
Processing Hard Sphere Collisions on a GPU Using OpenCL

Zachary Langbert1 and Mark C. Lewis1

1Computer Science, Trinity University, San Antonio, TX, USA

Abstract— Physically accurate hard sphere collisions are
inherently sequential as the order in which collisions occur
can have a significant impact on the resulting system. This
makes processing hard sphere collisions on parallel hard-
ware challenging. We present an approach to solving this
problem that can be implemented using OpenCL that runs
on current hardware. This approach makes significant use
of atomic operations to prevent race conditions, even across
thread groups. We find that an unoptimized implementation
of the approach provides speed on modest GPUs that is on
par with our earlier OpenMP parallel CPU approach and
the OpenCL running on a CPU is faster than the OpenMP
code. Full timing results using commodity GPU and using
OpenCL on multi-core chips are presented.

Keywords: Simulation, collisions, parallel, discrete-event, GPU

1. Introduction and Related Work
Many problems in the field of simulation involve colli-

sions between bodies/particles. In this paper we will focus
on particles that are represented as spheres. These types of
collisions are typically modelled in one of two ways. Soft
sphere collisions allow the bodies to overlap and restoring
forces are applied at intervals to cause them to bounce. Hard
sphere collisions treat the collisions as instantaneous events
where an impulse is applied to the particles to produce the
bounce.

Collision detection has been done on GPUs for a long
time. For example, Kolb et al. used pixel-shaders before
tools like OpenCL and CUDA were available and used depth
maps stored in texture memory to make the runtime more
efficient [4]. Soft sphere collisions can also be implemented
efficiently using general N-body methods [1], [2]. The soft-
sphere approaches are also applicable to other problems
that involve interactions between nearby particles such as
SPH codes [12]. The processing of soft-sphere collisions is
basically a problem of detecting proximities between bodies,
as the exact time of overlap is not resolved or dealt with.
Separate GPU implementations exist for solving this more
general problem for both simple and complex geometries
[5].

Physically accurate hard-sphere collisions are more chal-
lenging. They are basically discrete event simulations, and
the time ordering of the events is important. Any given
collision can alter the ones that follow it. Many collisions can
be done in parallel, assuming that they are far enough apart
spatially so that the result of one doesn’t alter the other. We

have previously created methods for doing this on multi-core
machines [7], [11], [6]. GPUs present a number of different
challenges, and the previous methods will not work well in
that context. Not only does efficient use of the GPU require
that more threads be active at any given time, workloads
on GPUs are best split across multiple thread groups and
synchronization across the thread groups is more challenging
than inside of the thread groups. For this reason, the use of
a single shared queue structure becomes ineffective.

There are also multiple steps to the collision finding
process. Some of them involve building data structures that
are used for fast searching of the particles for collisions.
These steps could be done on the CPU then copied to
the GPU, but that would significantly degrade performance.
Ideally, we want all the work to be done on the GPU so that
the only data that is moved back to the CPU is particle data,
and that should only be done when required for I/O.

Playne and Haywick present work on doing hard-sphere
collisions using a multi-GPU approach [3], [13]. Their work
included both soft-sphere elements with particle-particle
forces and hard-sphere interactions when the particles get
sufficiently close. However, their approach to hard-sphere
interactions use posteriori collisions instead of discrete event
priori methods. This means that the particles are allowed to
advance to the end of the time step, then they are checked
to see if they overlap at the end and corrections are applied
to handle the collisions. These methods are not as accurate
as using the priori discrete-event approach described here,
they can miss collisions if the time step is too long, and
they don’t do a good job of resolving multiple collisions in
a single time step in dense systems. Posteriori methods are
easier to process though, especially on GPUs.

Our goal in this work is to deal with the problem of creat-
ing a physically accurate, discrete-event, priori algorithm for
doing hard sphere collisions that can allow long time steps
and run efficiently on a GPU. Section 2 outlines an algorithm
for doing this in a basic multithreaded environment. Section
3 describes in detail the algorithm we have developed for
doing this on a GPU. This is followed by sections showing
the results of a basic implementation of this algorithm and
our conclusions.

2. Multicore, Threaded Algorithm
To facilitate the discussion of the GPU approach, it is

advantageous to begin by looking at a rough outline of
the approach taken in a single-threaded implementation

and how that is modified for multiple threads on a multi-
core processor. The single-threaded implementation can be
described by the following pseudo-code [9].

1) Build spatial data structure.
2) Find potential collisions based on initial conditions and

add them to a priority queue.
3) While there are potential collisions on the priority

queue.
a) Remove the next item from the priority queue.
b) Process that collision.
c) Remove all future potential collisions involving

either of the colliding particles from the priority
queue.

d) Find new potential collisions involving those
particles based on their new trajectories. Add
those happening in the current time step to the
priority queue.

This algorithm uses the term "potential collision" to refer
to a triple of two particles and a time, where those two
particles would impact at that time given their current
trajectories. The word "potential" is significant because many
of these won’t actually come to pass if an earlier collision
alters the path of either of the particles involved. Step 3c
can remove many potential collisions when one is processed.
Unfortunately, there is no simple way to know if a potential
collision will actually be processed as a real collision without
running through and processing them to find out. It is worth
noting that because of this step, the standard priority queue
implementation of a binary heap is not efficient.

This algorithm can be updated to work on multiple threads
with a few alterations. The approach to parallelizing the
building of the spatial data structure varies by data structure.
Some care must be take to avoid race conditions when
particles are added in. It is also possible to parallelize the
discovery of the initial collisions as long as the priority queue
is thread-safe or is locked on each add operation.

The parallelization of the processing loop is more interest-
ing and requires a bit more information about the nature of
collisions. Of primary significance is that while the order
of collisions is important, information about collisions is
propagated at a finite speed. That means that two collisions
that are sufficiently far apart can be processed in parallel
assuming that they happen close enough together in time.
It simplifies things to use the simulation time step as a
conservative estimate of the time. The spatial data structure
can be used to keep track of where collisions are being
processed at any given time to determine if the next one
on the queue is safe or not. Here again, the priority queue
needs to be thread safe or we must do locking to prevent
multiple threads from altering it at the same time.

This approach has been shown to work well for tens of
threads, but it doesn’t scale well for a GPU where we would
ideally like to have thousands of threads. In that situation,
the single priority queue becomes a bottleneck that will not

scale efficiently.

3. GPU Algorithm
The general outline of the algorithm shown above is

maintained when we move to the GPU. First, we need to
build our spatial data structure, then we find the initial
potential collisions, then we run through and process the
collisions. We will look at how each of these steps is adjusted
to the GPU here.

3.1 Kernel 1 - Building the Spatial Data Struc-
ture

To keep things simpler for this project, we use a regular
2-D grid as the spatial data structure. Each grid cell keeps a
list of the particles whose centers are located in it. This can
be done with two arrays of integers. One is the size of the
grid and stores the index of the first particle in that cell. The
second has the same length as the number of particles and
stores the next particle found in the grid cell. All elements
of both arrays begin with a value of -1 to denote no link.

This process is done with threads spawned on a per
particle basis. This opens the possibility of race conditions
on the grid values storing the head as every particle in a
given cell could, in the worst case, be processed at the same
time. Fortunately, the order of particles doesn’t matter and
OpenCL supports atomic operations on any primitive value
[14]. The operation of adding to the front of one of these
lists can be done with an atomic read/set. This is done on
the value in the grid that stores the first particle currently in
that cell. It returns the previous value, which is stored in the
second array at the location of the particle that is the new
head.

The fact that only one thread will be responsible for a
given particle means that we never have a situation where
two threads alter the same location in the second array. Every
atomic read/set on the grid will find a different value, so the
linked list will be correctly built regardless of when the links
in the second array are stored.

The grid based approach has been used previously both
for sequential and parallel code [9], [10], [7]. The key is that
the grid cells need to be large enough that particles in one
cell can only collide with particles in adjacent cells during
a given time step. That is to say that

∆x = rmax + c×∆t (1)

where ∆x is the size of the grid cell, rmax is the largest
particle radius in the simulations, ∆t is the length of the time
step, and c is a value several times larger than the velocity
dispersion. This approach works well when the system
includes forces other than those modelled with discrete
events. It is also possible to pick a more arbitrary grid size
and model the passing of particles from one grid cell to
another as events, but that is not the approach we take here.

3.2 Kernel 2 - Finding Initial Potential Colli-
sions

After we have built the spatial data structure that tells us
where all the particles are located, we can use it to find the
initial potential collisions. This work is done with threads
allocated per cell. Instead of having a single queue of all the
potential collisions, we keep one queue per cell. The fact that
there should be few particles per cell makes it feasible to use
something as simple as a sorted array for the queue. This
could be changed to a binary heap if the queues were longer,
but that introduces some overhead and because of the way
that work is distributed, it is probably better to use a finer
grid to keep the queues shorter than to improve efficiency
for larger queues. This will be an area of future study.

To find the potential collisions, we have each cell check
the particles in it against the others in that cell as well as
all particles in the cells that are in the cell to the right and
the three cells below it. Checking against more cells would
cause potential collisions to be double counted. Any pairs
that are found to collide are stored, along with the potential
collision time, in the queue for that cell.

This can be done with a 3-D array where the third
dimension is the potential collisions, but this approach is
inflexible and can lead to a lot of wasted memory as
we have to make the third dimension large enough to
handle whatever collisions might occur in a single cell.
An alternative approach is to again use a pool of memory
and have the queues stored as linked lists in that pool. We
keep a single value for the number of potential collisions
currently stored and this variable is altered using an atomic
read/increment operation. This tells us the next pool element
to store a potential collision in and increments it so that no
two threads for the cells will write to the same location in
the pool. The potential collisions are first added to an array
in local memory, then they are moved as a block to the
global memory once the search is complete. This minimizes
the number of atomic operations to one call per thread and
groups the memory move to reduce the number of accesses
to global memory, which is generally much slower than local
memory on GPUs. Unfortunately, at this time there is no
memory copy directive in OpenCL. Such a directive would
have benefits to this segment of the code were it to be added
in the future.

Using this approach, the memory overhead is greatly
reduced as the total size of the pool needs to scale as
the total number of potential collisions, not the maximum
number in one cell. This means that non-uniform geometric
distributions don’t lead to significant wasted memory.

At the end of this process, we will have all of the initial
potential collisions for each cell in unsorted lists.

3.3 Inside while Loop
Kernels 3-5 happen in a while loop that executes as long

as there are more collisions left to process in the current time

step. These steps are broken into separate kernels primarily
for synchronization purposes. Each one must fully complete
before the next one begins.

3.3.1 Kernel 3 - Sort Initial Potential Collisions
The third kernel is again done by allocating threads by

cells in the grid. This pass only sorts the lists that were
produced in the previous kernel. We have implemented this
as a simple insertion sort. Here again, we expect the number
of potential collisions in a given cell to be small. In an
ideal configuration the average would be of order unity
so the sorts should be doing very little work. To improve
the memory performance, we first walk the list of potential
collisions in each queue and copy it to a local array. Then
we do the insertion sort on that array and copy the potential
collisions back into the same locations in the list, preserving
the earlier links. This approach is taken to reduce the number
of accesses to global memory.

3.3.2 Kernel 4 - Processing Collisions
The fourth kernel does significantly more work. as this

is where we actually process the potential collisions. As
was discussed above, the primary challenge of hard-sphere
collisions is that the order in which they are processed is
significant and we can’t process all the collisions simulta-
neously. The spatial data structure gives us a simple way to
handle this.

Handle Safe Collisions
In this pass one thread is spawned per cell and each thread

compares the time of its first collision to that of the adjacent
cells. Only those threads which have a collision time lower
than their neighbours will actually process a collision. Cells
that have no potential collisions don’t process and aren’t
considered in the comparison to see if a cell is the local
minimum.

There is no synchronization needed for this, because the
times on the first collisions are only read, not written to,
and one particle can only take place in collisions that are
in adjacent cells. Given that no two adjacent cells can be
processing at the same time, it is safe for each thread to
write out and change the particle positions and velocities
when a collision is processed.

Mark Indices in Collided Particles Array
In addition to processing the collisions, each thread that

does process a collision does one additional task. It stores
an appropriate value in an array of the same length as the
number of particles that we call the "collided particles array".
The purpose of this array is to keep track of which particles
were involved in a collision in that pass through the grid.
This information is used in the next kernel.

There are no synchronization issues with this task for
two reasons. First, given the way that we determine if a
collision can be processed, no particle could be involved in
two collisions at one time in this pass. What is more, even

if two threads could process the same particle, they would
write the same value out to the array so it wouldn’t matter
which write happens first, and no data is read from this array
in this kernel.

3.3.3 Kernel 5 - Delete Marked Potential Collisions and
Find New Potential Collisions

The last kernel cleans up the potential collisions lists
for each grid cell, then finds new collisions based on the
particles in each cell that had just been involved in collisions.
The first half of this work involves running through the
list of potential collisions in each cell and checking each
potential collision to see if one of the particles in it was
collided during this pass. This is the first use of the collided
particles array that was initialized in the previous kernel. In
this kernel, that array is read only. The loop runs through
the linked list of potential collisions, and if either the first
or second particle involved has been marked in the collided
particles array, that node is marked as unused and linked
around so that it is no longer considered to be a potential
collision.

After that has been done, each thread then goes looking
for new collisions involving any of the particles in that cell
that had been in a collision. This is done by walking the
list of particles in the cell, and checking if that particle had
been marked in the collided particles array. If it has, then
a search is performed against all other particles as well as
those in the eight adjacent cells.

The new potential collisions that are found are added to
an array in local memory. Once the search is complete, the
elements that were used in that local array are moved into the
list of potential collisions. This is done using the same type
of procedure as in the initial finding routine. This involves a
single atomic increment by to appropriate amount, followed
by a loop copying up elements into the array of potential
collisions.

It is worth nothing that we are not keeping a list of
free nodes in the potential collision pool. This will lead to
some waste, but at the current time it appears to be required
to maintain performance and thread safety. We considered
keeping a free list and had included it into a fair bit of the
code, but then we ran into a thread safety problem. When
we want to grab a new node we have to advance the first
free reference to the next element. Because the reference to
the first free element is shared across threads, this must be
done using an atomic operation. That would lead to a line
of code like the following.

i n t oldFF = a tomic_xchg (f f ,
p o t e n t i a l C o l l i s i o n P o o l [* f f] . n e x t) ;

Unfortunately, this isn’t really thread safe. The reference
to the first free value, ff, in the second argument to
atomic_xchg is a read that isn’t protected by the atomic
call. That means that two threads could get the same value

Grid N Cells/N OCL CPU GPU1 GPU2 OMP CPU
2k2 4m 1:1 630ms 1034ms 1117ms 727ms
2k2 2m 2:1 235ms 530ms 842ms 315ms
1k2 1m 1:1 81ms 223ms 137ms 189ms
2k2 1m 4:1 120ms 375ms 737ms 163ms
1k2 512k 2:1 43ms 126ms 79ms 85ms
2k2 512k 8:1 95ms 318ms 721ms 99ms
1k2 256k 4:1 27ms 80ms 62ms 42ms
2k2 256k 16:1 49ms 267ms 692ms 84ms
1k2 128k 8:1 15ms 64ms 57ms 27ms
1k2 64k 16:1 10ms 64ms 48ms 19ms

Table 1
THIS TABLE SHOWS THE TIMING RESULTS FOR THE OPENCL CODE

RUNNING ON BOTH A CPU AND TWO DIFFERENT GPUS COMPARED TO

THE EXISTING, MULTITHREADED CODE ON A CPU FOR A VARIETY OF

PARTICLE COUNTS AND GRID SIZES. FOR EACH CONFIGURATION, A

WARM-UP SIMULATION WAS DONE FIRST, FOLLOWED BY FIVE RUNS

THAT WERE AVERAGED TO GET THESE RESULTS.

for ff before either one of them does the atomic exchange
to update to the next one. The result would be two threads
each holding the same node to store a potential collision in
which would clearly lead to errors.

It is unclear at this time how critical a problem this is in
general. For the tests presented here it was not a problem.
Limiting the length of a time step can reduce the number
of total collisions so that the potential collision pool doesn’t
overflow. However, it is likely that we need to find better
ways to address this challenge. That will be the subject of
further research.

4. Results
4.1 CPU/GPU Comparisons

The above algorithm was implemented in OpenCL for
a 2-D system in which particles move in a straight line
between collisions. We first tested the performance of this
implementation on a PC with an NVIDIA GeForce GTX 670
graphics card (hereafter GPU1) and an Intel(R) Core(TM)
i7-3930K CPU @ 3.20GHz CPU, and separately with a
AMD Radeon HD 7970 (hereafter GPU2). The timing results
are shown in table 1 and figure 1.

The simulations were set up with a square grid with grid
cells that were one unit of length on each side. Particles
0.2 units in radius were placed in the simulation area
uniformly with random velocities on the order of one unit.
The simulation was run for one time step of 0.1 time units.
For the simulations involving 1 million particles this set-up
requires that nearly 1 million particle pairs be checked for
collisions and over 20,000 potential collisions be added to
the queues. Most of those potential collisions turn out to be
real collisions that are actually processed.

When looking at the results, one should keep in mind that
the OpenCL implementation has not yet been optimized,

Fig. 1
THIS FIGURE SHOWS THE TIMING RESULTS GIVEN IN TABLE 1.

SMALLER SYMBOLS ARE USED FOR THE RESULTS WITH THE GRID THAT

HAS 1024 CELLS ON THE EDGE AND LARGER SYMBOLS ARE USED FOR

THE GRID WITH 2048 CELLS ON THE EDGE. THE PLOT MAKES IT CLEAR

THAT THE OPENCL IMPLEMENTATION OF THIS ALGORITHM IS FASTER

ON THE CPU THAN OUR PREVIOUS OPENMP CODE. HOWEVER, THE

GPU RESULTS GENERALLY LAG BEHIND BOTH CODES ON THE CPU.
THE ONE EXCEPTION IS THE TWO LARGEST SIMULATIONS WITH THE

SMALL GRID ON GPU2, WHICH OUTPERFORM THE OPENMP CODE.

especially for running on a GPU. On the other hand, the
OpenMP implementation is one that we have had for a num-
ber of years and have been able to tweak for performance.
Despite this, the OpenCL performs better on the CPU and is
within a factor of several of the OpenMP code on the GPUs
using a commodity gaming graphics card. The gap between
OpenCL on the GPUs and the OpenMP code also closes as
the particle count increases, with GPU2 beating OpenMP for
the two largest particle counts using the smaller grid. For the
largest simulations at each grid size, the difference is well
below a factor of two on GPU1.

The table lists the ratio of number of grid cells to number
of particles because empirical work on the original version
of this code [9] found that for a fixed number of particles,
the code gave optimal performance with a maximum ratio
of 7:1. We have no yet performed a full set of tests to
determine the optimal ratio for the OpenCL code, but these
tests do show that this algorithm appears to have a greater
cost for a larger number of grid cells, particularly on on the
AMD GPU, GPU2. The OpenCL code is faster for using
a smaller number of grid cells than a larger one for all
particle counts. This isn’t too surprising given how many of
the passes launch threads based on the number of grid cells.
As a result, it appears that the OpenCL code likely has an

optimal ratio with fewer grid cells per particle. Resolving
the ideal ratio is an area for future work.

The performance of the GPUs in these tests is consistent
with the fact that the code has not yet been optimized for the
GPU. Each thread group on a GPU is basically a SIMD unit
that is most efficient when all the threads are doing the same
thing, running a single instruction on multiple pieces of data.
We have not yet optimized the code to try to keep threads
doing the same thing. The kernels were written to contain as
much work as was possible for a particular decomposition
of the work without running into race conditions. The code
likely needs to be refactored in a number of ways, including
breaking up the kernels, to keep the work more consistent
across the threads so that the GPUs can run more efficiently.

4.2 CPU Scaling
A second set of tests was run using only the CPU to

look at how well this new algorithm, using OpenCL, scales
relative to the old one using OpenMP. The results of these
tests are shown in figure 2. These simulations were run on a
Dell server with four 16-core Opteron 6272 processors, each
with 16 GB of local RAM. So the machine has 64-cores and
64 GB or RAM total, allowing us to scale the simulations
be to significantly larger than the earlier tests. The initial
conditions were the same as before. For these simulations,
the ratio of grid cells to particles was kept fixed at 1:1 for
the OpenCL simulations and 4:1 for the OpenMP code. The
number of cores used in the simulations was set at 16, 32,
and 64 for each of the codes for a variety of particle counts.
The timing results are shown in figure 2.

Both code scale remarkably linearly with particle count up
to more than 67 million particles. Consistent with earlier re-
sults, the OpenCL code holds a reasonable speed advantage
up to 4 million particles. Most of the advantage disappears
at 16 million particles and there is remarkably little spread in
runtime between the methods or the core counts in the largest
simulations. More work needs to be done to determine why
the OpenCL implementation loses ground for the largest
simulations and what can be done, either in the code or
the configuration, to prevent this.

4.3 Double Precision
These timing results came from code using single pre-

cision floating point values and arithmetic. Current GPUs
tend to be much faster with single precision than double
precision in most benchmarks. Unfortunately, there are some
simulations that explore problems of scientific interest that
require the additional precision. Hard sphere collisions for
large N happen to be one of those problems. For that
reason, we wanted to explore the impact of using double
precision numbers here because this happens to be just such
a situation.

The importance of double precision for these simulations
was discovered when we put in a consistency check on the

Fig. 2
THIS FIGURE SHOWS THE TIMING RESULTS ON A 64-CORE MACHINE

COMPARING THE OPENCL IMPLEMENTATION OF THIS ALGORITHM

WITH OUR EARLIER OPENMP CODE. FOR THESE SIMULATIONS, THE

RATIO OF GRID CELLS TO PARTICLES WAS FIXED AT 1:1 FOR THE

OPENCL CODE AND 4:1 FOR THE OPENMP CODE. THE SYMBOL SIZE

INDICATES THE NUMBER OF CORES INVOLVED. SMALL SYMBOLS ARE

16 CORES, MEDIUM ARE 32, AND LARGE SYMBOLS ARE 64.

hard-sphere collisions. This check tested to see that when
particles were advanced to the time of a potential collision
that they were actually touching. This check failed when we
required the separation between particles be within 1% of the
sum of the particle radii. After double checking all the math
and manually testing some of the values for the root finding,
we realized that the problem was actually the accuracy of
single precision floating point values. The simulation region
was 1000 units across and the particles were 0.2 units in
radius. That means that we were testing for an accuracy
on the order of 10−5. This is below the expected accuracy
of single precision arithmetic, but would be met easily by
double precision values.

Running a few tests showed us the very surprising result
that changing the code to use the double type instead of

float didn’t have a significant impact on speed for our
hardware. Our first assumption was that the cards, being
commodity graphics cards and not cards specifically de-
signed for HPC and GPGPU, were defaulting to single pre-
cision despite being told to use double precision. Attempts
to measure the value of ε on the graphics cards showed
that they were doing something different with double than
with float, but the results those tests produced were not
consistent with IEEE double precision numbers so more
work is needed to determine what is happening in this area.

5. Conclusions
We found that a hard sphere collision algorithm using

separate queues for each of many small spatial regions was
implementable in OpenCL and that even without significant
tuning, this code could outperform an earlier OpenMP im-
plementation using a single queue when running on the CPU.
Unfortunately, the GPU performance of the implementation
currently lags behind that on the CPU.

There are many open questions and areas left for future
work. In addition to those mentioned earlier in the paper,
there are a few other areas that remain to be explored.
First, does the difference in the ideal grid cell size alter
how the performance varies with length of time step. The
previous methods tend to scale the grid with the length of
the time step. Because a simulation needs to go for a certain
period of time, and the number of particles searched for
collisions scales as the area of a grid cell, the total run
time of a simulation tended to scale as 1/dt + dt2. This
leads to an optimal time step that is fairly short to keep the
cell sizes small. This work has already shown that this new
algorithm performs better with larger grid cells. This could
allow longer time steps to be taken, providing shorter total
run times, even if the performance for a single time step is
inferior.

This work looked only at the most basic of particle con-
figurations where only collisions are considered. In realistic
systems, the particle distribution is typically not so uniform
and other forces, like gravity, can cause particles to clump.
This alters the geometric distribution of the collisions. It is
unclear at this time what impact that would have on this
method.

Lastly, when the geometric distribution becomes signif-
icantly non-uniform, the spatial grid that was used here
becomes ineffective. We have extended the older approach to
use spatial trees as a more dynamic searching and locking
data structure [8]. This same thing could be done on the
GPU, though it is likely to be significantly more challenging
to do so.

References
[1] Erich Elsen, Vaidyanathan Vishal, Mike Houston, Vijay S. Pande,

Pat Hanrahan, and Eric Darve. N-body simulations on gpus. CoRR,
abs/0706.3060, 2007.

[2] Simon Green. Particle simulation using cuda. NVIDIA Whitepaper,
December 2010, 2010.

[3] K. A. Hawick and D. P. Playne. Hard-sphere collision simulations with
multiple gpus, pcie extension buses and gpu-gpu communications. In
Proceedings of the Tenth Australasian Symposium on Parallel and
Distributed Computing - Volume 127, AusPDC ’12, pages 13–22,
Darlinghurst, Australia, Australia, 2012. Australian Computer Society,
Inc.

[4] A. Kolb, L. Latta, and C. Rezk-Salama. Hardware-based simulation
and collision detection for large particle systems. In Proceedings
of the ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics
Hardware, HWWS ’04, pages 123–131, New York, NY, USA, 2004.
ACM.

[5] C. Lauterbach, Q. Mo, and D. Manocha. gproximity: Hierarchical
gpu-based operations for collision and distance queries. Computer
Graphics Forum, 29(2):419–428, 2010.

[6] Mark Lewis, Matthew Maly, and Berna L Massingill. Hybrid paral-
lelization of n-body simulations involving collisions and self-gravity.
In Proc. Int. Conf. on Parallel and Distributed Processing Techniques
and Applications (PDPTAâĂŹ09), pages 324–330, Las Vegas, USA,
July 2009. CSREA.

[7] Mark Lewis and Berna L Massingill. Multithreaded collision detection
in java. In Proc. Int. Conf. on Parallel and Distributed Processing
Techniques and Applications (PDPTAâĂŹ12), pages 583–592, Las
Vegas, USA, July 2006. CSREA.

[8] Mark Lewis and Cameron Swords. Lock-graph: A tree-based locking
method for parallel collision handling with diverse particle popula-
tions. In Proceedings of the International Conference on Parallel
and Distributed Processing Techniques and Applications PDPTA’11,
Volume I, pages 157–161. CSREA Press, 2011.

[9] Mark C Lewis and Glen R Stewart. A new methodology for granular
flow simulations of planetary rings-collision handling. In Modelling
and Simulation, pages 292–297, 2003.

[10] Mark C Lewis and Nick Wing. A distributed methodology for hard
sphere collisional simulations. In Proceedings of the International
Conference on Parallel and Distributed Processing Techniques and
Applications-Volume 1, pages 404–409. CSREA Press, 2002.

[11] Berna L Massingill and Mark Lewis. Parallelizing a collisional
simulation framework with plpp (pattern language for parallel pro-
gramming). In Proc. Int. Conf. on Parallel and Distributed Processing
Techniques and Applications (PDPTAâĂŹ06), pages 608–614, Las
Vegas, USA, July 2006. CSREA.

[12] Hammad Mazhar, Toby Heyn, and Dan Negrut. A scalable parallel
method for large collision detection problems. Multibody System
Dynamics, 26(1):37–55, 2011.

[13] D. P. Playne and K. A. Hawick. Classical mechanical hard-core
particles simulated in a rigid enclosure using multi-gpu systems. In
Proc. Int. Conf. on Parallel and Distributed Processing Techniques
and Applications (PDPTAâĂŹ12), pages 76–82, Las Vegas, USA, 16-
19 July 2012. CSREA.

[14] John E. Stone, David Gohara, and Guochun Shi. Opencl: A parallel
programming standard for heterogeneous computing systems. IEEE
Des. Test, 12(3):66–73, May 2010.

