated as a 20,000 x 20 
matrix (20,000 genes, 10 normal and 10 treated samples) that 
follows a standard normal distribution. Differentially 
expressed (DE) genes were simulated by adding a small 
constant to the 10 treated samples. The magnitude of increase 
and the number of DE genes were carefully selected to mimic 
different scenarios in real experiments, as addressed in more 
detail in section 3. To prevent any biased results due to any 
particular simulated data set, one hundred independent 
simulation data sets were created for each scenario. These 
simulated data sets were then analyzed by using different 
analysis tools. Default or recommended parameters of each 
tool were used whenever possible. Receiver Operating 
Characteristics (ROC) curve was used to assess the 
performance of the tools based on the gene set ranks 
produced by each analysis tools. The mean and standard 
deviation of the AUCs from 100 simulations were obtained to 
represent the performance of each tool.  

3 Results 

3.1 Effects of number of DE gene 

To examine the performance of the tools under different 
levels of differential expression in the gene sets, we generated 
10%, 20%, 30%, 40% and 50% DE genes in each of the 50 
pseudo-pathways. We also wanted to simulate the 
phenomenon in real microarray experiment that not all the DE 
genes belong to any gene sets, which likely to introduce 
additional level of noise to the data. Therefore, besides the DE 
genes within the pseudo-pathways, additional DE genes were 
created in each simulation data set to fix the number of DE 
genes at 2000. To determine how big the constant should be 
used to create DE genes, we tested 0.5, 1, and 2.5. Changes 
with 1 and 2.5 were so strong that all the tested analysis tools 
were able to achieve an AUC of almost 1. Therefore, we 
decided to use 0.5 as the constant and all the subsequent 
results were generated using this constant.  

  
Figure 1. Performance of ORA method under different cutoffs 

 
We found that the performance of ORA method was 

highly dependent on the selected cutoff.  The performance 
of ORA method increases as the percentage of DE genes 
increases (Figure 1). Totally 5 cutoff values (0.33, 0.67, 1, 
1.5, 2 and 3) were tested. The AUC values range from 0.55 
with 10% DE genes to 0.85 with 50% DE genes with cutoff 

value of 1. More importantly, different cutoff values result in 
quite different performance. Cutoff of 1 has the largest AUC, 
followed by 0.67. Cutoff of 3 gives the lowest AUC, while 
cutoff of 0.33 and 2 resides in the middle.  This result is 
expected because the theoretical t-statistics for DE genes in 
the simulated data set is close to 1.5. 

3.1.1 Comparison of Gene Set Analysis Methods 

 To compare the ability to detect enriched gene sets for 
each analysis methods, 100 simulated data sets were 
generated and analyzed by each of the tools. To accurately 
estimate the false positive and false negative rate, gene sets 
reported as positively and negatively associated with the 
treatment phenotype were combined in all of the tools. The 
average AUCs across the 100 simulated data sets are shown 
in Figure 2 A-E. All the tools perform better with more DE 
genes in the gene sets. Global_Test and SAM_GS perform 
the best when the percentage of DE is low, and 
Sigpath_pheno and GSA perform the best when the 
percentage of DE is high. Note that even we used the best 
cutoff for ORA, it is almost the worst method and only better 
than PAGE and Tian_Gene. PAGE and Tian_Gene have 
almost identical performance. More importantly, we observed 
a general trend that phenotype resampling methods are better 
than gene set resampling methods. As a mixed hypothesis 
testing method, GSA seems to have consistently performance 
across different percentage of DE gene.  

Figure 2. Performance comparison of gene set analysis  tools. Mean and 
standard deviation of Area Under Curve (AUC) from 100 simulated data 
were calculated for each tool. Hierarchical Clustering of gene set analysis 
tools based on average ranks of gene sets in 100 simulated data. A~E shows 
the AUC with 10%, 20%, 30%, 40%, and 50% DE genes respectively. F. The 
plot shows the clustering result using 20% portion of DEG in a gene set. The 
color scale represents the similarity between each tool. 

We next looked at how similar these tools are relative to 
each other. The similarity was determined by Euclidean 
distance between the average ranks of the gene sets across the 
100 simulated data sets. We observed very similar results 
using different percentage of DE genes, and only the data with 
30% DE genes are shown in Figure 2F. These tools can be 
classified into four groups using hierarchical clustering 
method. Global_Test, SAM-GS, GSA, Tian_Pheno and 
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GSEA form the biggest group. SAFE and ErmineJ_ORA the 
second group, while PAGE and Tian_Gene form the third. 
ErmineJ_GSR is the most distinct from all other methods. 
GSEA phenotype resampling and gene set resampling method 
form a subgroup, possibly due to its unique random walking 
algorithm. We also noted that the distance between PAGE and 
Tian_Gene is almost 0, which is not surprising because 
standardization based on large number of gene set resampling 
within Tian_Gene is equivalent to the standardization used in 
PAGE. It is unexpected though that ErmineJ_GSR is different 
from all other methods, because it is theorectically the same 
method as Tian_Gene. Its performance is also somewhat 
better than Tian_Gene (Fig. 2F). 
 

 Figure 3. Effect of gene set size. A. The average AUC for different size of 
gene sets are plotted for each tools. B. The ranks for gene sets with different 
sizes. The x-axis is the size of gene sets, and the y-axis is the rank of the gene 
sets based on p-value. 
 

3.1.2 Effects of Gene Set Size 

 To evaluate the effects of gene set size, we generated 
simulation data sets with gene set sizes of 10, 20, 30, 40 and 
50 separately. Figure 3A shows the average AUCs of each 
tool across different gene set sizes with 100 simulations. 
Although to different extent, all of the methods have better 
performance to detect larger gene sets.  
 To further examine whether the analysis tools are biased 
to larger gene set size, we created 5 groups of pseudo gene 
sets, with size equal to 10, 20, 30, 40 and 50 genes 
respectively for each group. Each group contains 50 pseudo-
gene sets. Therefore, there are 714 gene sets in the simulated 
data set, including 250 pseudo-gene sets and 464 real gene 
sets from KEGG and BioCarta. We created DE genes in the 
10 treated samples, in 30% of genes for each of the 250 
pseudo gene sets as well as randomly adding 0.5 in the genes 
not belonging to any gene sets to keep the overall number of 
DE genes being 2000 out of 20,000 total genes. The average 
ranks of gene sets with different sizes from 100 simulations 

were obtained. If the gene set size has no effects, the average 
ranks should be similar for gene sets with different sizes. 
However, as shown in Figure 3B, the gene sets with larger 
sizes rank better than those with smaller sizes, regardless of 
what tools are used. The bias is more severe in methods that 
included a standardization step based on the null distribution 
of ES, such as Tian/sigPathway and GSEA. 
 
3.2 Performance plot 

 After the above simulation study, we conclude that both 
AUC and gene set size are critical factors to evaluate the 
performance of gene set analysis tools. Therefore, we present 
the AUC and gene set size effects together on the same plot 
so that the performance of each tool can be easily compared. 
The x-axis is the average AUC of simulated gene sets with 
10% DE gene background, and y-axis is the slope of ranks 
among different sizes of gene sets. The best tool should have 
high AUC, which means better sensitivity and specificity, and 
low absolute slope, which means less bias to large gene sets. 
Therefore, the best tools should reside at the upper right 
corner of the plot. As shown in Figure 4, tools testing 
competitive hypothesis generally have less bias to gene set 
sizes, but also have lower AUC. In contrary, tools testing self-
contained or mixed hypothesis have more severe bias to gene 
set sizes, but have better AUC.  

 
Figure 4. Performance evaluation of gene set analysis tools. 

 

4 Methods performance on experimental 
data set 

 To confirm our simulation result with real-world 
scenario, we further compared the performance of the 11 gene 
set analysis methods by testing them on the p53 expression 
data on cancer cell lines. The dataset consisted of the 
transcriptional profiles from 17 p53+ and 33 p53 mutant 
cancer cell lines and was downloaded from the GSEA 
website.  We utilize three p53 related pathways to measure 
the performance of pathway methods. More specifically, we 
roughly utilized the sum of the rank of the three p53 related 
pathways based on p-values or normalized enrichment scores 
assigned by each method to test whether these pathways 
appear as the top significant pathways.   
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Figure 5. Performance of gene set analysis tools on p53 dataset. 

 In general, the phenotype-permutation based methods 
Sigpathway_Pheno, SAM-GS, GSA and GSEA identified the 
three pathways as relatively top pathways compared to the 
gene-permutation based methods Sigpathway_Gene, PAGE,  
and EmineJ_GSR (Figure 5). GSEA gene-set permutation 
retains its performance mainly due to the unique random-walk 
strategy.  

5 Discussions 
 In this study, we have systemically compared 11 gene 
set analysis methods. To our knowledge, this is by far the 
most comprehensive comparison study. We confirmed that 
ORA method is highly sensitive to the selected cutoffs, 
which is likely to create very biased conclusion that is 
difficult to reproduce. Even when the best cutoff was used, 
methods based on ORA still have almost the worst sensitivity 
and specificity when compared to other analysis methods. 
The strength of ORA methods is that they have less bias to 
large gene sets. To some extent, we can consider that ORA 
methods are similar to gene set resampling methods, except 
that the latter is non-parametric.  
 We observed that the methods that are self-contained or 
mixed have better sensitivity and specificity than the methods 
that are purely competitive. A possible explanation is that 
gene resampling ignores the correlation structure in the gene 
sets, which might overestimate the variance in the null 
distribution of ES. This is also due to the fact that there are 
10% DE genes in our simulated data sets, and this portion of 
genes results in a higher null ES value in gene resampling 
methods than in phenotype resampling methods. We feel that 
the chosen 10% DE genes is critical in the evaluation because 
it is quite common in real microarray experiments that there 
are significant portion of DE genes not belonging to any 
tested gene sets. Omitting the 10% DE genes in the simulated 
data sets will result in very similar performance between self-
contained and competitive methods.  
 It is quite interesting to observe the bias towards large 
gene set size in most of the tools. This bias still exists even in 
the tools implementing a standardization step. The good 
performance of GSA scores suggests that a better scoring 
system without phenotype resampling can possibly overcome 
this limitation. As pointed out by Nam D and Kim SY, there 
are other factors, such as user friendly interface and species 
support, need to be considered when selecting the best 
analysis tools. 

 In summary, we have conducted systemic comparison 
of popular gene set analysis tools. Our results provide 
valuable information for researchers to understand the 
advantages and limitations of these tools.  
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Abstract - With the advent of the current wireless 
communication revolution and the increase in its applications, 
the electromagnetic researchers in conjunction with the 
medical physicians take the initiative of studying the price of 
this beneficial technical revolution. It is the health hazards 
due to the electromagnetic radiation on the human body. The 
most cost efficient mean of studying these effects is the 
numerical simulation using the popular FDTD numerical 
technique. The FDTD simulates the existence of the human 
body tissues using many fitting models. One of the most 
famous one is the Debye model. In this paper, the Nth-order 
Debye model for modelling the human tissues is represented 
using the scattered field formulation for deducing the FDTD 
update equation. The scattered field formulation is an 
accurate method of implementing the different excitation 
mechanisms for the waves that impinging on the human 
dispersive tissues media.  Although the FDTD is an efficient 
method, it is a heavy computational one. It may take time of 
several hours or even days to simulate a single run of a 
specific problem. In this paper, a parallel scheme is utilized to 
speed up the running time of the 3D FDTD that includes The 
Nth-order Debye model. The parallel computations are 
running on VO (Virtual organization) of the EUMED grid 
platform. The speed up and behaviour over different number 
of processors is monitored. 

Keywords: FDTD, Dispersive media, Grid Computation, 
parallel processing. 

 

1 Introduction 
  The FDTD method has been applied successfully to a 
wide variety of problems including complex interaction of 
electromagnetic fields within materials. These materials 
include biological tissues, optical materials and ferrite [1] all 
of which exhibits dispersive behaviour. Three approaches 
based on the Auxiliary Differential Equation method, (ADE) 
are developed [2- 5]. The first one is the direct time 
integration method in which, generalized synchronized 
scattered field formulation for both Debye and Lorentz 
models are presented [2- 5]. The second approach is the Nth 
order ADE which is based on the state equations [4] and is 
applicable for both Debye and Lorentz media. The third 

approach is called the polarization current algorithm for ADE 
[5] which is generalized to update the scattered electric field 
[6].  

   In this paper, the scattered field formulation for the Nth 
order Debye model [8] in conjunction with other five FDTD 
update equations are paralyzed using the Massive parallel 
interface (MPI) library.  

   Our parallel code is executed on the EUMED grid. ERI has 
been participated as a partner in the EUMED (European 
Mediterranean) Grid project entitled (“Empowering E-science 
across the Mediterranean”) that is a project co-funded by the 
European Union. It was built using the GLite middleware. 
Network Time Protocol (NTP) with a time server is used for 
node synchronization.  
 
2 Problem formulation  
    Based on the infinite impulse response (IIR) filter design, 
Sullivan [7] uses the Z-transform technique to calculate the 
electric field from the electric flux density. In this paper, the 
analysis is extended to include the N-order Debye model, with 
the optimum usage of the memory requirement. Then, the 
scattered field formulation is obtained [8]. The dispersive 
media update equation in conjunction with the free space; the 
Uni-axial Perfect Matched Layer UPML, perfect conductor, 
lossy media, and the thin wire approximation for wire antenna 
are paralleled as a single patch. The analysis of the dispersive 
media has the focus in this paper because it is the more 
general update equation in the FDTD algorithm.  
Let’s start with the displacement vector which is defined as;  
 

                  ( ) ( ) ( )ωωεεω Ε= 0D                                       (1) 
 
Where, ε(ω) is the relative permittivity function of the media.  
       
      Let's start with the Nth order Debye model with the 
permittivity of the medium described as follows  
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∞ε  is the relative permittivity at infinite frequency, pε∆  is 
the change in relative permittivity due to the Debye pole, N is 
the number of poles, and pτ is the pole relaxation time. 
Using the Infinite Impulse Response (IIR) filter design [7], 
the permittivity function can be represented in the Z-domain 
as follows 

                  
( ) ( )∑
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−∆−
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Transforming equation  (2) into time domain results in 

                  
( ) ( ) ( )∫

∞
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−Ε= τττεε dttD 0

                          (4) 

     The convolution integral of equation (4) is converted to a 

multiplication in the Z-domain, and a factor of t∆ , the time 
increment, is included as follows 
 

                   ( ) ( ) ( ) tzzzD ∆Ε= εε 0                                    (5)  

Assuming N auxiliary variables 
( )zI p  each one corresponds 

to one Debye pole of the permittivity function ( )zε  such that 
equation (5) can be rewritten as 
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Rewriting equation (7) in a more convenient form results 
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          (8) 

 Now, equation (8) can be transformed into discrete time 
domain simply by shifting each field component multiplied by 

1−z   in the Z-domain, one time step later in the discrete time 
domain giving 
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Thus the auxiliary variable 
1+n

PI   can be calculated from its 
previous value and the present electric field sample. Now, 
proceeding to get the electric field updating equation by 
transforming equation (6) into discrete time domain giving   
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   Equation (10) reveals that the electric 
1+Ε n

 cannot be 

updated from 
1+n

pI
, since it is calculated from the electric 

field at the same time step, so it is useful to substitute for 
1+n

pI
 by its value given in equation (9) and proceeding again 

to get the electric fields in terms of the previous value of 
n
pI

 
giving  
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Where  D is the electric flux density 
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    Now we can summarize the programming sequence and 
summary of the updating equations within the time increment 
loop for the scattered field formulation by assigning the 
summation of the incident and the scattered fields instead of 
the total fields.  

( ) ( ) ( )
t
tt

t
tD i

∂
Ε∂

+ΗΧ∇=
∂

∂
0ε

 

( ) ( ) 1

1

11 1 +

=

++ Ε−−=Ε ∑ n
i

N

p

n
pexp

n
e

n
s ICCDC

 
( ) ( )( )11

0
1 ++∆−+ Ε+Ε∆∆−= n

i
n
spp

n
p

tn
P tIeI p τεετ

 
( ) ( )t

t
t

s
s ΕΧ∇−=
∂
Η∂

µ
1

 

Where ( )tsΗ  is the magnetic field intensity. 
   The previous sequence is the general sequence for both the 
scattered field formulation and the total field formulation. The 
total field formulation can be easily set by considering the 
incident fields equal zero as the case of studying the effect of 
the scattering from mobile wireless devices on the human 
(user) tissues, so that the total field will be equal to the 
scattered field. Finally, one can say that the scattered field 
formulation may be considered as the general case. 
 
 
 
3 Analysis of the parallel formulation 
 
In this paper, the FDTD algorithm treats six types of media; 
the perfect conductor [9], the thin wire approximation [10] 
with infinitesimal gap [11], free space, general lossy media, 
Uni-axial perfect matched layer [9], and then the Nth order 
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Debye model for modeling general dispersive media [6]. In 
our serial code, six functions are assigned to compute the 
three electric field components and the three magnetic field 
components at each cell location.  Each function has a 
selection between the update equations for the six media. 
From the above discussion, it is worth mentioning that, in 
each function there is only a selection of one group of update 
equations for only one medium at a specific location. Figure 1 
shows the locations of the field components in each cell.  This 
ensures no Amstrong complexity in the analysis. Amstrong 
complexity occurs when the data structures are subjected to a 
sequence of instructions rather than one set of instruction. In 
this sequence, one instruction may perform certain 
modifications that have an impact on other instructions in the 
sequence at the run time.  By analyzing the time axis, the 
electric and magnetic fields at each time step are evaluated 
from the neighborhood fields in the previous time step as 
shown in Figure 1. So, this axis cannot be distributed between 
processors. By analyzing the spatial axes x, y, or the z axis, 
the electric field or its corresponding displacement vector D 

or the auxiliary variables 
n
pI

 are calculated from the 
neighborhood magnetic fields. From this fact, one can divide 
one axis from the three spatial axes between processors to 
calculate the fields as illustrated in Figure 2. 
 

 
 

 
 
 

 

               Fig.2 Data Dependencies [13] 

4 Results and Discusions  
 

      Let us calculate the reflection coefficient at the interface 
between the air and the muscle tissue. The permittivity of the 
2/3 muscles is assumed because the average permittivity of 
human body tissues is close to that for 2/3 muscles. The 

associated parameters are: ,19=∞ε  ,100191 =sε  
,422 =sε  πτ 21071.0 6

1
−= x , and 

πτ 21075.0 10
2

−= x . The one dimensional problem 
assumes problem space of 1000 cells, 500 of which are used 
to represent the air, and the remaining 500 cells are used to 
represent the 2/3 muscle equivalent material. The cell size is 

taken 37.5 mµ and time step .2cxt ∆=∆  The assumed 

incident pulse takes the form ( ) ( ) 22
01000 Tttet −−=Ε where 

,4000 tt ∆=  and .152 tT ∆=  Figure 3 illustrates the 
reflection coefficient of the numerical FDTD solution 
compared to the analytical one that is given by 
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The parallel 3D FDTD is applied to calculate the effect of 
rectangular microstrip antenna, that is most used now in 
mobile phones, [12]. The antenna is 5 cm away from the head 
side. The space domain enclosing the human head and the 
antenna is equal to 60 x 60 x 90 cells. The microstrip antenna 
has a substrate material of relative permittivity 2.2, a substrate 

Fig.1 A unit cell from the discretized domain with 
fields’ components' positions [9]. 

 

Fig.3 The reflection coefficient at the interface between the 
air and the 2/3 muscle tissue material. 
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thickness of 6.73 mm and rectangular patch size of 134.6 mm 
in the x direction and 111 mm in the z direction. The feed is 
performed via a microstrip line of 67.3 mm length in the x 
direction and 37 mm width in the z direction. A noticeable 
time reduction is observed up to 25 processor over the 
network “ce0.m3pec.u-bordeaux1.fr:2119/jobmanager-pbs-
eumed” in the  EUMED grid using the MPI liberary. The 
serial code over the same network takes time of 9520 second. 
Figure 4 shows the time reduction by applying the same 
problem on EURO-EMD Grid parallel copmutation 
enviromrnt. From Figure 4, one can notice a linear reduction 
of the time up to 14 processor while still exist a reduction 
even for 25 processors. The calculation time for the 3D FDTD  
is reduced by 38 times (2.6% only of the serial execution 
time) over 25 processors which illustrates the merites of 
applying parallel computation to the algorithm. If the number 
of processors increaase than 25, the reduction in the execution 
time approximately stopped due to the effect of 
commnuication time which at this point becomes comparable 
or even greater to the execution time. 
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5 Conclusions 
 In this paper, a parallel processing algorithm is developed 
for the FDTD code including six update equations. The focus 
of this study is in illustrating the parallel strategy of including 
the dispersive properties of the human tissues in a parallel 
code. The derivation of the scattered field formulation for 
including the dispersive properties of the human media is by 
using Nth order debye model. Good accuracy is observed 
when calculating the reflection coeffiecient from a two pole 
debye tissue. The parrallel 3D FDTD code is applied on the 
scattering from the human head due to the excitation by 

microstrip antenna. The reduction of the execution time is 
observed up to 25 processor by about 96%. The parallel code 
is executed on the virtual organization of EUMED grid. 
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Abstract - HAART therapy of HIV-1 induced AIDS is 
modeled by a system of non-linear deterministic differential 
equations. The clinically plausible patho-physiological 
equations depict the dynamics of uninfected CD4+ T cells (x1), 
HIV-1 infected CD4+ T cells (x2), HIV-1 virions in the blood 
plasma (x3), HIV-1 specific CD8+ T cells (x4), and the 
concentration of HAART drug molecules (x5). The criteria for 
the existence of clinically desirable therapeutic outcomes are 
presented. In particular, the necessary and sufficient 
conditions for the annihilation of HIV-1 virions are clearly 
exhibited in terms of the model physiological parameters. 
Computer simulations are presented illustrating 
patho-physiodynamics of HIV-1 induced AIDS. In this paper, 
HAART protocols with constant continuous or periodic 
transdermal and intravenous drug infusions are used in our 
mathematical model.     

Keywords: HIV-1 patho-physiodynamics, mathematical modeling, 
HAART therapy, AIDS cure criteria, Michaelis-Menten kinetics 

 

1 Introduction 
HIV-1 virions induce AIDS by orchestrating an 

irreversible destruction of the CD4+ T cells which then 
paralyze the immune system of the HIV-1 positive person. As 
a result of these physiological events, a host of opportunistic 
bacterial and viral infections overwhelm the HIV-1 positive 
person [12]. Highly active anti-retroviral therapy (HAART) 
protocols have been approved as an efficacious treatment of 
HIV-1 induced AIDS. This protocol consists of nucleoside 
reverse transcriptase inhibitors, non-nucleoside reverse 
transcriptase inhibitors, protease inhibitors, anti-fungals 
/anti-bacterials and in future, integrase inhibitors. The reverse 
transcriptase inhibitors prevent reverse transcription of HIV-1 
specific DNA. The protease inhibitors are antagonistic to 
maturation and formation of new HIV-1 virions. The possible 
role of integrase inhibitors is to prevent the integration of 
HIV-1 viral DNA into the patients’ DNA [14]. 

HAART therapy is responsible for the reduction of viral 
load in CD4+ T cells and production of measurable 
reconstitution of the patients’ immune system [17]. However, 
HAART protocols have limited therapeutic efficacy due to 
extreme toxicity, non-compliance, intermittent scheduling, 
biochemical/clinical drug resistance, short drug half-life and 
low bio-availability.  

Many mathematical models of HAART therapy have 
been developed in an attempt to demonstrate the existence of 
efficacious and optimal therapies that will minimize side 
effects [8, 9, 10, 11, 13, 14, 15, 16]. Zaric et al. in 1998 
presented a model which was focused on the simulation of 
protease inhibitors and role of drug resistant HIV-1 virions 
[18]. Stengel in [14] presented a mathematical model of 
HIV-1 infection and HAAART which demonstrated the 
efficacy of a mathematically optimal therapy. Using the LQR, 
Scheme, Caetano and Yoneyama in [2] constructed a 
HAART model which incorporated the roles of latently 
infected CD4+ T cells, and discussed how the reverse 
transcriptase and protease inhibitors affected HIV-1 
dynamics during HAART. 

In this paper, an elaborate mathematical model will be 
constructed which will incorporate physiologically plausible 
effects such as Michaelis-Menten kinetics, role of HIV-1 
latent viral reservoirs, continuous transdermal drug delivery, 
and the implicit lymphocyte proliferation induction by the 
CD4+ T cells. The activation and proliferation is 
accomplished by a paracrine and autocrine processes which 
are mediated by the cytokine interleukin-2, secreted by the 
CD4+ T cells.  Several authors investigated the consequences 
of structured long-term and short-term treatment interruptions 
during HAART [1, 2, 4, 8]. The current model will discuss 
these consequences by means of simulations.  

The current paper will be divided into five sections. The 
first section gives the introduction into HAART therapy and 
provides the basis for current research. This is followed by 
presentation and discussion of the model parameters in 
Section 2. In Section 3 the mathematical model of HAART 
therapy will be constructed. Also the necessary and sufficient 
criteria for annihilation of HIV-1 virions during HAART will 
be presented in this section. In Section 4, clinically plausible 
computer simulations will be exhibited. Section 5 will be the 
summary and discussion of the basic results of the paper.  

2 Parameters 
The model parameters, constants, and variables are 

listed as follows.  

x1: the number density of non-HIV-1-infected CD4+ helper 
T-lymphocytes per unit volume 

x2: the number density of HIV-1 infected CD4+ helper 
T-lymphocytes per unit volume 
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annihilation of the HIV-1 infected CD4+ T cells and plasma 
viremia. This criterion is derived for the scenario for which  
f(t) ≡1, which corresponds to constant continuous application 
of HAART drug either by transdermal delivery or 
intravenous infusion.  

The desired physiological steady states during HAART 
therapy, are E1= [ 1x̂ , 0, 0, 0, 5x̂ ] and E2= [ 1x , 0, 0, 4x , 5x ]. 
In each of these, the HIV-1 infected CD4+ T cells (x2) and 
plasma HIV-1 virions (x3) are annihilated. In particular, 
E2=[ 1x , 0, 0, 4x , 5x ] is plausibly physiologically easily 
attainable in an AIDS patient since some HIV-1 specific 
CD8+ (cytotoxic T) cells usually persist during HAART as 
memory T cells. 

Thus the criteria for annihilation of HIV-1 virions will 
be derived using E2 = [ 1x , 0, 0, 4x , 5x ] as a target steady state. 

In ]0,0,0|,,[ 541541
541 ≥≥≥=+ xxxxxxR xxx , the model 

equations reduce to (3.2).  
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such that G, F, L are continuous, differentiable, and have 
bounded, derivatives.  
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In particular, the [aij]3x3 are defined as follows: 

                   (3.10) 

 

 

 
As the flow associated with the model equations 

approaches E2 = [ 1x , 0, 0, 4x , 5x ], the matrix entries [aij]3x3 
have the following form: 
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In particular, it can be shown that  
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Since F(x1, x4), G(x1), and L(x5) are continuous and 
differentiable functions in each variable, the matrix entries a11, 
a12, a22, a33 exist and remain bounded in the space: 541 xxxR + , 
as [ 1x , 0, 0, 4x , 5x ] → [ 1x , 0, 0, 4x , 5x ]. 

     Hence,   
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The matrix A is negative definite if the following 

criteria hold: 
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Then the physiological steady state E2=[ 1x , 0, 0, 4x , 5x ] is 
globally asymptotically stable, and hence the HIV-1 virions 
are annihilated in the CD4+ T cells and the blood plasma. 
Thus E2=[ 1x , 0, 0, 4x , 5x ] is a global attractor.  
Proof. The result follows immediately from the negative 
definite criteria on A1, A2, and A3. It is noted that a33<0, and 
a11<0 if 0)( 1 >′ xG . If a11 and a33 are both negative, then the 
restriction on A3 is satisfied if condition (ii) of the theorem 

holds. Thus 
*

V is negative definite and the theorem holds.    

4 Simulation results and discussion 
In this section, the simulation results are presented. The 

computer programming code for the simulations was written 
in C++. Transdermal delivery was simulated as a rectangular 
periodic function f(t) such that  .   

In particular, the drug input is continuous for 6 months 
and off for another 6 months until HAART is discontinued. 
Figure 1 presents an unsuccessful HAART therapy for a 
hypothetical AIDS patient with the patho-physiological 
parametric configuration P1 in Table 1. In this HAART 
scenario, the plasma HIV-1 virions (x3) completely 
overwhelmed the non-infected CD4+ T helper cells (x1) and 
the HIV-1 specific CD8+ cytotoxic T cells (x4). The HIV-1 
infected CD4+ T cells (x2) exhibit periodic dynamics and the 
prognosis for the hypothetical patient is unwholesome.     
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Figure 2 depicts a successful HAART outcome in which 
the plasma HIV-1 virions (x3) are annihilated using the 
hypothetical patient parameter configuration P2 in Table 2. 
Also the HIV-1 infected CD4+ T helper cells (x2) are 

drastically reduced to below 100 cells/μl.  The non-infected 
CD4+  T helper cells (x1) are repopulated in this simulation. 
This outcome has been clinically observed and discussed by 
Ye et al. [17].  

TABLE 1. Hypothetical AIDS Patient Parametric Configuration Ρ1 

S1 = 400 /day/μl 
a1 = 0.09 /day/cell/μl 
b1 = 0.01 /cell/μl 
α1 = 0.5/day/virion/μl 
k1 = 0.0005/day/μl 
q1 = 
0.00045/day/μl/cell 
e10 =  
0.0025 cells/day/μl 
x10 = 800 cells/μl 

S2 = 800 /day/μl 
a2 = 0.03 /day/cell/μl  
b2 = 0.004/cell/μl 
α2= 0.5/day/virion/μl 
k2 = 0.005/day/μl 
q2 = 0.00001/day/μl/cell 
β1 = 1.5 virons/CD4+/day 
K1 = 0.0001/day/μl 
e20 = 0.0005 cells/day/μl 
ξ2 = 0.85 
x20 = 400 cells/μl 
 

S3 = 10 /day/μl 
β2 = 
0.0015virons/CD4+/day/μl 
β3 = 1.05 virons/CD4+/day 
α3 = 0.027 /day/virion/μl 
k3 = 0.0001/day 
e30 = 0.0001 /day 
η1 = 0.25 
ξ3 = 0.001 
x30 = 500 cells/μl 

S4 = 10 /day/μl 
a4 = 0.35 /day/cell/μl 
b4 = 0.01/cell/μl 
K2 = 0.0024 /day/μl 
k4 = 0.08/day/μl 
e40 = 0.0002 cells/day/μl 
η2 = 0.45 
x40 = 730 cells/μl 

D = 3000 units 
σ0 = 0.5 mg/day 
σ2 = 30 mg/day 
σ3 = 5 mg/day 
λ0 = 5 mg/L 
λ2 = 10 mg/L 
λ3 = 0.025 mg/L 
x50 = 1500 cells/μl 
n = 5 

 

         
 

      
 

Figure 1 Simulation results using parametric configuration Ρ1    

 

 

0
100
200
300
400
500
600
700
800
900

0 10 20 30
t (months)

x1

0
100
200
300
400
500
600
700
800
900

0 10 20 30
t (months)

x2

0

100

200

300

400

500

600

700

800

0 10 20 30
t (months)

x3

0

100

200

300

400

500

600

700

800

0 10 20 30
t (months)

x4

0

200

400

600

800

1000

1200

1400

1600

0 10 20 30
t (months)

x5

Int'l Conf. Bioinformatics and Computational Biology |  BIOCOMP'11  | 683



TABLE 2. Hypothetical AIDS Patient Parametric Configuration Ρ2 

S1 = 800 /day/μl 
a1 = 0.15 /day/cell/μl 
b1 = 0.01 /cell/μl 
α1 = 0.5/day/virion/μl 
k1 = 0.0005/day/μl 
q1 = 0.00045/day/μl/cell 
e10 = 0.0025 cells/day/μl 
x10 = 500 cells/μl 

S2 = 800 /day/μl 
a2 = 0.03 /day/cell/μl 
b2 = 0.004/cell/μl 
α2= 0.5/day/virion/μl 
k2 = 0.005/day/μl 
q2 = 0.00001/day/μl/cell 
β1 = 1.5 virons/CD4+/day 
K1 = 0.0001/day/μl 
e20 = 0.0005 cells/day/μl 
ξ2 = 0.85 
x20 = 400 cells/μl 
 

S3 = 10 /day/μl 
β2 = 0.0015    
       virons/CD4+/day/μl 
β3 = 1.05 virons/CD4+/day 
α3 = 0.027/day/virion/μl 
k3 = 0.0001/day 
e30 = 0.0001 /day 
η1 = 0.25 
ξ3 = 0.001 
x30 = 500 cells/μl 

S4 = 10 /day/μl 
a4 = 0.35 /day/cell/μl 
b4 = 0.01/cell/μl 
K2 = 0.0024 /day/μl 
k4 = 0.08/day/μl 
e40 = 0.0002 cells/day/μl 
η2 = 0.45 
x40 = 730 cells/μl 

D = 4000 units 
σ0 = 0.5 mg/day 
σ2 = 30 mg/day 
σ3 = 5 mg/day 
λ0 = 5 mg/L 
λ2 = 10 mg/L 
λ3 = 0.025 mg/L 
x50 = 1500 cells/μl 
n = 5 

 

   
 

     
 

Figure 2 Simulation results using parametric configuration Ρ2

 

5 Summarizing remarks 
In this research, we presented a mathematical model 

which describes the patho-physiological dynamics of HIV-1 
induced AIDS during HAART therapy. This model 
incorporates several physiological aspects of HIV-1 
patho-physiology. These include the recruitment of virions 
from latent HIV-1 reservoirs (S3) such as macrophages, 
microglial cells and lymphoid tissues. The model also 
includes autocrine and paracrine activation of CD4+ and 

CD8+ T cells. Michaelis-Menten pharmacokinetics is used to 
describe the dynamics of the HAART drug in the AIDS 
patient. The simulations used a blend of estimated and 
literature based [3, 10, 13] hypothetical patient parametric 
configurations. The simulation results depict respectively 
scenarios for efficacious and non-efficacious HAART 
therapeutic outcomes.  

The necessary conditions for existence of a plausible 
physiological outcome E2 = [ 1x , 0, 0, 4x , 5x ] are  
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(5.1) 

 

The sufficient conditions for successful HAART therapy 
and cure of AIDS are 

 
 

                  
(5.2) 
 

It is possible to refine (5.2) to  
 

++ <= 48
1 2 CD

m
CD
m KKx  

 
where Km denotes the Michaelis-Menten constant. In a future 
publication, more necessary and sufficient criteria for the cure 
of HIV-1 induced AIDS will be presented and discussed. 
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Abstract— Tumour immune interaction is modelled to eval-
uate the tumour cell size as a stochastic time dependent
model. The life of a tumour cell is assumed to be in hypo-
thetical phases of independently distributed time duration.
The analysis uses generating functions to obtain the first
few moments of the tumour cell size analyzed. The first
few moments are expressed as a function of time and cell
proliferation kinetics including the tumour cell escape rate
from immune surveillance. Numerical results are obtained
and are found to be consistent with the current theory.

Keywords: Generating functions; Immune response system;
Laplace transforms; Proliferation kinetics; Tumour size modelling.

1. Introduction
The stochastic models on carcinogenesis have received

considerable interest and quite a few papers have been pub-
lished [[1], [2], [3], [4]]. It is important to develop stochastic
models of tumour growth that include a representation of
immune response. In a recent paper [5] used Monte Carlo
Simulation to evaluate the tumour cell size in the presence
of immune response. The resort to simulation, it seems, was
mainly due to the fact that no explicit analytic solution
is possible when the proliferation rates are time or age
dependent. However, if the research concern lies mainly
with the determination of first few moments, the problem
becomes tractable. The major contribution of this paper
lies in addressing this important issue, demonstrating the
possibility of obtaining explicit expressions for the first few
moments of tumour cell population in the presence of an
active immune system. The tumour cell life time is treated
here as evolving in phases. The life time from precancerous
stage to dormant or dead state is divided into three phases.
In fact the method of phases has already been employed in
cavity radiation problems [[6]]. The layout of the paper is
as follows. Section 2 describes the formulation of the model
and Section 3 derives the equations satisfied by generating

functions. Section 4 derives the equations satisfied by the
first two moments and their solutions. Section 5 provides
numerical results under selected values of the parameters in
Phases 1, 2 and 3, and explores the behaviour of tumour
size over time. The last section concludes with a discussion
and summary.

2. Formulation of the Model
It is well known that the immune system guards against

the development of tumours and it also attempts to detect and
eliminate cancerous or precancerous cells. Hence, tumour
size is to be considered as a function of time and in terms of
proliferation kinetics including the interaction of the immune
response system with the cancerous cells. According to [7]
and [8] “the tumour development can be eliminated by
tumour infiltrating cytotoxic lumphocytes (TICL’s) during
the avascular stage.” TICL’s interact with tumour cells and
disable them from developing into proliferating malignant
cells. As a result, the tumour cells either die or escape
the immune surveillance and leave the primary tumour site
and attempt to form tumours elsewhere. We consider the
evolution of the tumour cell population according to the
process of birth, (nascent tumour cell capable of prolifera-
tion), death (immune cell) and emigration (escape of tumour
cell) [[9]]. Thus the life span of any tumour cell can be
divided into three phases. In the first phase, the newly born
tumour cell is passive and waiting to become mature enough
for proliferation. λ(t)∆t is the probability for the cell to
pass into Phase 2 in the time interval (t, t + dt). In the
second phase the tumour cell is active in proliferation and
the probability of a single cell to proliferate into two cells is
η(t)∆t in (t, t+dt). In both the first and second phases the
immune system can detect and form TICLs with probability
µ1(t)∆t in (t, t + dt). In the second phase the tumour cell
has a probability µ2(t)∆t to pass into Phase 3, there to die
or be dormant. In the third phase the tumour cell is incapable
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of proliferation. The first two phases have independent time
spans and that of the third phase is indefinite. The tumour
cells generated in different phases are also independent and
evolve with respect to time. We assume that each tumour
cell necessarily goes through the three phases. At the outset
we observe that it is sufficient to deal with the tumour cell
population generated by one cell each in each of the three
phases. This is justified by the independence of the birth and
death process of each of the cells. We also assume that the
tumour cell which escapes surveillance starts the cycle as
an independent cell in phase 1 or phase 2 at a secondary
site. It is assumed that cancer has already set in and the
immune therapy is triggered by number of immue response
cells namely TICL’s.

3. Generating Functions of the Tumour
Cell Population.

Let X(t), Y (t) and Z(t) represent the number of tumour
cells in Phases 1, 2 and 3 respectively. The population
generated by the tumour cell is of the branching type when
there is no escape possible for that cell from immune surveil-
lance. However, when such escape is possible, the population
generated by the escaped cells is also independent. Thus, we
define two generating functions:

gi(z1, z2, z3, t) =E
[
z
X(t)
1 z

Y (t)
2 z

Z(t)
3 /X(0) = 2− i,

Y (0) = 1− i, υ = 0
] (1)

where, i = 1, 2

G(z1, z2, z3, t) =E
[
z
X(t)
1 z

Y (t)
2 z

Z(t)
3 /

X(0) = Y (0) = Z(0) = 0, υ 6= 0
] (2)

where υ represents the escape rate from immune surveillance
and E is the expectation operator.

3.1 Relation between G(z1, z2, z3, t) and
gi(z1, z2, z3, t).

G(z1, z2, z3, t) is the generating function of the population
generated by the escaped tumour cell. We assume the time of
the first tumour cell that escapes is exponentially distributed
with parameter υ and that the population thus generated is
independent of other cells.

G(z1, z2, z3, t) =e−υt + υ

∫ t

0

e−υuG(z1, z2, z3, t− u)[
g1(z1, z2, z3, t− u)+

g2(z1, z2, z3, t− u)
]
du

(3)

The first term represents the probability that the cell
does not escape in (0, t). The second term represents the

probability of a tumour cell escaping immune response in
(u, u+ du) with probability e−υuυdu. Assuming the cell is
in phase 1 or 2 it generates a population during t− u.

The integral Equation (3) can be solved and we obtain,

G(z1, z2, z3, t) = exp

[
−υ
∫ t

0

{
1−

2∑
i=1

gi(z1, z2, z3, u)du
}]
(4)

3.2 Derivation of equations governing
gi(z1, z2, z3, t).

We now go into deriving equations for g1, g2 and g3
We obtain the differential equation satisfied by g1 by

analysing in the time interval (0,∆t) for Phase 1 [[10]].
At t = 0 , we have a newly born tumour cell and it can:

1) Move into proliferation Phase 2 in (0,∆t) with prob-
ability λ∆t;

2) Be detected by immune response and move to Phase 3
with probability (µ1 + µ2)∆t;

3) Remain as it is in the same state with probability [1−
(λ+ µ1 + µ2)]∆t.

Combining these events we can write, with ∆t→ 0

∂g1(z1, z2, z3, t)/∂t =− (λ+ µ1 + µ2)g1+

λg2 + (µ1 + µ2)g3
(5)

In the case of Phase 2, at t = 0 we assume that there is
a tumour cell which can actually proliferate. The following
events can then happen in Phase 2 in the time (0,∆t). It
can:

1) Move straight into Phase 3 with probability µ2∆t
2) Move into proliferation and can spilt into 2 tumour

cells with probability η∆t
3) Be detected by immune response and move into Phase

3 with probability µ1∆t
4) Remain as it is in the same state with probability [1−

(µ1 + µ2 + η)]∆t

Combining these events we can write, with ∆t→ 0

∂g2
∂t

= −(µ1 + µ2 + η)g2 + 2ηg1 + (µ1 + µ2)g3 (6)

In view of our assumption that cells in Phase 3 have zero
proliferation rates the generating function g3 is independent
of z1 and z2 and can be evaluated explicitly as:

g3(z1, z2, z3, t) = 1 + (z3 − 1)e−(µ1+µ2)t (7)

It is rather difficult to solve for g1 and g2 explicitly. However,
the moments of X(t), Y (t) and Z(t) can be evaluated

4. Moments of the tumour cell popula-
tion.

We introduce the first two moments of the tumour cell
population by N i

k(t), M i,j
k (t), N i(t), M i,j(t) where N i

k(t)
and N i(t) are the first moments of the cell population
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considering cell escape rates υ = 0 and υ 6= 0 respectively,
and M i,j

k (t) and M i,j(t) are the corresponding second
moments. It is known

N i
k(t) =

∂gk
∂zi

∣∣∣∣
z1=z2=z3=1

(8)

N i(t) =
∂G

∂zi

∣∣∣∣
z1=z2=z3=1

(9)

M i,j
k (t) =

∂2gk
∂zi∂zj

∣∣∣∣
z1=z2=z3=1

(10)

M i,j(t) =
∂2G

∂zi∂zj

∣∣∣∣
z1=z2=z3=1

(11)

We first connect N i(t) and N i
k(t) From Equation (2)

differentiating both sides

N i(t) = υ

∫ t

0

∑
N i
k(u)du

∣∣∣∣
k=1,2

(12)

Also by differentiating twice Equation (2) we get

M i,j(t) = υ

∫ t

0

2∑
k=1

M i,j
k (u)du+N i(t)N j(t) (13)

We now differentiate Equation (3) and Equation (4) to obtain

∂N i
1(t)

∂t
=− (λ+ µ1 + µ2)N i

1 + λN i
2|i=1,2 (14)

∂N3
1 (t)

∂(t)
=− (λ+ µ1 + µ2)N3

1 + (15)

λN3
2 + (µ1 + µ2)e−(µ1+µ2)t

∂N i
2(t)

∂(t)
=− (µ1 + µ2 + η)N i

2 + 2ηN i
2|i=1,2 (16)

∂N3
2 (t)

∂(t)
=− (µ1 + µ2 + η)N3

2 + 2ηN3
1 + (17)

(µ1 + µ2)e−(µ1+µ2)t

(18)

With initial conditions

N1
1 (0) = N2

2 (0) = N3
3 (0) = 1 (19)

N2
1 (0) = N3

1 (0) = N1
2 (0) = N3

2 (0) = 0. (20)

Solving the system of Equations (14–17) using Laplace

transforms, we get

N1
1 (t) =

α+ a

α− β
eαt +

β + a

β − α
eβt (21)

N2
1 (t) =

λ

(α− β)
[eαt − eβt] (22)

N3
1 (t) =

(a− c)µ1 + cλ

(α+ c)(β + c)
e−ct +

(a+ α)µ1 + cλ

(α+ c)(α− β)
eαt+

(23)
(a+ β)µ1 + cλ

(β + c)(β − α)
eβt

N1
2 (t) =

2η

(α− β)
[eαt − eβt (24)

N2
2 (t) =

α+ b

(α− β)
eαt +

β + b

(β − α)
eβt (25)

N3
2 (t) =

(b− c)c+ 2ηµ1

(c+ α)(c+ β)
e−ct +

(α+ b)c+ 2ηµ1

(α+ c)(α− β)
eαt+

(26)
(β + b)c+ 2ηµ1

(β + c)(β − α)
eβt

Where a = µ1 + µ2 + η, b = λ + µ1 + µ2, c = µ1 + µ2

and α and β are the roots of the equation

S2 + S(a+ b) + ab− 2ηλ = 0 (27)

Size of the tumour at time t when the tumour cell escape
rate υ is zero is given by,

T (t) =
3∑
i=1

∫ t

0

[N i
1(t′) +N i

2(t′) +N i
3(t′)]dt′ (28)

Size of tumour at time t when the tumour cell escape rate
υ is not zero is given by,

Te(t) =
3∑
i=1

N i(t) = υ
∑∫ t

0

N i
1(u)du (29)

Te(t) is the size of tumour when a single tumour cell
escapes the primary site and develops elsewhere.

The second moments can be obtained by differentiating
Equations (5–7) successfully, we get,

∂M i,j
1 (t)

∂t
=− (λ+ µ1 + µ2)M i,j

1 + λM i,j
2 (µ1 + µ2)M i,j

3

(30)

∂M i,j
2 (t)

∂t
=− (η + µ1 + µ2)M i,j

2 + 2ηM i,j
1 (µ1 + µ2)M i,j

3

(31)

∂M i,j
3 (t)

∂t
=− (µ1 + µ2)M i,j

3 (t) (32)

Since we are interested in the size of the tumour, we
refrain from giving the solutions though the above equations
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can be solved by Laplace transform. However as t→∞ we
can obtain the steady state expression for N i

j(t).

N1
1 (∞) =

µ1 + µ2 + η

ab− 2ηλ
(33)

N2
1 (∞) =

λ

ab− 2ηλ
(34)

N3
1 (∞) =

λ+ η + µ1 + µ2

ab− 2ηλ
(35)

N1
2 (∞) =

2η

ab− 2ηλ
(36)

N2
2 (∞) =

λ+ µ1 + µ2

ab− 2ηλ
(37)

N3
2 (∞) =

λ+ η + µ1 + µ2

ab− 2ηλ
(38)

5. Exploratory Numerical Results.
We proceed to evaluate the tumour size numerically

for different values of λ, η, µ1, and µ2. The tumour cell
population or size is shown as two variables: T(t) and Te(t).
T(t) is the size at the primary host site and Te(t) is the size
of the population generated by the escaped cell at another
secondary site.

In a series of graphs we plot T(t) and Te (t) for an
exploratory set of values of λ, η, µ1, and µ2 gathered from
prior results in the literature. We note that they follow a
piecewise Gompertz curve pattern as found by Boondreck
et. al. (2006) through Montecarlo simulation. The graphs
presented here in Figure 1, Figure 2, and Figure 3 show
the smoothed Gompertz curve fit for these results. Next
we also calculated and tabulated the number of proliferated
cells P(t) over time as the parameters are varied 1. Finally,
to facilitate comparison with the simulated results in [5],
using non-linear regression, we fitted Gompertz curves for
the values obatined by us analytically using the exploratory
set of parameter values. These graphs are shown in Figure 4,
Figure 5 and Figure 6. Our analytical results from this
extended model, permitting both attachment by the immune
response system to incapacitate the cancer cellls and also
escape from that system to another site to proliferate, confirm
the growth pattern of cells and tumour size over time, derived
by them through simulation. In the next and concluding
section we discuss these results.

6. Summary and Discussion.
First it is interesting to note that for fixed values of the

probabilites of the cell moving directly from either Phase 1
or 2 to Phase 3, i.e., for fixed µ1 and µ2 to become incative
and for fixed values of the infection rate or probabiltiy λ, as
the proliferation rate η increases the analytical results from
the model show that the number of proliferated cells at the

1Copies of these tables can be obtained as Excel files by e-mailing the
request to either one of the authors.

Fig. 1: Number of cells at primary site when escape rate
υ = 0, λ = 0.5, η = 0.4, µ1 = 0.15, µ2 = 0.05

Fig. 2: Number of cells at primary site when escape rate
υ = 0, λ = 0.5, η = 0.7, µ1 = 0.2, µ2 = 0.08

Fig. 3: Number of cells at primary site when escape rate
υ = 0, λ = 0.1, η = 0.1, µ1 = 0.02, µ2 = 0.03
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Fig. 4: Number of cells at secondary site when escape rate
υ = 0, 1, λ = 0.5, η = 0.4, µ1 = 0.15, µ2 = 0.05

Fig. 5: Number of cells at primary site when escape rate
υ = 0.1, λ = 0.5, η = 0.7, µ1 = 0.2, µ2 = 0.08

Fig. 6: Number of cells at secondary site when escape rate
υ = 0.1, λ = 0.1, η = 0.1, µ1 = 0.02, µ2 = 0.03

Fig. 7: Number of cells at secondary site when escape rate
λ = 0.2, η = 0.3, µ1 + µ2 changing from 0.3 to 0.9

Fig. 8: Number of cells at secondary site when escape rate
λ = 0.05, η = 0.3, µ1 + µ2 changing from 0.3 to 0.9

secondary site increases but at a decreasing rate. The rate
of decrease increases as µ1 +µ2 increases. Furthermore, the
number of these proliferated cells converges to an asymptotic
limit after the expiration of a period of time. Again this
convergence time is not uniform. It is reached rapidly over
time for larger values of µ1 + µ2, and slowly for smaller
values. We see a similar pattern for the total tumour size T
(t) when the escape rate of an infected cell is zero and for
the tumour size Te(t) when that escape rate ν is positive.
One would normally expect when ν increases both T (t)
and Te(t) would increase all else being held constant, and
Te(t) would increase more rapidly. All these are borne out
by the graphs in the respective figures when these values are
obtained purely from our analytical results for expoloratory
values of the rate paarmeters.

Following [5] we investigated the shape of the various
curves for P(t), T (t) and Te(t) as functions of time to see
if they fit the Gompertz curve shape obtained with their
simulated data. The figures show that a Gompertz curve fit
obtained through non-linear regression from SAS fit them
remarkably well. Further analysis shows that fixed values of
other rate parameters, the time required for the doubling of
the number of proliferated cells increases at an increasing
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rate, i.e., at greater speed as the proliferation rate η increases.
We also checked the paper [11] and collected values of

µ1 and µ2. The graphs in Figure 7 and 8 represent the
proliferation of tumour cell in the absence of TICL’s and for
different rates of disabling of malignant cells by TICL. It can
be seen from the graphs as the rate increases the proliferation
decreases. This could help in deciding the level of therapy
for controlling the malignant cells. Work is in progress to
prepare a table for practitioners to make use of the table.

These results have some practical implications. The major
one is that any treatment that can either directly reduce, or
provide more time for the body’s immune response system
to attack and slow down,the proliferation rate would be
beneficial to the patient and slow down the spread of cancer.
The same technique can be used to find the latent cell
population in HIV.
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Crystallography

Yan Yan1 and Gregory S. Chirikjian1

1The Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA

Abstract— Molecular replacement (MR) is a computational
method that is frequently used to obtain phase information
for a unit cell packed with a macromolecule of unknown
structure. The goal of MR searches is to place a homol-
ogous/similar molecule in the unit cell so as to maximize
the correlation with x-ray diffraction data. MR software
packages typically perform rotation and translation searches
separately. This works quite well for single-domain pro-
teins. However, for multi-domain structures and complexes,
computational requirements can become prohibitive and the
desired peaks can become hidden in a noisy landscape. The
main contribution of our approach is that computationally
expensive MR searches in continuous configuration space
are replaced by a search on a relatively small discrete
set of candidate packing arrangements of a multi-rigid-
body model. These candidate arrangements are generated by
minimizing a Gaussian-based potential function that forces
the model conformations to separate from each other and
not overlap within the unit cell. This is done before com-
puting Patterson correlations rather than only performing
collision checks when evaluating the feasibility of peaks.
The list of feasible arrangements is short because collision-
free packing requirement together with unit cell symmetry
and geometry impose strong constraints. After computing
Patterson correlations of the candidate arrangements, an
even shorter list can be obtained using 10 candidates with
highest correlations. In numerical trials, we found that a
candidate from the feasible set is usually similar to the
arrangement of the target structure within the unit cell. To
further improve the accuracy, a Rapidly-exploring Random
Tree (RRT) can be applied in the neighborhood of this pack-
ing arrangement. Our approach is demonstrated with multi-
domain models in silico for 2D, with ellipses (ellipsoids
in 2D) representing both the domains of the model and
target structures. Configurations are defined by sets of angles
between the ellipses. Our results show that an approximate
configuration can be found with the mean absolute error less
than 3 degrees.

Keywords: X-ray crystallography, molecular replacement, multi-
domain system, packing model, Gaussian function

1. Introduction
The field of structural biology is concerned with char-

acterizing the shape, composition, flexibility, and motion

of biological macromolecules and the complexes that they
form. An ultimate goal of this field is to link these properties
with the function of macromolecular structures, in the hope
of better understanding biological phenomena and designing
new drugs.

Here we review some of the issues involved in translating
experimental data into 3D structures in the context of pro-
tein crystallography. Macromolecular X-ray crystallography
(MX) has been the most used method for determining protein
structures and associated complexes. It works very well for
simple proteins that can be described as single rigid-bodies
(called domains). This is because information about the
shape of 75,000 previously solved structures in the Protein
Data Bank (many of which are single-domain structures)
can be used to augment new MX experimental information
to gain a complete picture.

However, a challenge to MX arises in interpreting X-ray
diffraction patterns for crystals composed of multi-domain
systems. This is because even when a multi-domain structure
has been solved previously, its overall shape may vary widely
from a new version of the structure with, for example,
a bound drug. In this case, a widely used computational
method called the molecular replacement method (MR),
which has been highly successful for single-domain proteins,
becomes combinatorially intractable due to the large number
of degrees of freedom in multi-domain systems. We present
a new method for phasing based on geometric packing that
can serve as an alternative to MR. Decades ago, the concept
of building models of crystallographic unit cells to phase
crystallographic data was explored in the context of small
molecules [1], [2], [3]. But to our knowledge, this approach
has not been pursued and is virtually unknown in the con-
text of multi-domain macromolecular crystallography, and
“phasing by packing” therefore represents a very different
way of approaching the problem than MR.

The remainder of this paper is structured as follows.
The mathematical aspects of the MR method for single-
domain proteins is reviewed first. Then the multi-domain
phase problem is formulated. Finally, we present our initial
findings that diffraction patterns for multi-domain systems
can be phased using our new “phasing by packing” method.
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2. Essentials of Macromolecular X-Ray
Crystallography (MX)

A biological macromolecule is a large collection of atomic
nuclei that are stabilized through a combination of covalent
bonds, hydrogen bonds, and hydrophobicity. A traditional
goal in structural biology is to obtain the Cartesian coordi-
nates of all atoms in a rigid single-domain protein.

Let xi = (xi,yi,zi) denote the Cartesian coordinates of the
ith of n atoms in a single-domain protein structure, and let
ρi(x) be the electron density of that atom in a reference
frame centered on it. Due to thermal motions, the electron
density of each of these atomic nuclei can be treated as a
Gaussian distribution. The density of the whole structure is
then of the form

f (x) =
n

∑
i=1

ρi(x− xi). (1)

The coordinates {xi} are typically given either in a reference
frame attached to a crystallographic unit cell, or to the center
of mass of the protein.

MX does not provide f (x) directly. Rather, it provides
partial information about f (x). The goal is then to compu-
tationally obtain f (x) and fit an atomic model to it, thereby
extracting the coordinates {x i}. A macromolecular crystal
is composed of unit cells that have a discrete symmetry
group, Γ. This symmetry group divides R

3 into unit cells,
U ∼=Γ\R3, and also describes how copies of the density f (x)
are located within the unit cell. The whole group Γ can be
generated by translating unit cells and moving within the unit
cell using generators {γ1, ...,γm}. These form a subgroup of
Γ, which is in turn a subgroup of the group of rigid-body
motions, SE(3), which will be denoted here as G.

The result of an MX experiment is a diffraction pattern.
This is the magnitude of the Fourier transform of the full
contents of the crystallographic unit cell. Mathematically,
this is written for a single-domain protein as

P̂(g;k) =

∣

∣

∣

∣

∣

F

(

m−1

∑
j=0

f ((γ j ◦ g)−1 ·x
)∣

∣

∣

∣

∣

, (2)

where | · | denotes the modulus of a complex number, c =
a+ ib = |c|eiφ . Our reason for using the notation P̂(g;k)
will be explained shortly. Here g ∈ G is the unknown pose
of the protein that is sought, and ◦ is the group operation
for both G and Γ. In particular, it is well-known in robotics
that each rigid-body motion consists of a rotation-translation
pair g = (R, t), and the composition of any two rigid-body
motions g1 and g2 defines the operation ◦:

g1 ◦g2 = (R1, t1)◦ (R2, t2) = (R1R2,R1t2 + t1). (3)

Given that g = (R, t) ∈ G is a rotation-translation pair, its
action on R

3 is defined by

g ·x = Rx+ t. (4)

Then the density of a collection of single-domain proteins in
the unit cell for j = 0, ...,m−1 will be ∑m−1

i=0 f ((γi ◦g)−1 ·x).
The difficulty in extracting f (x) from the MX data is

that this measurement folds in both information about f (x)
and the symmetry group Γ, and kills the phase information,
φ(k), without which f (x) cannot be recovered by inverse
Fourier transform. Moreover, there is an unknown g ∈ G
that describes how each symmetry-related copy of f (x) sits
in the unit cell. Single-domain MR is mostly about finding
the unknown g, and most commonly this is done by dividing
the search into rotational and translational parts.

The number of proteins in a unit cell, the crystallographic
space group, Γ, and aspect ratios of the unit cell can be
taken as known inputs in MR computations, since they are all
provided by experimental observation. And from homology
modeling, it is often possible to have reliable estimates of
the shape of each domain in a multi-domain protein. What
remains unknown are the relative positions and orientations
of theses domains and the overall position and orientation of
the symmetry-related copies of the proteins within the unit
cell.

Once these are known, a model of the unit cell can be
constructed and used as an initial phasing model that can be
combined with the X-ray diffraction data. This is, in essence,
the molecular replacement approach that is now more than
half a century old [4], [5]. Many powerful software packages
for molecular replacement include those described in [6], [7].
Typically these perform rotation searches first, followed by
translation searches.

3. The Multi-Domain Molecular Re-
placement Method (NMR)

The molecular replacement (MR) method, originally de-
veloped in the 1960s [4], [10], [11], [12] is a computational
method for phasing X-ray diffraction data for biomolecular
structures. It has been integrated into crystallographic struc-
ture determination codes [6], [14]. Though MR has been
wildly successful for single-domain proteins, significant is-
sues arise when using MR for multi-domain proteins and
complexes.

Currently two major computational paradigms exist for
phasing of X-ray diffraction patterns of multi-domain pro-
teins: (1) use existing software packages to obtain candidate
peaks in the rotation function for individual domains sepa-
rately, then solve for the translation function [13]; (2) attempt
to morph multi-domain candidate models that contain their
full “6N” degrees of freedom and iteratively refine those
models [8]. Both methods suffer from different aspects of
the “curse of dimensionality,” which we seek to circumvent
using a combination of our initial results reported in [9] and
new approaches based on advanced mathematical concepts
that are new to the crystallography community.
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Consider a multi-domain protein or complex consisting of
N rigid bodies. If fi(x) denotes the density of the ith body,
then the density of the whole complex will be of the form
f (x) = ∑N

i=1 fi(g
−1
i · x) where gi = (Ri, ti) is a rigid-body

motion consisting of a rotation-translation pair and g−1
i ·x=

RT
i (x− ti). These motions are the unknowns in our problem.
If m identical copies of this complex are arranged symmet-

rically in a unit cell by symmetry operators γ j = (Qj,a j)∈ Γ
(which is the group consisting of n discrete rigid-body
motions that are known a priori from the crystal symmetry
and geometry), an X-ray diffraction experiment provides
the magnitude (without phase) of the Fourier transform of
∑m−1

j=0 f (γ−1
j · x). In contrast, the model density for a single

domain and its symmetry mates is ∑m−1
j=0 fi(h

−1
i ◦ γ−1

j · x)
where hi is the candidate position and orientation. In tra-
ditional MR, the Fourier transform of the Patterson func-
tions, P̂(g1, ...,gN ;k) = F [P(g1, ...,gN ;x)] and p̂i(hi;k) =
F [pi(hi;x)], that correspond to these densities and their
correlation are respectively

P̂(g1, ...,gN ;k) =

∣

∣

∣

∣

∣

m−1

∑
j=0

F [ f (γ−1
j ·x)]

∣

∣

∣

∣

∣

, (5)

p̂i(hi;k) =

∣

∣

∣

∣

∣

m−1

∑
j=0

F [ fi(h
−1
i ◦ γ−1

j ·x)]
∣

∣

∣

∣

∣

, (6)

c(hi) =

∫

x∈C
P(g1, ...,gN ;x)pi(hi;x)dx (7)

where the Fourier transform F converts a function of spatial
position, x, into a function of spatial frequency, k. The
real-space Pattersons themselves are obtained by applying
the inverse Fourier transform. Of the quantities in (5)-(7),
P̂(g1, ...,gN ;k) comes from the experiment (this is the multi-
domain version of (2)), and p̂ i(hi;k) and c(hi) are computed.
Here C is the unit cell and in MR searches the hope
is that peaks in the function c(·) correspond to hi = gi.
The difficulty is that, unlike the single domain case, in
the multi-domain case P depends on many g j’s that all
interact with each other. Therefore, peaks in this rotational
correlation function do not necessarily correspond to good
overall matches.

4. PHASING BY PACKING
Instead of running traditional MR searches on domain

orientation or full conformation, we propose to construct
packing models for the multi-domain systems of interest. This
will generate candidate sets of motions {h1, ...,hN} that can
then be used to construct a model of P(h1, ...,hN ;x) rather
than pi(hi;x). If P(h1, ...,hN ;x) and P(g1, ...,gN ;x) match
well to each other, then that is a much stronger indication
that hi = gi than having high correlations between pi(hi;x)
and P(g1, ...,gN ;x).

In this approach, an ellipsoid or a combination of several
ellipsoids are used to approximate the convex hull of each

domain of protein structures. A multi-ellipsoid-shaped model
is built for a multi-domain structure and packed in space to
detect feasible packing arrangements. The most important
crystal packing constraint is that protein macromolecules
do not collide with (or insert into) each other. With high
protein-water volume ratio in crystals, they usually have
to “smartly” close packed. Since the allowable motion is
severely restricted, we can find a discrete candidate set to
represent all the feasible packing arrangements. Noticing
Gaussian functions have infinite tails, a Gaussian-based
cost function (GCF) is constructed to evaluate the level
of overlapping (or closeness) among ellipsoids with each
ellipsoid represented by a Gaussian function or a mixture
of Gaussian functions. The candidate packing arrangements
can be obtained by minimizing the GCF to force the packing
model to separate from each other and not overlap within
the unit cell.

The shape of an ellipsoid can be captured by equidensity
contours of a Gaussian function with the mean located at
the ellipsoid center and the covariance matrix related to its
semi-axis lengths. An arbitrarily oriented ellipsoid in R

n can
be described as

(x− μ)TRT AR(x− μ) = 1, (8)

where R is the rotation matrix, and A =
diag[1/a2

1,1/a2
2, · · · ,1/a2

n], with ai denoting the semi-
axis length of the ellipsoid. Compared with a Gaussian
function in R

n,

ρ(x; μ ,Σ) =
1

(2π)n/2|Σ|1/2
exp

(

−1
2
(x− μ)T Σ−1(x− μ)

)

,

(9)
we can see that when Σ−1 = RT AR, the equidensity con-
tours of the Gaussian function are ellipsoids with semi-axis
lengths k · a1, k · a2, · · · , k · an, where k ∈ R≥0. To more
accurately capture the shape of the ellipsoid with semi-axis
lengths a1, a2, · · · , an, we want the Gaussian function to
have high and steady value inside the ellipsoid region and
a quick drop outside it. We note that it is not necessary to
eliminate the tail outside the ellipsoid since the interaction
among the tails can help push the ellipsoids away from each
other. We use a Gaussian mixture function ψ(x;a,b), i.e.,

ψ(x;a,b)=
n

∑
i=1

ai

(2π)n/2|Σ|1/2
exp

(

−bi

2
(x− μ)T Σ−1(x− μ)

)

,

(10)
instead of a single Gaussian ρ(x) to approximate an ellip-
soid. In the 1D case in Fig. 1, with both variances σ = 1, we
can see that compared to the single Gaussian 1√

2π exp(− x2

2 ),
the Gaussian mixture function with a = 0.44 · [3,−1] and
b = 1.16 · [1,3], i.e.,

ψ(x;a,b) =
1.32√

2π
exp(−0.58x2)− 0.44√

2π
exp(−1.73x2),

(11)
has a flatter top and faster decay tails.
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THE COMPARISON BETWEEN A SINGLE GAUSSIAN WITH A MIXTURE OF

GAUSSIANS.

The ellipsoid model of ith domain in a multi-domain
structure under a symmetry group Γ can be approximated
by ψ((h−1

i ◦ γ−1
j · x);a,b), where hi is rigid-body operation

of the ith domain and γ j is the symmetry operator in the
symmetry group Γ. Therefore we define the GCF as

GCF(h1, · · · ,hN)�
∫

Rn

[

m−1

∑
j=0

N

∑
i=1

ψ((h−1
i ◦ γ−1

j ·x),a,b)
]2

dx.

(12)
An advantage of Gaussian functions is that the integration

of quadratic terms over Rn has a closed-form expression. We
derived it as follows,

∫

Rn
ρ1(x; μ1,Σ1)ρ2(x; μ2;Σ2)dx (13)

=
∫

Rn
(2π)−n/2(detΣ1)

−1/2 exp(−1
2
(x− μ1)

T Σ−1
1 (x− μ1))

(2π)−n/2(detΣ2)
−1/2 exp(−1

2
(x− μ2)

T Σ−1
2 (x− μ2))dx

= (2π)−n(detΣ1 detΣ2)
−1/2

∫

Rn
exp(−1

2
(x− μ1)

T Σ−1
1 (x− μ1)

−1
2
(x− μ2)

T Σ−1
2 (x− μ2))dx.

Since
∫

Rn
exp(−1

2
xT Mx−mT x−C) (14)

= (2π)n/2(detM)−1/2 exp(
1
2

mT M−1m−C),

(13) can be rewritten in a closed-form as
∫

Rn
ρ1(x; μ1,Σ1)ρ2(x; μ2;Σ2)dx (15)

= (2π)−n(detΣ1 detΣ2 det(Σ−1
1 +Σ−1

2 ))−1/2

exp(
1
2
(μT

1 Σ−1
1 + μT

2 Σ−1
2 )(Σ−1

1 +Σ−1
2 )(Σ−T

1 μ1 +Σ−T
2 μ2)

−1
2
(μT

1 Σ−1
1 μ1 + μT

2 Σ−1
2 μ2)).

The closed-form expression of the GCF can be easily derived
from (15).

The main procedures of generating candidate phasing
models by packing can be described by a flowchart in Fig.
2. In the first step, we discretize the configuration space by
a coarse grid, and find the configuration with the smallest
GCF value inside each “configuration cell” defined by the
grid. The collision-free ones of these configurations form
the candidate set of packing arrangements. This discrete
candidate set reduces the whole configuration space to a
much shorter list. We note that with a closed-form expres-
sion, minimizing the GCF is less computationally expensive
compared to calculating c(hi) in traditional MR searches (see
(7)).

In the next step, we use a Fourier-based cost function
(FCF), where

FCF(h1, ...,hN) (16)

=

[

∫

k∈Ω

(

P̂(g1, ...,gN ;k)− P̂(h1, ...,hN ;k)
)2

dk
]

1
2

,

to sort these collision-free configurations from low to high.
In our simulation, the function f i(x) defined in Sec. 3 are
chosen to be the set indicator function for the ellipsoid
representing body i. Then P̂(g1, ...,gN ;k) and P̂(h1, ...,hN ;k)
are defined in (5) and (6), respectively.

Minimizing FCF(h1, ...,hN) is similar to finding peaks in
c(hi) except that we use a multi-domain model rather than a
single-domain one. After the sorting, we keep 10 configura-
tions with lowest FCF as a candidate list. These candidates
indicate high correlations with the target structure. The FCF
has the rugged surface of the configuration space, so to fur-
ther improve the accuracy, a stochastic sampling method—
Rapidly-exploring random tree (RRT) algorithm [15] is used
to minimize the FCF around the “best candidate”. The best
candidate can be first chosen as the one with the lowest FCF
in the set. If its FCF cannot be reduced below a threshold
value C after running the RRT, we switch the best candidate
to the one with the next lowest FCF.

5. EXPERIMENTAL EXAMPLE
In this section, the approach to phasing by using packing

models is demonstrated in a 2D planar case, with ellipses
representing both the domains of the model and target
structures. All the angular parameters of the target structure
are treated as being unknown, and the only priori information
that we have is the magnitude of the Fourier transform
of the electron density function P̂(g1, ...,gN ;k). Our goal
is to find the closest model configuration {h1, ...,hN} with
respect to the target structure {g1, ...,gN}. To illustrate our
approach, a multi-ellipse-shaped “rabbit” with one “face”
and two “ears” is constructed as a packing model for a 3-
domain structure in P1 symmetry. Since translations have
no impact on the packing result in P1 symmetry, the rabbit
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START

Discretize C-space by imposing a coarse grid and 
find packing arrangement with the smallest GCF 
inside each configuration cell defined by the grid

Delete the packing arrangements with collisions 
    and obtain a non-collision candidate set

Select the candidate with i-th lowest FCF

Starting with this candidate, using 
the RRT to further reduce FCF

FCF<C

i<=10

END

No

No

Yes

Yes

Fig. 2

FLOWCHART OF FINDING CANDIDATE PHASING MODELS BY PACKING.

model has 3 DOF— the rotations of the face, θ1 and two
ears, θ2 and θ3 (see the dimensions and ranges of motion in
Table 1).

For the Gaussian mixture function in this 2D planar case,
we use the same ratios of a1, a2 and b1, b2 as the 1D case in
(11), i.e., a= ma · [3,−1] and b= mb · [1,3]. m∗b—the optimal
value of mb, is chosen to “stretch or shrink” the Gaussian
mixture function so that it can “ best” represent the defined
ellipse. After that, m∗a is calculated to normalize the Gaussian
mixture function with m∗b. More specifically, we define m∗b
as

m∗b = argmax
mb
|Scand.(mb)|, (17)

where Scand. represents the non-collision candidate set,
generated by obtaining the packing arrangements with the
smallest GCF value inside each configuration box defined
by the grid, and deleting the collision ones afterwards.
|Scand.(mb)| denotes the number of non-collision candidates
in this set. With the optimal mb, the GCF forces the
packing models to separate from each other to the greatest
extent, and the size of the non-collision candidate set is
therefore maximized. Fig. 3 shows the size of the non-
collision candidate set |Scand.(mb)| with different mb values
under 3 different defined grids (in 30-, 40- and 60-degree

increments). We can see when mb = 0.2, |Scand.(mb)| has
the highest value, and the peak is independent of how we
define the grid. In the experiment, we use the 30-degree
grid, and 48 non-collision candidates can be found. With
mb = 0.2, we compare the contours of the Gaussian mixture
function with the rabbit shape in Fig. 4, and we can see that
it fits the shape of the rabbit model well. Also in Fig. 5,
we compare collision checking results with GCF values in
the θ1-θ2 plane with fixed θ3=-90 degrees. It is shown that
all non-collision configurations are located in the low GCF
value regions, which demonstrates that by minimizing the
GCF, the ellipses are less likely to have overlapping.
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THE SIZE OF THE NON-COLLISION CANDIDATE SET WITH DIFFERENT mb

VALUES UNDER 3 DIFFERENT DEFINED GRIDS (IN 30-, 40- AND

60-DEGREE INCREMENTS, RESPECTIVELY).

An example of packing results with the target structure
randomly sampled in space is illustrated in Fig. 6. After
generating the candidate set by minimizing the GCF, and
sorting these candidates by the FCF from high to low, the
best candidate in the set (Candidate 1 in Fig. 7) shows
1.50, 17.81 and 10.97 degrees of the error in θ 1, θ2 and θ3,
respectively. After running the RRT around this candidate,
these errors are further reduced to only 0.79, 2.14 and 0.19
degrees respectively, less than 1.2 % of the total rotation
range. Table 2 shows 10 different numerical trials and the
mean absolute errors (MAE), mean{Δθ1,Δθ2,Δθ3}, are all
below 3 degrees.

6. CONCLUSIONS
Macromolecular crystallography has been the traditional

workhorse for determining structural models in the field
of biophysics. Within macromolecular crystallography, the
molecular replacement method has been a highly successful
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Fig. 4

THE COMPARISON OF THE RABBIT SHAPE WITH THE CONTOURS OF THE

GAUSSIAN MIXTURE FUNCTION (mb = 0.2).
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THE COMPARISON OF (A) COLLISION CHECKING RESULTS WITH (B)

GCF VALUES (WITH mb = 0.2) IN THE θ1-θ2 PLANE (WITH θ3=-90

DEGREES). IN (A), BLACK PIXELS REPRESENT THE NON-COLLISION

CONFIGURATIONS AND WHITE ONES ARE COLLISION FREE. IN (B), THE

PIXELS WITH DARKER COLORS REPRESENT THE CONFIGURATIONS WITH

LOWER GCF VALUES, AND VISE VERSA.

Table 1

THE DIMENSIONS AND RANGES OF MOTION OF THE RABBIT PACKING

MODEL

Dimensions size of the unit cell 9 × 6.75
semi-axis lengths of the face 2; 2.5
semi-axis lengths of the ears 2.3; 0.92

Range of rotation face: θ1 (deg) 0 ∼ 180
ears: θ2, θ3 (deg) -90 ∼ 90

method for providing phasing models to combine with exper-
imental information to obtain protein structures. In this paper
we demonstrate that an alternative to molecular replacement,
called “phasing by packing” is promising for multi-rigid-
domain structures. Numerical results illustrate the potential
of this method.
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Table 2

10 NUMERICAL TRIALS.

Target Best Cand. After RRT Final errors
Trial θ1 θ2 θ3 θ1 θ2 θ3 θ1 θ2 θ3 e1 e2 e3

1 100.82 -72.21 -3.03 100.32 -90.00 -14.00 101.61 -74.35 -3.22 0.79 2.14 0.19
2 42.29 64.37 -69.25 43.07 60.00 60.00 42.96 64.29 -67.17 0.67 0.08 2.08
3 136.67 -68.70 -67.33 120.00 -39.37 -79.98 135.58 -67.54 -68.39 1.09 1.16 1.06
4 114.21 -63.46 -51.42 120.00 -81.03 -60.00 116.43 -64.71 -49.70 2.22 1.25 1.72
5 54.83 -49.51 -70.41 61.85 -60.00 -60.00 55.83 -50.37 -69.37 1.00 0.86 1.04
6 159.67 47.67 -2.65 173.97 26.77 14.89 160.75 44.52 0.43 1.08 3.15 3.08
7 101.63 -67.65 12.06 114.08 -88.32 31.05 103.72 -70.20 13.08 2.09 2.55 1.02
8 113.89 -73.69 30.76 120.00 -90.00 38.95 112.72 -74.80 29.70 1.17 1.11 1.06
9 66.41 27.29 -76.94 60.00 38.95 -90.00 63.20 30.78 -78.49 3.21 3.49 1.55

10 97.19 -1.59 -86.46 120.00 -39.37 -79.98 100.02 -2.89 -83.53 2.83 1.30 2.93

Best candidate  TargetFinal result after RRT
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AN EXAMPLE OF PACKING RESULTS WITH THE TARGET STRUCTURE RANDOMLY SAMPLED IN THE SPACE.
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3 CANDIDATE PACKING ARRANGEMENTS FOR THE EXAMPLE IN FIG. 6.
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Abstract -Biological data has more variation in type and 

format compared to other types of data. Thus, it poses new 

challenges. However, it encapsulates critical information; 

thus, handling it is of primary interest. Data handling 

includes storage and retrieval of data with associated 

formats and methods of data transfer, data format 

conversion, algorithms that run on the data and the output 

methods including visualization of the results. High 

throughput methods have been yielding biological data at a 

fast pace. This data includes protein-protein interactions, 

gene sequences, gene co-expressions, and protein sequences. 

This data is supplemented with huge amounts of clinical data 

conveniently captured in electronic medical records and the 

wet lab data. We describe the current approaches, each with 

a model system and identify its key contributions. We propose 

some ideas for biological data handling in the future. 

Keywords: biological data handling, cloud computing, data 

integration, data modeling, semantic web, systems biology 

 

1 Introduction 

 The term biological data is used in a broad sense. It 

includes genomics/proteomics data, the data generated from 

experimental biology, diseases data and patient clinical data. 

High throughput screening has been yielding large quantity of 

new data in biology. Micro array analysis provides gene co-

expression data, the next generation sequencing, i.e. NGS, 

yields DNA sequences and so on. Even though various types 

and formats of the data pose challenges the information in the 

data is vital. Biological data is distributed in various sources; 

it has redundancy, different formats and naming conventions. 

A researcher potentially needs the information from various 

sources.  The features that contribute to the difficulties in 

handling of such data are: 1) the quantity of the data, 2) 

various sources, formats and naming conventions, 3) the 

dynamic nature of the data and 4) the complex relationships 

between several data objects which can be of various types. 

 The enormity of biological data renders warehousing 

(i.e. data warehousing), computing, transmission of the data 

over the network difficult owing to higher requirements in 

storage space, computation and bandwidth. Also, integration 

of large quantities of data is resource intensive. Examples of 

the data formats are a flat file such as ―tab delimited format‖ 

or a database dump such as MySQL database dump or an 

excel spreadsheet. A protein can be addressed with various 

names in various databases owing to diverse naming 

conventions. A researcher typically collects genome data, 

literature abstracts, protein information, pathways, and 3D 

structure from Genome database, PubMed, Uniprot, KEGG 

and PDB respectively [42]. New entries of a given object type 

and new relationships are continually discovered.  For 

example, a new protein (of object type ―protein‖) can be 

discovered. Likewise, a previously unknown interaction can 

be detected between a pair of proteins present in the database. 

Thus, the data is dynamic in nature. This causes problems in 

systems with a warehouse or without it i.e. federated system. 

A central repository will be outdated if new data is added to 

external sources after the last update. A federated system 

might become dysfunctional due to schema modification at 

one or more data sources.  

 Keeping these databases up to date and in phase with 

each other is quite challenging, more so in the wake of NGS 

technologies. Consider a system with a warehouse C which 

uses data sources S= {s1,s2,…,sq}. As stated earlier, C can 

have older data compared to S. Also, the data in S can be 

inconsistent. Consider a scenario where a new gene g and a 

protein p coded by it are discovered. Let p interact with a 

known protein q. Say si, sj and sk have protein (with foreign 

key to gene), gene and protein-protein interaction (PPI) data 

respectively. Some of scenarios where the data in S is 

incomplete are: (a) sj is updated with g, si is updated with p 

whereas sk is not updated accordingly (it does not have PPI for 

p and q), (b) sj is updated with g whereas si and sk are not 

correspondingly updated, (c) sj and sk are correctly updated 

whereas si is not correspondingly updated. In (a) just the 

interaction information is missing but it does not have any 

serious inconsistency. In (b) both the protein and the PPI are 

missing which is a minor inconsistency because we do not 

find the protein for a given gene. In (c) the critical link 

between g and the interacting pair p and q is missing. Thus, C 

can have two types of problems; i.e. it can have outdated data 

compared to S or it can be in phase with S and yet inherit 

inconsistency that is inherently present in S. These problems 

point to the need for frequent access to the information across 

different databases which are spread across different Internet 

data sources, consistency check of the data and the practical 

limitation of having large databases (multi-terra bytes) 

warehoused centrally due to the limitation of storage space.  

 Biological data has unique complexity and levels of 

abstraction as detailed in Section 2. The processing of 

biological data involves various tasks that depend on the 

application and the input data. One can broadly subdivide the 

process into the following chronological sequence of four 

tasks: a) data acquisition and preprocessing, b) analysis of 

relationships between data objects c) creating a data model for 

a given application, and d) creating output. 
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 Data acquisition refers to acquiring the data from the 

data source(s).  Data is often stored in various formats, e.g. 

flat files, spreadsheets etc. which are not directly conducive to 

computation.  Such data is often converted into a database 

table; this step is preprocessing. Analysis of relationships 

between data objects primarily refers to the domain 

knowledge; e.g. the relationship between: a protein and a 

domain, a gene and protein etc. Analyses of the relationships 

between data objects are represented as structured information 

in database systems. These are read into application-specific 

in-memory organization of data. This application specific data 

organization in database system as well as in-memory data 

structure can be called as the data model of the application. 

Application can process the data model to create secondary 

information by selection (retrieving specific pieces of 

information), aggregation (aggregating information from 

different sources), or mining (for patterns within the data). 

The application presents the results of a query as output.  

 Methods for data acquisition and preprocessing are 

well established and the analysis of relationships is achieved 

with the expertise provided by biologists. We discuss Output 

in some detail. Data modeling and the associated task of data 

integration are more thoroughly covered. Data model which 

comes from the analyses of relationships can be viewed as a 

template; when it is executed, it results in data integration.  

 In Section 2, different approaches for building 

systems are described with a special focus on the emerging 

semantic web methodologies. Section 3 details handling of the 

output. Section 4 gives the features provided by cloud 

computing. Section 5 details a few recent innovative projects. 

Section 6 states key findings from different approaches and 

lists open problems and the work that mitigates some of these 

problems. It also states some desirable features for the future 

biological data handling systems.  

 

2 Approaches for biological systems  

    A system has certain functionality and it is built with 

a specific approach. In this section, we discuss approaches for 

building such systems. Subsections 2.1 and 2.2 explore the 

approaches of the vital aspects of such systems, i.e. data 

integration and data modeling respectively. 

 

2.1 Approaches for data integration 

 Data integration needs for applications vary 

considerably with the user who can be a biologist, 

bioinformatician or a systems biologist. A review of various 

integration approaches is given in [7], where they are labeled 

as light to heavy in terms of integration efforts. 

 Integration techniques which include the use of 

scripts written in Perl and Python [42] exist. Service based 

methods like WSDL an XML format provides a model for 

describing Web services [42]. [20,46] classify data integration 

approaches into warehousing, mediator or view integration 

and also as link or navigational. [46] describes the use of Web 

Services, Distributed Annotation System (DAS) and Globally 

Unique Identifiers in data integration and also proposes an 

approach, termed as ―knuckles-and-nodes approach‖, where in 

the source databases remain independent but a few important 

relationships are stored in special-purpose linking databases.  

In addition the use of scripting, peer-to-peer systems, 

semantic web technologies and workflow-based were 

introduced in [42]. The approaches mentioned in [42, 20, 46] 

overlap with each other in various aspects; i.e. technological 

choice, methodology etc. Also they are not mutually exclusive 

but use or depend on some others for effective data 

integration. Link integrations are used in building systems 

based on either relational model or semantic web technology.  

 Archival databases like NCBI, EMBL, DNA Data 

Bank of Japan, maintained by International Nucleotide 

Sequence Database Collaboration accept data directly from 

sequencing labs and are referred as primary sequence database 

[47]; they aggregate data centrally. Similarly, primary protein 

sequence databases include PIR and UniprotKB (Swiss-

Prot/TrEMBL) which handle the protein sequences. Other 

systems act as value added integrators of this data such as 

Ensembl, UCSC Genome Browser, Uniprot and Model 

organism databases [47]. These provide data in convenient 

formats for further aggregation and analysis. Secondary data 

sources like PROSITE, PRINT, Pfam aggregate data centrally 

and also link to primary data sources by unique identifiers.  

 Most of the primary and secondary databases link to 

other information sources through link integration. Some 

systems are built by power (advanced) users from these 

primary and secondary sources for custom application systems 

[47]; they may be general purpose or special purpose systems 

[37]. We refer to them as tertiary systems, e.g. BioWarehouse 

[35], ATLAS [44] and ONDEX [31]. All of these aggregate 

data. In contrast, TAMBIS [48], BIO-BROKER [1], and 

SEMEDA [32] use a mediator approach i.e. they use a 

wrapper to access original data sources. 

 Some other systems [46] store a part of data in a 

warehouse in addition to the use of mediation for effective 

integration. In [30] another approach was introduced to 

integrate gene expression data and proteins stored in data 

warehouse with annotation data retrieved from public sources 

using sequence retrieval system. The above mentioned 

integration methods [30,46] are also termed as hybrid 

systems. SADI does not store data locally and links with other 

systems using REST-based [15] web services [54].  

 The advantages of warehousing approach are: it 

relies less on network [20], allows faster query performance, 

allows the system to filter, validate, modify, and annotate the 

data obtained from the sources [20], e.g. BioWarehouse [35]. 

It also facilitates the integration of locally derived 

experimental data into the repository. However, it needs large 

storage (the biological data is semi-structured and is not easily 

stored in relational databases (or simply RDBs) [42] and it 

must be synchronized with underlying sources for updates 

[49]. Biological data needs significant computation to be 

stored in the typical format i.e. RDBs.  

 Semantic web is an emerging technology by WWW 

consortium describing it as ―web of data‖ [22]. An informal 

definition for the Semantic web technologies could be 

―comprising of four essential component technologies namely 
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RDF, RDFS, OWL and SPARQL‖ [2]. Semantic web uses 

uniform resource identifier, URI, to represent a data object, 

mostly in a triple containing subject, predicate and object. 

This triple, which uses three URIs, is called Resource 

Description Framework (RDF) [23].  A triple store stores this 

triple (RDF data). RDF represents the information or data as a 

graph. RDFS and OWL [24] are ontology languages. 

Querying the RDF graph is done with a querying language 

similar to SQL called SPARQL [26]. A SPARQL query is 

denoted by a graph pattern containing the patterns of triples 

that are similar to RDF triples but are replaced with variables.  

 Current usage of Semantic web technologies for 

biological knowledge management has been described in [2]. 

Knowledge management refers to the process of 

systematically capturing, structuring, retaining and reusing 

information to develop an understanding of how a particular 

system works, and subsequently to convey this information 

meaningfully to other information systems. [2] lists selected 

resources and projects which use Semantic web technologies 

and suggests more prevalent use of it in future systems. 

 Majority of the data is stored in RDBs and it is 

difficult for Semantic web technologies to access them. Thus, 

an application tries to create its own relational to semantic 

mapping and thereby accessing the relational data using SQL. 

Semantic web layer can play a great role in integrating 

relational data into Semantic web technologies, it defines the 

standard vocabularies, formal models and semantic relations 

between RDBs [9]. Datagrid [9] framework along with a set 

of practical semantic tools was used to facilitate the 

integration of heterogeneous RDBs using Semantic web 

technologies. OWL [41] is a technique to extract the 

semantics of a RDB and transform it into RDF/OWL. It 

extracts the schema information of the data source and 

converts it automatically into ontology. With this technique 

every RDB can automatically be an integral part of Semantic 

web. Thus, web applications can access and query data stored 

in RDBs using their own built-in functionality [41]. Jiang et 

al. describe an architecture to expose RDB to Semantic web 

application using Hibernate [18]. OWL ontology is translated 

to java classes and then a runtime SPARQL to hibernate query 

language (HQL) translation algorithm was introduced for 

efficient run time translations [18]. This method suits queries 

without cycles and a subset of SPARQL language [18]. 

 

2.2 Approaches for data modeling 

 Data modeling is considered to be the critical task of 

Biological Data Handling. Some of the open problems in in it 

are covered in [10,14]. Elmasri et al. [10,14] state that 

ordering (e.g. DNA sequences), 3D structures of proteins and 

functional processes (e.g. metabolic pathways) as the main 

characteristics of biological data. Conventional data 

representation does not explicitly include these characteristics. 

However, they are biologically relevant and ideally data 

representation should include a mechanism to represent these 

characteristics. [10,14] propose a new enhanced ER (EER) 

schema, notation to represent the same and give methodology 

to implement the same in a RDB. Ordered relationships are 

modeled by extending the relationship concept in two 

directions 1) allowing related entities to be ordered and 2) 

allowing the repetitions of a relationship instances.  Molecular 

spatial relationship deals with the representation of 3D 

structures in conceptual EER modeling.  Atoms and amino 

acids are modeled with molecular spatial relationships and 

these spatial structures generate the measurement data like 

bond angles and bond distance.  Atom is treated as points and 

its position is represented with coordinates in space. Process 

relationships have three basic entities i.e. input, output and 

catalyst. Inputs are used by the process, the outputs are 

produced by the process and catalysts are needed for the 

process to work. Biological pathways are examples of process 

relationship where an output of one reaction becomes the 

input of another. For example, the output of transcription 

process, mRNA, serves as an input for the subsequent 

translation process.  

 In [10,13] a multilevel EER model for biological 

processes which incorporates the multilevel concepts and 

relationships is proposed. [13] highlights biological examples 

along with their conceptual EER modeling notations to show 

that multilevel modeling can be effectively used in biomedical 

domains and introduces the important concept that at different 

levels of abstraction, data needs to be modeled differently. 

The method in [13] also introduces various approaches for 

data source integration namely horizontal and vertical 

approaches. The advantage of vertical approach over the 

horizontal approach is that it integrates data sources from 

different abstraction levels while the horizontal approach 

facilitates the integration of data source from same level of 

abstraction.  

 In RDB systems, data elements are stored in RDB 

tables and each table contains an entity with primary key and 

attributes. Two different entities are related through foreign-

key relationships between their keys. Such relationships are 

not formally defined with specific names. So, such 

relationships cannot be queried upon. In contrast, Semantic 

web technology uses RDF and the relationship is treated as a 

first class entity (predicate), referenced by a URI and stored 

along with subject and object. In RDF, relationships can also 

be queried (e.g. SPARQL query). This means, the graph of 

persistent RDF nodes contains the full semantic information 

about the entities and the relationship between them.  In RDBs 

custom programs are needed for each database schema and the 

programmer must know the relationship between the tables. 

Likewise, these relationships are specified in the queries. 

However when data is stored as RDF graphs, general purpose 

programs can be written without the knowledge of the 

underlying RDF graphs, and this could provide a general 

purpose querying interfaces to the underlying RDF graphs. 

 

2.2.1 Systems biology and data modeling 

 Systems biology studies introduce another 

dimension, by requiring different search and modeling needs 

depending on the user. [8] Introduces different Systems 

Biology standards that are either accepted or in development. 

E.g. minimum requirements like MIRIAM and MIASE, the 

description formats like SBML, SBRML used to represent 
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data and the associated ontologies like SBO, KiSAO and 

TEDDY are used to integrate different models to have a better 

understanding of the complete system. [19] highlights the 

complexity of biological data as one of the major problems 

along with the scale of data generated NGS and the scope of 

the experimental investigations with systems biology. It 

introduces new data integration architecture Addama. An 

approach to integrate information management supporting the 

bottom-up systems biology was introduced in [50]. It 

proposes to build an automated integration system that can 

automatically capture the experimental data and integrate it 

with models.  

 

3 Output methods in data handling  

 Depending on the nature of the application, output 

methods can widely differ. Many systems provide knowledge 

extraction for a human or a computer. Such systems provide 

search/-results interfaces typically based on a query where the 

results are displayed as output [17]. Many systems provide 

structured search capabilities. This is achieved by allowing the 

input keywords to be associated with specific data elements; 

providing matching conditions like >, <, contains etc. and 

search the underlying data for specific matching criteria [34]. 

 Search results have various presentation styles that 

include computer readable formats. For knowledge extraction 

systems, faceted browsing [39] is a suitable style. It is 

effective in showing biologically relevant data where the 

result set can be easily filtered and categorized. BioFacets 

[36] allows a faceted classification i.e. dynamic categorization 

of biological result set. Faceted interfaces go naturally with 

semantic query search and retrieval systems and can help 

modeling the biological data. Often output has inter-related 

information; i.e. gene-gene interactions and pathways; which 

demands visualization to effectively display the search results.  

 Visualization gives insight into the biological process 

and hidden relationships between data elements. A survey of 

visualization tools for biological network analysis highlights 

the pros and cons of each tool [40]. For visualizing the output 

data Cytoscape, Ondex, PATIKA [40] etc. provide excellent 

support. Cytoscape can be enhanced by plugin interfaces [45], 

it supports Semantic web by importing data from triple store 

through simple text table or XML-RDF, loading and 

visualizing RDF data as networks and querying the RDF data 

with SPARQL. It also helps in developing custom Semantic 

web applications with Jena and Sesame. It can also be used 

with other tools like statistical programming language R 

with sna/ igraph package. For GenomeGraphs [12] an add-on 

package for R was developed for visualization of genomic 

datasets.  Addama [19] also uses R for its dynamic 

visualization capabilities. 

  Often visualization systems provide interactive 

visualization capabilities. Querying the Semantic web with 

SPARQL may not be easy for a novice who does not know 

the structure of the ontology. [29] describes a rewriting of 

SPARQL to allow users to write queries from their 

perspective (without knowing the structure of the ontology) 

but it has limitations. A similar approach was described in [6], 

which introduces a semantic approach to process knowledge 

in two phases i.e. constructing a semantic query from the user 

input and displaying the semantic result using scalable vector 

graphics. Here, the results are output as an RDF graph, often 

with interactivity to navigate the RDF graph. For systems that 

output data to be fed into other computer systems, 

communication standards, ontology, data integration and 

minimal specification languages play an important role. 

 

4 Approaches enabled by cloud 

   Various computational solutions to large scale 

biological data handling are explained in [43]; specifically 

cloud computing and heterogeneous computing. Currently, the 

quantity and the storage of genomic data is a vital issue. 

Cloud computing plays a vital role in the management of 

genome informatics [47]. Large datasets that act as a virtual 

disk are stored in a cloud. It inspired projects like Galaxy [51] 

to build tools to easily setup clusters on cloud platforms. 

Problems of large datasets requiring huge storage space, 

processing power and network bandwidth are largely 

mitigated by commercial scale cloud enabled approaches [47]. 

Data source providers can expose the data for many 

consumers, who can access only the requested data through 

service oriented approaches from the cloud. Extension 

systems can co-exist in local systems with the cloud. It may 

be noted that analytical toolbox for biological data like 

Bioconductor [16] and  Galaxy [51] provides prebuilt images 

for the popular commercial cloud platform Amazon Elastic 

Computing Cloud (EC2), thus, eliminating large scale datasets 

and complex software setups on a local network.  

 

5 Examples of data handling systems 

 The study of biological data handling systems yields 

the following aspects.  

-Data is either aggregated or linked to.  

-For non-warehoused systems mediator is needed. 

-Ad hoc data retrieval methods extract data and information 

in unintended ways.  

-Extendibility in functionality (ability to add new functions 

to the system by scripts/ programs).  

-Expandable data models (Open world system).   

-Use of semantic relationships between data elements. 

-Technology choices (Web services, REST) 

-Use of infrastructure (Cloud) 

- Systems Biology requirements 

-Use of output methods 

    Here, we explore a few innovative systems to identify 

the underlying concepts. Sample systems are meant to 

demonstrate such concepts; they are not comprehensive. 

 

5.1 BIO2RDF 

 Bio2rdf project [4] gives the standards for a system 

to use Semantic web technology to cross-link information 

sources and expose services to each other. Since many of the 

existing systems are not enabled with these technologies, 

current implementation of Bio2rdf also transforms the data 
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into semantically linked formats, and exposes a semantic 

query front end. That is, it has a warehouse for demonstration 

purposes. It asserts that if the Bio2rdf standards are 

implemented by the systems then warehousing of the data and 

Bio2rdf project itself are not needed. Bio2rdf tries to create a 

network of coherent linked data across the life science 

databases and provides various SPARQL endpoints to query 

the RDF graphs without locally storing the graph [4]. A user 

can define a SPARQL query in a query form and it can be sent 

to the triple store, and the results can be sent back to the user. 

With this approach it is possible to link different databases 

containing the RDF data using the federated and distributed 

SPARQL queries. Bio2rdf successfully integrated 163 million 

documents from a large number of data sources [4].  

 

5.2 SADI 

 Semantic Automated Discovery and Integration, 

SADI is a Semantic Web Service (SWS) framework which 

integrates the data from various sources [54]. It is seen that 

the web services create an implicit biological relation between 

the supplied input and the retrieved output, but SADI links the 

input with the output with a common base identifier and the 

services are annotated thereby explicitly describing the 

semantic relation between them [54].  SADI framework 

attempts to build a virtual database by extracting RDF triples 

through web services, the data can be queried by SPARQL. 

SADI has improves upon BioMoby and SSWAP by having a 

SWS framework that integrates itself more naturally into the 

Semantic web [54]. SHARE is a mediator system which 

enables federated querying where resources are exposed as 

services using the SADI SWS framework [54]. SADI services 

are also REST-like; there is only a standard basic set of HTTP 

methods, i.e. GET and POST [54]. A GET operation on a 

given service returns its semantic description, while a POST 

initiates service execution and returns the same RDF graph 

with the annotations created by the service [11]. 

 CardioSHARE [52] is a unique framework for 

querying distributed data and performing data analysis using 

Semantic web standards. The SPARQL query engine of 

CardioSHARE retrieves the required data dynamically from 

web services [52]. CardioSHARE project is built on the 

strengths of BioMoby [55] and addresses its weakness by 

replacing its syntax with Semantic web ontologies [52]. It is a 

prototype application that accesses SADI services in response 

to SPARQL queries. It was initially designed for the analysis 

of clinical data on heart disease but can be extended to 

integrate any type of biological data [52]. 

 SADI addresses the problem that most of biological 

data is in ―deep web‖ and enables discovery of new 

information from it [54]. SADI proposes a scaled-down 

version of web service usage, especially suited to 

bioinformatics; and thus improves upon the earlier Web 

Services implementations like BioMoby and SSWAP [54]. 

SADI tries to expose analytical services as REST-enabled 

URLs [15] that can be combined to form analytical workflow 

pipelines. Thus, SADI supports and enables ad hoc extension 

of its data models and functionality.  

5.3 ADDAMA 

 A recent article [19] highlights the complexity of 

biological data as a major problem along with the scale of data 

generated and scope of the experimental investigations with 

systems biology. It introduces new data integration 

architecture Addama which has been developed for systems 

biology investigations. Addama tries to integrate and extend 

existing enterprise technologies to enable the rapid 

development of ad-hoc tools, and to provide a robust and 

scalable software infrastructure [19]. The ongoing research 

requires an adaptable system which provides an integration 

framework for the existing software technologies while 

addressing the user requirements which include universal 

access, support of discovery process and adaptation to new 

technologies and usage [19]. Addama meets all the user 

requirements and it does it by allowing a combination of both 

enterprise technologies and organic software development 

models. It supports scientists in the use of heterogeneous data 

types and through the development of related visualization 

and analysis tools. It defines service interfaces to integrate 

selected technologies with the underlying infrastructure [19].  

 

6 Key findings and recommendations 

    The objectives of all systems are similar; so, the best 

aspects of all systems can be combined to yield a better 

approach. Data warehousing still has better performance and 

reliability, and acceptance from academia and industry.  

Relationships between entities are lost when E-R diagrams are 

converted into database schema [33]. These can be restored by 

adding tables to store relationships and multiplicity to model 

RDB tuples as RDF. Each RDB entity can have a reference id, 

as defined in some specific domain-standard ontology. Thus, 

RDB can be ―semantically enriched‖.  

 Warehouse data can achieve data provenance 

(authentication) by storing information about source and 

version; this along with conflict resolution methodologies can 

be used to build automated/semi-automated update cycles. 

Warehousing systems build custom parsers to convert source 

data, e.g. for Uniprot data, BioWarehouse [35] has a parser 

with XMLBeans [3] technology and object to relational 

mapping (ORM) conforming to the DRY principle [27]. A 

class/object model generator that can take OWL based data 

models as input and an ORM toolset that generates 

semantically-enriched RDB schema is desired. 

 Database systems tend to be a closed-world system 

but they present a consistent snapshot of the knowledge. Open 

world data from heterogeneous sources can be inconsistent. 

Warehousing can be enhanced to have knowledge discovery 

(KD) capabilities by providing connectors to open-world 

systems; e.g. SADI allows other SPARQL end points from the 

open web [53]. Results from such queries can checked for 

consistency with the standard snapshot version of information. 

SADI effectively addresses the problem of a researcher 

having to go to multiple websites [10]. SPARQL gives a 

system the capability to extend its knowledge store [38], this 

is highly desirable. 
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 The major disadvantage of distributed querying is 

performance [38,46,49] which can be mitigated by caching. 

Extensive research has been performed in the area of caching 

the SPARQL queries [38, 49]. Here the query result is cached 

with an idea of reusing the computed results of previously 

generated queries  avoiding the network usage and increasing 

the robustness of the system by providing a local copy of 

cached data when the original source data is unavailable [49]. 

 The adoption of Semantic web technologies for data 

integration needs productivity enhancing tools for 

programmers. Possibilities for ORM tools to be architecturally 

enhanced to work with RDF and OWL is referred to in [18].

 SPARQL has the potential to be the choice of end 

user for knowledge management system that uses Semantic 

web technologies and maintain semantic relationships. More 

so, if it procures visual query construction methods [6].  

 Bio2rdf converts the data from other formats into 

RDF format using RDFizer [21] whereas SADI leaves the 

data at its original location.  

 ADDAMA stresses the need for an ad hoc extension 

of data stores and functionality [19]. Ad-hoc extensions are 

especially sought if they are easily mastered and are 

programming language independent.  

 We argue that in addition to general purpose query 

capabilities exposed by SPARQL one may build ADDAMA 

style REST-based data access services into underlying 

semantic data stores. Addama also provides the process 

management services layer with REST-like access mechanism 

and also provides for a coordinating central registry service. 

Not all ad hoc data inputs from research communities are 

curated. They are neither sufficiently structured nor formatted 

to organize them into RDB models. They contain very less 

details to organize them into RDF-graph, and much less to be 

mapped to standardized nomenclature systems and ontologies. 

Such data also can be input into analytical algorithms in 

addition to well-structured data from well curated public data, 

Addama supports this use case. ADDAMA uses content 

repositories in addition to SQL databases for storing ad hoc 

data inputs. We note that, for any large scale data handling 

systems to be effective to serve the research community, 

ADDAMA approach is very important. 

 Visualization of experimental results and its analysis 

capability can be provided with programming extensions to 

large scale systems as illustrated by Addama project. Use of 

statistical programming language like R [28] is best suited for 

this purpose.   

 In SADI where the output is mapped as annotation to 

the input data structure, it is possible to build pipelines of 

processes. Also, input and output data structures can be in a 

common model (RDF graph). Analytical process pipelines are 

important for biological research to reduce the time taken for 

knowledge discovery and processing. Further, the addition of 

Cloud enabled approaches, wherein data source providers can 

host the datasets in the cloud and the consumers can access 

only the needed subset of the data through service oriented 

methods, can solve many problems related to the scale of 

biological data and also make the systems reusable thereby 

reducing the duplication  of work. This is our key learning 

from Galaxy [51]. 

  Our general recommendations are stated here. For 

future systems, facetted UI is the best choice for visualizing 

the output. Use of semantic web technologies (controlled 

vocabularies, ontologies and RDF) is highly desirable. Cloud 

computing overcomes the issues of huge local repository and 

outdated data.  With proper design, federated approaches can 

be adapted with minimal deterioration in the data availability 

and system performance. Service oriented approach, with use 

of REST is important for large-scale data integration. 
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Abstract - Single-pass transmembrane protein (type II, III, 

and IV) possessing a membrane-spanning domain which 

targets the protein to the endoplasmic reticulum (ER) 

membrane. In both type II and III membrane proteins, a 

single membrane-spanning domain serves both as a signal to 

initiate insertion and as a membrane anchor. These signal 

anchor sequences may direct membrane insertion with either 

an Ncyt/Cexo or  Nexo/Ccyt orientation. This study focused on 

type III proteins, which possess single-anchor sequence but 

not having N-terminal signal peptide by definition. Type III 

proteins have the cluster of positively charged residues on the 

C-terminal side of the signal anchor. The distribution of 

charged residues flanking the hydrophobic core of the signal 

sequences play important role in the orientation of signal 

anchor proteins in membrane. However, the mechanism by 

which a signal-anchor sequence adopts a particular 

orientation is still unknown. Here, we performed genome wide 

screening to identify number of signal anchor proteins in rice 

genome, which will help to understand the general mechanism 

of protein orientation in type III membrane proteins.    

 

Keywords: Single-Pas Membrane Protein, Type III Protein, 

Signal Anchor, Rice 

 

1. Introduction 

      Subcellular protein sorting, in which proteins travel to 

their functional organelle within a cell, is an essential feature 

of cellular life. Typically, protein sorting depends on ‘signal’ 

content encoded in their primary structure of the 

transmembrane proteins. It contains number of hydrophobic 

and hydrophilic region or domain, which are exposed on one 

or both sides of the membrane. Single and multiple 

membrane-spanning domains containing protein are known as 

single-pas and multi-pas protein, respectively. Two 

orientations of signal sequences (NH2-terminal cleaved or 

uncleaved signal sequences), have been recognized, which can 

direct single-spanning membrane proteins to the endoplasmic 

reticulum (ER) [1]. The NH2-terminal signal sequences are 

found on both secreted and membrane proteins [2] and 

cleaved from the protein by signal peptidase during its 

translocation across the ER membrane. Second classes of 

proteins which possess an uncleaved signal sequence target the 

protein to the ER and stably anchor the protein into the 

membrane [3, 4]. These proteins are known as signal-anchor 

(SA) protein and are differ from proteins with a cleaved signal 

sequence [5]. Two different kinds of orientations (Ncyt/Cexo 

and Nexo/Ccyt), can be possible for single-spanning membrane 

proteins (Type II, III and IV) during protein targeting towards 

the ER membrane. In type II proteins the orientation is a 

luminal C terminus and a cytosolic N terminus, whereas in 

type III proteins, the orientation is a luminal N terminus and a 

cytosolic C terminus, which is just the opposite [5, 6]. The 

type III proteins contain single-anchor sequence but they have 

lack of N-terminal signal peptide, just like type II proteins. 

The cluster of positively charged amino acids in type II and III 

proteins, generally found adjacent to the N-terminal side and 

on the C-terminal side of the signal anchor sequence, 

respectively. These positively charged residues change the 

orientation of proteins in membrane by an uncertain 

mechanism. Therefore, the identification of new signal anchor 

proteins helps to determine the biological function and the 

mechanism of protein orientation. In this study, we did 

genome wide screening to produce a catalogue of putative 

signal anchor proteins encoded by the rice genome.  
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2.  METHOD 

2.1 Identification of Signal Anchored Proteins 

 

        Rice protein sequences for all 12 chromosomes were 

obtained from “The Institute of Genomic Research (TIGR)” 

database-version 6.1 (http://rice.plantbiology.msu.edu/) [7]. 

The server TMHMM, Version 2.0 

(http://www.cbs.dtu.dk/services/TMHMM/) was used to 

predict transmembrane domain in rice protein sequences. The 

proteins containing single transmembrane domain within 50 

amino acid C-terminal were collected from manual eye 

inspection. Further, proteins not having N-terminal signal 

peptides were collected by using SignalP version 3.0 

(http://www.cbs.dtu.dk/services/SignalP/). The parameters for 

SignalP v3.0 [8] tool were set as follows: eukaryotes, neural 

networks and Hidden Markov Model; truncated to first 70 

residues. The overall strategy to predict signal anchor proteins 

were based on In-silico approach describe in Figure1.  

 

 
 

Figure 1: Shows the flow chart of obtaining signal anchor 

type III proteins. 

 

2.2 Protein Localization and Functional Analysis 

 

       The molecular function of predicted signal anchor 

proteins were analyzed by using TIGR GOSlim Assignments 

(http://rice.plantbiology.msu.edu/downloads_gad.shtml) and 

AmiGO blast search (http://amigo.geneontology.org/cgi-bin/). 

The functional annotation was based on TIGR annotation 

release 6.1 and blast search against Arabidopsis, while 

subcellular localization was based on validated experimental 

data available on TIGR.   

 

 

3. Results and Discussion 

 

3.1 Genome-wide identification of Signal 

Anchored Proteins in rice 

Single-spanning transmembrane proteins which contain signal 

anchor sequence but lack N-terminal peptide sequence are 

known as type III signal anchor protein (also known as reverse 

signal anchor) [9]. The function of a signal sequence was 

reported as targeting to the membrane, membrane insertion 

and translocation (secreted proteins) or retention (SA 

proteins). A bioinformatics approach has been previously 

applied to identify various transmembrane, tail anchored 

proteins in human, yeast and Arabidopsis. Here, we performed 

genome wide identification of single-pass signal anchored 

proteins (Type III) in rice using various computation tools. 

Signal anchor proteins in plants helps to understand general 

mechanisms about the changes occurred in the protein 

orientation in membrane. Thus, catalogue preparation of 

signal anchor proteins encoded by the rice genome is an 

important step to unravel the biological function. As a first 

step, we obtained 56,797 protein sequences from TIGR 

release 6.1 databases. Further, we identified proteins 

contained single transmembrane domain (TMD) by using 

transmembrane helix prediction server and we found 5,317 

protein members. The next step descends the protein sequence 

up to 9, 36 as we extracted only those protein members having 

transmembrane domain within the C-terminal 50 residues.  

This step identified number of proteins with single TMD near 

to C-terminus which further required to process for knowing 

N-terminal signal peptide and if found discarded from list. 

Remaining 54 protein members contain single transmembrane 

helix (TMhelix) and lack N-terminal signal peptides are 

known as signal anchor proteins (Type III) and collected as 

signal anchor protein catalogue for rice. The gene ontology 

provide the molecular function of signal anchor proteins and 

we observed that majority of the protein members were 

involved in membrane protein transporter activities (Table 1). 

This exercise will help to understand biological functions of 

SA proteins in more detail.   
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Table 1: Shows the molecular function and localization for signal anchored proteins in rice 

                                                                                                

Rice TIGR Locus Protein Description GO-Molecular Function GO- ID GO-Cellular Component 

LOC_Os01g03850 Hypothetical protein Unknown Unknown 
Unknown 

 

LOC_Os01g06750 
verticillium wilt disease resistance protein 

precursor, 
Nucleotide binding GO:0000166 Plasma membrane 

LOC_Os01g09270 Hypothetical protein Unknown Unknown Unknown 

LOC_Os01g15029 Expressed protein 
Peptidyl-prolyl cis-trans 

isomerase activity 
GO:0003755 Unknown 

LOC_Os01g38070 Retrotransposon protein Unknown Unknown Unknown 

LOC_Os01g38510 protein transport protein SEC61 subunit beta Transporter activity GO:0005215 Unknown 

LOC_Os01g41860 Hypothetical protein Unknown Unknown Unknown 

LOC_Os01g51240 Hypothetical protein Unknown Unknown Unknown 

LOC_Os01g54424 Expressed protein Unknown Unknown Unknown 

LOC_Os01g55860 Expressed protein Unknown Unknown Mitochondrial  

LOC_Os01g67960 GPI transamidase component Unknown Unknown Endoplasmic reticulum 

LOC_Os02g03880 Hypothetical protein 
Protein transmembrane 

transporter activity 
GO:0015450 Mitochondrial  

LOC_Os02g08180 protein transport protein SEC61 subunit gamma 
Protein transmembrane 

transport activity 
GO:0006810 Unknown 

LOC_Os02g10370 hrpN-interacting protein from Malus Unknown Unknown Unknown 

LOC_Os02g11705 Expressed protein Unknown Unknown Unknown 

LOC_Os02g17590 Hypothetical protein Unknown Unknown Unknown 

LOC_Os02g29400 Expressed protein 
Protein transmembrane 

transporter activity 
GO:0015450 Mitochondrial  

LOC_Os02g32009 Expressed protein Unknown Unknown Unknown 

LOC_Os02g35610 Expressed protein 
NADH dehydrogenase 

(ubiquinone) activity 
GO:0005739 Mitochondrial  

LOC_Os02g46830 Expressed protein Unknown Unknown Unknown 

LOC_Os03g02620 Hypothetical protein Unknown Unknown Unknown 

LOC_Os03g10160 Pentatricopeptide repeat-containing protein 
Structural constituent of 

ribosome 
GO:0003735 Cloroplast 

LOC_Os03g12970 Hypothetical protein Unknown Unknown Unknown 

LOC_Os03g14334 Expressed protein Unknown Unknown Unknown 

LOC_Os03g38359 Expressed protein Unknown Unknown Unknown 

LOC_Os03g56784 Hypothetical protein Unknown Unknown Unknown 

LOC_Os04g44760 Hypothetical protein 
Carbohydrate transmembrane 

transporter activit 
GO:0015144 Membrane 

LOC_Os04g50780 Expressed protein Unknown Unknown Unknown 

LOC_Os05g28020 Hypothetical protein Unknown Unknown Unknown 

LOC_Os05g30830 Retrotransposon protein Unknown Unknown Cloroplast 

LOC_Os05g42010 ubiquinol-cytochrome c reductase complex Unknown GO:0005739 Mitochondrial  

LOC_Os05g50654 Mitochondrial import receptor subunit TOM7-1 Transporter activity GO:0005215 Unknown 

LOC_Os06g14340 Hypothetical protein Unknown Unknown Unknown 

LOC_Os06g15450 Retrotransposon protein Iron ion binding GO:0005506 Membrane 

LOC_Os06g16620 Hypothetical protein Unknown Unknown Unknown 

LOC_Os06g21420 Retrotransposon protein Unknown Unknown Unknown 

LOC_Os06g23330 Conserved hypothetical protein Unknown Unknown Unknown 
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LOC_Os06g44374 protein transport protein SEC61 subunit gamma 
Protein transmembrane 

transport activity 
GO:0006810 Unknown 

LOC_Os07g04270 Hypothetical protein Unknown Unknown Unknown 

LOC_Os07g05084 Expressed protein Transferase activity GO:0016740 Unknown 

LOC_Os07g31194 Expressed protein Unknown Unknown Unknown 

LOC_Os07g48244 Ubiquinol-cytochrome c reductase protein Unknown Unknown Mitochondrial  

LOC_Os08g03980 Retrotransposon protein Unknown Unknown Unknown 

LOC_Os08g06260 Hypothetical protein Unknown Unknown Unknown 

LOC_Os08g06270 Hypothetical protein Unknown Unknown Unknown 

LOC_Os08g13120 Retrotransposon protein Unknown Unknown Unknown 

LOC_Os08g41680 Expressed protein Unknown Unknown Unknown 

LOC_Os09g06930 Hypothetical protein Unknown Unknown Unknown 

LOC_Os09g25130 Hypothetical protein Unknown Unknown Unknown 

LOC_Os09g29640 Hypothetical protein Unknown Unknown Unknown 

LOC_Os10g40010 Expressed protein Binding activity GO:0005488 Cloroplast 

LOC_Os11g41875 Membrane protein Unknown Unknown Unknown 

LOC_Os12g15390 Hypothetical protein Unknown Unknown Unknown 

LOC_Os12g32950 Membrane protein Unknown Unknown Unknown 

 

 

4. Conclusions 

        Our work provides the list of type III signal anchor 

proteins from rice genome that not having N-terminal 

targeting peptide but contain signal sequence and involved in 

protein targeting to the endoplasmic reticulum (ER). Gene 

ontology of SA proteins facilitates to understand molecular 

function of SA proteins. This work forms the foundation for 

molecular genetic and biochemical analysis that will help 

understand of the biological function of Type III signal anchor 

proteins in rice. 
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Abstract - The high mutation rate in HIV-1 makes 
it difficult to treat and analyze. Monitoring the  
evolution of drug resistance requires frequent re-
sequencing, but comparing and visualizing the  
progress is difficult. One difficulty is simply locating  
the areas of interest: gaps and crossover mutations  
make it difficult to isolate clinically significant  
sequences for comparison. Effectively displaying the  
results of comparisons grouped according to  
multiple regions is also a problem. Our comparison  
algorithm based on the W-curve helps automate the  
comparison process, producing results suitable for  
clustering via a modified solution to the Traveling  
Salesman Problem (“TSP”). Appropriate color-
coding of the TSP results allows us to display the  
results of multiple comparisons effectively for single  
samples or time-series. The results can be useful for  
providing guidance in treatment, analyzing the  
membership in anonymous study populations,  
tracking the evolution of drug resistance in  
populations, or rates of co-infection within study  
groups.

Key words:  HIV1 Genomic Clustering, Wcurve, 
Traveling Salesman Problem, Drug Resistance

 1 Disclaimer
The opinions or assertions contained herein are the 
private views of the author, and are not to be 
construed as official, or as reflecting true views of 
the Dept. of the Army or the DoD.

 2 Introduction
One step in managing HIV infection response is 
monitoring individuals and study populations for 
evolution of drug resistance. Given in vivo 

replication kinetics with more than 109 new cells 
infected every day, each and every possible single-
point mutation occurs between 104 and 105 times 
per day in an HIV infected individuals [1]. This 
high level of variation leaves identifying the 
markers for drug resistance difficult, requiring 
multiple manual steps in many cases. Especially 
for population studies, an automated process that 
can identify and compare drug resistance sites 
would be an enormous help. The W-curve's 
scoring process produces a set of localized 
comparison values that can be used as landmarks 
that can be used to automate the process of 
locating relevant areas for comparison. Clustering 
new samples with known ones using the 
Traveling Salesman Problem (“TSP”) can 
automate the grouping of new samples into drug-
resistance categories. Combining them leads to an 
automated process for tracking medication in 
individuals or analysis of groups.

 3 Background
Analyzing the data in many HIV studies is made 
difficult by a combination of HIV's genetics and 
the sources of data. Patients in many HIV clinics 
are anonymous, often because they are illegally 
engaged in prostitution, illegal drug use, or 
homosexual sex. Studies of groups look for new 
strains and how they spread and have to check for 
changing members of the sample population; 
individual patients have to be sequenced 
frequently to evaluate appropriate drugs.

HIV's high mutation and crossover rates combined 
by discontinuous sequences for the drug responses 
make the analysis difficult. The high mutation in 
areas between the regions of interest  confound 
any analysis based on whole genes or regions: 

Application of W-curves and TSP to Clustering HIV1 Sequences

Douglas  Cork1,2,3, Steven Lembark4, Nelson Michael1,5, Jerome Kim1,5

US Military HIV Research Program1; Henry M. Jackson Foundation for the Advancement of Military 
Medicine2, Rockville, MD.  20850, BCPS Dept., Illinois Institute of Technology3, Chicago, IL. 60616, 
Workhorse Computing4, Woodhaven, NY.,  Walter Reed Army Institute of Research5, Rockville, MD.
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there is simply too much white noise on the genome 
to use large portions of it for comparison. High rates 
of mutation and co-infection leave many individuals 
with multiple strains of HIV, further confounding the 
analysis, and HIV strains have frequent crossover 
mutations, making things even worse. As an 
example, studies of cross-clade neutralization 
produce effectively random results [2].

Treatment of HIV is still largely a manual process: 
patients have to be sampled and sequenced 
frequently and doctors have to make informed 
decisions on how to deal with evolution of the 
strains infecting them. Presenting sequence 
comparison results is particularly important: 
physicians have to evaluate the similarity of a single 
individual to multiple known drug-resistant strains.

In the US 98% of the infections are type-B, and the 
single FDA-approved program for treatment using 
genetics treats type-B only. The U.S. Army has to 
treat soldiers who acquire HIV all over the world 
and only 85% of their cases are type-B, leaving them 
without any good options for 15% of their cases. 
Being able to at least classify the non-B cases and 
evaluate their treatment outcomes effectively would 
be a huge help.

 4 Methodology

 4.1 W-curves
The W-curve was originally designed as the basis for 
a graphical tool for visualizing very large regions of 

DNA [3].  Over time it has been adapted for 
numerical comparison as well [4,5,6]. By 
abstracting the genetic sequences into a three-
dimensional space, W-curves offer a wider range 
of comparisons rather than comparisons based on 
searching, aligning and tree-building (assuming a 
mutation model) with uni-dimensional strings of 
characters. W-curves make it easier to find 
patterns in sequences or locate common features 
between genes. Their 3D nature also makes it 
possible to align smaller features than are possible 
with string based techniques. The design of our 
comparison utilities builds on these capabilities to 
provide a technique for matching the small regions 
of HIV-1's CD4 epitopes along its gp120 gene [7].

The order of bases along the corners is significant: 
number of hydrogen bonds (2 or 3) and chemical 
structure (purine or pyramidine) share quadrants 
around the square. This means that most 
synonymous SNP's in the gene sequences will 
leave the curves in the same quadrant. This keeps 
our same-quadrant measure small for SNP's.

We use a two-pass process for comparing W-
curves. The first pass produces an array of 
alignment regions with starts, stops, and a 
difference measure that we call “chunks”. SNP's 
increase the difference measure, gaps show up as 
differences in the starting values on successive 
chunks of the comparison, indels as successive 
chunks with no change in the relative offset. The 
second pass summarizes the chunks into whatever 
measures are useful, for example by averaging the 
differences over the length of a sequence.

The advantage of chunking the results first is that 
similar chunks can be used to locate landmarks for 
aligning sequences with one another. Areas with 
small differences provide an automated means of 
locating the offsets between start and stop values 
in the sequences. Given a library of sequences 
with known landmarks such as points of known 
drug resistance, we can score a single incoming 
sequence against all of them. 

 4.2 TSP and Clustering
The Traveling Salesman Problem (“TSP”) is quite 
easy to describe but difficult to solve. The problem 
is to take a list of distances between cities and 
make a tour of them which visits each city once 

Figure 1: Wcurve generation showing initial points  
for curve "CG" [4].
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with the least total distance. Substitute cost and the 
algorithm will find the “cheapest” route through all 
of the cities. As it turns out, this problem is NP-
complete, requiring analysis of all routes to 
guarantee the least distance. Much work has gone 
into developing heuristics for solving this problem 
and there are fast algorithms for approximating the 
solution.

The utility of TSP problems is that an optimal tour 
will cluster the closest cities together. If the 
difference measures are for genes, they can similarly 
be clustered on any region of interest. A number of 
techniques for determining inter- and intra-clade 
distances have been developed. One technique 
developed by Climer and Zhang at Washington 
University is to add a fixed number of “dummy 

cities” to the list [8]. Each dummy has a small 
distance to all other cities (we use 2-20). The non-
zero distance leaves these cities in the intra-cluster 
gaps. We display the resulting  tours as color-
coded pinwheel diagrams. Appropriate color-
coding makes these relatively easy to analyze 
individually or compare to one another.

 4.3 Generating and Analyzing TSP 
Clusters with R

The R statistical package includes a TSP library, 
available from CRAN. We have used it here to 
generate an approximate solution for clustering the 
genes. In our case an optimal tour is not required: 
any good approximation will cluster the genes 
properly. Our approach starts with a square 

Figure 2: Example of tour generated by R's TSP package comparing POL sequences of the wild  
type with a library of simulated drugresistant (“dr”) and random sample strains of HIV1 [6].  
The library strains cluster tightly together at the top (red) with the wild strain (#33) outside the 
drugresistant cluster to the right. The approach shown here works well if individuals are 
sampled over time: preassigning the colors from a first tour makes it relatively easy to watch if  
samples from individuals drift into different groups.
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distance matrix having zeros on the diagonals. The 
TSP package does not require a symmetric matrix 
but in our case we use one.

The colors shown in Figure 2 are assigned by 
generating a list of 1024 colors and rotating the tour 

so that it starts with the first library sequence. 
After that the colors are assigned by taking the 
fractional tour length times 1024. For example, if 
the total tour length were 20 and one of the 
sequences fell at a cumulative distance of 9 then it 
would be assigned a color of 9 / 20 * 1024, or 460. 

Figure 3: Example Wcurves POL gene from wild (top) and example drug resistant HIV1 strains 
[10]. Local features of the Wcurve geometry can provide landmarks for isolating smaller  
regions of the sequences for comparison [6]. Highlighted regions show some areas with more 
easily visible variations between the curves.
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We have found that this works better than simply 
assigning the colors sequentially from one to the 
sample size. Assigning the colors by position along 
the tour gives some additional visual feedback from 
the similarity of colors. This can be seen in Figure 2 
where the closely related “library” sequences are all 
red. We have found this color scheme also works 
well for comparing tours generated from different 
sections of the same genes: even if the nodes appear 
in different orders on different graphs the similar 
colors grouping together help identify the clusters.

A slightly different color scheme can be used to 
observe the evolution of drug resistant strains in a 
population. In that case coloring the time scale 
allows us to watch which direction the group is 
evolving. With the library sequences colored red and 
the population samples green through blue over time, 
the migration of blue dots towards library samples is 
easy to pick out. The library samples can be drug 
resistant, or susceptible to different drugs. Either 
way, the progression across clusters is relatively easy 
to view.

This approach also works well for integrating 
samples of an individual over time. We can display 
results of comparing various regions of an individual 
to a library of sequences with known clinical results. 
With the library samples in one color and the 
individual's sequence of samples colored over time 
we can see how the various samples migrate between 
clusters. This provides a nice way to integrate 
treatment information about an individual that may 
rely on samples of unrelated genes.

 4.4 Combining the TSP and W-Curve
The TSP approach shown here will work for any 
comparison mechanism: ClustalW, Fasta, or Blast 
provide a suitable square comparison matrix and 
generate the graphic results from R. Our use of the 
Wcurve has an advantage due to chunks: we can 
automate scoring discontinuous regions that may 
have differing alignments. This matters with HIV1 
where the high rate of SNP's leaves too much white 
noise in larger areas and the high rate of gaps makes 
locating the often small, discontinuous areas causing 
drug resistance difficult. The curve's geometry also 
provides us a more featurerich environment in 

which to compare the curves. Figure 3 shows the 
wild (HXB2 standard) and five drug resistant 
sequences [9,10]. Differences in geometry are 
visible, even when viewed at different scales [6]. 
The geometric representation also offers us more 
options for approximate matching using discrete 
spatial mathematics than string comparison 
techniques allow.

 5 Conclusions
The W-curve provides us with a way of using 
landmarks to identify regions of interest and score 
only the relevant portions of sample sequences. 
The TSP with Climer & Zhang's boundary 
techniques offers a fast, effective way to cluster 
genes. The R statistical package provides us with 
the tools to analyze and color-code the results for 
analysis. Taken together this provides us with a 
useful tool for comparing the status and evolution 
drug response for HIV-1.
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Abstract - This paper describes the ongoing analysis of 

surveys and on-site visits to review the characteristics of 

EHR software and mobile technology used in selected 

rural hospitals, medical clinics, and practitioners in 

Northwest Florida. The paper follows up on previously 

published findings and compares the results to state-wide 

and nation-wide statistics for urban and rural practices. 
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1 Introduction 

 Even with its reputation as a technology 

innovator, the United States lags the rest of the 

world in the medical use of mobile technology 

and the use of Electronic Health Records 

(EHR). Researchers have found that 99% of the 

physicians in the Netherlands use EHRs, and the 

EHR adoption rate for Australia, Italy, Norway, 

Sweden, and the United Kingdom is 94% or 

higher. The U.S. adoption rate of 17% to 30% 

was only higher than that for Canada among the 

world’s leading economies [1].  

 

1.1 Rural Healthcare Characteristics  

 

 The quality of healthcare in rural areas of 

the United States has steadily declined over the 

past 25 years. The rural population of the U.S. 

represents about 25% of the total U.S. 

population, but only 10% of the total number of 

U.S. physicians practice in rural areas. In 

addition, rural areas of the U.S. have lost over 

500 hospitals over the past 25 years through 

consolidation and economic hardships. Not only 

does this void result in reduced coverage and 

longer commutes for treatment, but it also 

reduces access to specialized treatment for rural 

citizens. Ironically, at a time when the use of 

mobile technology and the use of EHRs could 

help make up for these losses in rural coverage, 

the U.S. medical community still lags the world 

in such meaningful use [2]. 

2 How Mobile Technology Can 

Improve Rural Healthcare 

 It has been shown that mobile technology 

can improve the quality of rural healthcare. 

Mobile technology includes the use of portable 

computers, Personal Digital Assistants (PDAs), 

mobile phones and smart phones, global 

positioning system (GPS) devices, and other 

wireless hardware.  

 

2.1 Examples of Mobile Technology Usage 

in Healthcare 

 Some medical applications of mobile 

technology include remote patient monitoring, 

remote diagnosis and treatment, on-site 

diagnosis and prescribing, physician, nurse, or 

hospital to patient communication, and online 

patient medical record storage and retrieval. For 

example, in a study in rural Washington State, 

nurse practitioners used PDAs loaded with a 

pharmacology program and medical decision 

making software. The PDAs provided access to 

medical information not normally available in 

such remote areas. The use of the PDAs was 

compared to traditional means with respect to 

participants' responses to ease and speed of 

access, speed of response, decreased need to use 

the Internet to seek clarification or to ask 

questions of others, increased understanding of 

their roles and responsibilities, and recognition 

of real world practices. Evaluation of participant 

responses from the group using PDAs yielded 

significantly better results than the group using 

traditional methods. In addition, during the test, 

information gained and the use of the PDA's 

decision making software enabled two patients 

with critical problems to be diagnosed whose 

conditions or drug interactions would have 

otherwise been missed [3]. 
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2.2 Mobile Technology Usage and EHRs 

can also Reduce Medical Errors 

 The use of mobile technologies and EHRs 

can play an even more important role than 

improving the quality of rural healthcare. It has 

been reported that medical errors are the fifth 

leading cause of death in the U.S. [4]. The uses 

of mobile technology and EHRs have the 

potential to significantly reduce errors due to 

incorrect incomplete, misunderstood, or missing 

information. These technologies can provide 

more consistent data entry and effective 

interfaces to ensure the integrity of medical 

information. Sharing of patient information 

among practitioners would also be timelier. 

 

3 Status of Mobile Technology and 

EHR use in Rural Northwest 

Florida 

       Table 1 indicates that physicians in rural 

areas of Florida are less likely to use EHRs, 

mobile technology to communicate with 

patients, and PDAs for medical applications 

than their urban counterparts. Rural and urban 

Florida physicians, however, used mobile 

computers at about the same rate. Rural NW 

Florida physicians showed about the same rate 

of use as other rural Florida physicians in all 

categories [1], [5]. 

 Table 2, which compares rural NW Florida 

to the U.S., indicates similar results as those 

shown in Table 1, which compares rural NW 

Florida to other areas of the state. [1], [6], [7]. 

  
Table 1. Percentage of Florida Practices Using EHR 

and Mobile Technologies compared to Rural NW 

Florida. 

 
Technology Usage Florida 

Urban 

Florida 

Rural 

NWFL 

Rural 

EHR  24% 17% 15% 

Patient communication 17% 8% 6% 

Mobile computer 81% 77% 78% 

PDA 38% 32% 31% 

Comparing the Tables, urban Florida physicians 

and urban U.S. physicians use EHRs and mobile 

technology for patient communication at about 

the same rate, but Florida urban physicians use 

mobile computers and PDAs less. Rural NW 

Florida physicians and rural U.S. physicians 

showed about the same rate of use in all 

categories.  

 
Table 2. Percentage of U.S. Practices Using EHR and 

Mobile Technologies compared to Rural NW Florida. 

 

Technology Usage U.S. 

Urban 

U.S. 

Rural 

NWFL 

Rural 

EHR  23% 17% 15% 

Patient communication 19% 7% 6% 

Mobile computer 85% 80% 78% 

PDA 43% 30% 31% 
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Abstract— The use of microbial fuel cells to detect anaer-
obes and power experiments in remote extreme environments
is examined by a team of scientists and student teachers
in a joint venture of the California State University system
and NASA Ames. The economic viability of carbon fiber
electrodes is tested by comparing their performance to
graphite rods, which are commonly used. A connection
between concentration of life and voltage output is indicated,
which provides a potentially easy and powerful test for the
presence of life in extreme environments such as found on
Mars. Pollution free but low power density microbial fuel
cells are shown to demonstrate viability as a power source
for sensing applications.

Keywords: Life in extreme environments, microbial fuel cell, life
on Mars

1. Introduction
Two great questions confront scientists working in astro-

biology and extreme environments. The first is how to detect
life outside our planet, and the second is how to power
equipment in extreme environments. In this paper we suggest
a potential solution to both problems.

1.1 Detecting Life in Extreme Off-world Envi-
ronments

Recent studies, see [4], have cast doubts on the inter-
pretation of the 1976 experiments conducted by Viking,
which indicate no life in the soil samples analyzed. The
basic problem with Viking was that its experiments were
destructive to organics, and required chlorine to be in a
chloride salt form, when it turns out from Mars Phoenix
Lander that chlorine is in perchlorate form. The new Mars
Science Lab to be launched soon will hopefully clarify some
of the results, but still the question remains as to what is a
good way to detect life on another planet that has an extreme
environment.

Ideally, we would like to submit the samples to a wide
range of tests, but this is economically not viable. Detection
of life is dependent on the form the life takes, so to detect life

with a minimum of equipment requires some assumptions to
be made. We postulate a few simple ones.
• First, if Mars had life, it was carbon based. Other

elements like silicon has been suggested but we have no
idea exactly what such a life would look like and thus
it would be very hard to detect, and harder to prove.

• Second, if Mars had carbon-based life, it likely had
microbial life somewhat similar to earth. This is reason-
able for a variety of reasons, including ease of forma-
tion, durability, necessity in an ecosystem, possibility
of cross-fertilization from impacts, and if not true it
is unlikely we could guess the exact nature of life on
Mars.

• Third, if Mars had microbial life, it likely had a range of
anaerobes, as the atmosphere likely had higher carbon
dioxide and less free oxygen than Earth.

• Finally, if Mars had anaerobes, metal reducing ones
similar to Geobacter sulfurreducens were likely to exist,
as they are widely dispersed on earth, and would fit the
Mars well.

Metal reducing anaerobes could be present in the ground
of Mars, and could even still be alive in Martian lava
tubes, which would provide a viable system for them to
still survive. Testing for the presence of metal reducing
anaerobes, is thus a logical step to verifying if Mars has
or had life.

1.2 Powering Equipment in Extreme Environ-
ments

One of the greatest challenges of exploring extreme
environments is the difficulty of finding long-term, self-
sustaining, and indefinitely sustainable power sources for the
kinds of equipment that may need to remain in place for
extended periods under incredibly inhospitable conditions.
In the case of a Mars rover, for example, scientists and
engineers can leverage the power of the sun using solar
panels to charge and recharge on-board batteries. In other
situations anchored to the ground, wind can be harnessed
to provide a renewable energy source. Underwater, near
the deep ocean thermal vents, engineers and scientists can
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access the heat rising from the Earth’s core to power sensors
or equipment for exploration within a certain range. As
scientists and engineers begin to explore more and more
extreme and remote regions that are lacking in these more
obvious energy sources, a new question arises: specifically,
what types of practical, cost-effective, self-sustaining power
sources can we tap into in regions like the bottom of Earth’s
oceans - the kinds of places where sunlight does not reach,
pressure is unbearable, oxygen is scarcely available, and our
ability to fix or replace parts is extremely limited?

One of the most promising energy sources for this kind of
exploration is so simple and omnipresent it might easily be
overlooked: namely, the energy generated by the microbial
life forms that can be found anywhere from the deepest
reaches of the ocean to the shallowest mud puddle in a
suburban back garden. If we could design and engineer a fuel
cell that harnesses the energy of microbes in the deep ocean -
or anywhere else in the Universe where they might be found
- we could conceivably develop simple power cells fueled
by microbes going about their daily business of metabolizing
glucose, acetate, other organic materials, or even metals. And
we could potentially do so for extended periods - for as long
as a power source is needed.

1.3 Science Education
This paper presents the preliminary results of the work

carried out by a group of science and math oriented student
teachers under the supervision of scientists from several
universities and two NASA labs, as part of the NASA/CSU
Spaceward Bound Project funded by the California State
University’s Mathematics and Science Teacher Initiative
Program. A major subgoal of this paper is to demonstrate
how actual science can be performed in classrooms, and to
instigate further classroom projects in this vein.

2. Experimental Setup
The purpose of this experiment was to test the viability of

detecting low density anaerobes as well as to compare the
potential energy yields and cost-benefit models that could
be achieved using different forms of carbon anodes - in this
case, comparing the efficacy of four one-half inch diameter
graphite rods and six yards of six-inch woven carbon fiber
tape. By deliberately starting from materials that are both
abundant and inexpensive, our goal was to refine the design
parameters for this new type of microbial fuel cell so that it
could be more quickly, easily, and cheaply manufactured and
deployed to remote locations anywhere they might be useful,
from the deep mud of Earth’s ocean floor to the potential
use on Mars, Europa, or anywhere else.

The basic design of a battery is elegantly simple. It has
two key parts: the anode and the cathode. In a bacterial
battery, microbes attach to the anode. As they metabolize
food, they create energy which wants to be released in
oxygen. Since there is no oxygen at the anode, the energy

transfers to the cathode through a wire. The movement
of energy along the wire from the anode to the cathode
creates a current which can be harnessed as usable energy.
The use of microbes in this situation utilizes the chemical
energy produced by the microbes and converts it directly
into electricity as well as converting substrate into a source
of electrons to complete the battery circuit. The bacteria
are kept on the anode along with their food source. They
convert their food source (often glucose) into CO2, protons
and electrons. The protons and electrons are then used for
energy for the battery. Several different food sources have
been tested including waste water, organic waste stream, and
recycling waste water. All of these are rich in nutrients and
provide amiable conditions for bacterial growth.

Although the concept of a microbe powered battery is
wonderful in theory, in practice we needed to focus on
inexpensive, widely available materials that could be used
to amplify the amount of power being created. Typically,
researchers have used graphite to make these batteries. For
this experiment, four graphite rods were used ( 1/18 m2) on
one battery and 6’ of carbon fiber ( 2 m2) on the second
battery. It is expected that the graphite rods generate more
current energy per unit area but the expected increased area
of carbon fiber will make a more cost efficient product. The
carbon fiber is expected to have a lower cost per V-A than
the graphite rods.

One very promising design has been researched and
prototyped by a research group at The Pennsylvania State
University. They have done work using both one and two
chambered microbial fuel cell batteries as well as flat plate
and salt bridge designs. All designs are tested and compared
by the researchers in an effort to discover the most reliable
design for production of energy with microbes. The microbes
they use come from waste water, air, or soil. All bacteria are
grown on graphite rods, or plates that provide a food source
for the microbes.

Another design with great potential has been devel-
oped by the Geobacter Project, based at the University
of Massachusetts, Amherst. Their design emphasizes their
discovery of a strain of Geobacter with increased capacity
for power production in microbial fuel cells which can
be utilized in fuel cells as well as give insight for the
mechanisms by which long range electron transfer operate
in biofilm. Dr. Lovely and his fellow researchers hold that
Geobacter sulfurreducens is a good choice to study electron
transfer and power production under high pressure. They are
working toward creating selective pressures to drive the new
strain of bacteria to evolve that prefers to grow on the anodes
of the batteries so that they can be more efficiently utilized
in fuel cell design.

If it can be proven cost-effective and energy-efficient,
this new energy source could be even more promising than
its predecessors. Our research is meant to help advance
the conversation about these new energy sources and to
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demonstrate the ability [viability] of such energy sources
and materials to support deep sea mud batteries as an energy
source for exploration in extreme, remote, and muddy places.

2.1 Graphite Rods
In this experiment, we used a battery constructed of

graphite rods instead of fabric as a control, since batteries
of this type have been constructed before. We used a series
of four graphite rods, available at most home improvement
stores, as electron sources. When placed in anoxic mud,
anaerobic bacteria will grow on these rods, producing free
electrons as byproducts of their metabolism.

Each rod has a cylindrical shape and is about 30.5 cm
long and 1.27 cm in diameter. The surface area of each
rod, excluding the tops, is equal to 2πrh where r is the
radius and h is the height. Since we know the diameter,
d, the surface area is given by πdh. Therefore, surface
area = 30.5 ∗ 1.27π = 38.74π cm squared. Graphite is the
same material the lead of your pencil is made of. We chose
graphite, because it is a good conductor of electricity and is
relatively soft and therefore easy to drill into.

Holes were carefully and gently drilled into the tops of the
rods. The holes were approximately 0.238 cm in diameter
and 7 cm in depth. The hole in each rod was just wide
enough to allow a small amount of ‘breathing room’ for the
wire (i.e. it wasn’t a tight fit). In order to not damage the rods
when drilling, each rod was wrapped at the tip with electrical
tape. Copper house wire about 15 cm long was inserted into
each hole and sealed in with a combination of solder material
and hot glue. The hot glue will act as a sealant to prevent
the bacteria from eating away at the rods. The rods were
divided into two pairs and each pair of copper wires was
connected to twist-on wire connectors (wire nuts). A fifth
wire was then added to each wire connector that connected
the two pairs and a sixth wire led from one of the wire
connectors to the rest of the battery circuit. It was expected
that the graphite rods would prove to be more durable than
the graphite fabric, because the rods are much thicker and
more sturdy.

Although graphite rods provide less overall voltage and
current as compared to the carbon fiber sheets (due to less
surface area), it is a great conductor of heat and electricity.
It also has excellent corrosion resistance as well as a
high resistance to fracture. This will provide us with more
consistency for an extended period of time when returning
to the site to retrieve data.

2.2 Carbon Fiber
Two types of Microbial fuel cells are considered, a

traditional graphite-rod based battery and a new carbon
fiber based battery. Neither of these use a proton-exchange
membrane and both only utilize inexpensive materials, with
the intent to optimize the cost to electricity produced ratio.

The carbon fiber based battery is set up with two sheets
of fiber: a long piece placed approximately one meter un-
derground in anaerobic conditions, and a short piece placed
so that it is exposed to oxygen (either above ground or in
water). The long piece will act as the anode, through which
electrons generated from cyanobacteria will enter the system.
The short piece will act as the cathode, towards which the
electricity will flow. The testing box, with the resistors, will
be placed between the two sheets.

The purpose of the long carbon fiber sheet is to act as
a host for the cyanobacteria. As the microbacteria undergo
bioelectrogenesis, the released electrons travel through the
carbon fibers, which offer the path of least resistance, to-
wards the cathode. Since the carbon fibers are unidirectional
along the length of the sheet, three additional bare copper
wires were interwoven and soldered, with tin, perpendicular
to the fibers. This will allow the electricity in the fibers to
be directed towards a main wire which is attached to the
ends of the three copper wires. This main wire will lead
directly to the test box. All exposed wires that will be in the
anaerobic conditions are covered with hot glue in order to
prevent bacteria from using the copper as a food source.

The long sheet was placed in a ‘lasagna’ shape, and local
mud was placed between each layer. The carbon fiber sheet
acting as the cathode does not necessarily have to be of
this material, but any excellent conducting material may
be used. The only purpose for this sheet is to create a
potential difference for the electrons to flow through the
circuit, thus creating a current. Anaerobic bacteria use a
final electron acceptor other than oxygen to complete their
electron transport chain. For this test location, the final
electron acceptor may be sulfur, as it is abundantly found
around the area.

Compared to the graphite rod battery, the surface area of
the fiber buried in the ground is much larger for the same cost
and can thus accept more electrons from the microbacteria.

2.3 Test Box
To verify electrical production from the mud battery,

there needs to be means of measuring the current and
voltage. We built a switched testing circuit to simplify these
measurements and enclosed it in a waterproof “test box.”
The test box is controlled by an simple switch to open the
circuit through a pair of testing leads, or close the circuit
through the battery in default use. The test box has a dial
which can be turned from the off position to one of five
other positions which passes the current through resistors of
various strength as described in Section 2.4.

Following a circuit diagram, we constructed the inner
workings of the test box by soldering to the connection
endpoints of a 6-way rotary switch and soldering the contact
points to secure them. The output wires from the dial lead
were attached to test leads which can be probed by a multi-
meter to get a reading of the electrical yield of the mud
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battery. The circuit continues through slide switches and to
additional wires that lead outside the box to the main battery.

2.4 Current and Voltage Measurement Setup
We wanted to be able to test the battery at different levels

of resistance. Using a small circuit board from Radio Shack,
some resistors ranging from 10Ω to 100, 000Ω, a soldering
iron, and some soldering material we soldered the resistors
to the circuit board. Altogether we soldered 4 rows of 5
resistors each to the board. Each row had a 10, 100, 1,000,
10,000 and a 100,000 ohm resistor. You can determine the
rating of a resistor by using the established color code. The
body of each resistor contains a band of three or four colors
that indicate the rating. In some cases there is an extra band
on the body that indicates the resistor’s tolerance or accuracy
rated as a percentage. The tolerance is typically 1%, 2%, 5%
or 10%.

According to Ohm’s law the current flowing through a
resistor is directly proportional to the voltage. In other words
V = IR, where V is voltage, R is resistance and I is
current. The bacteria in the mud and the oxygen in the air
create a flow of electrons through the circuit. Each of the
five resistors is connected to an independent circuit that can
activated with the turn of a circular switch. Since the switch
has five different settings and each setting is connected to
only one circuit the circular switch is called a six pole two
throw switch. We can control how much current flows though
the battery just by turning the switch to a different setting.
For a fixed voltage V the larger the resistance the smaller
the current and vice versa.

The only difficulty we encountered with constructing the
resistor pack was in the soldering. We had to be very precise
to make sure only the exposed wire of the resistor was
soldered to the board and that the board itself did not
come into contact with soldering iron. This required a lot
of patience!

3. Data Analysis
In our first experiment, rich, dark anaerobic mud with a

strong associated odor was used to verify the operation of the
fuel cell. Open circuit voltages of 0.6 volts were measured
immediately on graphite rods, and served as a baseline for
comparing the main experiment.

For our main experiment, we used a grey mud, which
did not have a strong odor. There were two benefits of this
selection. First it allowed us to verify if measurements of life
could be taken of a sample that was not as rich to begin with.
Several samples were also collected for lab testing. Second,
this allowed us to examine the viability of a microbial fuel
cell in sub-optimal soil conditions.

For the first several days, only open circuit voltages could
be measured, so only open circuit measurements will be
discussed in this paper. On the morning of the first day, the
voltage on the graphite rods were measured to be 55mV and

the voltage on the carbon fiber was 110 mV. As expected
the carbon fiber, performed significantly (two times) better
in the same soil conditions. Eight hours later, the voltage on
both anodes had risen: the graphite measured 64mV and the
carbon fiber measured 130mV. The voltages were checked
repeatedly over the next 20 minutes and the voltage never
varied more than a few mV.

The circuit was then closed to allow easy flow of electrons,
and presumably the maximum growth of the microbes. The
voltage on the graphite rods was measured one day later to
be 117mV, no measurement of the carbon fiber was taken at
this time. The carbon fiber was measured the next morning
and found to be 236mV. A wire on the graphite rods had
come loose in the mean time and was detected and fixed
at this point, but the two systems were no longer both in
identical states so exact comparison was no longer possible.
While the measurements were not taken at the same time,
the general trend of the carbon fiber having twice the voltage
was continued.

The circuit was closed again and left alone for a month.
At this point the carbon fiber had risen to 0.36V. A new soil
sample was taken and the mud was both noticeably darker
and had a much stronger smell.

4. Conclusions
The results are very preliminary, but several things seem

likely. First, carbon fiber provided a superior performance
to graphite rods, for a comparable price, suggesting it is
a viable candidate for future power generation techniques.
Second, even in a soil sample with likely a low concentration
of microbes, an easily measurable voltage was obtained, ver-
ifying that it can be used to measure life. Third, the voltage
grew simultaneous with the increase in other indicator of life,
verifying that even in extremely low concentrations, a small
probe could be left behind in a “grow” state (closed circuit),
and returned to later to be measured for any increase. The
preliminary results thus indicate that carbon fiber microbial
fuel cells are a potentially viable source of power in remote,
extreme environments, and that the fuel cell life detector is
a reasonable candidate for detecting life on other planets.
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1 Introduction 
An Artificial Immune System (AIS) is a biologically 

inspired computing which is currently investigated to solve 
many problems. Such a method was inspired by the Human 
Immune System (HIS) that can detect and defend against 
harmful and previously unseen invaders.  AISs have been 
built for a wide range of application domains including 
document classification, fraud detection, and network- and 
host-based intrusion detection.  Section 2 will discuss the 
basic concepts used to build an AIS.  Section 3 will discuss 
AISs features and principles that distinguish them from 
other methods. Section 4 discusses the philosophies or 
approaches of applying immune system concepts. Section 5 
discusses examples of applications of AISs. Finally, section 
6 concludes the paper.  

2 Artificial Immune systems Basic 
Concepts 
To implement a basic AIS, four decisions have to be 

made: encoding, similarity measure, selection and mutation.    

2.1 Initialization and Encoding 
It is very important to choose a suitable encoding [1]   

to insure the algorithm’s success.  The antigen and antibody 
should be defined in the context of an application domain.  
For example, antigens can represent intrusion data instances, 
and antibodies bind to antigens identifying an intrusion.     

2.2 Similarity or Affinity Measure 
A good matching algorithm guarantees that the AIS 

works properly. The primary response in the immune 
system [2] uses learning mechanism to identify antigens that 

have not been detected by a detector before.  When a B cell 
is activated after binding to a pathogen, it starts cloning 
itself and the cloned cells then undergoes a somatic hyper 
mutation to create child B cells with mutated receptors.  
Then all B cells compete with each other.      

2.3 Negative Selection 
In the negative selection algorithm [1], a set of trusted 

behavior describing self is defined. During the initialization 
of the algorithm, a large number of detectors are created.  
Then these detectors are subjected to a matching algorithm 
that compares them to self behavior.  Any matching detector 
will be eliminated and those that do not match are selected 
which explains the term negative selection.    

2.4 Somatic Hyper mutation 
Somatic hyper mutation [1] is an optional process 

associated with negative selection.  Rather than ignoring 
matching detectors in the first phase of the algorithm, they 
can be mutated to save time and effort.  Also, depending on 
the degree of matching, the mutation could be more or less 
strong.   

2.5 Cross-Reactivity and Associate Memories 
When a B-cell encounters subsequent antigens it 

responds quicker (secondary response) in which the memory 
cells for an earlier antigen quickly start producing large 
quantities of a specific antibody.  In general, B-cell 
receptors do not require an exact match to an antigen to be 
activated.  Therefore, some memory cells can react to new 
antigens producing a secondary response which is termed, 
the cross-reactive memory [3].  

3 AIS Features and Principles  
In general AISs have the following desirable features 

and principles [4]:  

• Distributed: the presence of an infection is 
determined locally with no central coordination 
taking place.  

• Scalability: communication and interaction 
between components are localized and there is little 
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overhead associated when the number of components 
is increased.  

• Multi-layered: security is achieved by combining 
multiple layers of different mechanisms to provide 
high overall security.  

• Diversity: it is less likely that the security 
vulnerabilities in one system be widespread. 

• Robustness: No single component or cell of the 
human immune system is essential and can be 
replaced.  

• Autonomy: no outside management or maintenance 
is required as classification and elimination of 
pathogens and repairing self is done locally.  

• Adaptability: The immune system learns to detect 
new pathogens, and retains the ability to recognize 
previously seen pathogens through immune memory.  

• No secure layer: Any cell in the human body can 
be attacked by a pathogen or even another immune 
system cell.    

• Dynamically changing coverage: since the immune 
system cannot maintain a set of detectors large 
enough to cover the space of all pathogens, it 
maintains a random sample of its detector repertoire 
circulating throughout the body.  

• Identity via behavior: identity is verified through 
the presentation of peptides, or protein fragments. 

• Anomaly detection: ability to detect pathogens that 
has never been encountered before. 

• Flexibility or Imperfect detection: By accepting 
imperfect detection, the immune system increases the 
flexibility with which it can allocate resources. 

• Detector replication: The human immune system 
replicates detectors to deal with replicating 
pathogens. 

• Memory : the immune system reacts more rapidly 
the second time against pathogens that are similar to 
the ones that were encountered previously.  

• Implicit policy specification:  definition of self in 
the immune system is empirically defined by 
monitoring proteins that are currently in the body.    

4 Immune System Approaches 
Application of immune system concepts can be based 

on the following distinct philosophies [5]: 

4.1 Negative Selection (NS) 
 Negative selection concepts are concerned with 
eliminating immature cells that bind to self antigens.  This 
allows the HIS to detect non-self antigens without 
mistakenly detecting self-antigens.  

4.2 Danger Theory 
The Danger Theory describes which data should be 

represented.  It focuses on the presence of dangerous signals 
and goes beyond and overcomes many of the limitations of 
self–non-self selection [1]. 

4.3 Immune Network Theory 
The hypothesis of the immune network theory states 

that the immune system maintains an idiotypic network of 
interconnected B-cells for antigen recognition.  These cells 
both stimulate and suppress each other in certain ways that 
lead to the stabilization of the network.  For example, two 
B-cells connect if their shared affinities exceed a certain 
threshold, and the strength of the connection is directly 
proportional to the affinity they share [1].  

4.4 Clonal Selection Principle 
Clonal Selection Principle [1] describes the basic 

features of an immune response to an antigenic stimulus.  
Only the cells that recognize the antigen proliferate and are 
selected against those that do not.  

4.5 Idiotypic Networks 
The Idiotypic network hypothesis [1] builds on the 

recognition that antibodies can match other antibodies as 
well as antigens.  This could be used to explain how the 
memory of past infections is maintained and could result in 
the suppression of similar antibodies.  In general, the nature 
of an Idiotypic interaction can be either positive or negative.  

4.6 Other methods 
Although negative selection and the danger theory are 

the most popular approaches in AIS for intrusion detection, 
some researchers choose to create AIS based on alternative 
ideas. For example, Forrest et. al [6] build an intrusion 
detection system (IDS) based on an explicit notion of self 
within a computer system.  The system was host-based, 
examining specifically privileged processes.  The system 
collected self-information to construct a database of normal 
commands.   
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5 Artificial Immune systems 
Applications 
This section briefly introduces some application areas 

where AIS have been applied. 

5.1 Recommender Systems 
Collaborative filtering (CF) [7][8] is one of the 

common applications of AIS.  CF is the term for a broad 
range of algorithms that use similarity measures to obtain 
recommendations.  In general, any problem domain where 
users are required to rate items is amenable to CF 
techniques.  For example, commercial applications are 
called recommender such as movie recommendation.  
Traditionally, recommended items are treated as black 
boxes and recommendations are based purely on the votes 
of neighbors, and not on the content of the item. A user 
profile which consists of the preferences of a user that is 
usually a set of the user’s votes on an item. These profiles 
are then compared to build a neighborhood.   

Morrison and Aickelin [9] applied idiotypic network 
theory to build their web site recommender AIS based 
system.  The idiotypic network theory states that interaction 
in the immune system do not only occur between antibodies 
and antigens but also between antibodies and each other.  
Therefore, the antibody may be matched by other 
antibodies.   This activation can spread throughout the 
population.   In general, the interaction may have a positive 
or a negative effect on a particular antibody-producing cell.  
Morrison and Aickelin idea is that antibodies that are very 
similar to each other had their concentrations reduced.  This 
allowed the creation of a set of users that are similar to a 
user but quite still different to each other which enhances 
the recommendation accuracy of the system.  

Hsieh et. al [10] employed AIS to deal with 
classification problem.  In their paper, an AIS algorithm is 
developed and applied to a two-group classification 
problem. They discuss a Taiwanese banking industry 
example and the financial ratios of each bank from 1998 to 
2002 were collected. Their system had a 10% better 
performance than the three soft computing early warning 
systems (GNN, CBR and BPN). Their AIS outperforms the 
statistical early warning systems (LR and QDA) at least 
24%. 

Singh and Nair [11] outline a robot controller based on 
a combination of the innate and adaptive immune systems.  
The learner robot learns to accurately follow a track.  It can 
sense when it is on the track and when it loses it. If it loses 
the track, it first tries to find it on its own and then requests 
the assistance of a helper robot, who will guide it back to the 
track.  The general idea is to have the learner robot learn to 
navigate weak portions of the track autonomously, without 

losing the track and having to be guided back by the helper.  
The proposed immune system has two type of response 
governed by separate innate and adaptive subsystems.   

Burgess has developed Cfengine [12], an autonomous 
agent and a middle-to-high level policy language for 
building expert systems to administrate and configure large 
computer networks.  The system adapts the danger model 
using autonomous and distributed feedback and healing 
mechanism triggered when a small amount of damage is 
detected.  Cfengine automatically configures large numbers 
of systems on a heterogeneous network with an arbitrary 
degree of variety in the configuration.     

5.2  Security based systems  
Security systems may include virus detection and 

intrusion detection systems.  Virus detection is viewed as a 
self-non-self discrimination problem.  Targets such as legal 
user activities, legal application usage activities, and 
uncorrupted data are monitored as self and the AIS are 
expected to discriminate them from illegal user activities, 
illegal application usage activities, and virus infected data.   

The Computer Virus Immune System 
(CVIS) approach [13] is able to perform virus analysis, 
repair infected files and propagate the analysis results to 
other local systems.  In addition, CVIS was designed to 
operate under a distributed environment using autonomous 
agents.  The system was tested against the TIMID virus, 
which infects .com files within a local directory.  The test 
reports showed the sensitivity of detection and error results 
on different matching thresholds. It showed a detection rate 
of up to 89% but had a very high scalability problem since it 
required approximately 1.05 years for generated antibodies 
to scan an 8GB hard disk drive.  However, novel concepts 
such as life span, activation threshold and co-stimulation 
were investigated.   

Sarafijanovic and Le Boudec [14] built an immune-
based system to detect misbehaving nodes in a mobile ad-
hoc network.  The authors considered a node to be 
functioning correctly if it adhered to the rules laid down by 
the Dynamic Source Routing (DSR) protocol. Each node in 
the network monitored its neighboring nodes and collected 
one trace per monitored neighbor. Four events were sampled 
over fixed and discrete time intervals to create a series of 
data sets.  This created a binary antigenic representation.  

Stillerman et. al [15] introduced an immunity-based 
intrusion detection approach that was particularly applicable 
to Common Object Request Broker Architecture (CORBA) 
applications.  CORBA is a popular common messaging 
middle-ware that enables the communication of distributed 
objects for distributed applications.  The authors employed 
the same approach reported in [16] to detect a misuse 
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attacks performed by a legal user of the system.  The results 
showed that the system was able to detect anomalies without 
high false positive error rates.  

Dasgupta [17] provided the conceptual view and a 
general framework of a multi-agent anomaly based intrusion 
detection system and response in networked computers.  
The immunity based agents in the system roamed around 
nodes and monitored network situation.  Each agent can 
recognize other activities and can take appropriate actions 
according to its predefined security policies. The agent can 
adapt to its environment dynamically and can detect novel 
and known attacks.  Network activities were monitored on 
the user, system, process and packet levels. 

Pagnoni and Visconti’s [18] NAIS IDS is inspired by 
innate immune mechanisms.  Their immune system is a 
multilayer defense system.  The innate immune system is 
the first line of defense which is able to recognize self 
quickly.  Their system compiles a list of all observed 
process names during a training period containing only 
normal usage.  A set of “digital macrophages” is then 
created which monitors the system and generates an alert 
when any previously unseen process name is observed.  

6 Conclusion 
The human immune system has been successful in 

defending different human organs against a wide range of 
harmful attacks.  Negative selection and Danger Theory are 
two of the commonly used philosophies in building 
artificially immune based systems.  In general, to implement 
a basic artificial immune system, four decisions have to be 
made: encoding, similarity measure, selection and mutation.  
This paper briefly discussed the features and principles that 
make AIS desirable for building applications dealing with 
security and recommender systems.  
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Abstract— It is known that a mathematical model of the body 
sway can be developed by a stochastic process. The authors have 
succeeded in finding the nonlinearity in the potential function. 
Regarding to the mathematical model, we applied an index, 
sparse density (SPD), of stationary stabilograms for detecting 
instability due to the motion sickness (simulator sickness), which 
occurs when a human attempts to maintain an upright posture. 
In this study, subjects in a standing position were stimulated by 
stereoscopic movies on a liquid crystal display (LCD). We also 
measured the degree of determinism in the dynamics of the 
sway of the center of gravity of the subjects. The 
Double-Wayland algorithm was used as a novel method. As a 
result, the dynamics of the body sway in the presence of the 
stimulus as well as in its absence were considered to be 
stochastic. The structural changes in the potential function 
during exposure to the conventional three-dimensional images 
could be detected by using the SPD.  

I. INTRODUCTION 
he human standing posture is maintained by the body’s 
balance function, which is an involuntary physiological 
adjustment mechanism called the righting reflex [1]. In 

order to maintain the standing posture when locomotion is 
absent, the righting reflex, centered in the nucleus ruber, is 
essential. Sensory signals such as visual inputs, auditory and 
vestibular inputs, and proprioceptive inputs from the skin, 
muscles, and joints are the inputs that are involved in the 
body’s balance function [2]. The evaluation of this function is 
indispensable for diagnosing equilibrium disturbances such 
as cerebellar degenerations, basal ganglia disorders, or 
Parkinson’s disease in patients [3]. 

Stabilometry has been employed to evaluate this 
equilibrium function both qualitatively and quantitatively. A 
projection of a subject’s center of gravity onto a detection 
stand is measured as an average of the center of pressure 
(COP) of both feet. The COP is traced for each time step, and 
the time series of the projections is traced on an x-y plane. By 
connecting the temporally vicinal points, a stabilogram is 
created, as shown in Fig 1. Several parameters such as the 
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area of sway (A), total locus length (L), and locus length per 
unit area (L/A) have been proposed to quantitize the 
instability involved in the standing posture, and such 
parameters are widely used in clinical studies. It has been 
revealed that the last parameter particularly depends on the 
fine variations involved in posture control [1]. This index is 
then regarded as a gauge for evaluating the function of 
proprioceptive control of standing in human beings. However, 
it is difficult to clinically diagnose disorders of the balance 
function and to identify the decline in equilibrium function by 
utilizing the abovementioned indices and measuring patterns 
in the stabilogram. Large interindividual differences might 
make it difficult to understand the results of such a 
comparison. 

Mathematically, the sway in the COP is described by a 
stochastic process [4]–[6]. We examined the adequacy of 
using a stochastic differential equation and investigated the 
most adequate equation for our research. G(x), the 
distribution of the observed point x, is related in the following 
manner to U(x), the (time-averaged) potential function, in the 
stochastic differential equation (SDE), which has been 
considered as a mathematical model of the sway: 

.)(ln
2
1)( constxGxU +−=

rr
            (1) 

Actually, G(x) is estimated by the histogram of the time series 
data. The nonlinear property of SDEs is important [7]. There 
were several minimal points of the potential. In the vicinity of 
these points, local stable movement with a high-frequency 
component can be generated as a numerical solution to the 
SDE. We can therefore expect a high density of observed 
COP in this area on the stabilogram. 

The anterior-posterior direction y was considered to be 
independent of the mediallateral direction x [8]. Stochastic 
differential equations (SDEs) on the Euclid space E2 ∋(x, y) 
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have been proposed as mathematical models that generate the 
stabilograms [4]-[7]. In numerical analysis, pseudorandom 
numbers were generated as white noise terms wx(t) and wy(t). 
Constructing the nonlinear SDEs from the stabilograms (Fig. 
1) in accordance with Eq. (1), their temporally averaged 
potential functions Ux, Uy have plural minimal points, and 
fluctuations could be observed in the neighborhood of the 
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minimal points [7]. The variance in the stabilogram depends 
on the form of the potential function in the SDE; therefore, 
sparse density (SPD) is regarded as an index for its 
measurement. 

The analysis of stabilograms is useful not only for medical 
diagnosis but also for achieving the control of upright 
standing for two-legged robots and for preventing falls in 
elderly people [9]. Recent studies suggest that maintaining 
postural stability is one of the major goals of animals, [10] 
and that they experience sickness symptoms in circumstances 
where they have not acquired strategies to maintain their 
balance [11]. Riccio and Stoffregen argued that motion 
sickness is not caused by sensory conflict, but by postural 
instability, although the most widely known theory of motion 
sickness is based on the concept of sensory conflict [11]–[13]. 
Stoffregen and Smart (1999) report that the onset of motion 
sickness may be preceded by significant increases in postural 
sway [14]. 

The equilibrium function in humans deteriorates when 
viewing 3-dimensional (3D) movies [15]. It has been 
considered that this visually induced motion sickness (VIMS) 
is caused by the disagreement between vergence and visual 
accommodation while viewing 3D images [16]. Thus, 
stereoscopic images have been devised to reduce this 
disagreement [17]–[18]. 

VIMS can be measured by psychological and 
physiological methods, and the simulator sickness 
questionnaire (SSQ) is a well-known psychological method 
for measuring the extent of motion sickness [19]. The SSQ is 
used herein for verifying the occurrence of VIMS. The 
following parameters of autonomic nervous activity are 
appropriate for the physiological method: heart rate 
variability, blood pressure, electrogastrography, and galvanic 
skin reaction [20]–[22]. It has been reported that a wide 
stance (with midlines of the heels 17 or 30 cm apart) 
significantly increases the total locus length in the 
stabilograms of individuals with high SSQ scores, while the 
length in those of individuals with low scores is less affected 
by such a stance [23]. We wondered if noise terms vanished 
from the mathematical model (SDEs) of the body sway. 
Using our Double-Wayland algorithm [24], we evaluate the 
degree of visible determinism for the dynamics of the sway. 

We propose a methodology to measure the effect of 3D 
images on the equilibrium function. We assume that the high 
density of observed COP decreases during exposure to 
stereoscopic images [15]. The SPD would be a useful index in 
stabilometry to measure VIMS. In this study, we verify that 
reduction in body sway can be evaluated using the SPD 
during exposure to a new 3D movie on an LCD. 

II. MATERIAL AND METHOD 

A. Participants 

Ten healthy subjects (age, 23.6 ± 2.2 years) voluntarily 
participated in the study. We ensured that the body sway was 
not affected by environmental conditions. Using an air 
conditioner, we adjusted the temperature to 25 °C in the 
exercise room, which was kept dark. 

B. Material 

The subjects stood without moving on a detection stand of 
a stabilometer (G5500; Anima Co. Ltd.) with their feet 
together. The subjects were positioned facing an LCD 
monitor (S1911- SABK, NANAO Co., Ltd.) on which three 
kinds of images were presented in no particular order: (I) 
visual target (circle) whose diameter was 3 cm; (II) a new 3D 
movie that shows a sphere approaching and going away from 
subjects irregularly; and (III) a conventional 3D movie that 
shows the same sphere motion as in (II) which was created 
using the Olympus power 3D method [25]. The new 
stereoscopic images (II) were constructed by Olympus Power 
3D method. The distance between the wall and the subjects 
was 57 cm. 

C. Design 

The subjects stood on the detection stand in the Romberg 
posture for 1 min before the sway was recorded. Each sway of 
the COP was then recorded at a sampling frequency of 20 Hz 
during the measurement; subjects were instructed to maintain 
the Romberg posture for the first 60 s and a wide stance (with 
the midlines of heels 20 cm apart) for the next 60 s. The 
subjects viewed one of the images, i.e., (I), (II), or (III), on the 
LCD from the beginning till the end. The SSQ was filled 
before and after stabilometry. 

D. Calculation Procedure  

We calculated several indices that are commonly used in 
the clinical field [26] for stabilograms, such as “area of 
sway,” “total locus length,” and “total locus length per unit 
area.” In addition, new quantification indices that were 
termed “SPD”, “total locus length of chain” [27] and the 
translation error [28] were also estimated. The translation 
error (Etrans) is calculated in order to evaluate the degree of 
determinism for dynamics that generate a time series. Etrans 
represents the smoothness of flow in an attractor, which is 
assumed to generate the time series data. 

III. RESULTS  
The results of the SSQ are shown in Table 1 and include 

the scores on nausea (N), oculomotor discomfort (OD), 
disorientation (D) subscale and total score (TS) of the SSQ. 
No statistical differences were seen in these scores among 
images presented to subjects. However, increases were seen 
in the scores for N and D after exposure to the conventional 
3D movie, (II) Cross-point 3D. In addition, the scores after 
exposure to the new 3D images were not very different from 
those after exposure to the static one, (I) Pre. Although there  
were large individual differences, sickness symptoms seemed 

 
Table 1 Subscales of the SSQ after exposure to 3D movies  

Movies (II) Cross-Point 3D (III) Power 3D
N 8.6±2.6 14.3±4.8 

OD 17.4±3.4 16.7±4.0 
D 16.7±6.2 22.3±9.3 
TS 16.4±3.7 19.8±5.8 
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to appear more often with the conventional 3D movie. 

Typical stabilograms are shown in Fig. 1. In these figures, 
the vertical axis shows the anterior and posterior 
movements of the COP, and the horizontal axis shows the 
right and left movements of the COP. The amplitudes of 
the sway that were observed during exposure to the movies 
(Fig. 1c–1f) tended to be larger than those of the control 
sway (Fig.1a-1b). Although a high density of COP was 
observed in the stabilograms (Fig. 1a–1b, 1e–1f), the density 
decreased in stabilograms during exposure to the 

 
 

 
 

 
 
 
 

conventional stereoscopic movie (Fig. 1c–1d). Furthermore, 
stabilograms measured in an open leg posture with the 
midlines of heels 20 cm apart (Fig. 1b, 1d, 1f) were compared 
with stabilograms measured in the Romberg posture (Fig. 1a, 
1c, 1e). COP was not isotropically dispersed but 
characterized by much movement in the anterior-posterior (y) 
direction (Fig. 1b, 1f). Although this trend is seen in Fig. 1d, 
the diffusion of COP was large in the lateral (x) direction and 
had spread to the extent that it was equivalent to the control 
stabilograms (Fig. 1a). 

(a) 

(c) 

(e) 
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Fig. 1. Typical stabilograms (sway of the COP) observed when subjects viewed a static circle (a-b), the new stereoscopic movie (c-d), and the conventional 3D 
movie (e-f) [29]. 
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Results of the Double-Wayland algorithm are shown in 
Fig. 2 and Fig. 3. Whether subjects was exposed to the 3D 
movies or not, Etrans derived from the temporal differences of 
those time series x, y was approximately 1. These translation 
errors in each embedding space were not significantly 
different from the translation errors derived from the time 
series x, y although Etrans derived from the time series y is less 
than 1 for any embedding space without exposure to any of 
stereoscopic movies. 
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According to the two-way analysis of variance (ANOVA) 
with repeated measures, there was no interaction between 
factors of posture (Romberg posture or standing posture with 
their feet wide apart) and images ((I), (II), or (III)). Except to 
the total locus length per unit area and the total locus length of 
chain, main effects were seen in the both factors (Fig. 4). On 
the other hand, any indicators could find a main effect in the 
postural factor (p < 0.01). 

(a) 

(d) 

(c) 

(b) 

Fig. 2. Mean translation error (Etrans) for each embedding space. Translation errors were estimated from a lateral component of stabilograms (a)–(b), and 
temporal differences of the time series (c)–(d).  Subjects maintained the Romberg posture (a), (c), and a wide stance (b), (d). 
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IV. DISCUSSION  
A theory has been proposed to obtain SDEs as a 

mathematical model of the body sway on the basis of the 
stabilogram. According to Eq. (1), there were several minimal 
points of the time-averaged potential function in the SDEs 
(Fig. 1). The variance in the stabilogram depends on the form 
of the potential function in the SDE; therefore, the SPD is 
regarded as an index for its measurement. The movies, 
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especially stereoscopic images, decrease the gradient of the 
potential function. The new 3D movie (II) should reduce the 
body sway because there is no disagreement between 
vergence and visual accommodation. The reduction can be 
evaluated by the SPD during exposure to the movies on an 
LCD screen. Performing a one-way analysis of variance for a 
posture with wide stance, we have succeeded in estimating 
the decrease in the gradient of the potential function by using 
the SPD as shown in Fig. 4a (p<0.05). 

(a) 

Fig. 3. Mean translation error  (Etrans)  for each embedding space. Translation errors were estimated from a anterior/posterior component of stabilograms (a) 
–(b), and temporal differences of the time series (c)–(d).  Subjects maintained the Romberg posture (a), (c), and a wide stance (b), (d). 

(c) 

(d) (b) 
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Fig. 4 Typical results of the two-way ANOVA with repeated measures for 
indicators [29]; the SPD (a), the total locus length (b), and the total locus 
length of chain (c)  (**p < 0.01,*p < 0.05). 

 
In this study, we mathematically measured the degree of 

determinism in the dynamics of the sway of COP. The Double 
-Wayland algorithm was used as a novel method. Etrans > 0.5 
was obtained by the Wayland algorithm (Fig. 2-3), which 
implies that the time series could be generated by a stochastic 
process in accordance with a previous standard [30]. The 
threshold 0.5 is half of the translation error resulting from a 

random walk. The body sway has been described previously 
by stochastic processes [4]-[7], which was shown with the 
Double-Wayland algorithm [31]. Moreover, 0.8 < Etrans < 1 
obtained from the temporal differences of these time series 
exceeded the translation errors estimated by the Wayland 
algorithm, as shown in Fig. 2b. However, the translation 
errors estimated by the Wayland algorithm were similar to 
those obtained from the temporal differences, except for Fig. 
2b, which agrees with the abovementioned explanation of the 
dynamics to control a standing posture. The exposure to 3D 
movies would not change it into a deterministic one. 
Mechanical variations were not observed in the locomotion of 
the COP. We assumed that the COP was controlled by a 
stationary process, and the sway during exposure to the static 
control image (I) could be compared with that when the 
subject viewed 3D movies. Indices for stabilograms might 
reflect the coefficients in stochastic processes although the 
translation error did not exhibit a significant difference 
between the stabilograms measured during exposure to the 
new 3D movie (II) and the conventional 3D movie (III).  

Indices for stabilograms might reflect the coefficients in 
stochastic processes although the translation error did not 
exhibit a significant difference among the exposure to images 
(I), (II), and (III) as shown in Fig.2-3. With respect to the 
Romberg posture, the total locus length during exposure to 
3-D movies was significantly greater than that to the static 
one (I) which could not induce the VIMS (Fig. 4b). We 
considered that the 3-D images on the LCD decrease the 
gradient of the potential function. Moreover, the new 3D 
movie (II) might reduce the body sway because there is no 
disagreement between vergence and visual accommodation. 
The reduction could be evaluated by the SPD during exposure 
to the movies on an LCD screen while subjects maintained 
upright posture with the wide stance (Fig. 4a). We have 
succeeded in estimating the decrease in the gradient of the 
potential function by using the SPD. We concluded that the 
metamorphism in the potential function during exposure to 
the conventional 3-D images could be detected by using the 
SPD.  

Multiple comparisons indicated that the SPD S2 during 
exposure to any of the stereoscopic movies was significantly 
larger than that during exposure to the static control image (I) 
when subjects stood in the Romberg posture (Fig.4a). The 
standing posture would become unstable because of the 
effects of the stereoscopic movies. As mentioned above, 
structural changes occur in the time-averaged potential 
function (1) with exposure to stereoscopic images, which are 
assumed to reflect the sway in center of gravity. 

Scibora et al. concluded that the total locus length of 
subjects with prior experience of motion sickness increases 
with exposure to a virtual environment when they stood with 
their feet wide apart [23], whereas, in our study, the degree of 
sway was found to be reduced when the subjects stood with 
their feet wide apart (Fig.1b, 1d, 1f) than when they stood 
with their feet close together (Fig.1a, 1c, 1e). As shown in Fig. 
1d and 1f, a clear change in the form of the potential function 
(1) occurs when the feet are wide apart. The decrease in the 
gradient of the potential might increase the total locus length. 

(a) 

(b) 

(c) 
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Regardless of posture, the total locus length during 
exposure to the 3D movies was significantly greater than that 
during exposure to the control image (Fig.4b). However, the 
SPD during exposure to the conventional stereoscopic movie 
(III) was significantly larger than that during exposure to the 
control image (I) when they stood with their feet wide apart 
(Fig.4a). The total locus length of chain simultaneously 
tended to increase when subjects were exposed to the 
conventional 3D images (III) compared that when they were 
exposed to (I) (Fig.4c). Hence, we noted postural instability 
with the exposure to the conventional stereoscopic images 
(III) by using these indicators involved in the stabilogram 
(SPD and total locus length of chain). This instability might 
be reduced by the Olympus power 3D method.  
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Abstract— With the advent of technology and digital inclusion, 

people of all social classes have been presented to the computing 

world. However, there is a population that, by physical 

limitations, has no easy and non-expensive means of interacting 

with a microcomputer, the motor-disabled individuals. This 

project presents an assistive technology system, which helps 

motor-disabled individuals to interact with a personal computer, 

consisting of a control system that captures the individual 

movements of the tongue and sends the signals to control the 

computer. A virtual keyboard, with the ability to complete words 

based on the user’s vocabulary, is also proposed, improving even 

more one’s experience. Experiments in real use scenarios are 

presented to state the feasibility of the system. 

Keywords- Assistive technology, computer control system, 

motor-disabled individual. 

I.  INTRODUCTION 

Brazil has currently approximately 183.9 million 
inhabitants, of which 24.3 million have some form of physical 
or mental disability. According to the IBGE (research year 
2000), 1.4 million of these people are tetraplegic [1].  

Tetraplegia, also known as quadriplegia, is paralysis caused 
by illness or injury to a human that results in the partial or total 
loss of use of all their limbs and torso. The loss is usually 
sensory and motor, which means that both sensation and 
control are lost [2]. 

The Brazilian Law 7853 of 1989 supports the physically 
disable individuals ensuring the exercise of individual and 
social rights of persons with disabilities, citing Article 1 § 1: 
"In the application and interpretation of this Law shall be 
considered the basic values of equal treatment and opportunity, 
social justice, respect for human dignity, welfare, and others 
listed in the Constitution or justified by general principles of 
Law” [3]. One can consider core values of equal treatment and 
opportunity to be education access, information and personal 
independence. 

With the objective of providing personal independence and 
digital inclusion to motor-disabled people, mainly tetraplegic, 
this project presents a non-invasive assistive technology system 
that captures, interprets and transmits signals resulting from 
movements of the tongue, allowing the interaction of users with 
a computer.  

Besides the assistive technology system, a virtual keyboard, 
with the ability to complete words based on the user’s 
vocabulary, is also proposed. 

This article not only describes the specification and 
development of the assistive technology system and the virtual 
keyboard, but also presents experiment results obtained when 
using the system. It is divided as follows, some of the most 
relevant related work is presented in section II, the 
specification and development of the system is showed in 
section III, section IV brings the experimentation and 
validation results, and finally section V concludes the work. 

II. RELATED WORK 

 This section presents similar works whose objective is to 
help impaired individuals to obtain a certain degree of liberty 
and improve their way of life. 

 In [4], the authors present an educational game with 
modification in controls so that disability individuals can play 
and enjoy the game. They proposed a new Sudoku game for 
people whose motion is impaired, called Sudoku Access. Their 
special interface allowed the control of the game either by 
voice or by a single switch. As in our system, their solution 
did not focus every disabled person, but at least it benefits a 
lot a small portion of that group. 

 In [5], the authors present a great project called the Camera 
Mouse System. The objective is the same as in our project, 
i.e., to provide computer interaction for people with severe 
disabilities. The system tracks the user's movements with a 
video camera and translates them into the movements of the 
mouse pointer on the screen. Body features such as the tip of 
the user's nose or finger can be tracked. The visual tracking 
algorithm is based on cropping an online template of the 
tracked feature from the current image frame and testing 
where this template correlates in the subsequent frame. The 
location of the highest correlation is interpreted as the new 
location of the feature in the subsequent frame.  

 The project presented in [5] and our project are very 
similar regarding the objective and managing the mouse in a 
different way to interact with the computer. However, we 
include the design of a virtual keyboard to allow users to type 
words and have a better experience, using any application 
provided by the underlying operating system. Besides and 
more important, our assistive technology hardware will be 
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increased not only to control a computer, but also a 
wheelchair, a TV, and other electro-electronic utilities.   

 A very interesting research study was conducted in [6]. 
The objective was to formulate a better practice model for the 
application of VR (Virtual Reality) intervention for adults with 
intellectual and developmental disabilities (IDD). The research 
group participated in an 8 week VR program using 
GestureTek's IREX video capture technology operated by the 
local caregiver staff. The VR programs were found to attract 
full participation by the participants at moderate levels of IDD 
but some difficulties were found in fully engaging all 
individuals at severe levels of IDD. Different commercial VR 
systems were used and were found to be usable by health-
profession students and local caregiver staff. Significant 
improvements in physical fitness were demonstrated by the 
research group.  

 Finally, in [7] a prototype wheelchair with legs for people 
with motor disabilities was proposed. The objective was to 
demonstrate the feasibility of a completely new approach to 
mobility. The authors' prototype system consisted of a chair 
equipped with wheels and legs, and is capable of traversing 
uneven terrain and circumventing obstacles. The important 
design considerations, the system design and analysis, and an 
experimental prototype of a chair were discussed. The results 
from the analysis and experimentation tried to show the 
feasibility of the proposed concept and its advantages 

III. SPECIFICATION AND DEVELOPMENT 

The development of a system like this, capable of bringing 
some independence to the handicapped, is of great value to our 
society. By including the tetraplegic in the digital realm, the 
system makes them able to perform daily tasks that they were 
not able before, providing personal independence and digital 
inclusion. 

With this assumption, a research was initiated to develop a 
comfortable, practical and aesthetically pleasing device, which 
is inserted in the user’s mouth. According to [8], the tongue, 
being an organ attached to the lower face (jaw) and floor of 
mouth, fits better to prosthesis installed on the lingual surface 
of lower incisors, thus making the movements more 
comfortable and less tiring.  

With the aid of dental professionals we have developed a 
model of partial prosthesis, composed of two micro-switches 
and a mini joystick that can be nicely accommodated in the 
user’s jaw. The joystick moves to 4 sides (up, down, left, right) 
and can also be used as a mouse wheel when pressed. The two 
micro-switches are employed as the left and right mouse 
buttons. The connection between the prosthesis buttons and the 
controller circuit is made by wire resin, reducing the thickness 
of wires, allowing an individual to use the prosthetic device 
with his/her mouth closed. Figure 1 depicts the prosthesis being 
constructed. 

The user communication with his/her personal computer is 
done in a wireless fashion, sending all motion captured to the 
PC through radio signals. The software in the PC captures, 
interprets and executes the commands sent by the users. 

A. Prosthesis 

 
Before dealing with peripherals or the software, the 

development of the dental prosthesis was initiated. For this, it 
was taken into account some features of the electronic 
components involved (joystick and buttons) as protection 
against rust, against liquids and the possibility of a user to get a 
shock from the components. The parameters were analyzed and 
the electronic components were isolated to ensure user’s safety. 

 

 

 

 

 

 

 

 

 

Figure 1 – Initial prosthesis model. 

 

Since we adopted the use of a dental prosthesis, each user 
has to pass through a clinical phase consisting of an anatomical 
and physiological oral analysis. This might be considered a 
disadvantage since there is not a unique prosthetic device that 
would fit every individual. However, the construction of a 
dental prosthesis is costless, making the project feasible and 
non-expensive.   

Figure 2 shows the final version of the prosthetic device. 
Note that the switches have been modified from earlier 
versions. The ones adopted in the final prosthesis showed to be 
more comfortable and easy to use. 

 

 

 

 

 

 

 

Figure 2 – Final prosthesis model. 

B. Assistive Technology System – Hardware 

  

 The project designs the hardware as a set of two elements, 

the transmitter module, inserted in the user’s mouth and 

specified in Figure 3, and the receiver module, connected to a 

PC and specified in Figure 4. 

 The transmitter module is responsible for the data 

acquisition, interpretation and transmission. The 
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microcontroller, central core of this module, starts the 

variables used to capture movement and the RF (Radio 

Frequency) communication system. After the initialization 

step, the firmware in the microcontroller remains in a loop 

periodically checking the communication doors and obtaining 

new values for the Joystick, left and right switches. The 

serialized data is sent to the RF module, providing information 

to the receiver module. 

 

 
 

Figure 3 – Transmission module diagram. 

 

 When connected to the PC USB port, the receiver module 

is powered up. This module is responsible for interpreting 

commands from the transmitter module and encoding data 

using the HID Windows Class to control the mouse cursor, 

i.e., data sent by the user controls the mouse movement and 

mouse button clicks.  

 
Figure 4 – Reception module diagram. 

The HID Windows class is an interface for identifying 
human interface devices. It consists of device description 
classes providing information from BIOS setup and 
microcomputer manufacturer [9]. It allows mouse controlling 
without requiring the installation of additional drivers.  

The commands received via radio frequency are 
interpreted, packaged and sent to the operating system in a 
vector format with four positions, each representing an 
operation to control the mouse, as shown in Table 1. 

Table 1- Data sent to the computer in order to manage the mouse. 

Vector Position Action 

0 Type of mouse click. 

1 Pointer speed in the X axis. 

2 Pointer speed in the Y axis. 

3 Rotate the mouse wheel. 

 
 The PIC microcontroller 18F4550I was chosen 

because it offers the USB communication interface (necessary 
for connecting to the PC). Communication via radio transceiver 
is accomplished by the Fbee® modules in conjunction with the 
MiWi™ protocol stack, supporting peer to peer 

communication. The P2P architecture allows a decentralization 
of the network, thus each module can have both roles of client 
and server, eliminating the need for a manager or infrastructure 
associated with it [10]. 

Powered with a DC voltage of 5V each module consumes 
approximately 80mA CC. The transmitter module, remotely 
located with the user, is powered by a 9V battery. This voltage 
is regulated internally. The receiver module is powered by the 
PC USB port. 

The maximum distance between the modules is given by 
the RF modules maximum power. In this case, the option to use 
the FBee transmitters has provided a maximum distance of 
approximately 150 meters between the transmitter and the 
receiver module, which in our case is much more than the 
necessary. 

C. Software 

 
With the hardware ready to use, the individual can interact 

with the computer by controlling the mouse. However, that was 
all that he/she could do. To improve the user’s experience a 
virtual keyboard was also developed. Through this keyboard 
the user can type words and paste them to any application. In 
this fashion, one can use the Web through the interaction of our 
keyboard and a Web Browser, one can type words in an Editor, 
prepare a datasheet or presentation, ultimately one can use any 
application as a regular user. 

Since our users control the mouse by moving their tongue, 
the virtual keyboard was designed to minimize the need for 
moving the mouse when typing. An intelligent algorithm was 
developed making the virtual keyboard able to complete words 
according to the probability of writing.  

The probability calculation to complete a word is based in 
its incidence, making the algorithm flexible according to the 
user’s vocabulary. To correctly complete a word, the algorithm 
queries the most probably word in a database. Initially, the 
database must be populated with a large number of words in a 
certain language, Portuguese in our case. Each word has a 
counter that accounts for its occurrence. Each time a word is 
used, its counter is incremented. Thus, the algorithm simply 
searches the word with the greatest counter beginning with the 
typed characters. The search only begins after the inclusion of 
at least two characters.  

The searching algorithm returns the 50 most used words 
that start with the characters entered. From the feedback, the 
user is presented with the most probable word, i.e., the word 
with the highest occurrence. After selecting the word the 
algorithm writes it in the virtual keyboard text box. Words that 
have not yet been used and are not in the database might be 
easily inserted using the virtual keyboard.  

Figure 5 depicts the virtual keyboard when a word is being 
typed. In this example the user wants to type “engineer”, which 
in Portuguese is “engenharia”. Note that after the two initially 
characters have been typed, the algorithm correctly completes 
the word automatically for the user. The user selects an 
application to send the word, in this case the Notepad is 
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selected, and press a button to paste it. The application is 
always showed in the background. 

 Figure 5 – Virtual keyboard model 2. 

Not all possible applications are known by the virtual 
keyboard a priori, only the most common ones. If the user 
needs to interact with a new application, he/she only needs to 
register that application within the keyboard, which will 
interact with the desired application through the underlying 
operating system.  

Because the system constantly queries the database, indexes 
were created on the tables in order to maintain a predefined 
structure to speed up searches.  

A brief study on the virtual keyboard design was 
conducted. The idea is to minimize the need for moving the 
mouse when typing, hence making the user experience more 
comfortable. Afterwards, two interface models were projected. 
The first model, depicted in Figure 6, contains few buttons, and 
directional arrows to navigate to the next letters. The following 
most probably letters are emphasized in six smaller buttons 
located at the top of the keyboard, just below the text box. In 
the second model, depicted in Figure 5, the keys are arranged 
as in a standard keyboard with a larger size. The following 
most probably letters are also emphasized, but they are colored 
to stand out, instead of having them in special buttons. 

 

 

 

 

 

 

 

 

 

Figure 6 – Virtual keyboard model 1. 

The development of two interface models allowed a 
comparative study presented in the next section.  

IV. TESTING AND VALIDATION 

This section presents results obtained by conducting 
experiments in real use situations. The experiments performed 
were testing prosthesis adaptability, virtual keyboard 
performance and user’s safety. The testing scenario employed a 
laptop computer with Intel® Dual Core 1.86GHz processor, 
2GB of RAM and Windows® Seven as the operating system. 

A. Prosthesis adaptability and virtual keyboards 

performance 

 
Every assistive technology requires some training 

beforehand. Our system is not different. By wearing the 
prosthetic device developed, the user may feel some difficulty 
at the beginning.  With this assumption, tests were performed 
to assess the time it takes to learn how to use the system 
satisfactorily and quickly.  

The tests take into account the two virtual keyboard models 
presented earlier and indicate which one would be better to use. 
To perform these tests, users were given a summary of this 
work for typing in both models.  

To calculate the performance of our searching algorithm we 
analyze how many characters the algorithm needed to correctly 
complete the word when it was first typed. The results showed 
that 57.89% of the words were completed correctly with less 
than three typed characters and 42.11% of the words were 
completed with an error of gender or needed four or more 
typed characters. It can be concluded that for every 100 words, 
58 were correctly suggested in the very first time. After that, 
the error rate drops to less than 10%. 

Another experiment was performed to check which virtual 
keyboard would present the smaller route to type words, i.e., 
which keyboard model would require less tongue movements 
from our user. Using the software OdoPlus [11] to measure the 
distance traveled by the mouse pointer, words containing 
opposite characters were typed.  

Considering that the mouse pointer was initially located on 
the center of each keyboard the characters "za" were typed. It 
was found that in model 1, the distance traveled was 13.14cm, 
while in model 2 was 8.24 cm, representing a saving of 37.19% 
in the route. In a second test, typing the characters “ba” the 
distance was 2.87 cm in model 1 and 9.76 cm in model 2, 
which represents 240.07% increase on the route.  In general, it 
can be noticed that model 2 is more intuitive because it is 
similar to regular keyboards, which ultimately leads to a higher 
performance, despite the greater distance to be traveled by the 
mouse pointer. The results are presented in Figure 7.  

Figure 7: Time to complete words per keyboard model. 
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B. Algorithm adaptation and  efficiency 

 
The algorithm adaptation and efficiency experiment aims to 

determine the evolutionary behavior of the algorithm as the 
database gets populated when words are typed.  

We used pieces of sections in this scientific article, for a 
total of 1000 words typed. Results showed that there is an 
increased efficiency of the suggestions in most sections 
entered. Table 2 shows the efficiency for every 250 words 
typed within text of the same subject. Considering the equation 
1, which states that efficiency is equal to the saved typed 
characters divided by the total typed characters, the efficiency 
was calculated. Thus, efficiency is a rate that measures the 
saved characters when typing a text.  

As it can be noticed, efficiency increases as the text is 
typed, stating that the algorithm gets used to the user’s 
vocabulary. For instance, when typing the Hardware section, 
the efficiency rate was 26.60% at the beginning of the typing 
process, going up to 28.70% at the end of the process. 

There is however some difficulty in helping to write in two 
situations: words of different genders, which is a problem 
depending on the language, like Portuguese, but not English, 
and differing words using their form in singular or plural. 
Suppose the database has stored that the words "player" 
occurred 10 times and "players" with 9 occurrences so far. The 
problem arises when one needs to write the second word. Since 
the singular form has occurred more times, the algorithm will 
keep suggesting the first word and to get the second word the 
user will have to type the plural form entirely. 

 

Equation 1: Algorithm efficiency 

charstotal

charssaved
efficiency

_

_
  

 

Table 2- Efficiency of the algorithm suggestions  

Theme Beginning of 

typing 

End of 

typing 

Average 

Abstract 4.30% 11.90% 8.10% 

Introduction 16.40% 34.40% 25.40% 

Hardware 26.60% 28.70% 27.65% 

Results 25.30% 38.40% 31.85% 

 

  

C. Reliability and prosthesis safety experiment 

 

 The reliability and prosthesis safety experiment aims to 

investigate the possibility of voltage existence in the prosthetic 

device and what, if any, is the prosthesis efficiency loss in real 

use conditions. 

 Since the prosthesis was the first piece built of this work, it 

could undergo a more extensive usability testing. During 10 

months of use, tests were made in order to obtain an average 

wastage rate and loss of effectiveness rate. 

 The results showed that although through the naked eye the 

prosthesis seems totally isolated, micro-grooves allowed the 

infiltration of saliva into the buttons and joystick. In about 

nine months the prosthesis contacts did not respond. A more 

detailed analysis revealed that the contacts of the buttons were 

covered with verdigris, which resulted in loss of contact. 

These results allowed the observation of a definite time for 

loss of efficiency.  

 Furthermore, to improve the prosthesis quality, it was 

immersed in an aqueous solution simulating saliva. With the 

assistance of a precision multimeter, the voltage and current 

on the prosthesis were measured. The results were within the 

expected. The voltage presented in the prosthesis was 6 µV 

and the current was 2mA to 5mA, variation occurred with the 

button pressed and unpressed. The conclusion of this 

particular experiment is that there is no harm to our user when 

wearing the dental prosthetic device. 

 

V. CONCLUSION 

 
This work presented an assistive technology system 

composed by a set of hardware and software. The system aims 
to allow the user, a disabled person, mainly a tetraplegic 
individual, to interact with a computer managing the mouse 
and typing words in order to use Web Browsers, Word 
Processors, Datasheet Applications and any other application 
offered by the underlying operating system. 

To allow the user to interact with the computer, the system 
is formed by two pieces of hardware, the transmission module, 
which captures the tongue movements through a dental 
prosthetic device, interprets them and packages this input as 
data to be sent. The data package is received by the receiver 
module, unpackaged and by using the HID Windows Class, the 
movements made by the user are translated in mouse 
movements. 

Two virtual keyboards were also designed in order to let the 
user type words by pressing the switches in the dental 
prosthesis. The user types words and chose to what application 
he/she wants to send the data typed. An intelligent algorithm 
was also presented aiming to accomplish word completion. 
Experiments showed that after the user types three, or 
sometimes less, characters the algorithm was able to achieve a 
57.89% correctness rate for words typed for the very first time. 
The rate increases as that word is repeated in our user’s 
vocabulary, achieving more than 90% of correctness rate. 

Another important experiment measured the efficiency of 
our completion algorithm. The efficiency is a rate that 
measures the saved characters when typing a text. As it was 
showed by the results, efficiency increases as the text is typed, 
stating that the algorithm gets used to the user’s vocabulary. 
Finally, a third experiment proved that there is no harm to our 
user when wearing the dental prosthetic device. 

Future work includes increasing our assistive technology 
system to not only interact with a computer, but also control a 
wheelchair, a TV and other electro-electronic utilities, 
improving even further the impaired individuals’ way of life. 
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Abstract - The aim of pre-hospital emergency medicine is to 

save lives, minimize sanitary harm and restore the quality of 

life as good as possible. Emergency pre-hospital care has 

the challenge of being time critical in nature. It requires 

rapid decision making despite the limited information 

around the patient which contributes to the high risk of 

medical errors. Although many clinical decision systems 

have been proposed many decades ago for the purpose of 

improving the quality of healthcare and reducing medical 

errors in clinics and emergency departments, but none of 

them had introduced a design of a decision support system 

for the pre-hospital emergency treatment. This paper 

introduces a high level design for a comprehensive medical 

emergency decision support system (CMEDSS). The major 

contribution of this paper is that it provides a framework for 

a medical emergency decision support system that addresses 

the challenges of pre-hospital emergency treatment through 

the use of the patient’s electronic health record (EHR) and 

artificial intelligence techniques during the decision making 

process.  

Keywords: Emergency expert system; Intelligent decision 

support system; Electronic health record; Pre-hospital and 

emergency treatment.  

 

1 Introduction 

  The aim of emergency medicine is to save lives, 

minimize sanitary harm and restore the quality of life as best 

as possible. Pre-hospital care has the challenge of being 

time critical in nature.  

The literature has posted the potential role of health 

information technology in reducing emergency medical 

response times [1, 2] and improving the level and type of 

care provided to a patient through emergency care [3, 4, 5].  

Indeed, next generation medical emergency systems 

have been identified as an essential component of healthcare 

systems that should enable decision support for an 

integrated voice and data emergency communications 

system [6]. To this aim, the Hatfield Report [7] provided 

recommendations toward upgrading medical emergency 

systems infrastructures so that they can sufficiently address 

improvements and opportunities made available by existing 

technologies such as Internet Protocol (IP) networking 

standards, voice over IP (VOIP) communications, location 

identification techniques and public safety answering point 

(PSAP) processes and resources [8]. 

A systematic literature review by Garg et al. [9] of 100 

studies concluded that "Clinical decision support systems 

improved practitioner performance in 64% of the studies 

and improved patient outcomes in 13% of the studies". 

Another literature systematic review of 70 studies by 

Kawamoto et al. [10] found that "Decision support systems 

significantly improved clinical practice in 68% of trials." 

Clinical decision support (CDS) systems, with the 

potential to minimize practice variation and improve patient 

care, have begun to surface throughout the healthcare 

industry. Clinical Decision Support Systems are "active 

knowledge systems which use two or more items of patient 

data to generate case-specific advice" [11]. This implies that 

a CDSS is simply a DSS that is focused on using knowledge 

management in such a way to achieve clinical advice for 

patient care based on some number of items of patient data. 

CDSSs are aimed at supporting clinical diagnosis and 

treatment plan processes; and promoting use of best 

practices [12]. 

This paper presents a high level design for a 

Comprehensive Medical Emergency Decision Support 

System (CMEDSS) based on artificial intelligence that takes 

into consideration the patient's electronic health record in 

order to improve the quality of the decision making process 

in terms of both speed and accuracy. 

The use of the patient‟s electronic health record in the 

medical emergency decision making process is very 

important. It has been reported in [15] through a systematic 

review with healthcare practitioners how having preexisting 

patient information (e.g., medications, pre-existing medical 

conditions, allergies, blood type, etc.) could significantly 

reduce data collection time and help to reduce medical 
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errors and to increase quality of care provision across the 

emergency response continuum of care. 

Furthermore, the CMEDSS is designed in a way that 

permits the countries that didn‟t yet implement the concept 

of electronic health record (EHR) in their national 

healthcare centers to use the CMEDSS. This is because the 

decisions it makes don‟t totally depend on the patient‟s 

EHR, rather they are based on both the patient‟s EHR and 

his current status. So the CMEDSS can still function in the 

absence of the EHR. 

The CMEDSS is proposed for emergency care 

ambulances and emergency departments where more 

accurate decisions are needed in critical time. 

The paper is organized as follows: Section 2 provides 

a literature review on  the related work on emergency 

medical DSSs. Section 3 provides an overview on the 

framework of the proposed CMEDSS. Section 3 discusses 

the process of the CMEDSS. And section 5 discusses the 

architecture and the components of the CMEDSS. Finally 

section 6 concludes the paper.  

2 Related Work  

 Although medical decision support systems have been 

discussed extensively in the research, but researches 

introducing this technology into the area of medical 

emergency are too rare. We can summarize the researches 

that had introduced this technology to the area of emergency 

medicine below. 

The first medical emergency decision support system 

was MEDAS - Medical Emergency Decision Assistant 

System, which was designed in 1980. MEDAS is a 

knowledge-based interactive diagnostic system which assists 

in diagnosis of multiple disorders in human body [13]. The 

knowledge base consists of disorder patterns that constitute 

the background medical information required for diagnosis 

in the emergency and critical care medicine. This system is 

designed to provide the clinician with decision aids from the 

time the patient is first seen in the emergency department 

until the immediate risk of life has been minimized. The 

system includes life support protocols, diagnosis, 

recommendations for data acquisition, guidelines for 

therapy, storage and retrieval of the patient record, and a 

consultant library that may be accessed in real time. An 

automatic knowledge acquisition system for MEDAS has 

been proposed in [14] which assist physicians to build, test, 

and verify the knowledge base for MEDAS without the 

involvement of knowledge engineer. 

In [15, 16, and 17] a prototype has been made for a 

decision support system for medical Triage. Triage has been 

defined as the process of categorization of casualties based 

on their need for medical attention [16, 17]. In medical 

triage, the treatment category determines the level of 

urgency of medical attention, and decisions based on nurse‟s 

primary observations must be produced in the shortest time 

possible. In emergency departments in Australia, the triage 

nurses use the Australian Triage Scale (ATS) to guide them 

through the triage decision-making process [18]. The 

Australian College of Emergency Medicine (ACEM) adopts 

the Australian Triage Scale (ATS) as part of its triage policy 

[19]. Because the accuracy of triage decisions has a major 

impact on whether or not a patient may receive medical 

intervention in an appropriate time frame, it is critical for 

the health outcomes of the patient. It is envisaged that by 

providing decision support tools to assist triage nurses in 

producing correct and timely triage decisions that are 

consistent with standard triage scales, triage decision 

support systems can contribute to the improvement of 

quality of life of triage patients and also reduce costs 

occurring from misappropriation of resources [20]. 

The CMEDSS proposed in this paper combines the 

strengths of the medical emergency decision support 

systems discussed above in addition to the usage of patient‟s 

electronic health record (EHR) as an input to the DSS in 

emergency ambulances and departments, which is the major 

contribution of this paper.  

3 The CMEDSS Framework 

The CMEDSS is based on three aspects; intelligent 

decision support system, national electronic health records 

and web-enabled decision support system. The following 

subsections give an overview on each of them. 

3.1 Intelligent Decision Support System 

(IDSS) 

 Decision making work is now becoming more 

„knowledge oriented‟ [22] and the need for more 

„knowledge-driven‟ decision making support has laid the 

foundation to many artificial intelligence approaches and 

furthered the development of Intelligent Decision Support 

Systems (IDSS) [15].  

Intelligent Decision Support Systems (IDSS) is a term 

that describes decision support systems that make extensive 

use of artificial intelligence (AI) techniques. The aim of the 

AI techniques embedded in an intelligent decision support 

system is to enable these systems to support decision makers 

by gathering and analyzing evidence, identifying and 

diagnosing problems, proposing possible courses of action 

and evaluating the proposed actions to be performed by a 

computer, whilst emulating human capabilities as closely as 

possible [23]. 
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These DSSs are person-computer systems with 

specialized problem-solving expertise. The "expertise" 

consists of knowledge about a particular domain, 

understanding of problems within that domain, and "skill" at 

solving some of these problems [24]. IDSSs have been 

called suggestion DSS [25] and knowledge-based DSS [26]. 

3.2 National Electronic Health Records 

(EHR) 

 With the national movement towards data 

interoperability and standards development, electronic 

health record concept is at the heart of health informatics. 

Its purpose can be understood as a complete record of 

patient encounters that allows the automation and 

streamlining of the workflow in health care settings and 

increases safety through evidence-based decision support, 

quality management, and outcomes reporting [27]. 

An electronic health record (EHR) is an evolving 

concept defined as a systematic collection of electronic 

health information about individual patients or populations 

[28]. Such records may include a whole range of data in 

comprehensive or summary form, including demographics, 

medical history, medication and allergies, immunization 

status, laboratory test results, radiology images, vital signs, 

personal stats like age and weight, and billing information. 

[27]. 

The need for a better quality of service, unique 

identification of electronic health records, and efficient 

monitoring and administration requires a uniform and 

nation-wide organization for service and data access [29]. 

Several healthcare organizations worldwide are moving 

toward nationwide implementation of interoperable 

electronic health records. For instance, Canada Health 

Infoway [30] is an organization that provides specifications 

for a standard and nationwide healthcare infrastructure. The 

goal is to integrate information systems from different 

health providers and administrations (e.g., hospitals, 

laboratories, pharmacies, physicians, and government 

agencies) within each province, and then connect them to a 

nationwide healthcare network with standard data formats, 

communication protocols, and a unique health history file 

for each patient; where the health information is accessible 

ubiquitously, using common services according to different 

access privileges for patients and providers. Infoway‟s 

mission is to foster and accelerate the development and 

adoption of an interoperable Electronic Health Record 

(EHR) system [30]. 

National EHRs need a unique identifier for each 

record such as a national health record number which can be 

used to retrieve the patient's EHR. 

3.3 Web-Enabled Decision Support System 

 Web services promote software portability and 

reusability in applications that operate over the Internet. 

They are a transition to service oriented, component-based, 

distributed applications. In other words, web services are 

applications implemented as Web based components with 

well-defined interfaces, which offer certain functionality to 

clients via the Internet [31]. 

Web-enabled DSSs are based on web services where 

users can access them through the Internet. All types of DSS 

can be deployed using Web technologies and can become 

Web-based DSSs. Figure 1 shows the interaction between 

the user and the decision support system through web 

services. 

 

 

Figure 1.  Web-enabled DSS 

Web service architecture is built on open standards 

and vendor-neutral specifications i.e. they can be 

implemented in any programming language, deployed and 

then executed on any operating system or software platform 

[31]. 

4 The CMEDSS Process 

The eventual network for EHR transactions is likely to 

be conducted over the World Wide Web, which is open, 

flexible and convenient [32]. For the purpose of being able 

to retrieve EHRs in mobility (i.e. in healthcare ambulance) 

and to centralize all the data and operations in one place and 

to reduce the load on client side (i.e. using thin clients), 

client-server architecture is the appropriate architecture for 

the proposed CMEDSS.  

The CMEDSS is web-based which will be built on the 

server side of client-server architecture. The server side is 

located at a national healthcare center built around a country 

or several countries and keeps national EHRs for all people 

in that country. 

At the server side, three-layer design is an effective 

approach to the development of robust and easy 

maintainable systems. This architecture is appropriate for 

CMEDSS that needs to support multiple user interfaces. The 

set of layers at the server side includes the following: 

 Data layer - that manages stored data, usually in 

one or more databases. The data include EHRs and 

the knowledge base of the CMEDSS. 

DSS Web Services Internet User 

(Client) 
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 Business logic - (domain) layer that implements the 

rules and procedures of the business processing. It 

also includes the CMEDSS inference engine and 

the associated manipulation modules. 

 View layer - that accepts input and formats and 

displays processing results. 

As stated earlier, the national EHR needs a unique 

identifier. Using a national health record number to retrieve 

a patient's EHR is not suitable in emergency cases and 

especially in emergency ambulance care because the 

physicians have no means to know the patient's national 

health record number without being told. A better approach 

is to associate the patient's fingerprint with the EHR, so that 

in emergency cases, the patient's EHR can be retrieved 

easily by reading the patient's fingerprint using a fingerprint 

reader devise. 

Figure 2 shows the real time retrieval process of EHR.  

First, the healthcare staff uses a fingerprint reader devise to 

read the patient's fingerprint. The patient's fingerprint is then 

entered into the emergency care (ambulance or department) 

computer. It is then used to retrieve the patient‟s EHR. The 

EHR is usually large and needs long time to be transferred 

to the emergency care computer; therefore a summary of the 

EHR can be requested to be transferred instead.  The 

summary can be designed to include the standard and most 

important information about the patient (e.g., pre-existing 

medical conditions, allergies, blood type, etc.). 

 The CMEDSS core decision making processes have 

not been discussed yet. Figure 3 depicts the process of the 

CMEDSS. In order to get a decision from the CMEDSS, the 

physician inputs the patient's fingerprint and his current 

condition information into the physician user interface, and 

then submits this information to the server requesting a 

decision support.  

Figure 2.  Real-time retrieval process of electronic health record based on the patient's fingerprint 
 

Figure 3.  The CMEDSS Process 
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The server directs the request to the CMEDSS which 

is implemented internally at the server side. The CMEDSS 

retrieves the patient's EHR based on his fingerprint, extracts 

the important information from it, and use this extracted 

information along with the patient's current status 

information to output a decision regarding the patient's 

urgency level and a decision to handle the situation. The 

patient's urgency level determination is important in order to 

achieve an efficient appropriation of resources when the 

patient reaches an emergency department and improve the 

quality of care provided to the patient as recommended in 

[15, 16, and 17]. And the decision to handle the situation 

can assist physicians regarding the diagnosis in the 

emergency, critical care medicine, and pre-hospital 

treatment as proposed in [13]. The server then sends the 

CMEDSS output to the emergency physician user interface. 

These operations will be highlighted in the following 

section which explains the structure and components of the 

CMEDSS and the responsibility of each component. 

5 The Design of the CMEDSS 

The design of the proposed CMEDSS is shown in 

Figure 4. The system has five components; the healthcare 

emergency staff user interface, the input module, the facts 

workspace, the inference engine and the knowledge base. 

These components are explained in detail in the following 

subsections. 

5.1 Healthcare Emergency Staff User 

Interface 

 The user interface is the means of communication 

between a user and the CMEDSS problem-solving 

processes. The CMEDSS should include enhanced 

interfaces that enable automated data capture as opposed to 

manual data entry and that “fit” with the healthcare staff‟s 

emergency care processes as opposed to “getting in the 

way” of their time-critical work. 

It has to be able to accept the queries or instructions in 

a form that the user enters and translate them into working 

instructions for the rest of the system. It also has to be able 

to translate the answers, produced by the system, into a form 

that the user can understand. 

5.2 Input Module 

 The input module deals only with the information 

submitted by the user, it forms a gateway to the facts 

workspace. It accepts two inputs from the user, the patient‟s 

fingerprint and his current status data. Then it uses the 

patients fingerprint to retrieve his EHR from the EHRs 

database, through the EHR retrieval module. The EHR is 

then passed to the EHR critical data extraction module, 

which extracts critical and important information from the 

EHR, this module is needed because the EHR is large and 

the CMEDSS does not need all information in it. The 

critical information needed by physicians needs to be 

determined by emergency and critical care experts (e.g. 

blood type, diabetic, heart disease, etc.), then defined in the 

EHR critical data extraction module. The input module then 

passes the extracted critical features regarding the patient 

and his current status data to the facts workspace. 

5.3 Facts Workspace 

 The facts workspace is an area in the computer storage 

where CMEDSS stores the facts it has been given about 

situation and any additional information it has derived so 

far. It is also called blackboard, scratchpad or working 

storage. It includes the facts inserted by the input module 

Figure 4.  Structure of the proposed CMEDSS 
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and the facts derived by the inference engine during the 

reasoning process. 

5.4 Inference Engine 

 The heart of the CMEDSS is the inference engine. It 

accepts the input facts and chooses rules from the 

knowledge base to fire. Its implementation involves issues 

such as data structures, searching, sorting, pattern matching 

(recognition), and probability calculation. Many ready-made 

inference engines are available in the market and can be 

used for any intelligent DSS. Examples include OPS5, VP-

Expert, EXSYS, KES, M.1, and Personal Consultant [33].  

The inference engine produces two types of decisions, 

one regarding the urgency level of the patient status and one 

regarding a decision to handle the situation. The urgency 

level determination is important as proposed in [15, 16, 17, 

18, 19, and 20] in order to ensure that the patient will 

receive medical intervention in an appropriate time frame 

when he reaches the hospital, it is critical for the health 

outcomes of the patient and also it reduces costs occurring 

from misappropriation of emergency resources. The 

decision to handle the situation, implements emergency 

medication standards to deal with the patient‟s situation 

including life support protocols, recommendations for data 

acquisition, diagnosis, proposing possible courses of action 

and therapy. 

5.5 Knowledge Base 

 The expertise of the CMEDSS is represented in the 

knowledge base and the strength of the CMEDSS is 

reflected by the strength of the knowledge it possesses in its 

knowledge base. This includes best emergency care 

practices about emergency triage, diagnosis in the 

emergency, critical care medicine, and pre-hospital 

treatment of each specific health condition. All this 

knowledge must be taken from an expert and encoded into 

the knowledge base either by manual methods using a 

knowledge engineer as in [13] or using automatic 

knowledge acquisition methods like inductive learning, 

naïve Bayesian learning, generic algorithms learning, or 

artificial neural network learning. 

6 Conclusions and Future Work 

 The use of decision support systems for enhancing 

quality and efficiency of medical decision-making has been 

flagged by many researchers. However, the greatest part of 

researches conducted around medical decision support 

systems were aimed to be used in clinics. Few researches 

proposed the use of decision support systems in emergency 

departments due to the greater challenges in emergency 

settings. And this paper is the first paper to introduce the 

use of an emergency decision support system in emergency 

ambulances as well as in emergency departments. 

This paper presents a high level design of a 

comprehensive medical emergency decision support system 

based on artificial intelligence and the patient‟s EHR. We 

proposed the use of the patient‟s EHR in the decision 

making process which is the major contribution of this paper 

(in addition to introducing the use of DSS in emergency 

ambulances). This system is expected to improve not only 

the quality of treatment provided to patients in pre-hospital 

emergency settings, but also the quality and timeliness of 

the emergency response when the patient reaches the 

emergency departments.  

Future work includes the implementation, testing 

validation and refinement of the system. 
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Ingolstädter Landstrasse 1 85764 Neuherberg, Germany

Abstract

The complexity of gene regulatory networks described by coupled nonlinear differen-
tial equations is often an obstacle for analysis purposes. They are prone to internal
parametrical fluctuations making thus robustness a crucial property of these net-
works to attenuate the effects of internal fluctuation. Therefore, the development of
effective model reduction techniques for uncertain biological systems is of paramount
importance in the field of systems biology. In this paper, we apply a Gramian-based
approach for model reduction for gene regulatory networks based only on finding
generalized Gramians and standard matrix transformations. The method is based
on finding a generalized controllability and observability Gramian of the uncertain
system and then based on a state transformation matrix a reduced-order represen-
tation. Under the assumption that the structured uncertainties are norm-bounded,
we can prove that the reduced-order balanced system is also stable.

Key words: Gene regulatory network, uncertain system, model reduction

1 Introduction

Many gene regulatory networks are described by complex models which are
difficult to analyze and also difficult to control. Analysis and synthetic design
of such networks is very sensitive to parameter perturbations [1]. Errors in
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parameters such as external perturbations and modeling errors are caused
by data inaccuracies or computation errors. These perturbations can lead to
location errors of equilibria, to instabilities, and even to spurious states [7].
Therefore, a rigorous understanding of the qualitative robustness properties
of gene regulatory networks with respect to parameter variations becomes
imperative [2]. On the other hand, order reduction may overcome some of
the difficulties but at the price of a significant loss of accuracy. Therefore,
a stringent need arises to analyze it such that it is made useful for many
applications. The idea is to employ a model simplification that leads to a
model of lower complexity, easier to handle, and to a simplified synthesis
procedure for design problems. In addition, this simplification is reducing the
computational complexity.

Balanced truncation is known as a popular method for model reduction since
it is relatively simple and the quality of the reduced model is guaranteed.
The interpretation of most balancing techniques is based on the concept of
past and future energy. The most important contribution was the balancing
for stable minimal linear systems [3]. It is based on a state–space point of
view of employing the well–known observability and controllability Gramians
and related to the past input energy (controllability) and future input energy
(observability). The idea behind transforming a system into balanced form is
to easily detect and remove a state component of the initial system to obtain
a reduced–order model. The importance of a component is based on Hankel
singular values which determine if the output energy of a certain component is
small and thus difficult to observe and if the input energy to reach this state is
large. While for linear systems finding a balancing coordinate transformation
via solutions of the controllability and observability Lyapunov equations is
quite easy, for nonlinear systems this equations are almost impossible to solve
and thus balancing becomes in general not a simple task [5]. In a previous
work [6], we applied a nonlinear model reduction technique for gene regula-
tory networks. However the very important concept of uncertainty paired with
model simplification was not taken into account so far. We propose to apply
and enhance the theoretical concepts from [8] to gene regulatory networks to
obtain a stable model reduction under consideration of norm-bounded uncer-
tainties. To the author’s best knowledge, this method has not been applied so
far to the analysis of gene regulatory networks.

The general kinetic equation describing the temporal evolution of the con-
centration for the j-th state and its output of a N–gene regulatory network
is:
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ẋi =−
N∑

j=1

aijxj +
N∑

j=1

bijxixj (1)

+ (
N∑

j=1

cijxj +
N∑

j=1

dijxjxi)ui

yi =xi

where xi is the current concentration state, yi the current output of the gene
regulatory network, and ui is the external input, and mij aij, bij, cij and dij
are the kinetic parameters associated with these reaction equations.

2 Global Asymtotic Stability Criteria for Quadratic Differential
Equations

The general kinetic equation describing the temporal evolution of the gene
regulatory networks (1) has a quadratic nonlinear term given as:

ẋi = −
N∑

j=1

aijxj +
N∑

i=1

bijxixj (2)

In state space representation, we obtain the following general form:

ẋ = Ax+ [BT
1 x, · · · , BT

Nx]Tx (3)

where A = aij and BT
i is given as

BT
i =




0 · · · 0

b1i · · · bNi
0 · · · 0




(4)

A Lyapunov function for the above system is given as [4]

V = xTPx, P > 0 P = P T (5)

with

ATP + PA = −Q, Q > 0, Q = QT (6)
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guaranteeing thus the asymptotic stability of system (3) in the whole. Addi-
tionally, we need to require that V̇ < 0 for all x 6= 0. This leads to

V̇ = xT (PA+ ATP )x+ 2xTP [BT
1 x, · · · , BT

Nx]Tx (7)

V̇ is negative definite if and only if all the third-order terms it contains are
identically zero, i.e.

xTP [BT
1 x, · · · , BT

Nx]Tx = 0 (8)

By choosing Q = I, we obtain assuming A is symmetric:

P = −1

2
A−1 (9)

The resulting stability condition for our system is:

N∑

i=1

ãijx
2
i

N∑

j=1

bijxj = 0 (10)

where ãij represent the elements of the inverse matrix.

3 Problem Statement

Notations:

Lm2 = Lm2 [0,∞) is the space of square integrable functions in Rm.

||∆|| = supz∈Lm2 [0,∞),z 6=0(||∆z||/||z||) is the gain of an operator ∆ in L(Lm2 )

∆T is the adjoint operator of ∆ if ∆ is linear.

If ∆ = ∆T , then ∆ < 0 means that xT∆x < 0, ∀x 6= 0 in Rm.

L(Lm2 ) is the space of all linear bounded operators mapping from Lm2 to Lm2 .

| · | is the Euclidean norm in Rn.

MT is the transpose of a complex matrix M .

|z|2Λ = zTΛz for z ∈ Rm and a nonnegative matrix Λ ∈ Rm×m.
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State space representation of a transfer matric is given as G(s) =



A B

C D


 =

C(sI − A)−1B +D

In the following, we will demonstrate the application of the model reduction
based on balanced truncation.

For the sake of simplicity, we will consider a restricted state domain where the
nonlinearity can be approximated by a linear function, f(xi) = xi.

ẋj = −ljxj +
N∑

i=1

Dijxi +
p∑

i=1

mijui (11)

Thus, the system has a linear representation of the form

ẋ(t) =Ax(t) +Bu(t)) (12)

y(t) =Cx(t)

with C = I and

A = D − L and B = M (13)

It is assumed that the linear system is stable: A = D−L is Hurwitz. We will
assume that matrix D is a symmetric matrix.

Let us consider the uncertainty structure

∆c =
{

diag(∆1, · · · ,∆k) : ∆i ∈ L(Lhi2 ),∆i causal, ||∆i|| ≤ 1
}

(14)

resulting into the following uncertain gene regulatory network:

ẋ(t) =Ax(t) + Eζ +Bu(t)) (15)

z(t) =Kx(t)

y(t) =Cx(t)

ζ(t) = ∆z(t), ∆ ∈ ∆c

with C = I and B,E,K are diagonal matrices. x(t) ∈ Rn is the state, u(t) ∈
Rm is the control input, z(t) ∈ Rh is the uncertainty output, y(t) ∈ Rl is
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the measured output and ζ(t) ∈ Rh is the uncertainty input. We also have
h = h1 + · · · , hk.

We thus obtain a nominal system as

M =



M11 M12

M21 M22


 =




A E B

K 0h×h 0h×m

C 0l×h 0l×m




(16)

The uncertain system (15) is defined by a linear fractional transformation
representation as Fu(M,∆) := M22 + M21∆(I −M11∆)−1M12 if I −M11∆ is
non-singular.

We will define the following operators:



A∆ B∆

C∆ 0


 =



A+ E∆K B

C 0


 (17)

In the following, we will give the definition of robust stability.

Definition 1 (Robust Stability): The uncertain system (15) is robustly stable
if (I −M11∆)−1 exists in L(Lh2) and is causal for all ∆ ∈ ∆c.

The next lemma states a necessary condition for robust stability.

Lemma [8]: The uncertain system (15) is robustly stable if and only if there
exists a Θ ∈ PΘ and X > 0 such that

ATX +XA+KTΘK +KEΘ−1ETX < 0 (18)

where

PΘ = {diag(θ1Ih1 , · · · , θkIhK ) : θi > 0} (19)

is the positive commutant set corresponding to ∆c.

We further introduce the generalized Gramians for the uncertain system from
equation (15).
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Definition: The matrices S > 0 and P > 0 are said to be generalized controlla-
bility or observability Gramians for the uncertain system (15) if the following
inequalities hold:

A∆S + SAT∆ + B∆BT∆ < 0 ∀∆ ∈ ∆c (20)

AT∆P + PA∆ + CT∆C∆ < 0 ∀∆ ∈ ∆c.

As shown in [8], we can define the following algebraic Riccati inequalities for
the uncertain system (15)

AS + SAT + SKTΛCKS + EΛ−1
C ET +BBT < 0 (21)

and

ATP + PA+ PEΛ−1
0 ETP +KTΛ0K + CTC < 0 (22)

with S, P > 0, Λ−1
C ,Λ0 > 0 and ΛC ,Λ0 ∈ PΘ.

Theorem: The following statements are equivalent assuming K = E:

(i) The uncertain system (15) is robustly stable.

(ii) The Riccati inequalities (21) and (22) admit a solution S, P > 0 for some
ΛC ,Λ0 ∈ PΘ.

Proof: We will prove the equivalence between (ii) and (i). We start from in-
equality (21) and we can easily show that inequality (21) holds with X = S,
ΛC = Θ−1 and K = E. The other inequality can be proven similarly as well
as the equivalence between (i) and (ii).

Definition: An uncertain system of the form (15) is said to be balanced if it
has generalized observability and controllability Gramians which are identical
diagonal matrices.

The diagonal entries are called generalized Hankel singular values for the un-
certain system.

We propose following the theoretical background in [8] a model reduction
algorithm:

1. Solve the inequality system in (20) to obtain the generalized Gramians
S, P > 0.
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2. Balance S, P by choosing a state transformation matrix T such that

TST T = (T−1)TPT−1 = diag(Σ1,Σ2) = diag(γ1, · · · , γn) (23)

where γ1 ≥ · · · γd > γd+1 ≥ · · · ≥ γn > 0, Σ1 = diag(γ1, · · · , γd) and
Σ2 = diag(γd+1, · · · , γn).

3. Obtain the transformed nominal system as

M =




Ā Ē B̄

K̄ 0h×h 0h×m

C̄ 0l×h 0l×m




(24)

with Ā = TAT−1, Ē = TE, B̄ = TB, C̄ = CT−1 and K̄ = KT−1.
The reduced order uncertain system of order d is defined as

Mr =




Ār Ēr B̄r

K̄r 0h×h 0h×m

C̄r 0l×h 0l×m




(25)

4. Represent the reduced dimension uncertain system as Gr∆ = Fu(Mr,∆),∆ ∈
∆c.

In the following, we will give a useful theorem without proof adapted from [8]:

Theorem: Consider a robustly stable uncertain system as given in (15) and
suppose we can derive a reduced dimension uncertain system Gr∆ based on
generalized Gramians and state transformation. Then the system Gr∆ is also
balanced and robustly stable. We also have

sup
δ∈[−1,1]

||G∆(s)− Gr∆(s)||∞ ≤ 2(γt1 + · · ·+ γtq) (26)

where γti denote the distinct generalized Hankel values of γd+1, · · · , γn.

Example: Consider the following uncertain system of the form (15) with ∆ =

δ ∈ [−1, 1] and withB = C = K = E = diag(1 1) andA =




−9.7 0 0

1 −1.7 0

0 1 −2.7




.

We choose |δ| = 0.3. Based on the described balanced truncation procedure,
we obtain the balanced Gramian Σ = diag(0.33 0.17 0.05). A natural choice
is to truncate the last state and keep the first two. The upper bound of the
error is given according to (26) as supδ∈[−1,1] ||G∆(s)− Gr∆(s)||∞ ≤ 0.1.
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4 Conclusions

We present a model reduction of an uncertain gene regulatory network based
on balanced truncation. The method is based on solving generalized Gramian
inequalities and matrix transformations. We assume that structured uncer-
tainty is norm bounded. When applied to linear systems, the reduced model
corresponds to the usual balanced truncation of the system. A simple exam-
ple is illustrating this novel approach of model reduction for gene regulatory
networks.
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Abstract - This paper proposes a new Ambulance System that 

automates all the processes of pre-hospital activities. 

Automation starts from allocating and dispatching the right 

ambulance, supporting the carried patient treatment by 

accessing the electronic health record, identifying the right 

hospital and communicating with the emergency department. 

The system has been developed by integrating several 

components. It has been found that the proposed web based 

ambulance system can provide a strong backbone for pre-

hospital management process and gain competitive 

advantages. The system may reduce the response time and the 

human errors. 

Keywords: Ambulance, Dispatching, GPS, Emergency 

Department, Pre-hospital 

 

1 Introduction 

   Pre-hospital patient treatment satisfaction has a huge 

impact on saving humans lives. Many studies wrote about the 

importance and possible advantages gained from reducing 

response time, and early specialized pre-hospital patient 

management. Moreover, it is realized that quick response time 

of pre-hospital patient management decrease the percentage of 

death and improves patient effect [5]. In a crowded area such 

as London, UK, it has been found that 49% of wounded 

people need 2 hours to reach a sufficient hospital care, 79% 

are victims of accidents in rural roads die in the accident 

place, and other 11% dies during their transportation to the 

hospital. And 8% of these accidents had chance of 50% to 

survive if enough pre-hospital management existed [10].  

Saudi Arabia (SA) is a country in Middle East that has a large 

population, and thus crowded traffic in its main cities roads, 

about 26660857 populations was estimated in 2009 and, 

27563432 in 2010. Riyadh as an example is the capital of SA 

and one of its main crowded cites. In 2009 it had about 42 of 

Ministry of Health Hospitals and 26 of private sector 

hospitals. Moreover, The Saudi Red Crescent Authority 

(SRCA)'s in 2009 had 274 first aid centers and 1097 

ambulances [17]. Due to it's crowded roads many people 

become victims of car accidents and long response time. In 

Riyadh because of car accidents, in 2007 about 353 deaths 

was reported, in 2008 about 357 and 266 deaths was reported 

in 2009 [18]. Thus, the critical role of pre-hospital treatment 

has a very important and critical impact on reducing the 

number of victims; their role could rescue many lives if it was 

fast and reliable.  

Dealing with this amount of car accidents in such busy roads 

is a challenge for ambulances to arrive at the accident location 

in a short response time, and react to the patient with the best 

treatment. Therefore, this paper presents a solution to improve 

the management of ambulance dispatch and pre-hospital 

treatment with the fast response time and least amount of 

human mistakes for ambulance and hospital allocation 

process. The proposed Ambulance system automates the 

whole process (by using SOA, GPS and other technologies) 

from the time accident is reported by a caller to the time the 

patient is picked up and reaches the suitable hospital.  

The paper is divided into four parts; first part includes a 

literate review of current systems that automates some of its 

processes, other research studies and human error and system 

failure. The second part describes the contribution which is a 

proposed Ambulance System, its components and how it 

functions. The third part includes the discussion and finally 

the conclusion and future work in last section. 

2 Literature Review 

 Communication using computerized technology in many 

emergency medical systems (EMS) especially ambulance 

systems has been developed during the last two decades [4].  

2.1 Current Systems 

  One of the first computerized systems was developed to 

manage the communications such as Computer Aided 

Dispatch (CAD) that was used in 1995 in Victoria-Australia. 

In 1998, this system was enhanced and introduced with a 

Medical Priority Consultant's Advanced Medical Priority 

Dispatch. It was one of the best emergency systems that 

provided to the hospital clinical information of the patients 

and included an automatic vehicle location system (AVL) in 

their ambulance [4].  
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 Moreover, in 1998 due to the lack of communication between 

agencies, a project was developed to gain communication 

interoperability network by using different technologies. It is 

called Silicon Valley Regional Interoperability Project 

(SVRIP), that respond to emergency incidents with the nearest 

and most appropriate emergency response resource [6].  

In 2007 CADIP (Computer Aided Dispatch Interoperability 

Project) was launched by the department of Homeland 

Security's Office for Interoperability and Compatibility (OIC). 

CADIP is created to solve the concerns of difficulty that 

occurs when an emergency response agency is trying to 

respond to multi-jurisdictional emergencies that are not linked 

to them. This in term happen when the time-consuming phone 

calls that is usually done to link such emergencies (incident) 

to the nearest resource is eliminated, and replaced by 

automatic dispatchers [5].  

Recent emergency ambulance systems EAS have appeared 

with a good impact on health sector. The Victorian 

Ambulance Cardiac Arrest Registry (VACAR) is a leading 

system in cardiac arrest CA registries. This system has two 

parts of ambulance services. The first service is Metropolitan 

Ambulance Service (MAS), which uses a computerized, 

protocol-based dispatch system. And the second system is the 

Rural Ambulance Victoria (RAV) that uses a manual call 

talking and dispatch process [1]. Another area in Australia - 

north Victoria- employs a pre-hospital service known as 

Ambulance Service of New South Wales (ASNSW). This 

system dispatches its ambulances by CAD and provides them 

with Mobile Data Terminals (MDT) for messaging and 

Automatic Vehicle Location (AVL) for keeping track of their 

location. Moreover, for prioritization of dispatching tasks, a 

Medical Priority Dispatch System (MPDS) has been presented 

[2].  

In 1977 Emergency Ambulance Services (EAS) was 

developed without the use of computerized system. Its 

emergency department doctors provided ad hoc advisory 

services, without a formal medical control. In 1989 EAS was 

attached to Singapore Civil Defense Force (SCDF) and 

stuffed with more specialized crew, but still without electronic 

communication technology. Singapore EAS continued 

developing until the pilot project HEAL (Hospital and 

Emergency Ambulance Link) was launched to improve data 

collection and communication. HEAL presents a wireless 

information technology system to support existing voice links 

between the ambulance crew and the emergency department 

(ED). This system include a touch screen with easy data entry, 

mobile computers to automatically capture vital signs and 

other medical data, then send them to the target hospital via 

warless communication network. Where these collected data 

creates an electronic pre-hospital record for the patient. And it 

uses a user-friendly client server application. HEAL is 

composed of: 1) Advanced patient details model; that capture 

patients medical data and send it to ED, 2) Ambulance 

incident management module; that save and store all received 

records from the ambulances, 3) Drug request and 

authorization model; this supports the paramedics by 

physicians approved drugs, 4) Text communication module; 

this is responsible for message exchange between ambulance 

crew and ED staff. This system had a huge impact on the pre-

hospital system quality; such as reducing the waiting time for 

critical care patients to be seen at the emergency department 

(ED) from 35 to 17 min. Also, the time spent by paramedics 

in the ED after handing over the patient to the ED staff was 

decreased from 15 to 8 min. therefore, HEAL showed the 

great possibility of electronic communication and data 

collection in the pre-hospital environment [3].  

In Amsterdam EMS was employed to manage the pre-hospital 

care delivery, known as the Dutch EMS that depends on 

phone calls. This system is concerned with the dispatching 

and treatment level, and characterized as a nurse driven triage 

system. A dispatch center is responsible for receiving 

emergency phone calls on "112" phone number and redirect 

them to fire and police departments. This dispatch center 

doesn’t have an automatically EMS. It updates the beds 

information by a computerized updates from the participating 

hospitals. The phone calls prioritizing are done by the 

dispatch nurse that dispatches the ambulance and present pre-

arrival instructions. And the ambulance average arrival time to 

the incident is 8 min [6].  

An ambulance with highly implemented design project is 

delivered as a partnership between the university of Texas 

Health Science Center at Houston, and Texas A&M 

University System and the U.S. Army Medical Research and 

Materiel Command, known as the Disaster Relief and 

Emergency Medical Service (DREAMSTM) project. This 

system use wireless internet access in its ambulances to gain a 

wide cellular coverage and transfer audio (voice), text 

communication, video, and vital signs, with a high quality 

transmission. It also, can create a real time communication 

between the moving ambulance emergency medical 

technicians and emergency room physicians in the hospital to 

share patient information. Transforming these several types of 

data can be achieved by wireless internet access that transfers 

data from the ambulance to the internet then to the emergency 

room. The ambulance communication system contains several 

third generation (3G) wireless cards system from different 

cellular service providers. This improves its ability to benefit 

from these distinct service providers by a wider coverage, and 

different technologies. It also, has the advantage of keeping 

the highest priority patient information inside the ambulance 

in the case of loosing communication [7].  

 Another system in managing pre-hospital health 

emergencies sector was developed by the Regional Health 

Information Network (RHIN) of Crete across the island, it's 
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known as the integrated pre-hospital emergency management 

system (PEMS). It provides several functionalities: ambulance 

tracking and route guidance, optimal resource management, 

management of emergency records, and real time patient 

multimedia data transmission and visualization. The 

ambulance tracking and route guidance functionality is 

achieved by a geographic information system (GIS), where 

each ambulance type, description, and current status 

(available, occupied, est.) are identified. These services were 

provided by adopting the GPS system, position monitoring 

technologies and intelligent rout guidance [8].  

LIFENET system that lay's in the hospital gives the EMS team 

ability to send data from their LIFEPAK (ambulance device) 

directly to the hospital. At the hospital, LIFENET receives 

alert and displays the patient data before he arrives. This gives 

the ability to the hospital to re-route the patient to another 

hospital if needed due to the received data, without an 

unnecessary stop at this hospital. Data transfer is done through 

wireless link via the internet. Clearly the system reduces time 

and improves efficiency. Moreover, it has many other 

capabilities such as storing information for a long time, etc. 

[12]. 

2.2 Novel Studies 

 New studies are competing and progressing toward 

advanced wireless communication in the health care sector. A 

novel study has been made at TEXAS AT DALLAS 

University, were a software system was developed. This is an 

online based software system that is accessed via internet 

connection. It interacts with several actors: accident caller for 

'911', an ambulance dispatcher and an emergency room. It is 

composed into five subsystems: 1) user interface subsystem, 

2) main subsystem that is responsible for interactions between 

the UI and hospital subsystem, 3) hospital subsystem, 4) 

emergency subsystem, and 5) ambulance subsystem. The 

Ambulance Subsystem is in charge of any communications 

concerning ambulances. This include ambulance List class 

and ambulance classes/objects which are responsible for using 

the specified methods in the related database class to insert, 

read, update and delete any related data. Each ambulance 

includes the software, and a set of hardware such as location 

tracking hardware, ambulance laptop, ambulance 

communication device (such as radio). The wireless 

communication between the dispatcher computers and the 

Ambulance Dispatch System (ADS) server is done vie 

HTTP/HTTPS protocols by the web browser in their 

computers. Moreover, the ambulance uses Wi-Fi internet to 

communicate with ADS server. The ADS server includes a 

GPS mapping software, and communicates with Emergency 

Department Server (EDS) [9]. 

Another wireless acquisition system for ambulances is 

presented by (J. Liao, 2009 and others). This paper suggests 

equipment for the ambulance vehicle by wireless technologies 

to support pre-hospital treatment. The system has a wireless 

biomedical sensor network for collecting patient's 

physiological data. It also have multimedia interactive 

information, and a wireless transmitting backbone sensor 

network. The system can not only send text medical data in 

real time to the hospital, but it also presents a multimedia 

interactive communication including audio and video 

information [10]. 

 Usually one of the main uses of GPS in ambulance 

vehicles is the Automatic Vehicle Location (AVL) technology 

to keep track of it. A newer AVL system has emerged; it's 

now integrated with an emergency vehicles display computer, 

or data terminal, records management and video systems. The 

data terminals job is to state the ambulance engine status in 

real time. This can support dispatch centers with helpful 

updated information of their resources condition [11]. 

2.3 Human error and system failure 

 Information System (IS) failure can happen due to 

human development error or/and use error. A clear example 

of IS failure in ambulance system due to human error is the 

London Ambulance Service Computer Aided Dispatch 

(LASCAD) system. The system was put in use in October 

1992, and failed after 2 weeks only. Almost 20-30 people 

have lost their lives due to LASCAD failure. Many argues on 

the causes of its fail; where some referred it to software 

engineer's inaccurate work on following the development 

methodology, lack of the system user's practice or any other 

reasons. The study of (P.Beynon-Davies, 1999) has identified 

two failure causes for LASCAD system; 1) error of use, 2) 

criticality. Error of use happened due to the weak relationship 

and communication between the managers and the workforce, 

and the resistance of the workforce to learn a new system. 

Criticality was another cause of failure via visibility issues. As 

the LAS problems reporting and the system safety nature were 

not sufficiently discussed [13][14]. 

(M.Hougham, 1996) have stated LASCAD system failure due 

to several reasons related to inaccurate information. These 

reasons are: 1) weak coverage of radio signals blocked the 

system from gaining all the data, and radio communication 

bottlenecks because of busy periods or when crew change 

shift and log in by their ambulance MDT, 2) ambulance crew 

mistaken pressing the right status button, due to the pressure 

of certain incidents and frustration feelings they get because 

of poor training, 3) insufficient personnel taking calls and lack 

interaction between operators and the system and its different 

parts, 4) and a single technical programming error related to 

full server memory space [14].  
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3 Proposed Ambulance System 

 According to earlier studies, Emergency Ambulance 

Systems are very critical that can save human's life or put it in 

danger. Where new technologies have emerged, still others 

are working to develop better systems. The proposed 

ambulance system is a wireless web based integrated system. 

It is designed to satisfy the highest effectiveness, efficiency, 

least response time, reduction of error and best quality 

decisions for resource allocation. The system is designed to 

eliminate any kind of human error during an emergency 

incident, by computerizing all the actions and functionalities 

and avoiding the human intervention as much as possible. 

3.1 System components 

 The proposed Ambulance system is part of the 

"Comprehensive Medical Emergency System CME" [16] 

[15]. CME system is composed of five integrated subsystems; 

1) Mobile device system, 2) Main Central System MCS 

(Ambulance dispatching system), 3) Ambulance system, 4) 

Online Health Record (OHR) system, 5) Hospital Emergency 

Department system (HEDS) [16], (see figure 1). 

 

Fig 1 CME system components. 

Each one of the CMS components has the following job: 

 

Mobile device system: A mobile devise system is an 

application that gives ability to an accident reporter in the 

accident area to notify the MCS with caller information 

(coordination) and, accident information (as the number of 

wounded people) [16]. 

MCS: After accident information has been captured in the 

MCS, the information will be processed, several interactions 

with an ambulance server that gets the ambulances GPS 

coordinates. Then allocation of the most suitable ambulance 

for the accident is based on several issues such as availability, 

nearest and shortest time to arrive (which is based on the 

navigation system map not the direct distance) [16]. 

 

OHR: The OHR is created to transfer patient's data to the 

hospital in real time (immediately) and using online (wireless) 

communication. The OHR system is a decision support system 

that can support the ambulance crew with the most proper 

treatment for the patient due to its electronic health record 

information and new accident information entered by the crew 

[15][16]. 

 

HEDS: The HEDS in each hospital has the ability to receive 

patient information entered by the coming ambulance crew. 

Moreover, the roadmap of the coming ambulance is 

automatically displayed on the HEDS screen [16]. 

 

Ambulance System: The proposed Ambulance System main 

goal is to gain reliable satisfied patient transformation from 

the accident to the proper hospital with minimal risk and 

without human intervention. Each ambulance vehicle must 

include several components; these are: 

 

1. GPS navigation device installed in each vehicle. 

2. MDT for messaging communication with the ED. 

3. A unique website URL stored at its ambulance server  

(ambulanceID.AmublanceServer.com), several 

information is stored in this page: 

 Ambulance ID. 

 Ambulance status (on mission, available, broken) 

 Real time location (road map determined by GPS). 

 Time to arrive to accident (null) 

 Accident location (coordination) 

 Accident road map 

 Hospital name (null) 

 Hospital location (coordination) 

 Hospital road map 

 Time to arrive to hospital (null) 

 Time to complete mission (null). 

 Time. 

 Date. 

 

4. A laptop that grants the crew access to the ambulance 

system (that communicates with MCS, OHR, and 

HEDS) via internet WIMAX wireless connection 

(using web browser). 
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3.2  System design 

 
The Ambulance System is designed to communicate with 

each one of the CES components (accept Mobile Application) 

to satisfy its goal. 

1. The MCS starts looking for the suitable ambulance car 

(available, nearest) by contacting the ambulance 

server to retrieve available cars locations. 

2. MCS then matches the accident location with an 

appropriate ambulance. 

3. MCS then sends a request message to the allocated 

ambulance car, with the accident location. 

4. If the car accepts the mission, its status changes from 

available to on mission. 

5. After, the ambulance reaches the accident and carry the 

patient, the ambulance crew starts entering the patient 

injury information into the OHR system. 

6. This info will be sent to the Ambulance server with 

accident location.  

7. Ambulance server then decides the appropriate hospital 

and sends the resulted hospital ID to the ambulance 

car automatically.  

8. The ambulance car then, contacts the hospital by its 

ambulance system, (see figure 2).  

 

3.3 System process  
 

The communication process is divided into two phases:  

 

3.3.1 Phase1: Ambulance versus MCS  

 

The ambulance server and MCS is able to keep track of any 

ambulance vehicle via its GPS system.  

 

After the accident information is captured by MCS, it will start 

searching for a matching ambulance to take the mission. This 

is done when the MCS interact with the ambulance server that  

 

 

 

 

 

 

 

 

interacts directly with ambulance vehicle and retrieves its 

information.  

The MCS triggers the ambulance server to retrieve all the 

available ambulance cars in the area. Each ambulance must 

have: one of the three vehicle statues; Available, non 

available, on mission. And real time coordination sited by its 

GPS.  

When the MCS server finds the available nearest ambulance 

and defines its ID, it sends a request to the defined ambulance 

system.  

 

The ambulance crew is then able to respond to the MCS call 

by the installed laptop touch screen, and choose accept, to 

confirm the mission acceptance (or reject otherwise). When it 

accepts the mission the vehicle status will be reset from 

available to on mission. But if the crew selects reject mission 

(for any reason); the MCS will start looking for another 

available nearest ambulance again. A road map to the incident 

location will be displayed on the ambulance system screen.  

 

When the patient is inside the ambulance vehicle, the crew 

starts entering the patient injury information to the OHR 

system. This information and the accident location will be sent 

to the ambulance server. 

 

3.3.2 Phase 2: Ambulance versus HEDS  

 

The Ambulance Server already has the locations of all 

hospitals in all areas, and retrieved the accident location from 

the ambulance location (at the accident location).  

The Ambulance server then matches the proper hospital due to 

three values:  

1. Location (nearest to accident).  

2. Specialty (according to the patient injury type).  

3. Then it contacts the chosen hospital HEDS to check for 

bed availability to confirm the choice.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2 The proposed Ambulance System components interaction 
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Once the Ambulance car is allocated to the proper hospital, 

automatically a road map of that hospital will be shown on the 

ambulance system screen and contact it's HEDS by:  

 

 Ambulance identification (ID) number will be displayed 

on the HEDS screen. 

 The ambulance road map will be displayed on the 

HEDS screen. 

 The ambulance arrival time is displayed on the HEDS 

screen with either one of three colors according to the 

Time Left to Arrive (TLA) to the hospital; as the 

ambulance alert colors:  

 

 Blue: 1 h => TLA > 30 min.  

 Orange: 30 min => TLA > 15 min.  

 Red: TLA <=15 min.  

 

 Communication link is established between the 

ambulance and the chosen HEDS, to allow data, 

voice and text transformation. 

 

Moreover, the OHR Allow the HEDS team to access online 

updated information for the coming patient during his delivery 

to the hospital. This is done automatically when the ambulance 

crew uses the OHR to transform patient identification number 

(PID) and injury information after the accident and any 

changes in his situation during the delivery.  

 

It also, supports the ambulance crew with best decisions to 

handle patient injury, based on the system ability to get 

feedback from his medical record and make decisions upon it 

[16]. If the patient didn’t have an OHR, then the ambulance 

crew will only send any patient identification (e.g. name and 

SSN, etc) and immediate injury information to the OHR (that 

will register him as new patient in the OHR automatically), 

and communicate with the HEDS for any support needed.  

 

Furthermore, if there is no OHR established yet; the system 

can still function. So, the ambulance crew uses the Ambulance 

System to send any patient identification and immediate injury 

information, manually entered to transfer it to the HEDS.  

After, few minutes (e.g. 4 min) from the ambulance arrival to 

the hospital location, automatically the ambulance status will 

be moved from on mission to available.  

 

4  Discussion 
 

In previous researches, many current emergency systems 

and novel studies are automating some of their functionalities 

and using wireless links in their communication. New 

researches are competing to develop advanced automated 

emergency systems due to its massive advantages. The 

proposed system has many features and advantages that can 

improve the processes performance and management of pre-

hospital tasks. Thus, the Ambulance system will increase the 

percentage of rescuing human's lives. These features and 

advantages can be summarized as: 

  

 Decreasing human error, so then increasing system 

efficiency. This is achieved by automating the system 

functionalities and avoidance of human interaction. 

 

 Reduces response time. This in term increase percentage 

of rescuing humans' life, by decreasing the time to 

complete the rescue mission. This is achieved from the 

system automated capability to decrease the time of 

allocating a proper ambulance car (nearest and 

available), and a proper hospital (nearest, specialty, and 

available bed). 

 

 Lower cost and human effort. This is achieved on the long 

term after establishing the system. There will be less 

human effort needed to dispatch ambulances. 

 

 Best resource allocation decisions are made. This is 

achieved by the system computation capability to 

decide the nearest and appropriate ambulance care and 

hospital for the mission. 

 

 Best pre-hospital treatment decisions. This is achieved 

from the system capability to support the ambulance 

crew with the suitable treatment, based on the medical 

history (from OHR) and current situation.  

 

Moreover, in the case of sudden change or degradation in 

patient situation during his transformation, the HEDS team 

will be aware of any such change; and thus be appropriately 

prepared. 

  

5  Conclusion 
  

In this paper, a new fully computerized ambulance system 

has been proposed. It has been designed to facilitate the 

dispatching, and through the GPS, identifying the nearest 

ambulance to the accident. All components of the system have 

been explained and advantages of the proposed system over 

current and existing systems have been shown. By reducing 

the response time and the communication human errors, and 

by accessing the electronic health record and communicating 

information to hospital, this may make the proposed system 

one of the most efficient systems comparing to others.  

The future work will be focused on completing the 

development and evaluating the system in real life.  
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1 Introduction

Gene regulatory combining a coupled dynamics of fast and slow states con-
stitute an important class of biological networks [1]. Synthetic design of such
networks is very sensitive to parameter perturbations. Errors in parameters
such as external perturbations and modeling errors are caused by data inaccu-
racies or computation errors. These perturbations can lead to location errors
of equilibria, to instabilities, and even to spurious states. Therefore, a rigorous
understanding of the qualitative robustness properties of gene regulatory net-
works with respect to parameter variations on both a fast or slow time scale
and under consideration of a transcriptional time delay [4] became impera-
tive. In [2], the gene regulatory networks are formulated as coupled nonlinear
differential systems operating at different time-scales under vanishing pertur-
bations and time delays. In [3], gene regulatory networks are described as
either two-time scale systems without delay [3] or as unperturbed systems [5].

It is well-known that molecules and reaction rates are subject to significant
statistical fluctuations and especially gene regulation is an intrinsically noisy
process due to intracellular and extracellular noise perturbations and environ-
mental fluctuations. Additionally, the transition from one state to the next is
based on certain transition probabilities forming a homogeneous Markov chain
with finite state space. This aspect motivates the formulation of a stochastic
model with Markovian switches to describe the dynamics of gene regulation.
Previous work investigated genetic regulatory networks with parameter un-
certainties and noise perturbations [7] or of Markov-type with delays and
uncertain mode transition rates [8]. It is naturally to propose a more detailed
model with delays that combines Markovian jumping and noise perturbations
and analyze its dynamic behavior. In this paper, we analyze the robustness
properties of gene regulatory networks, modeled by a system of competitive
differential equations, from a rigorous analytic standpoint [6]. The network
under study models the delayed nonlinear dynamics under consideration of
Markovian jumping and noise perturbations.

2 Problem Statement

Gene regulatory networks represent circuits of genes that interact and regulate
the expression of other genes by proteins. The change in expression of a gene
is regulated by protein synthesis in transcriptional, translational and post-
translational processes. Taking into account a transcriptional time delay [4]
and the fact that mRNA typically decays much faster than the protein, we
considered in a previous work [2] the gene regulatory network described by
the following equation
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Ṁi(t) = −aiMi(t) +
n∑

j=1

w̃ij g̃j(Pj(t− ρ)) + Bi (1a)

Ṗ (t) = −ciPi(t) + diMi(t)

where Mi(t), Pi(t) ∈ R are the concentrations of mRNA and protein of the
ith node, respectively. The parameters ai and ci are the decay rates of mRNA

and protein, respectively; di is the translation rate, g̃j(x) =

(
x
βj

)Hj
(

1+

(
x
βj

)Hj) , Bi =

∑
j∈Ii bij and Ii is the set of all the j which is a repressor of gene i, W̃ =

(w̃ij) ∈ Rn×n is defined as follows

w̃ij =





bij, : if transcription factor j is an activator of gene i

0, : if there is no link from node j to i

−bij : if transcription factor j is a repressor of gene i

(2)

Let (M∗T , P ∗
T
)T be an equilibrium point of the system (1a). By shifting the

equilibrium of the system to the origin, we obtain a general formulation of
the GRN as a nonlinear coupled system with both time-varying delays for
feedback regulation ρi(t) and translation σi(t):

Ṁi(t) = −aiMi(t) + fj(P1(t− ρ1(t)), · · · , Pn(t− ρn(t))) (3a)

Ṗ (t) = −ciPi(t) + diMi(t− σi(t))

We thus obtain gi(pi(t)) = g̃i(Pi(t)+P
∗
i )−g̃i(P ∗i ). Because g̃i is a monotonically

increasing function with saturation, gi(·) satisfies the sector condition 0 ≤
gi(x)
x
≤ ki.

In terms of Hill function we obtain

Ṁi(t) = −aiMi(t) +
n∑

j=1

w̃ijgj(Pj(t− ρj(t))) (4a)

Ṗ (t) = −ciPi(t) + diMi(t− σi(t))
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Further for simplicity, we will assume that all feedback regulation and trans-
lational delays are equal ρ1 = · · · , ρn = ρ and σ1 = · · · , σn = σ. The above
model can be formulated as a n-dimensional GRN

Ṁ(t) = AM(t) + Wg(p(t− ρ(t))) (5a)

Ṗ(t) = −CP(t) + DM(t− σ(t))

withA = diag{a1, a2, · · · , an}, C = diag{c1, c2, · · · , cn} andD = diag{d1, d2, · · · , dn}.

3 Theoretical Concepts of Hybrid Stochastic Retarded Systems

In the following, we will introduce some notations and theoretical concepts
from stochastic functional differential equation theory we will be using through-
out this paper.

Notations:

(Σ,F , {Ft}t≥0, P ): complete probability space with a filtration {F}t≥0 that is
right-continuous and F0 contains the P -null sets.

B(t) = (B1(t), · · · , Bm(t))T : m-dimensional Brownian motion defined on the
probability space.

| · | is the Euclidean norm in Rn.

C([−τ, 0];Rn) with τ ≥ 0 denotes the family of all continuous Rn-valued func-
tions ψ on [−τ, 0] with the norm ||ψ|| = sup{|ψ(θ)| : −τ ≤ θ ≤ 0}.

CbF0
([−τ, 0];Rn) is the family of all F0-measurable bounded C([−τ, 0];Rn)-

valued random variables ζ = {ζ(θ) : −τ ≤ θ ≤ 0}.

Let r(t), t ≥ 0, be a right-continuous Markov chain on the probability space
taking values in a finite space S = {1, 2, · · · , N} with generator Γ = (γij)N×N
given by

P{r(t+ ∆) = j : r(t) = i} =





γij∆ + o(∆), : if i 6= j,

1 + γij∆ + o(∆) : if i = j,
(6)
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where ∆ > 0 and γij ≥ 0 is the transition rate from i to j if i 6= j while
γij = −∑i6= γij.

We also assume that the Markov chain r(·) is independent of the Brownian
motion B(·). The sample pathes of r(t) are right-continuous step functions
with a finite number of simple jumps in any finite subinterval of R+ := [0,∞).

In the following we describe a hybrid stochastic retarded system (HRRS)
driven by continuous-time Markovian chains [6] used in stochastic modeling.
Let such a n-dimensional HRRS be given as

dx(t) = f(xt, t, r(t))dt+ g(xt, t, r(t))dB(t) (7)

on t ≥ 0 with initial data x0 = {x(θ) : −r ≤ θ ≤ 0} = θ ∈ CbF0
([τ, 0];Rn) and

with




f : C([−τ, 0];Rn)×R+ × S → Rn

g : C([−τ, 0];Rn)×R+ × S → Rn×m

with measurable functions with f(0, t, i) = 0 and g(0, t, i) = 0 for all t ≥ 0.
Thus, (7) has a trivial solution x(t; 0) = 0. xt = {x(t + θ) : −r ≤ θ ≤ 0}
represents a C([−r, 0];Rn)-valued stochastic process. We also assume that g, h
are smooth functions such that (7) has only continuous solutions x(t; ζ) on
t ≥ 0.

Further C2,1(Rn×R+×S) is the family of all nonnegative functions V (x, t, i)
on Rn×R+×S being twice continuously differentiable in x and once in t. With
V ∈ C2,1(Rn × R+ × S;R+), we define an operator C, from C([−τ, 0];Rn) ×
R+ × S → R by

LV (xt, t, i) =Vt(x, t, i) + Vx(x, t, i)f(xt, t, i) (8)

+
1

2
trace[gT (xt, t, i)Vxx(x, t, i)g(xt, t, i)] (9)

+
N∑

j=1

γijV (x, t, j) (10)

where
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Vt(x, t, i) : = ∂V (x,t,i)
∂t

Vx(x, t, i) : =
(
∂V (x,t,i)
∂x1

, · · · , ∂V (x,t,i)
∂xn

)

Vxx(x, t, i) : =
(
∂2V (x,t,i)
∂xi∂xj

)
n×n

We give a useful definition regarding the stability of HRRS.

Definition The trivial solution of (7) is

a.) pth (p > 0) moment stable if, for every ε > 0, there exists δ = δ(ε) > 0
such that

E|x(t; ζ)|p ≤ ε, ∀t ≥ 0

whenever ||ζ||p < δ0;
b.) globally pth moment asymptotically stable if it is pth moment stable and,

moreover, for all ζ ∈ CbF0
([−τ, 0];Rn),

lim
t→∞E|x(t; ζ)|p = 0 (11)

As shown in [6], we immediately see that (global) pth moment (asymptotic)
stability implies (global) stochastic (asymptotic) stability.

4 Asymptotic Stability Analysis of Hybrid Stochastic Retarded
GRNs

The objective of this study is to discuss the stability properties of the hybrid
stochastic retarded GRN. The analysis is based on a mathematical model and
a rigorous analytic standpoint.

Based on the above model described by equation (4), we will now introduce
noise perturbations and Markovian jumping parameters. As previously dis-
cussed, the parameters of the GRN may change randomly at discrete time
instances or in other words, the GRN has finite modes and it can switch from
one to another at different times determined by a Markov chain. Since the
switching probabilities are not a priori known, the GRN can be modeled by
a hybrid system. The system of the GRN has both continuous and discrete
states which are described by a Markovian jumping system. We can rewrite
the GRN from equation (5a) as a hybrid stochastic retarded system
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dX(t) = F (X(t), t, r(t))dt+G(X(t), X(t− ρ(t)), X(t− σ(t)), t, r(t))dB(t)
(12)

with X(t) = [M(t), P (t)], Y (t − ρ(t)) = X(t − ρ(t)) = [0, · · · , 0, P (t − ρ(t))]
and Z(t−σ(t)) = X(t−σ(t)) = [M(t−σ(t)), 0, · · · , 0]. X,Y and Z are 2n×1
vectors. G(X(t), X(t−ρ(t)), X(t−σ(t)), t, r(t)) is the noise intensity function.
The Markov chain r(·) is given as in (6) and B(·) is the Brownian motion.

We will make the following assumptions for computational simplicity without
loss of generality.

Assumptions:

(A1) Let us assume that
∑N
j=1 γij = 1.

(A2) The trace can be approximated as trace[GT (x, y, z, t, i) ·G(x, y, z, t, i)] ≤
ρ1|x(t)|2 + ρ2|y(t)|2 + ρ3|z(t)|2.

(A3) For the nonlinear term, we assume F (x, y, z, t, i) ≤ −ρ4|x(t)|2+ρ5|y(t)|2+
ρ6|z(t)|2.

Theorem: Let p > 0, c2 ≥ c1 > 0 and λoi ≥ 0, λ1i ≥ 0, λ2i ≥ 0 such that
λ0i ≥ λ1i + λ2i for all 1 ≤ i ≤ N . Let λ : R × S → R be a continuous
nondecreasing function with respect to s ∈ R for all s ≥ 0 and 1 ≤ i ≤ N .
Moreover λ(s, i)/s > 0 for all s > 0 and 1 ≤ i ≤ N . Assume that there exists
a function V ∈ C2,1(Rn×R+×S;R+) such that the following inequality [10,9]

c1|X|p ≤ V (X, t, i) ≤ c2|X|p, ∀(X, t) ∈ Rn × [−τ,∞) (13)

is satisfied and, moreover, for all 1 ≤ i ≤ N , let

ELV (X, Y, Z, t, i) ≤ −1

2
Eλ(c1|X|p, ) (14)

for all t ≥ 0. For all X, Y, Z ∈ Rn, t ≥ 0 and 1 ≤ k ≤ N , we assume

LV (X, Y, Z, t, i)≤−λoi max
1≤k≤N

V (X, t, k) (15)

+ λ1i min
1≤k≤N

V (Y, t− ρ(t), k) (16)

+ λ2i min
1≤k≤N

V (Z, t− σ(t), k)

−λ( max
1≤k≤N

V (X, t, k), i) (17)

Int'l Conf. Bioinformatics and Computational Biology |  BIOCOMP'11  | 773



then under the assumptions A1 to A3 the trivial solution of is globally pth
moment asymptotically stable.

Proof:

In [6] was shown that the following inequalities are valid

min
1≤i≤N

EV (Y, t− ρ(t), i) ≤ max
1≤i≤N

EV (X, t, i) +
1

2(1 + λ1i)
Eλ( max

1≤i≤N
V (X, t, i)

(18)

and

min
1≤i≤N

EV (Z, t− σ(t), i) ≤ max
1≤i≤N

EV (X, t, i) +
1

2(1 + λ2i)
Eλ( max

1≤i≤N
V (X, t, i)

(19)

Based on the above assumptions A1 to A3 and the above inequalities (13) to
(19), we obtain

ELV (X, Y, Z, t, i)≤−λoi max
1≤k≤N

EV (X, t, k) (20)

+ λ1i min
1≤k≤N

EV (Y, t− ρ(t), k)

+ λ2i min
1≤k≤N

EV (Z, t− σ(t), k)

−λ( max
1≤k≤N

EV (X, t, k), i)

≤−1

2
Eλ(c1|X|p, i) (21)

for all 1 ≤ k ≤ N . Since λ(s, i)/s > 0 for all s > 0 and 1 ≤ k ≤ N , we can
show that Eλ(c1|X|p, i) > 0 if E|X|p > 0 and this completes the proof.

Remark 1: By choosing as a Lyapunov function V : R × R+ × S → R+ as
V (X, t, i) = X2,∀i, we obtain as a consequence of the stability conditions
based on the assumptions (A1) to (A3):

ρ5 + ρ6 > 2ρ4 − ρ1 (22a)

ρ1 − 2ρ4 > ρ2 + ρ3

The derived conditions (22a) can be used in reversed engineering design.
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Remark 2: The above Theorem was adapted from [6]. The derived theoretical
concepts are illustrated in an example.

Example 1: Let us consider a two-gene Markovian model (5a) with A =

diag(1.4 1.52), C = diag(1.4 1.32) andD = diag(1 1) andW =




1.2 1

1.2 −1.3




and ζ(t) being the Gaussian noise. Let r(t) be a right-continuous Markov

chain taking values in S = 1, 2 with Γ = (γij)2×2 =



−1.68 1.68

1.49 −1.49


. Let us

assume that we want to determine the parameters ρ1, ρ2 and ρ3. Based on the
conditions (22a) and the Theorem, we can derive the inequalities ρ1 > 0.74
and ρ1−3.04 > ρ2 +ρ3 to be fullfilled in order to ensure the stability of system
(5a).

In summary, we have shown that the most detailed model of GRN known yet
and described by a hybrid stochastic retarded system is asymptotically stable.

5 Conclusion

We analyzed the dynamical behavior of genetic regulatory networks subject
to noise perturbations and time-delays, and with both continuous and dis-
crete states described by Markovian jumping systems based on the theory of
hybrid stochastic retarded systems. The proposed model represents the most
complex GRN model known so far in the literature. We assumed that the
nonlinear nominal system and the noise intensity are bounded and that the
Markov chain is independent of the Brownian motion. Specifically, we applied
these theoretical concepts to study asymptotic stability properties of gene
regulatory networks. In this sense we established stability results for the per-
turbed genetic regulatory network and determined the conditions that ensure
the existence of globally pth moment asymptotically stable equilibria of the
perturbed system. A sufficient condition for the nonlinear part and the noise
intensity function are derived. The established results have potential applica-
tion for reverse engineering and robust biosynthetic gene regulatory network
design.
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Abstract - The importance of sharing and integration 
of patient health records that are dispersed and 
distributed on many healthcare organizations has 
pushed many countries to work hard towards achieving 
this objective. In this paper, a model of integration has 
been proposed, to share at least a brief summary of 
important information about the patient health record 
from many healthcare providers. The challenges of this 
integration are numerous, although the focus in this 
paper is on three; integration issues, security, and 
uniqueness of the patient identifier. In this regard, a 
centralized summary healthcare record has been 
proposed. That summary will contain an integrated 
summary of the patient health record collected from all 
encounters records at different hospitals and clinics. 

Keywords: Electronic Summary Care Record (SCR), 
Universal Patient Identifier (UPI). 

 

1 Introduction 

Saudi Arabia is one of the biggest economies in the 
Middle East. Due to the increase in the healthcare 
demand and the relatively wealthy population, latest 
reports show that spending in the healthcare in Saudi 
Arabia has increased to more than 16 billion USD in the 
public sector the last year. On the other hand the cost of 
healthcare is relatively low due to the high availability 
of medical care staff from nearby Arab countries and 
the Far East. This resulted in a unique situation where 
health care became very accessible through thousands 
of small-midrange private health care centers.  Add to 
this the limits found in the public GPs like the lack X-
Rays and advanced laboratory facilities. This resulted in 
a situation where many Saudis have their health care in 
many different privet health care centers during their 
life.  Due to this the patient health record may become 
fragmented in many different clinics and hospitals.  

This is an important challenge that may face Saudi 
Arabia health system in particular. Hence adopting a 
unified electronic health record for patient may be a 
challenge. In this work we will study the possibility of 
having an integrated electronic summary Care record 
instead of having a complete electronic health record 
which may not be practical in the Saudi case because of 
the expected high level of records per patients. 

 

2    Saudi Health Care System 

In Saudi Arabia, the healthcare system can be 
classified as a national healthcare system and the 
private healthcare sector. National healthcare system 
provides health care services through a number of 
government agencies. On the other hand, there is a 
growing role and increased participation from the 
private sector in the provision of health care services. 
The Ministry of Health (MOH) is the major government 
agency entrusted with the provision of preventive, 
curative and rehabilitative health care for the Saudi 
Arabia’s population. The Ministry provides primary 
health care (PHC) services through a network of health 
care centers throughout Saudi Arabia. The MOH is 
considered the lead Government agency responsible for 
the management, planning, financing and regulating of 
the health care sector. The MOH also undertakes the 
overall supervision and follow-up of health care 
provided by the private sector. There are also some 
other mini national health services that provide 
healthcare services for their sectors such as: the 
Ministry of Defense and Aviation (MODA) hospitals, 
the Ministry of Interior (MOI) hospitals, the Saudi 
Arabian National Guard (SANG) hospitals, universities' 
hospitals, The Royal Commission for Jubail and Yanbu 
hospitals and clinics, King Faisal Specialist Hospital 
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and research center, King Khalid Eye Specialist 
Hospital, and so on [9]. 

In Saudi Arabia, There are numerous of hospitals 
and clinics either public or private. For public hospitals, 
there are 240 hospitals around Saudi Arabia, 39 of them 
are in Riyadh. For private hospitals, there are 327 
hospitals around Saudi Arabia, 230 of them are in 
Riyadh. For public clinics, there are 1690 clinics in 
Saudi Arabia, 361 of them in Riyadh. For private 
clinics, there are 620 clinics in Saudi Arabia, 205 of 
them in Riyadh [9]. 

Table 1: Number of Hospitals and Clinics in SA 
 Public Private 

Hospital in SA 240 327 

Clinic in SA 1690 620 

Hospital in Riyadh 39 230 

Clinic in Riyadh 361 205 

 

 

3 Electronic Summary Care Record 

Electronic Summary Care Record (SCR) extends 
the concept of digital health summaries to create an 
updated and centrally stored patient’s summary record, 
extracting key data from local systems after each 
encounter [1].  SCR is formed from files of the same 
patient and belongs to different hospitals within the 
country. The record should contain an encounter, 
admission, discharges, electronic clinical records, 
medications etc. SCR should be shared and accessible 
across the hospitals and clinics taking into account the 
security rules, regulations and all medical application 
international standards. 

The main benefits of having a shared SCR can be 
summarized as following: 

• Reduce/Eliminate the time usually needed to 
transfer physical copies of patient data between 
hospitals. 

• Provide more information about the patient 
condition from different sources which will 
increase diagnosis accuracy.  

• Reduce the cost in terms of time and diagnosis. 

• Reduce the medical errors and hence increase the 
healthcare quality. 

• Help producing healthcare statistics (medical and 
clinical informatics) which plays important role in 
developing healthcare strategies and planning 
future improvements and extensions in healthcare 
systems. 

Many problems occur in Saudi hospitals through 
transferring patients’ summary records from one 
healthcare organization to another which result in 
affecting the quality of the outcomes of the treatment. 
In order to solve these problems, a solution to integrate 
the hospitals systems is proposed to be implemented in 
Saudi Arabia that helps to increase healthcare 
integration and quality.  

 

4 Related work 

Three main challenges have been identified in 
order to create integrated summary healthcare record in 
Saudi hospitals: Integration, Security and the need to 
have a unified patient identifier (UPI). 

4.1 Integration 

In usual cases the patient can have multiple 
electronic health records (EHR) in many hospitals 
recorded accordingly with their medical encounters. 
EHR needs to be integrated among the hospitals in 
order to obtain a total overview of a patient's health-
history. Many countries in the world are seeking to 
integrate and communicate their patient information 
among their hospitals in order to help them to improve 
the quality of healthcare outcomes. Some of these 
countries are Canada, Australia, England, USA, India, 
and Korea. Canada, Australia and England have the 
development of national healthcare strategies.  
Electronic Health Record (EHR) is considered as the 
main component of the healthcare infrastructure. Some 
obstacles have been discussed such as politics, 
geographies, population density [2].  
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In England, building national Dispersed Electronic 
Health Record (DEHR) is proposed to be a solution to 
integrate the hospitals systems in England. England is 
divided into five different geographical areas called 
"clusters". Each cluster represents one database and the 
database could be divided into more than one instance. 
The National Care Record Service (NCRS) is the 
existing EHR project which allows the authorized 
people to access the patient record 24 hours a day, 
seven days a week [2]. NCRS based on two 
components: Detailed Care Record and national 
Summary Care Record (SCR). Detailed Care Record is 
used inside local healthcare where the patient care is 
happen [2]. The national SCR extends the concept of 
digital health summaries to create an updated and 
centrally stored patient’s summary record, extracting 
key data from local systems after each encounter [1] 
such as an encounter, admission, discharges, electronic 
clinical records, clinical messaging etc [1]. It can be 
easily extracted from the hospital systems and loaded to 
a central database called "Spine" using Dispersed 
Electronic Health Record (DEHR). Spine stores the 
important patient records for all England's 50 million 
population [2]. SCR is used instead of dispersed 
electronic health record because a dispersed electronic 
health record will take a long time to be built. 
Uncertainty about the quality and provenance of SCR 
data raises concerns about patient safety, as key data 
may be absent and old data may persist, partially 
because of a lack o ownership of the summary [1].  

 
In Australia, HealthConnect is the national 

Australian EHR service which involves the collection 
storage and sharing of patients' information in 
summary. HealthConnect aimed to improve the 
healthcare outcomes by increasing quality and enhance 
patient safety. The components of HealthConnect 
model are a serious of event summaries which contain 
key information about specific healthcare event such as 
allergies, diagnosis, medications, referrals, and EHR 
lists which will be extracted from the event summaries. 
Therefore, predefined HealthConnect views are 
available to access these stored event summaries. Each 
HealthConnect electronic health record would be stored 
in two locations: a HealthConnect Record System 
(HRS) and the National Data Store. HRS is used to 
process the event summaries and transactions while 
National Data Store preserves copies of EHR [2]. 

 

In India, Distributed Infrastructure for Global 
EHR Technology (DIGHT) project was built to 
integrate electronic health record in India. Scalability, 
reliability and high availability were the most 
challenges of DIGHT project. Some requirements of 
EHR storage have been implemented in order to meet 
the challenges such as high data availability in terms of 
hardware and software, high performance which will 
ensure the system can work effectively any time and 
data security which protect the patient data from any 
unauthorized access by using data replication algorithm. 
Using central storage could be a solution but it degrades 
the high availability and performance. However, 
clustering technology was used in DIGHT project as a 
solution [5].  

 
In Korea, National e-health project was built to 

integrate electronic health record among the hospitals. 
Many positives outcomes were achieved: improving 
transparency and effectiveness, enhancing accessibility 
and quality, strengthening quality and satisfaction of 
patients, reducing medical expenses, management 
rationalization of healthcare organization, and 
enhancing accountability through public healthcare 
inspection system. Some policies were applied in order 
to prevent the patient data access from any an 
unauthorized access [6]. 

 
Some challenges have arisen during the integration 

process in the data heterogeneity [4]. There are two 
different types of problems that have to be addressed to 
make the patients’ data consistent in order to share the 
EHR between multiple Database Management System 
(DBMS). First heterogeneity problem is on DBMS level 
which is different hospital use different DBMS. 
Therefore, traditional database normalization ACID 
(Atomicity, Consistency, Isolation and Durability) 
properties could be missed across the hospitals. Relaxed 
ACID properties were proposed to be solution. Second 
heterogeneity problem is on electronic health record 
level which is EHR incompatibility between different 
hospitals. No solution was proposed for this problem 
[4]. 
 

4.2 Security 
 

Patient data privacy and confidentiality are 
considered the most important issues when exchanging 
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and sharing relevant patient data among multiple 
systems. Secure Dispersed Electronic Health Record 
based on cryptographic constructions was proposed to 
address these concerns in order to be accepted by the 
patient [3]. In order to protect EHR, there should be 
some policies, regulations, and agreements that the 
patents, physicians, and the other stakeholders agree on. 
Therefore, EHR will be protected against any illegal use 
[7]. 

Some of the agreements that used in Electronic 
Health Record in Serbia (EHR-S): (a) patient consent to 
access EHR-S agreement which let the patient sign on 
the agreement, (b) medical institution / medical practice 
access to EHR-S which allow authorized medical 
practitioners to update, request, and receive up-to-date 
EHR in timely and secure manner, (c) hospital access to 
EHR-S which allow authorized physicians and 
pharmacists to update, request, and receive up-to-date 
EHR in timely and secure manner, and (d) Emergency 
Department (ED) which has an access to the patient 
medical history to help the patients when they arrive to 
ED [7]. 

 

4.3  Universal patient identifier 
 

Universal Patient Identifier (UPI) was proposed to 
address the patient uniqueness issues. It consists of four 
parts: birth date code with 7 digits, geographical code 
with 6 digits, and sequence code with 5 digits to 
identify people born on the same date and geographical 
area, and single check digit. Birth date code can be 
divided into three codes as: day (1-31) with 2 digits, 
month (1-12) with 2 digits and year (0-99) with 3 digits.  
Geographical code can be divided into two codes: 
Latitude code (0-180) with 3 digits and Longitude code 
(0-360) with 3 digits. Hospital code could be part of 
sequence code.  

For example, a person born on 1 March 1993 in 
Minneapolis, MN the code has the appearance: 
9930301^044237^00047^2 [8]. 

 

 
5 SCR-SA 

The authors have done a survey on the main 
hospitals in Saudi Arabia such King Faisal specialized 
hospital, King Fahad Medical City, King Khalid 
University Hospital and found no evidence of any kind 

of integration between them. In order to integrate the 
electronic health records among Saudi Arabia’s 
hospitals we identified two main requirements which 
are missing in Saudi Hospitals: 

• Patient unique identifier. 

• Summary care record.  

These two requirements need to be considered and 
implemented on each of hospital systems as minimum 
requirement for integration. 

Identifying the uniqueness of patient is a major 
concern in national SCR. Patient unique identifier in 
Saudi Arabia could be national ID for citizens and 
resident permit (known as Iqama) number for 
foreigners. But all the hospitals are not considering the 
national ID or Iqama number as a unique identifier and 
they have their own unique identifier such as medical 
record number. Therefore, implementing a national ID 
or Iqama number as a patient unique identifier across 
the hospitals may face many challenges. However, the 
Universal Patient Identifier (UPI) is proposed to be used 
as the patient identifier in Saudi Arabia. UPI has been 
suggested to be consisted of three parts as: Birth Date in 
Gregorian with eight digits (e.g. 19800126), Region 
Code with two digits (01-13) because of the thirteen 
regions in Saudi Arabia, sequence with three letters 
(e.g. XWU) to identify people born in the same date and 
region. Therefore, the length of the suggested UPI is 
thirteen characters. E.g. 1980012604XWU (Birth date: 
19800126, Region Code: 04, Sequence: XWU). 

 
The Summary Care Record (SCR) is an electronic 

health record summary of the patient such as an 
encounter, admission, discharges, electronic clinical 
records, medications etc. Each hospital must provide 
the patients’ SCR in order to be easily extracted and 
loaded to a central database (see Figure 1). SCR should 
be protected; only the authorized people can access the 
part that they need only. So, there are some rules, 
regulations, and policies should be applied on SCR-SA 
in order to protect the data. 
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Figure 1: General Structure of SCR System 
 
 

 
 

Figure 2: Detailed Structure of SCR System 
 

In Figure 2, we suggest to have a centralized 
national SCR database to be the center for the patients’ 
summary data in Saudi Arabia. In order to link the 
hospitals and clinics to the centralized database, there 
should be an Extraction, Transforming, and Loading 
(ETL) channel between the centralized national SCR 
database and the client because the different hospitals 
and clinics use different systems and DBMS. 

 
In order to inquire the SCR, we need to follow our 

proposed procedure. The procedure (see Figure 3) 
shows that the hospital checks whether the patient’s 
record available in the local hospital database to be 
fetched, or it checks national summary care record 
centralized database to get the SCR. A new record will 
be created in both local hospital database and national 
SCR database if the record is not there.  

SCR is believed be enough for a healthcare 
professional to make a decision in many cases. 
However in case more details about a particular medical 
encounter, lab or radiology results are needed, the 
system can retrieve them from that particular hospital. 

 

Check Local 
Hospital Database

Yes

-Record Found-Record Found

Check National 
SCR Database

Fetch Patient’s 
Record

Create new SCR 
Record and new 

local record

Fetch SCR 
Record

-Summary Record Found-Summary Record Found

Yes

Yes No

No

 
 

Figure 3: SCR Inquiry Procedure 
 
 

 

6 Conclusion and future work 

By applying DEHR-SA between the Saudi 
hospitals and clinics, we obtain a lot of benefits for 
hospitals, patients and ministry of health. This paper 
showed the elements, components, methodologies and 
approaches to the proposed system.  The paper has 
showed the importance and the value added of the 
Summary Care Record and how it can be implemented 
in addition to the issues of the unique patient identifier 
and security. In the future, we will investigate more in 
depth information about the Saudi hospital systems and 
to make a survey to have their specifications that might 
help to fully integrate the Saudi hospitals systems. 
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Abstract –The techniques of mathematical modeling and 
investigative computer simulations are used to study the 
qualitative aspects of the patho-physiodynamics of HIV-1 
associated Kaposi sarcoma (KS) during Highly Active 
Anti-Retroviral Therapy (HAART) of AIDS. Using a system of 
non-linear deterministic differential equations, the model 
incorporates the biologically measurable and clinically 
relevant immunological interactions and parameters. In 
particular, the computer simulations elucidate the role of 
CD8+ T lymphocyte in the annihilation and persistence of 
Kaposi sarcoma during HAART.  

Keywords: Kaposi sarcoma, mathematical modeling, 
HAART efficacy, computer simulations, persistence of 
Kaposi Sarcoma 

 

1 Introduction 
Human Herpes Virus 8 (HHV8) acts in association with 

HIV-1 to induce lympho-proliferation and Kaposi sarcoma 
(KS) in AIDS patients. The clinical and histo-pathological 
aspects of KS have been documented by Kemény et al. [3],  
Lesbordes et al. [5], and Zhu et al. [11].  

The role of CD8+ T lymphocytes in regulating the 
growth of KS has been investigated by Li et al. [6] and 
Stebbing et al [8]. The use of adoptive immunotherapy with 
activated autologous CD8+ T cells with interleukin-2 infusion 
in treatment of AIDS was described in a paper by Klimas et al. 
[4], Touloumi et al. [9], and Urassa et al. [10]. The 
patho-physio-dynamics of KS during HAART has been 
clinically investigated by Bihl et al. [1], and Dupont et al. [2].  

In the current research, we shall present a mathematical 
model of the patho-physio-dynamics of KS associated with 
AIDS during HAART. This paper is extension of our earlier 
mathematical model on HIV-1 AIDS dynamics during 
latency phase [7]. Investigative computer simulations will be 
used to elucidate the effect of adoptive transfer of CD8+ T 
cells on Kaposi sarcoma dynamics during HAART. This 
research is one of the major attempts to construct a clinically 
plausible mathematical model which incorporates HAART 
therapy, HIV-1 induced AIDS dynamics, and Kaposi 
sarcoma.  

 

2 Parameters 
In this section, the model parameters, constants, and 

variables are presented as modified from [7].  

x1: the number density of non-HIV-1-infected CD4+ helper 
T-lymphocytes per unit volume at any time t  

x2: the number density of HIV-1 infected CD4+ helper 
T-lymphocytes per unit volume at any time t 

x3: the number density of HIV-1 virions in the blood plasma 
per unit volume at any time t 

x4: the number density of HIV-1 specific CD8+ cytotoxic 
T-lymphocytes per unit volume at any time t 

x5: the concentration of drug molecules of the HAART 
treatment protocol at any time t 

x6:The number of Kaposi sarcoma cancer cells in the AIDS 
patient at any time t during HAART 

S1:  rate of supply of un-infected CD4+ T4-lymphocytes  
S2:  rate of supply of latently infected CD4+ T4-lymphocytes 
S3: rate of supply of HIV-1 virions from macrophage, 

monocytes, microglial cells and other lymphoid tissue 
different from T4-lymphocytes 

S4:  rate of supply of CD8+  T8 lymphocytes from the thymus 
D:  rate of HAART drug infusion by transdermal delivery   
ai, bi: constant associated with activation of lymphocytes by 

cytokine interleukin-2 (IL-2) (i =1, 2, 3, 4) 
αi: constant associated with HIV-1 infection of CD4+ T4 

helper cells (i =1, 2, 3) 
β1: the number of HIV-1 virions produced per day by 

replication and budding in CD4+ T4 helper cells  
β2: rate constant associated with replication and “budding” of 

HIV-1 in syncytia CD4+ T4 helper cells per day per 
microliter (μl) and released into the blood plasma  

β3: the number of HIV-1 virions produced per day by 
replication and “budding” in non-syncytia CD4+ T4 helper 
cells and released into the blood plasma 

ηi: constant depicting the rate of which HIV-1 virions 
incapacitate the CD8+ T8 cytotoxic cells (i =1, 2) 

(σ0, λ0): Michaelis-Menten metabolic rate constants 
associated with HAART drug elimination 

(σi, λi): Michaelis-Menten metabolic rate constants 
associated with HAART drug pharmacokinetics (i =2, 3) 
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(σ4, λ4): Michaelis-Menten metabolic rate constants 
associated with cytolytic action of CD8+ against Kaposi 
Sarcoma cancer cells 

γ4: constant depicting the cytolytic efficacy of CD8+ T cells 
against Kaposi sarcoma cancer cells 

ξi: cytotoxic coefficient where 0 ≤ ξi  ≤ 1 (i =  2, 3) 
qi: constant depicting competition between infected and 

un-infected CD4+ T4 helper cells (i =1, 2) 
ki: constant depicting degradation, loss of clonogenicity or  

“death” (i =1, 2, 3, 4) 
ei0: constant depicting death or degradation or removal by 

apoptosis (programmed cell death) (i =1, 2, 3, 4) 
Ki: constant associated with the killing rate of infected CD4+ 

T4 cells by CD8+  T8 cytotoxic lymphocytes (i =1, 2) 
All the parameters are positive 

ci: kinetic constants depicting logistic tumor growth for 
Kaposi sarcoma 

3 Model Equations 
 The following system of non-linear deterministic 

ordinary differential equations models the 
patho-physiological dynamics of HIV-1 induced AIDS 
virions and associated Kaposi sarcoma cancer cells, CD4+ 
(infected and non-infected) T cells, and CD8+ T cells during 
HAART therapy.

      

     
 

 

 

 
 
 
 
 
                        

 

 

   (3.1) 

4 Simulation results and discussion 
A brief summary of the simulation results will be 

presented in this section. Figure 1 and Figure 2 correspond 
respectively to hypothetical HIV-1 KS patient’s physiological 
parametric configurations P1 (Table 1) and P2 (Table 2).  

(i) Hypothetical clinical case #1[Figure 1, P1]: 
It is observed that HAART treatment successfully 
annihilates the HIV-1 virions in the blood plasma and 
reduces the number density of HIV-1 infected CD4+ T cells, 
whereas the non-infected CD4+ T cells proliferate to 
clinically efficacious levels. On the other hand, the HIV-1 
specific CD8+ T cells are eliminated and consequently the 
Kaposi sarcoma proliferates out of control. 
 

(ii) Hypothetical clinical case #2 [Figure 1, P1′]: 
In this scenario, the physiological parametric configuration 
is the same as that of P1 except that there is an adoptive 
transfer of 2000 units of ex-vivo interlenkin-2 activated 
CD8+ cytotoxic T cells. In P1′, the S4 value is now assigned 
to a value of 2000 instead of 10 as in P1. The therapeutic 
outcome is clinically efficacious because the Kaposi 
sarcoma is annihilated.  

(iii) Hypothetical clinical case #3[Figure 2, P2]: 
This scenario discusses the effect of HIV-1 latent viral 
reservoirs on the treatment outcome. In particular, S3 is set 
to a value of 1000, depicting the influx of 1000 HIV-1 
virions from reservoirs such as microglial cells, 
macrophages and dendritic cells. It is observed that even 
though the HAART dose rate D is increased to 4000 units, 
there is a subsequent therapeutic failure because the 
non-infected CD4+ cell number plummets as HIV-1 virions 
overwhelm the immune system. On the other hand, the 
adoptive transferred 2000 units of CD8+ cells are able to 
keep the Kaposi sarcoma cancer cells under the clinically 
detectable level of 1000 cells.    
 

(iv) Hypothetical clinical case #4 [Figure 2, P2′]: 
The physiological parametric configuration is the same as 
that of P2 except for the fact that the HAART drug dose rate 
D is increased to 5000 units, and the non-infected CD4+ T 
cells (x1) are given an extra boost of interleukin-2 (IL-2) 
dose and as such the value of a1 is now 0.45. The outcome 
is clinically efficacious because the plasma HIV-1 virions 
(x3), the HIV-1 infected CD4+ T cells (x2), and the KS 
cancer cells are kept under the clinically detectable level of 
1000 cells, whereas the non-HIV-1 infected CD4+ T cells 
(x1) repopulate to clinically efficacious level.    

5 Summary 
Our research can be summarized in the following 

statements: 

(i) It is possible for HAART therapy to annihilate the HIV 
virions without necessarily eliminating KS. 

(ii) Adoptive transfer of CD8+ T cells at a predetermined 
dose rate can annihilate KS cancer cells. 
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(iii) It will require both HAART and adoptive transfer CD8+ 
T cells incubated with IL-2 to decimate both HIV-1 

virions and the Kaposi sarcoma cancer cells. 

 

TABLE 1. Hypothetical AIDS Patient Parametric Configuration Ρ1 

S1 = 800 /day/μl 
a1 = 0.15 /day/cell/μl 
b1 = 0.01 /cell/μl 
α1 = 
0.5/day/virions/μl 
k1 = 0.0005/day/μl 
q1 = 
0.00045/day/μl/cell 
e10 =  
0.0025 cells/day/μl 
x10 = 500 cells/μl 

S2 = 800 /day/μl 
a2 = 0.11 /day/cell/μl 
b2 = 0.004/cell/μl 
α2= 0.5/day/virions/μl 
k2 = 0.005/day/μl 
q2 = 0.00001/day/μl/cell 
β1 = 1.5 
virions/CD4+/day 
K1 = 0.0001/day/μl 
e20 = 0.0005 cells/day/μl 
x20 = 400 cells/μl 

S3 = 10 /day/μl 
β2 = 
0.0085virions/CD4+/day/μl 
β3 = 2.75 virions/CD4+/day 
α3 = 0.027 /day/virions/μl 
k3 = 0.0001/day 
e30 = 0.0001 /day 
η1 = 0.055 
ξ2 = 0.85 
ξ3 = 0.0001 
x30 = 1000 virions/μl 

S4 = 10 /day/μl 
a4 = 0.35 
/day/cell/μl 
b4 = 0.01/cell/μl 
K2 = 0.0024 /day/μl 
k4 = 0.08/day/μl 
e40 = 0.0002 
cells/day/μl 
η2 = 0.055 
γ4 = 0.15 
x40 = 1500 cells/μl 

D = 4000 units 
σ0 = 0.5 mg/day 
σ2 = 30 mg/day 
σ3 = 5 mg/day 
λ0 = 5 mg/L 
λ2 = 10 mg/L 
λ3 = 0.015 mg/L 
x50 = 1500 
cells/μl 
n = 5 

c1 = 6.405 
c2 = 0.00075 
σ4 = 7 mg/day 
λ4 = 5.5 mg/L 
x60 = 
2500cells 
 

 

   

     

Figure 1 Simulation results using parametric configurations Ρ1 vs. P1′  
(P1′ is the modified P1: same as Ρ1 except S4 = 2000. The time axis unit is months.) 

TABLE 2. Hypothetical AIDS Patient Parametric Configuration Ρ2 

S1 = 800 /day/μl 
a1 = 0.15 /day/cell/μl 
b1 = 0.01 /cell/μl 
α1 = 
0.5/day/virions/μl 
k1 = 0.0005/day/μl 
q1 = 
0.00045/day/μl/cell 
e10 = 0.0025 
cells/day/μl 
x10 = 500 cells/μl 

S2 = 800 /day/μl 
a2 = 0.11 /day/cell/μl 
b2 = 0.004/cell/μl 
α2= 0.5/day/virions/μl 
k2 = 0.005/day/μl 
q2 = 0.00001/day/μl/cell 
β1 = 1.5 
virons/CD4+/day 
K1 = 0.0001/day/μl 
e20 = 0.0005 cells/day/μl 
x20 = 400 cells/μl 
 

S3 = 1000 /day/μl 
β2 = 0.0085 
virons/CD4+/day/μl 
β3 = 2.75 virions/CD4+/day 
α3 = 0.027/day/virions/μl 
k3 = 0.0001/day 
e30 = 0.0001 /day 
η1 = 0.055 
ξ2 = 0.85 
ξ3 = 0.0001 
x30 = 1000 virions/μl 

S4 = 2000 /day/μl 
a4 = 0.35 
/day/cell/μl 
b4 = 0.01/cell/μl 
K2 = 0.0024 /day/μl 
k4 = 0.08/day/μl 
e40 = 0.0002 
cells/day/μl 
η2 = 0.055 
γ4 = 0.15 
x40 = 1500 cells/μl 

D = 4000 units 
σ0 = 0.5 mg/day 
σ2 = 30 mg/day 
σ3 = 5 mg/day 
λ0 = 5 mg/L 
λ2 = 10 mg/L 
λ3 = 0.015 mg/L 
x50 = 1500 
cells/μl 
n = 5 

c1 = 6.405 
c2 = 0.00075 
σ4 = 7 mg/day 
λ4 = 5.5 mg/L 
x60 = 
2500cells 
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Figure 2 Simulation results using parametric configurations Ρ2 vs. P2′  
(P2′ is the modified P2: same as Ρ2 except a1=0.45, D=5000.The time axis unit is months.) 
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Abstract - Improving the quality of healthcare, 
reducing medical errors, guarantying the safety of 
patients are the most serious duty of the hospital. 
Electronic Health Record (EHR) was introduced to 
achieve these goals. HER has a very large data source 
which can guide and improve the clinical decision 
making process. In this paper, we will propose a 
distributed Clinical Decision Support System (CDSS) 
architecture which satisfies the compatibility, 
interoperability, and scalability objectives of EHR. The 
proposed framework will take advantages of EHR, data 
mining techniques, clinical databases, domain experts’ 
knowledge bases, and available technologies and 
standards to provide decision making support for the 
healthcare personnel.  
 
Keywords: Data Mining; Knowledge Management; 
Clinical Decision Support Systems (CDSS); Electronic 
health record; Health informatics.  
 

1 Introduction  
Healthcare faces multiple problems, including 

high and rising expenditures, inconsistent quality, and 
gaps in care and access. Because of this, health care 
services represent a major portion of the government 
spending in most countries [1]. 
Healthcare information technology, especially EHRs, 
have been thought to be possible solution to healthcare 
problems. EHRs help administrators, physicians, 
nurses, researchers and healthcare personnel. EHR 
provides a complete, integrated and consistent view 
about patient conditions. However, the volume of data 
is very large and is increasing continuously. Healthcare 
personnel need to take all of the patient medical history 
in to consideration; they also need to connect this 
information together and take advices from domain 
experts. This huge amount of data cannot benefit 
physician without a helping automated system. This 
system can analyze these data, connect it together, 
integrate it with knowledge from domain expert, and 
search for needed knowledge - if it is possible - in  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

other connected systems. This system is CDSS. In this 
paper, we tried to build a complete architecture for this 
system. The proposed model will take an order and 
initial diagnose from healthcare personnel and provide 
a decision support in understandable form based on 
existing knowledge. The system will integrate off-line 
standardized knowledge bases from domain experts 
with online knowledge extracted continuously from 
EHR and clinical databases and provide applicable 
decisions support.  The paper is organized as follow. 
Section 2 discusses related work. Section 3 explains the 
research problem. In section 4 we define CDSS. The 
proposed framework for CDSS is discussed in section 
5. The conclusion is shown in section 6. 
 

2 Related Works 

2.1 EHR standards 

Many organizations provide EHR standards that 
standardize the structuring, implementing, sharing, 
integration and interoperability in EHR environment. 
Some of them are ISO, CEN, CFR, ASTM, HL7, 
NEMA, ONCHIT, etc. Also, coding systems are critical 
to build a shared EHR because the new environment 
connects heterogeneous systems each with different 
terminologies. Some organizations that provide these 
standards are AMA, IHTSDO, CMS, WHO, etc. 
  

2.2 Data mining and Artificial 
Intelligence (AI) 

Applying data mining and AI techniques on EHR 
data has many opportunities to improve the delivery, 
efficiency, and effectiveness of health care [12][13], 
such as operations management, preventive healthcare, 
chronic disease treatment and prevention, association 
analysis, evidence-based treatment, population tracking, 
etc. If CDSS depends only on the Knowledge Base 
(KB) derived from knowledge expert, then it will be 
inactive and not applicable. EHR contains a very large 
and historical dataset which change continuously and 
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contains useful hidden knowledge. As a result, data 
mining and AI services should be embedded in the 
active CDSS system to continuously update the 
CSDD’s knowledge base by the most recent patterns 
from EHR and clinical databases. 

 

2.3 Knowledge representations in medical 
domain 

Because there are many sources and uses for 
medical knowledge, many international methodologies 
and standards for representing medical and healthcare 
body of knowledge are integrated. Clinical workflows 
(clinical guidelines) are used to represent human-based 
medical knowledge through rule-based or flow-based 
guideline techniques. Furthermore, mined knowledge 
can be automatically extracted from clinical databases 
and/or EHR through data mining and AI techniques to 
be incorporated into human-generated knowledge in 
order to enhance their decision-making processes.  
 
Both types of knowledge can be represented as logical 
conditions, rules, graphs/networks, or structural 
representations [5]. Predictive Model Markup Language 
(PMML) and GLIF (Guide Line Interchange Format) 
are examples of knowledge representation languages 
which are used to acquire and integrate knowledge. 
Also there are many tools for knowledge acquisition 
and representation as Unified Medical Language 
System (UMLS) [6], Protégé [7], GLARE [8], 
PROforma [9], Asbru [10]. 
 

2.4 Service Oriented Architecture (SOA)  

SOA has been widely adopted to solve the 
interoperability of the involved heterogeneous 
distributed EHR systems [2][3]. It plays a key role in 
the integration of heterogeneous systems by the means 
of services that represent different system functionality, 
independent from the underlying platforms or 
programming languages, and interact via messages 
exchange. Web services also play critical role in 
systems interoperability.  

 
Web services technology is defined as a systematic and 
extensible framework for application-to-application 
interaction built on top of existing web protocols. These 
protocols are based on XML [11] and include: Web 
Services Description Language (WSDL) to describe the 
service interfaces, Simple Object Access Protocol 
(SOAP) for communication between web services and 
client applications, and Universal Description, 
Discovery, and Integration (UDDI) to facilitate locating 
and using web services on a network [4]. 
 

3 The Research Problem 
Building CDSS will improve the quality and 

efficiency of healthcare [17]. These systems will be 
more practical when coupled with Computerized 
Physician Order Entry (CPOE). It contains a set of 
knowledge bases (one in each hospital) extracted off-
line from domain experts. If CDSS only depends on 
these knowledge bases it will be inactive and will 
become not applicable. The solution is to continually 
update these knowledge bases to make CDSS more 
active. At each site, new knowledge will be discovered 
and added to knowledge base from (1) new expert 
knowledge discovered by research, (2) data mining 
engine connected to local EHR and clinical databases. 
This action will make CDSS more active by including 
the most recent knowledge from active databases. 
Because knowledge base must be in specific domain 
such as heart diseases, the proposed framework will be 
distributed with co-operative and integrated knowledge 
bases. Each knowledge base in each hospital will be in 
specific domain. At each hospital, CDSS will build 
patient profile from patient’s medical history and 
current diagnose, and it will use its local knowledge 
base to make decision. If CDSS cannot take decision by 
using its local knowledge base, it can send some data to 
other sites to consult its specialized knowledge bases. 
Other sites will response by some knowledge that helps 
CDSS to make more accurate decision. The goal of this 
paper is to propose a distributed CDSS framework that 
achieves (1) build co-operative knowledge bases from 
different domain experts’ knowledge and most recent 
academic researches, (2) Standardize knowledge into 
XML format before storage, (3) connect data mining 
engine to EHR and clinical databases to continuously 
mine the most recent and applicable knowledge and 
adds it to local knowledge base, (4) CDSS can consult 
specialized  knowledge bases in other institutions for 
other relevant knowledge, (5) before starting to take 
decision, CDSS collects all patient EHRs from all sites, 
integrates it with current diagnose,   standardizes it and 
enters it to the inference engine, (6) assure 
interoperability by converting all patient data  and 
knowledge in to standard XML format. This way, we 
build a complete, interoperable, active, distributed and 
continuously learning CDSS system. 
 

4 Clinical Decision Support System 
CDSS are interactive computer programs which 

are designed to assist physicians and other health 
professionals [14]. It helps in drug prescription, 
diagnosis and disease management to improve services 
and reduce risks and errors. It can check for patient 
drug allergies, compare drug and laboratory values, 
evaluate the potential for drug-drug interactions, 
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suggest drug alternatives, block duplicate orders, 
suggest drug doses, routes, and frequencies and provide 
recommendations. Also, CDSS can provide clinical 
knowledge and best practice standards and guidelines 
for inexpert physicians. CDSS must be integrated with 
EHR and CPOE system which is connected to other 
HISs (laboratory, radiology, billing, etc). The basic 
components of a CDSS include medical knowledge 
base and an inference mechanism (usually a set of rules 
derived from the experts and evidence-based medicine) 
and implemented through medical logic modules based 
on a language such as Arden syntax or using artificial 
neural network as in figure 1 [15].  

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
CDSS provides recommendations based on the 
available patient specific data (EHR) and medical facts 
(knowledge base). It has ten levels of automation 
ranging from L1 where all decisions made by humans 
to L10 where computer makes all decisions. 
 
The EMR is continuously updated, so the knowledge 
bases must be continuously updated be discovered 
knowledge from domain expert and discovered 
knowledge from EMR. 
 

5 Proposed CDSS Framework 
We assume that EHR architecture and 

connectivity exists, and we will integrate the distributed 
CDSS architecture with it. The proposed architecture of 
CDSS is independent. It does not depend on and does 
not affect by the architecture of EHR or HIS. Moreover, 
the architecture is scalable. We can add any number of 
knowledge bases, EHRs, or clinical databases to the 
architecture using available standards and technologies.  
Previous CDSS was separate system from the 
healthcare systems. This way, it will require physician 
to manually activate it, log in to it, and reenter 
redundant patient data. This process will make CDSS 
not applicable and waste time. Also CDSS will depend 
on the entered data which may be inadequate or contain 

errors. The needed CDSS will be directly integrated 
with the healthcare system’s CPOE component, it will 
be activated automatically, collect the needed data from 
patient order, ask for unknown parameters, and make 
recommendation on time. Figure 2 [16] show the three 
phases in the decision making process.  
Phase 1 (knowledge preparation) uses data mining 
techniques to extract knowledge from electronic 
healthcare data and store it in knowledge base. Phase 2 
(knowledge interoperation) takes the patient data that 
need decision making and translate it in to standard 
XML form (CDA) and make PMML encoding of the 
knowledge from knowledge base (KB). The last phase 
takes the previous standardized data and knowledge and 
makes decision. Figure 3 shows our proposed CDSS 
framework. It will operate as follows:  
 

5.1 Knowledge Bases Building 

The first step is to build the initial KBs. 
Constructing KBs of the CDSS is a crucial task that 
determines the success of the CDSS in general [19]. 
The goal is to collect the medical knowledge from the 
relevant sources (domain expert, EHR and/or clinical 
databases, and research), systemize it and represent it in 
a formal human understandable and computer-
interpretable manner. In this framework the three 
services or components responsible for generating and 
standardizing knowledge to populate the standard XML 
KBs are:  
1- Knowledge Extraction Module (KEM), it is 

responsible for extract knowledge from domain 
expert. There are many ways to represent this 
knowledge.  

2- Data Mining Engine (DME), it is responsible for 
mine both EHR and clinical databases. 

3- PMML Encoding Module (PEM), it employs 
PMML to encode the generated knowledge in to 
standard XML based document to achieve 
interoperability goal between knowledge 
discovered from different HISs and knowledge 
from domain experts. The XML schema for each 
document describes the input data items, data 
mining algorithm specific parameters, and the final 
mining results.   

 
The challenges in constructing and maintaining the 
knowledge bases are numerous. Firstly, for specific 
domain in one hospital, the KB is built from domain 
expert’s knowledge off-line. KEM can take variety of 
methods and techniques to build knowledge base [5]. 
KEM Then passes the knowledge to PMML encoding 
module to translate it to XML form. In each hospital, 
CDSS will have specialized KB according to the field 
of the hospital, and the distributed framework will 
make these KBs co-operative. 
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Medical  
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Figure 1: General model of CDSS 
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Assuring that KBs are up to date is critical to make 
CDSS active and continuously learning and therefore 
applicable, and this can be achieved by:  
(1) Continuously update KBs by new domain expert or 
research knowledge,  
(2) Applying data mining techniques and algorithms on 
local clinical databases and EHR to discover hidden and 
non-trivial patterns and update the KB by these results.  
 
This way, the CDSS will provide the most up to date 
and the most applicable knowledge. DME has two 
processes:  
(1) Data Preparation Engine which identifies the task 
relevant data from clinical databases and HER after 
triggers from there sources to apply data mining 
process, removes the healthcare data attributes that can 
identify a patient or reveal their private data 
(Anonymization) and performs data selection, cleaning 
and transformation.  
(2) KDD which performs the actual data mining 
operations. Finally, the results are assessed in terms of 
usefulness, validity, and understandability. 
 
EHR is important source for medical knowledge. It 
contains a longitudinal and history of patient clinical 
and diagnostic data. This makes EHR a good place for 
applying data mining and AI techniques. Also EHR 
attributes are selected carefully which add another 
advantage.  This process is continuous because EHR is 
updated continuously. Any update to EHR will trigger 
the DME to discover new knowledge then pass it to 
PEM to standardize and store it in KB.   
Another source of knowledge is the clinical databases 
because it contains detailed data about patient. The 
DME is triggered to search for new knowledge in the 
updated databases as with HER. This way we assure 
that KB contains the complete, most recent, accurate 
and applicable knowledge.  
The domain expert knowledge and the data mining 
discovered knowledge are passed to PEM module to be 

standardized in XML format and stored in knowledge 
base. 
 

5.2 CDSS Supporting CPOE  

Healthcare personnel use the CPOE for 
prescription. Previously, the Health Information System 
(HIS) was depending on the paper-base prescribing or 
poor or unstructured notes in a separate system (order 
entry system). Also, the order entry system was 
collecting only administrative data not medical, clinical 
or diagnostic data. The needed system will use 
electronic prescribing system which allow the writing 
of e-prescribe. Additionally, human errors and mistakes 
are expected when writing the prescription. With the 
existence of CDSS integrated with CPOE system, 
CDSS will not only provide recommendations for 
treatment, but it also can check for errors or shortage of 
data and notify physician before proceeding with 
decision support. There are many methodologies for 
building user interface for CPOE. It may be a series of 
questions and answers [18]. Another methodology uses 
the standard paper-base forms to build data entry 
templates and adds features relevant to decision 
support. Web-based order entry forms also can be used. 
 

5.3 Framework Execution Steps 

After building knowledge bases the CDSS is now 
ready to guide and help healthcare personnel. The 
execution of this framework will work as follow: 
 
1- In an on-line operation, Healthcare personnel enters 
patient Universal ID (UID) which identify the patient 
nation-widely, and enters subject data or current 
diagnose (i.e., healthcare data that needs decision 
making).  
 
2- UID passes to HRS (History Retrieval Service) in the 
local hospital, and travels via a secure network channels 
to all hospitals.  
 
3- Each HRS in each hospital checks whether this 
patient has an EHR in its hospital or not.  
 
4- If the patient has no record then the service returns 
message indicating that, else there are many 
methodologies for implementing the service to retrieve 
patient record. It may be implemented to retrieve the 
last N visits, visits within specific period, specific 
disease’s related data, etc. 
 
5- The returned records will be collected and filtered by 
Accumulator and Filter service which produce the 
patient profile. 
 

 
Figure 2: Health care Knowledge management 
framework. The shaded areas designate off-line parts. 
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6- Patient profile is integrated with the current diagnose 
and entered to CDA Encoding service which 
standardize the patient medical and diagnoses data into 
standardized XML-based CDA. 
 
7- The encoded PMML knowledge from local KB and 
CDA document from CPOE provides the 
interoperability of knowledge and data in our 
framework in the sense that CDSS will be independent 
of the proprietary data format of the involved healthcare 
providers. 
Now we have a complete view about patient’s current 
and previous conditions. 
 
8- The encoded patient profile enters as input to local 
Knowledge Engine (KE) which make inference of 
diagnose, determine the correct medicines, etc, as 
discussed in section 4. 
9- KE can be programmed by any AI methodology as 
artificial neural network. It can access, query, and 
interpret the data and knowledge that flow from CPOE 
and KB respectively. Decision making is carried out in 
3 main steps, retrieving the right data fields from the 
data source (CDA); applying the knowledge’s models 
to the data; and eventually taking an action or a set of 
actions based on the results of this application. For 
example, if the module was invoked at a decision step 
in a guideline, it may branch to a specific path; or it 
may simply display the results in the form of a reminder 
or an alert.  
 
10- According to the complexity of the problem and 
according to the specialization of KE, KE may need to 
consult the other site’s KE of its problem if it has 
shortage in available knowledge  
or if it is not specialized in this problem. This is done 
by sending the CDA or specific fields from its site to all 
or set of other sites that use the same technologies, 
interfaces, standards, services, and terminologies. All of 
the helping KEs determine the relevant knowledge and 
send it to the requesting KE.  
 
11- This way KE will take decision based on the initial 
physician diagnose, EHRs, and knowledge from its 
local KB other KBs. Also, it will use KB which 
contains the most recent knowledge. This way we ease 
the process of developing KBs because each KB will be 
specialized in specific domain and KEs will co-operate 
or consult each other according to patient profile to 
make the most accurate decision. 
 
12- The final results of the KE will be displayed to 
healthcare personnel by the Knowledge Representation 
(KR) module. It will be used to communicate the final 
results to physician. According to the level of 
automation in CDSS, the KR may: 

1- Display recommendation in the form of images, 
texts, sounds, videos, etc. 

2- Require physician’s decision about the final 
diagnose and actions. The physician has the choice 
to refuse, alter or accept the given support. If the 
physician accepts the support, CDSS will send an 
order to: the pharmacy to prepare the medicine and 
give it the treatment policy, laboratory system to 
prepare for specific tests, radiology system to be 
ready for some rays tests, etc. 

3- Request additional data to be entered again into 
CPOE.  

 
13- The CDSS may make many diagnoses with 
different probabilities and physician can choose the 
best. Also, data mining and machine learning can 
predict the likelihood for any future problem in health 
of community. 
We expect that this framework will provide the most 
accurate and applicable decision support, and will 
achieve great integration between HIS and decision 
support processes. Also, the proposed model is fully 
automated. The physician only enters the patient UID 
and initial diagnoses, and CDSS returns decision 
supports. Moreover, the architecture is component-
based. Each component of architecture is pluggable and 
reusable.  
 

6 Conclusion   
In this paper, we proposed a novel knowledge 

management framework for distributed health care 
systems that incorporate the knowledge extracted by 
data mining techniques with knowledge from domain 
experts with EHR data into health care information 
systems for decision making support. The model 
successfully integrates CDSS into the workflow of the 
HIS. This process fast the physician operations and 
reduce the level of error. We use many standards as 
CDA and PMML to achieve the system interoperability 
and integration to enhance healthcare decision making 
environment. Our model is fully automated. It only 
needs the patient universal ID and the physician’s initial 
diagnose, then the system collects all patient EHRs 
from all hospitals, standardize it, and introduce it to the 
Knowledge Engine which make intelligent decision 
support.  
This model depends on a set of knowledge bases 
located in different hospitals. Each is specialized in 
specific domain and the distributed CDSS architecture 
facilitates the integration and cooperation of KEs in 
case of patients who have complex medical or 
diagnostic problems. KE may send the patient profile or 
specific data to other sites for consultation.  
This model also assures that knowledge base is 
continuously up to date to allow the CDSS to produce  
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an applicable recommendations and actions. If the 
result recommendations are not represented to 
physician with a correct way, then it will have less 
benefit. As a result of that, the model has a module to 
represent results from KE in a meaningful way which 
allows physicians to make fast and accurate decisions. 
The next step is to implement this framework. 
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Abstract: Dizzy is a chemical kinetics simulation software 
framework. On up gradating this package to simulate the 
dynamics of complex gene regulatory networks. Using 
Tauleap simplex and Tauleap complex algorithms, 
implemented in Java. Procedure have been improved for 
determining the maximum leap size which accelerates the 
speed of simulation. This paper focuses mainly on simulating 
Genetic Regulatory Networks using stochastic methods of 
simulation and introducing τ to accelerate the speed of 
simulation. 
 
Keywords: Gene Regulatory Network, Endomesoderm, Sea 
Urchin, Stochastic Simulation , BioTapestry. 
 
1. Introduction: Simulation is a powerful approach for 
understanding the complexity of biological systems. Recently, 
several successful attempts have been made for simulating 
complex biological processes like gene regulatory networks, 
metabolic pathways and cell signaling pathways[1][2] .The 
network models have not only generated experimentally 
verifiable hypothesis but have also provided valuable-insights 
into the behavior of complex biological systems. Many recent 
studies have confirmed the phenotypic variability of organisms 
to an inherent stochasticity that operates at a basel level of gene 
expression. Due to this reason, development of novel 
mathematical representations and efficient algorithms are 
critical for successful simulation of  biological systems. Genetic 
Regulatory Networks (GRNs) control cellular state form and 
functions. They are responsible for executing embryonic 
developmental programs and, changing cellular state and 
metabolic processes based on environmental conditions. A 
specific example is the early cell specification process within 
the sea urchins embryo. GRNs typically involve feedback 
interactions among multiple genes [2][3].  The situation is 
frequently more complex in adult organisms, where feedback 
loops intertwine genetic networks closely.  
Signaling and metabolic events change the state of a GRN, 
which in turn modifies the structure of the upstream [3]. 
BioTapestry is a software tool for modeling the genetic 
regulatory networks. The application of Bio-tapestry tool to 
enable computerized modeling of GRNs, we can model a 
network consisting of only up to 50 genes. I have upgraded the 
tool by using Kinetic Logic Model Framework and a number of 
other algorithms such that a GRN model of more then 186 genes 
can now be obtained. The output of BioTapestry  is used as an 

input to Dizzy  package in order to simulate the modeled GRNs. 
On extending  the Dizzy software tool by using stochastic 
Tauleap complex method in order to simulate GRNs. This paper 
is divided into different sections. Section 2 comprises a brief 
overview of the Dizzy software system, whereas in section 3 
explains the different simulation algorithms and in section 4 the 
Simulation Methodology is described. In section 5,a new Tau 
selection procedure is proposed , in sections 6 sea urchins gene 
expression data  and finally in section 7 we have discuss the 
results and conclusions.  
 
2. Overview of the Dizzy Software System 
 In this section, we give an overview of the major features of 
Dizzy, a software framework for simulating the dynamics of 
complex Genetic Regulatory Network systems. Dizzy provides a 
collection of simulators for solving the dynamics of a model. 
Features of Dizzy simulator are: 
 
a.  Modular simulation framework: Dizzy employs a modular 
design in which each simulator is a software unit that conforms 
to a simple, well-defined interface specification. This 
architecture facilitates an iterative model development cycle in 
which the model is analyzed using various simulation 
algorithms [4].  
 
b. Templates reusable and hierarchical model elements: 
Dizzy's model definition language permits the definition of 
reusable, parameterized model elements called templates. This 
enables the construction of a prepackaged library of templates 
that can simplify the task constructing a complex model.  
 
 
c.  Multi-step and delayed reaction processes: Dizzy enables 
the simulation of complex multi-step processes such as 
elongation and translocation during transcription or translation, 
through two methods. One may define it as a multi-step reaction 
process, a reaction process with an intrinsic, phenomenological 
time delay [5][6]. 
 
d.  Estimation of steady-state stochastic noise: Dizzy provides a 
feature for estimating or calculating the steady-state stochastic 
fluctuations of the species in a biochemical model, requiring 
only the solution of the deterministic dynamics [7][8]. 
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e.  Integrated, graphical, and portable software framework: 
Dizzy has several important software features including 
integration with external software tools, a graphical user 
interface (GUI) and a high level of portability.Many software 
tools are available for solving the deterministic and stochastic 
dynamics of complex biochemical networks but not for GRNs. 
A detailed overview of the most common algorithms for 
simulating GRNs is presented in section 3. We compare some of 
the most widely used simulation software tools against a 
specific list of simulation algorithms and features described 
above.To the best of our knowledge, Dizzy is the only software 
tool available that includes all the features enumerated above. In 
addition, it includes novel implementations of the number of 
simulation algorithms[9].  
 
3. Simulation  Algorithms: A  Number of algorithms can be  
used for simulating the GRNs. These can be divided into two  
broad categories: a. Deterministic and  b. Stochastic Algorithms 
 
a. Deterministic Algorithms: 
If no noise or any stochastic variations are present in the 
process, then we may use Deterministic Algorithms to solve a 
group of non-linear differential equations. If the system includes 
both very fast and very slow dynamics, that is some reactions 
are much faster then others, the system is called stiff. Stiff 
systems are hard to simulate since the fast dynamics require for 
short step size and the slow dynamics increase the total 
simulation time interval. Using a small step size, the simulation 
of the whole process becomes very slow[10]. Consequently, 
some numerical algorithms are developed especially for the 
simulation of this kind of systems. The deterministic algorithms 
available in Dizzy are listed below. 
i. Fifth order Runge-Kutta Method: This method is particularly 
useful for simulating models in which a derivative function is 
discontinuous & the step size is adaptively controlled, based on 
a fourth order error estimation formula. Both relative and 
absolute error tolerances may be independently specified, as 
well as the initial step size[11].  
ii. Fifth  Order RK Fixed: In this method, the differential 
equations are solved using a finite difference method, with a 
fixed step-size. The step size is specified by the user, as a 
fraction of the total time interval for the simulation.  
iii. ODE to Java-dopr54-adaptive: In this algorithm control 
adaptive step-size  is used. Implemented by Murray Patterson 
and Raymond Spiteri.  
iv. ODE to Java-imex443-stiff: An implicit-explicit ODE solver 
with step doubling. Works well for models with a high degree of 
stiffness. 
 
 
b.  Stochastic Algorithms: 
Gene regulation is an inherently stochastic process, which 
cannot be exactly simulated by deterministic algorithms. In 
addition, the stochastic algorithms are designed for continuous 
changes in the state[12]. Some genes in the network may be 
weakly expressed but  the model must handle the exact numbers 
of genes. In these cases the stochastic simulation methods have 
to be used .For biological systems involving genes of small 

populations, the stochastic simulation algorithm (SSA) derived 
by Gillespie is an essentially exact procedure for studying noise 
in gene networks systems[13][14]. However, the computational 
load of the SSA is often very high when it is applied to simulate 
large biological systems. Thus, it is imperative to design 
efficient numerical methods for simulating stochastic Gene 
Regulation Networks. There are two significant approaches for 
reducing the computational time of SSA describe in 
methodology section. In dizzy, the following stochastic 
algorithms are realized[15]  
i. Gibson-Bruck :  An algorithm used for simulating the large 
scale models but are less dynamic.   
ii. Gillespie :  This algorithm is useful for simple systems with 
less complexity 
iii. Tauleap-Simple: An approximate accelerated stochastic 
simulator implemented using the Gillespie Tau-Leap algorithm. 
This implementation is intended for models in which the models 
are less complex.  
iv. Tauleap-Complex: An approximate accelerated stochastic 
simulator implemented using the 
Gillespie Tauleap algorithm. This implementation is used  for 
large complex models. 
4. Simulation Methodology 
In a Genetic Regulatory Networks system, the state vector X(t) 
= (X1(t), …,XN(t)), where Xi(t) is the number of gene of species 
Si in the system at time t, evolves stochastically because of the 
inherent random interactions of genes. Random genes 
interactions give rise to random chemical transmutations in 
accordance with some specified set of reaction channels 
{Ρ1,...,ΡΜ}The dynamics of genes Rj are mathematically defined 
by a propensity function aj together with a state-change vector vj 
= (v1j,…,vnj) :aj(X)dt gives the probability that one Rj reaction 
will occur in state X during the next infinitesimal time interval 
dt, and τ ijgives the change in the Si molecular population 
produced by one Rj reaction[16]. 
 For simulating the stochastic evolution of X(t) , there exist 
several exact procedures that actualize every molecular reaction 
event[17][18]. But efforts to model the complex biological 
networks inside living cells, where small number of genes can 
set the stage for major stochastic effects[19] ,have revealed the 
need for faster, possibly less meticulous stochastic simulation 
strategies.The newly proposed “leaping” methodology attempts 
to sacrifice accuracy for greater speed, and to do so in a way that 
segues as the system size becomes infinite to standard solution 
methods for the conventional deterministic reaction rate 
equation. The “τ -leap method,” for instance, tries to leap down 
the history axis of the system by some chosen time τ that 
encompasses many reaction events. But theoretical 
considerations demand that the size of τ be constrained by a 
Leap Condition, which says that the state change in any leap 
should be small enough that no propensity function will 
experience a macroscopically significant change in its value. 
The mathematical rationale for the τ -leap method [19] is the 
fact that, to the extent that the Leap Condition is satisfied, then 
given X(t) τ x , the number of times Kj(τ x) that genes Rj will be 
express in (t, t  τ ) can be approximated by a Poisson random 
variable: 
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K j( τ; x) ≈ρ j ( aj( x), τ)    (1)       
This is so because the generic Poisson random variable  ρ(a, τ ) 
can be defined as the number of events that will occur in a time 

τ , given that the probability for an event to occur in the next 
infinitesimal time dt is adt , where a can be any non-negative 

constant. 
This last requirement is approximately ensured by the Leap 
Condition, and the consequent approximation (1) allows us to 
estimate the state change in the leap, 

X(t+τ)− x ≡ Λ(τ; x) = ∑
=

M

j 1

Kj(τ; x) υj                              (2) 

by simple Poisson sampling[8]. But for this approach to be 
practicable, we need a reliable, expeditious, and preferably 
automatic way of determining the largest value of τ that is 
compatible with the Leap Condition.A plausible mathematical 
framing of the leap condition would be require the leap time τ to 
be such that 
  | a j (x +  Λ(   τ; x )) − aj( x) |  ≤ ε a0(x) ,    

∀j =1,....,_ M   (3)     
where τ is a pre-specified error control parameter. But of 
course, smaller values of τ also imply shorter leaps, and 
therefore longer simulation times. How can we find the largest 
value of ε that is consistent with (3) for a specified value of τ? 
This would be a reasonably straightforward problem were it not 
for the fact that the left-hand side of (3) is a random variable 
(since Λ (τ ;x) is a random variable). In any case, we would like 
to make our determination of τ without performing repeated 
“trial” leaps, checking after each one to see if condition (3) is 
satisfied and adjusting τ accordingly, such a post-leap procedure 
not only would consume much time and many random numbers, 
but it might also discriminate against statistically rare but 
nonetheless legitimate large changes in the system’s state.In this 
section we present a new τ -selection procedure that is more 
robust. 
 
6. Sea Urchins Gene Expression Data 

5. The New Tau-Selection Procedure 
The new τ -selection procedure requires us to determine in 
advance first the M2 functions 

fjj’(x) =∑
= ∂

∂N

i xi
xaj

1

)(
    

 j,j’ = 1,…,M)         (4) 

and then the 2M functions 

µj(x)= ∑
=

M

J

xajxfjj
1'

)(')('                 

(j=1…,M)                (5a) 

 σ2
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(j= 1,…,M)                    (5b)  
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 and then the 2M functions 

µj(x)= ∑
=

M

J

xajxfjj
1'

)(')('    

This obviously represents some computational overhead, but the 
task is not quite as daunting as it might at first appear, the 
functional dependence of aj on each xi is  typically be very 
simple often constant, sometimes linear,but rarely more then 
quadratic. Furthermore, for large systems the matrix νij will 
typically be sparse. In any case, with the functions (4) and (5) 
determined, then given a current state X(t) =x , the largest τ that 
is compatible with the Leap Condition (3) is taken to be 

τ =   [ ],1 MJ
M
ε 


∈



∈

)(2
)(022

,
)(
)(0

xj
xa

xj
xa

σµ
 (6) 

Acceptance of this τ -value is, however, subject to the provision 
that if it is less then a few multiples of 1/ a0 (x) , which is the 
mean time step for the exact stochastic simulation algorithm . 
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7. Results and Conclusions  

 

Fig.1 A screen capture of the Dizzy program showing a simulation of a model of genetic regulatory  network consisting of different 
number of genes in sea urchin’s embryo. 
 
 

 

Fig.2  Simulation of GRN consisting of  9 genes of sea urchins embryo 
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Figure 3. Simulation of GRN consisting of  17 genes of sea urchins embryo 

 
 
 
 
 
 
 
 
 
 

Algorithms Computational cost Modeling Knowledge Speed Accuracy 

Tauleap Simplex High Medium Fast High 

Tauleap Complex Low High Very Fast Medium 

 

Table1: Comparison of various stochastic simulating algorithms 
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In this paper we have presented a comprehensive software tool 
for conducting stochastic simulations of the dynamics of 
complex gene regulatory networks. The tool is particularly well 
suited for simulating the dynamics of integrated large-scale 
genetic, metabolic and signaling networks. In this paper we have 
implemented & tested  various forms of stochastic algorithms 
and their application to simulation of biological systems. Each 
algorithm imposes a certain constraint on the computational 
power, knowledge of the system and input of the numerical 
parameters. In addition, the algorithms provide different 
abstractions of the system and produce solutions with very 
accuracy. Tauleap methods, Tauleap Simplex and Tauleap 
Complex algorithms  are among the fastest simulation 
algorithms. However, due to various numerical treatments to the 
algorithms, both Tauleap methods require substantial modeling 
knowledge to ensure the accuracy of the solutions. Besides that, 
both the algorithms are efficient algorithms, which increase the 

speed of simulation without sacrificing the accuracy of 
solutions.   
As the number of genes in a network increases the network 
becomes more complex because the connecting lines start criss 
crossing leads to more complex network.By simulating these  
genetic regulatory networks we can choose the less complex 
network that corresponds to the less complex biological system 
and our aim in systems biology is to find the less complex 
system so that we can use that, in preventive medicine because 
gene target prediction becomes easier. If we compare the results 
obtained in fig.2 and figure 3 which shows that we can easily 
choose the less complex network because as the number of 
genes increases the lines in graphs starts overlapping 
consequently our graphs becomes more complex, that indicates 
more complex network. In this way we have simulated the 
GRNs. 
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Abstract - TTCS is a web based online tool to perform Two- 
and Three-Dimensional Compound Similarity structure 
search. It performs compound similarity search from several 
in-house compound libraries integrated with millions of public 
available compound libraries such as NCI DTP database, NCI 
FDA-approved Drug database, and DrugBank, etc. TTCS 
offers user friendly web interface for 2D and 3D structure 
query with features such as tracing user’s search history, job 
queuing, and visualization. The website is specially designed 
for researches’ need in bioactive chemical discovery and lead 
optimization for drug discovery. 

Keywords: similarity search, drug discovery, ligand-based 
drug discovery, three-dimensional similarity, cheminformatics 

 

1 Introduction 
Computer-assisted drug design can reduce the number of 

potential drug candidates from millions of compounds to tens 
for experimental synthesis and validation. There are mainly 
two types of approaches, structure-based and ligand-based 
drug design. Compound structure similarity search is widely 
used cheminformatics tool to identify clusters of structural 
similarity compounds for lead optimization in ligand-based 
drug discovery. TTCS offers the compound similarity 
searching measured by calculating the Tanimoto coefficient of 
the lead compound two-dimensional (2D) fingerprints[1], as 
well as comparing 3D pharmacophore fingerprints[2] and 
comparing with  integrated large bioactive compound libraries 
with purchase information.  

Structure similarity search by using 2D molecular 
fingerprint is one of the common methods utilized for 
comparing large compound libraries in silico. TTCS 
integrated a suite of compound structure similarity search 
tools which are effectively parallelized running on a scalable 
ScaleMP computation server to search millions compound 
libraries with reasonable accuracy.  The similarity can be 
determined by calculating the Tanimoto coefficient of the 2D 
fingerprints and 3D pharmacophore patterns. For example, 
DiverseSolution BCUT descriptors from Tripos capture the 
properties of the molecule in chemical space, including 

topological or distance information, such as hydrogen bonds 
between atoms in a molecule. Many BCUT descriptors are 
calculated for a compound library/database, but only the most 
important 3-6 descriptors that are most useful for the diverse 
chemical space of the library. The pre-selected chemical space 
determined as the nearest neighbor representing a clusters of 
structural similarity compounds for lead optimization in 
ligand-based drug discovery.  

Several public available compound databases, such as 
NCBI PubChem[3], UCSF ZINC[4] or NCI DTP integrates 
2D fingerprint similarity search engine on their online tools.  
However, none of them provides both 2D and 3D 
pharmacophore fingerprints similarity search tools due to 
computational limitation. In this study, we present an online 
comprehensive similarity searching tools Two- and Three-
Dimensional Compound Similarity structure search (TTCS) to 
provide users with more searching functionality to efficiently 
narrow down clusters of potential leads from several in-house 
commercial compound libraries integrated with large public 
available compound libraries such as NCI DTP database, NCI 
FDA-approved Drug database, and DrugBank  database for 
further validation in ligand based drug discovery.  

2 Methods and Design 

2.1 Methodology 

 The 2D fingerprint similarity of two compounds is 
determined by the Tanimoto coefficient: 

NabNbNa

Nab
Tc

−+
=    

where Na is the number of the bits in the 2D fingerprint of the 
first molecule, Nb is that of the second molecule, and Nab is 
the number of common bits for both molecules.  The 
chemistry space for 3D pharmacophore fingerprint searching 
is selected from the best 4 BCUT descriptors that provide the 
best separation of the compound library. The low-dimensional 
BCUT chemistry space is divided into cells and the 
compounds in the same cell of the target compound are 
selected as the similar compounds.  

800 Int'l Conf. Bioinformatics and Computational Biology |  BIOCOMP'11  |



2.2 Web Design 

 The TTCS website is specially designed with a user 
friendly web interface for researchers to perform effective 2D 
and 3D structure similarity query to explore large chemical 
libraries. The parallelization of the 2D and 3D similarity 
algorithms runs as back-end on a scalable ScaleMP HP 
LINUX servers. As shown in the figure, the web application 
can trace user’s search history, summary status for the batch 
job and display the output compounds in image. It also 
provide results downloading in different format, email results 
to the user, and many other features. 

  

3 Conclusions 
 TTCS, a user-friendly online compound similarity tool 
that combines the 2D fingerprint searching and 3D 
pharmacophore fingerprint searching for lead optimization in 
ligand based drug discovery. It will be available to public 
soon for users’ feedbacks. 
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Abstract - This presentation will share our experiences in 
establishing cost-effective translational bioinformatics 
platforms using an integrated cyberinfrastructure to support 
high-throughput data analysis, management, and integration 
in order to streamline analysis pipelines for predictive, 
preventive, personalized and participatory medicine. In this 
case study, we present the architecture of cyberinfrastructure 
and the challenges we face during design, deployment and 
management of cyberinfrastructure. We also show how new 
computational technologies, such as GPGPU and Cloud 
Computing, can help to speed up the bioinformatics analysis 
and data management. At the end, we discuss the future 
directions of IT infrastructure to support bioinformatics and 
computational biology.  
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1 Introduction 
  IT infrastructure is the essential foundation for the 
bioinformatics and computational biology. The different types 
of biological computing have different computer utilization 
requirements[1]. The next generation bioinformatics and 
computational biology needs scalable and flexible IT 
resources to support the analysis of the next generation high 
throughput data, such as next generation sequencing, mass 
spectroscopy, HTS,  high content screening technologies, etc. 
In spite of the broad spectrum of growing fields of OMICs 
technologies, the traditional IT data center has not yet evolved 
to provide  adequate scalable  cyberinfrastructure. In this 
study, we will demonstrate our efforts to integrate new 
paralllezation approaches of using shared meory ScaleMP and 
GPGPU  servers to leverage the growing needs of IS&T 
support. 
  

2 Cyberinfrastructure 

Cyberinfrastructure is a project to design and deploy an IT 
infrastructure for next generation bioinformatics and 
computational biology in a national comprehensive cancer 

research center. The motivation of Cyberinfrastructure is to 
establish the IT infrastructure to support the integration 
bioinformatics of genomics, proteomics, cheminformatics, 
imaging, animal study, to enable our support to translational 
research.  

2.1 Architecture 

 The architecture of Cyberinfrastructure (figure 1) 
includes two layers. The first layer is the system management 
and usage monitoring. The second layer is the IT 
infrastructure, which includes three components: the internal 
IT, scientific grid, and external cloud computing[2]. The 
internal IT is the core of cyberinfrastructure to support the on-
demand high performance computing with several thousands 
of processors connected with Petabyte tiered of disk storage 
connected with infinity band network to processing TBs raw 
data generated from scientific high throughput instruments. 
We adopt several new technologies within the internal IT, 
which include the private cloud for application virtualization, 
high performance computing system using GPGPU and 
cluster technology, shared TBs memory computation, the 
tiered cluster storage system, high performance network 
system using Infiniband, and integrated lab information 
management system (LIMS). The second component of 
cyberinfrastructure is the scientific grid resources, which 
plays an important role in computational biology[2]. 
Cyberinfrastructure provides the interface to connect the 
scientific grid resources. The last component is external cloud 
computing, which steadily grows in demand for collaborative 
research by integrating large open source database such as 
EBI, NCBI, and UCSC Genome browser, etc. The challenges 
are to reconcile various of high throughput data analysis 
workflow in the area of genomics, proteomics, imaging, 
cheminformatics, small animal studies, and translational 
research and provide the computational and storage on 
demand Cloud computing for collaborative research. We have 
evaluated several Pay-As-You-Go external cloud services 
such as Amazon and Penguin-On-Demand for our current 
needs. We hope to establish a global platform that we can 
dynamically and cost effectively to support multidisciplinary 
translation research. 
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Figure 1. Architecture of Cyberinfrastructure  

 Figure 2 shows some highlights of the current 
deployment of Cyberinfrastructure at City of Hope. We adopt 
several new IS&T (information system and technology) 
technologies, which include high demand of  CPU and  
memory intensity SMP system, virtual SMP system, high 
performance computing system using GPGPU and beowulf 
cluster technology, the tiered Isilon storage system, 
application virtualization using CITRIX and VMware, and 
integrated lab information management system (LIMS). It 
provides a powerful bioinformatics platform for the cancer 
research at City of Hope. Figure 3 shows the benchmark of 
the GPGPU cluster system with different GPU/CPU ratio 
configurations and how it speeds up Molecular Dynamics 
simulation for just few days running time that took months 
using super computational center resource. 

 

Figure 2. Current development of Cyberinfrastructure  

 

Figure 3. Benchmark of GPGPU  

2.2 User access and Charge Back 

 As a core service, Cyberinfrastructure is open to all 
bioinformatics core subscribers. Subscribers can access cores 
Cyberinfrastructure resources, which include high 
performance servers, large scale tiered data storage, CITRIX 
web portal, and high performance workstations on campus. 
Tiered subscriber fee schema was established and fits all 
different type PIs and their research projects. Usage Metrics 
reports help PIs to cost effectively strategize their resources, 
and help administration team to strategic planning IS&T 
infrastructure needs. 

3 Conclusions and Discussions 
 Strategic Planning for IS&T infrastructure is critical to 
support modern high throughput technologies such as next 
generation sequencing, high throughput screening, imaging, 
and high content screening. This presentation share our 
experiences in establishing cost-effective translational 
bioinformatics platforms using an integrated cyber-
infrastructure to support high-throughput data analysis, 
management, and integration in order to streamline analysis 
pipelines for predictive, preventive, personalized and 
participatory medicine.   
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