Hybrid CPU-GPU Pipeline Framework
PDPTA’14

Fahad Khalid*, Frank Feinbube, Andreas Polze
Hasso Plattner Institute for Software Systems Engineering
14482 Potsdam, Germany
fahad.khalid, frank.feinbube, andreas.polze @hpi.uni-potsdam.de

Abstract— The pipeline pattern for parallel programs is
utilized in a wide array of scientific applications designed for
execution on hybrid CPU-GPU architectures. However, there
is a dearth of tools and libraries to support implementation
of pipeline parallelism for hybrid architectures.

We present the Hybrid Pipeline Framework (HyPi) that is
intended to fill this gap. HyPi provides high level abstrac-
tions in C++ for implementation of pipelines on hybrid
CPU-GPU architectures. It is a generic framework intended
to support a wide range of applications. The complexities
characteristic of such implementations, e.g., partitioning of
input/output data structures, asynchronous memory transfer,
communication between CPU and GPU etc., are handled
by the framework and are therefore hidden from the devel-
oper. HyPi exposes certain degrees of freedom that can be
tuned to optimize the performance of a simulation based
on application specific requirements. We present a detailed
account of the framework design, and evaluate the frame-
work performance using a real-world application from the
domain of computational biology. Results show that HyPi
performs on par with a custom-tailored, hand-tuned pipeline
implementation for the given application.

Keywords: Hybrid pipeline, heterogeneous computing, pipeline
parallelism, Intel Threading Building Blocks, CUDA

1. Introduction

The advent of the CUDA programming model marked
the emergence of mainstream application of accelerator pro-
gramming to scientific computing. Over the years, the said
programming model has evolved significantly; supporting a
substantial number of advanced features. A large number
of algorithms have been ported to the GPU architecture;
several of which are available in CUDA based libraries [1],
[2]. Yet, even today, programming a GPU costs much more
in terms of productivity than programming a CPU for the
same problem. Therefore, even though applications capable
of execution on a GPU may benefit in terms of speedup,
the effort required to engineer such applications reduces
programmer productivity. In short, the decision of whether
or not to port an application to the GPU must balance the
trade-off between application performance and developer
productivity. We term this trade-off the productivity vs.

performance trade-off.

The pipeline pattern [3], [4] for parallel programming covers
a broad range of applications for which the productivity
vs. performance trade-off is evident. A commonly recurring
application in hybrid CPU-GPU architectures is the overlap
of computation and transfer of memory from GPU to CPU
(and vice versa). Other applications include the execution
of different stages of a program on either CPU or GPU, in
order to properly utilize all processing resources [5], [6].
Even though the CUDA programming model provides fea-
tures that make it possible to implement a cross-device
pipeline, e.g., using CUDA streams for asynchronous mem-
ory transfer, the implementation details render the process
rather cumbersome. It is conceivable that if the process
of implementing cross-device pipelines is simplified, re-
searchers will be incentivized to explore the potential of
implementing new algorithms using the hybrid CPU-GPU
pipelining approach.

In this paper we present our Hybrid Pipeline Framework
(HyPi) that is designed to provide high level abstractions for
implementing the pipeline pattern on hybrid architectures. It
is a generic framework intended to support a wide range of
applications that can benefit from a hybrid pipeline. HyPi
hides much of the intricacies inherent in implementing such
a pipeline, while exposing enough degrees of freedom so that
the pipeline performance can be optimized for each individ-
ual application. Moreover, we believe that HyPi can serve
as a test bed for assessing the feasibility of implementing
certain algorithms using the hybrid pipelining approach. It
is important to note that HyPi is available as an external
C++/CUDA library, and does not require any additional
compiler support. The library has been tested with both GCC
and the Intel C++ compiler.

The paper is organized as follows: Section 1.1 presents an
overview of related work, where different applications and
available frameworks for hybrid pipelining are discussed.
Section 1.2 highlights the research gap and our contribution.
A detailed account of framework design is presented in
Section 2. Application of HyPi to a computational biology
simulation is presented in Section 3. This is followed by
comparative evaluation of HyPi against a custom-tailored
pipeline in Section 4. Finally, Section 5 concludes the paper
with a discussion of future work.



1.1 Related Work

Software pipelining has been around as a concept in
computer science for a long time. A rigorous survey of
various methods for software pipelining is presented in [7].
In parallel computing, pipelining has been identified as a
commonly occurring pattern [8], and has therefore been the
subject of study for many a research project.

A thorough literature review of the use of pipelining in
hybrid computing has revealed that pipelining is commonly
utilized in three different situations: 1) Overlapping compu-
tation and transfer of data between CPU memory and GPU
memory; 2) execution of different stages of a program on
either CPU or GPU based on which architecture is better
suited to the computation; and, 3) execution of different
stages of a program on either CPU or GPU for load
balancing and optimal resource utilization. Following is a
selection of works that utilize pipelining in one or more of
the above mentioned situations:

A Pipelined Multi-GPU MapReduce (PMGMR) implementa-
tion is presented in [9] where GPU acceleration is extended
to multiple GPUs. In this work, the primary application of
pipelining is to overlap computation and communication in
order to reduce the communication overheard. The imple-
mentation also makes it possible to process datasets that
exceed both CPU and GPU memory capacity.

In order to harness the power of GPU clusters for MapRe-
duce, a library has been developed [10]. This work focuses
on tackling the challenges of data movement between GPUs,
managing out-of-core data on GPUs, as well as modifying
MapReduce in order to leverage the GPU cluster architec-
ture. The pipelining concept is utilized in terms of overlap
of computation and communication.

The problem of efficient scheduling of MapReduce tasks
on a coupled CPU-GPU chip is dealt with in [5]. Two
different approaches are presented; 1) dynamically dividing
Map tasks onto both CPU and GPU, and 2) pipelining
Map and Reduce tasks between GPU and CPU. Empirical
evidence is provided to show that a pipelining solution where
Map is implemented on the GPU and Reduce is implemented
on the CPU justifies the use of pipelining for MapReduce.
Moim [11] is a MapReduce framework for Multi-GPU
systems that implements a 3-stage pipeline consisting of
input split, map and merge phases. The input split and merge
phases are executed on the CPU, while the map phase is
executed on the GPU. The reduce phase can be executed
simultaneously on GPU and CPU depending on whether or
not the GPU memory can hold the entire partition to be
reduced.

To summarize, in order to improve the performance of the
MapReduce model, two types of GPU acceleration methods
have been employed. In the first approach, both Map and
Reduce are implemented as GPU kernels. In the second
approach, Map is implemented on the GPU, while Reduce

is implemented on the CPU. Justification for the second
approach lies in the fact that the modern GPU architec-
ture is particularly suitable for data parallel applications
that employ the Map pattern [4]. In such an application,
multiple instances of the Map function can be processed in
parallel by many processing elements; thereby maximizing
the utilization of processing resources on the GPU. However,
a parallel implementation of the Reduce pattern processes
data in such a way that the resource utilization (in terms
of processing elements) follows a tree like pattern, i.e., the
number of required processing elements (or the degree of
parallelism) decreases over time. Therefore, utilization of
the processing resources is not consistent throughout the
function. Even though dynamic parallelism [12] can be used
to improve resource utilization [13], kernel design becomes
exceedingly complicated.

Hybrid CPU-GPU pipelining is not limited to MapReduce.
A 3-stage CPU-GPU pipeline for eigenvector and eigenvalue
determination is presented in [6]. The work establishes
the significance of utilizing a hybrid pipeline for optimal
resource utilization and presents a stochastic queue monitor-
ing strategy for parallel applications based on the pipeline
pattern.

The concept of hybrid CPU-GPU pipelining has also been
applied in computational biology, where the problem of
enumeration of elementary flux modes in metabolic networks
was parallelized using an OpenMP and CUDA based solu-
tion [14].

The capability to implement a hybrid CPU-GPU pipeline
has been introduced within the context of the FastFlow [15]
framework. The FastFlow framework was extended by intro-
ducing an abstraction for creating and executing a pipeline
with user-defined stages. A GPU-enabled linear algebra
library can be called from within a stage, making it a GPU
execution stage. Therefore, different stages of the pipeline
can execute on either the CPU or the GPU.

1.2 Research Gap and Our Contribution

Most of the above mentioned related work concentrates

on either utilizing pipelining for a specific programming
model such as MapReduce, or a particular application.
Therefore, most of these works lack generalizability. In
contrast, the framework described in [15] is much more
general and useful for a larger number of applications.
The framework we present in this paper is not limited to
any specific application or a programming model such as
MapReduce. 1t is a generalized framework similar to the
FastFlow pipeline presented in [15], and provides features
that overcome certain limitations of the FastFlow pipeline.
Our Hybrid Pipeline Framework (HyPi) is built on the
pipeline functionality provided by a widely used and robust
parallel programing model, i.e., Intel Threading Building
Blocks [16]. HyPi provides the following features that stand
out in comparison to other frameworks:



o Automated management of CUDA streams and events
for asynchronous CPU-to-GPU and GPU-to-CPU
memory transfer.

o Automated management of communication between
GPU and CPU using the callback functionality intro-
duced in CUDA 5.0.

o The possibility of multi-threaded execution of CPU
stages of the pipeline.

o Automated partitioning of input/output data structures.

In addition to presenting a detailed account of the features
mentioned above, this paper provides a thorough analysis
of the major issues in implementing such a generic frame-
work with CUDA. To the best of our knowledge, no other
framework provides all the features available in our Hybrid
Pipeline Framework (HyPi).

2. Framework Design

In the rest of the document, we refer to the CPU as Host,
and the GPU as Device.

2.1 Overall Pipeline Design

One of the major HyPi design objectives is to provide the

programmer with a familiar interface for pipeline implemen-
tation. Based on our positive experience with Intel Threading
Building Blocks (TBB) [16], we decided to use TBB as
the foundation for the pipeline. TBB is a free and open
source multithreading library from Intel, which provides a
reliable and efficient abstraction (tbb::pipeline) for pipeline
implementation on multicore CPUs. Each stage of a pipeline
is implemented as a C++ class that inherits thb: :filter.
There are two possible ways in which HyPi can be used to
facilitate the implementation of a hybrid pipeline: 1) using
HyPi stages, and 2) using custom-tailored stages.
When using HyPi stages, the programmer does not need to
implement the pipeline stages. Instead, classes predefined in
the framework are used. The following types of stages are
pre-implemented in the framework:

e DeviceFilter: This class represents a pipeline stage
that executes a CUDA Device kernel. It automatically
handles partitioning of input/output data structures,
asynchronous memory transfer to and from the De-
vice, and callback mechanism required to inform the
following pipeline stage of the completion of Device-
to-Host result data transfers. Details of these features
are covered in Section 2.2.

o CallbackFilter: This stage usually follows the Device-
Filter and encapsulates the Device-to-Host communica-
tion that takes place using callbacks. In TBB, a typical
pipeline stage proceeds with executing its function as
soon as it receives a token from the previous stage. The
token generation function in DeviceFilter and initiation
of memory transfer work asynchronously. Therefore,

the stage that follows DeviceFilter must not just wait for
the token, but also the corresponding memory transfer
confirmation. The CallbackFilter hides this mechanism
from the programmer and passes the token to the next
stage only once the corresponding memory transfer is
complete.

o PostProcessFilter: This class represents a stage that is
required to receive result data from the Device and
process it on the Host.

For the above mentioned automation procedure to work,

the programmer is required to register the signature of the
Device kernel to be used, and a post-processing function to
be called from within the PostProcessFilter. This process
is similar in principle to the MapReduce programming
model where the programmer specifies that Map and Reduce
functions, and the rest is taken care of by the framework.
One or more custom-tailored pipeline stages can also be
provided by the programmer as C++ classes that extend
tbb::filter. Either the entire pipeline can be constructed
in this fashion, or a pipeline with HyPi stages can be
extended to include more stages. For a pipeline that does
not use any of the HyPi stages, Device programming can
be simplified by using a C++/CUDA library provided in
HyPi that exposes functions for automated data partitioning,
automated kernel launch for each partition, and simplified
abstractions for asynchronous data transfer from Host to
Device and Device to Host. In fact, HyPi stages are primarily
C++ classes that encapsulate these functions in an organized
manner. Example of a custom-tailored pipeline initialization
is presented in Figure 1.
Any stage intended for execution on the Device, e.g., Device-
Filter (as well as CallbackFilter), must always operate in the
serial in-order mode. This is because parallelism is achieved
by the Device kernel itself, and does not require multiple
Host threads. Host bound stages however, can operate in
parallel mode as well.

tbb :: pipeline pipeline;
CallbackFilter myCbFilter;

DeviceFilter myDevFilter (... params ...,
myCbFilter);

PostProcessFilter myPProcFilter (... params ...,
myDevFilter);
numPartitions = myDevFilter. getNumPartitions ();

myCbFilter.initTrasferredFlags (numPartitions);

pipeline .
pipeline .
pipeline .

add_filter (myDevFilter);
add_filter (myCbFilter);
add_filter (myPProcFilter);

pipeline .run(numTokensInFlight);
pipeline.clear ();

Fig. 1: A custom 3-stage pipeline initialization using HyPi
stages (backend code).



2.2 Automation Design Challenges

The following subsections describe design considerations
for each of the major features provided by HyPi.

2.2.1 Partitioning

In hybrid architectures, Device memory is generally much
smaller than the Host memory. Given this limitation, one
important design assumption in HyPi is that the input/output
data structures must be partitioned to ensure that they fit into
the Device memory. Since HyPi is a library, the information
about which data structures are required as arguments by the
user-defined kernel, along with the corresponding sizes of
these data structures, must be provided by the programmer.
Similar to OpenCL [17], each kernel argument is registered
with the framework as part of the initialization code. If
necessary, the size of the output data structure can be
specified as a function of input size. This function must also
be provided by the programmer.

This information is then used by the framework to determine
the maximum partition size for each data structure. In order
to determine the partition size, three factors are evaluated: 1)
total Device memory required by all data structures, as well
as the total Device memory available; 2) impact of partition
size on pipeline performance due to memory transfer be-
tween Host and Device; and 3) efficient utilization of page-
locked [12] Host memory. The user can configure factors
2 and 3 by specifying upper limits for partition size and
page-locked Host memory. Since a small upper limit (i.e., a
value which is much smaller than the total Device memory
available) on partition size may allow multiple partitions to
reside simultaneously in the Device memory, each set of such
partitions is bundled together as a Segment. The segment size
is controlled by the upper limit on page-locked memory. The
use of page-locked memory is necessitated by the fact that
the framework uses asynchronous CUDA calls for all Host-
to-Device and Device-to-Host memory transfers.

Note: The first prototype supports only equal sized linear
data structures for automated partitioning. However, at the
time of this writing, sophisticated algorithms are being
implemented to support a wider range of possibilities.

It is important to note that page-locked Host memory is a
scarce resource. Therefore, in order to keep a good number
of tokens in flight, it is necessary to employ multiple-
buffering [18] for data structures that use page-locked mem-
ory. This way, processing of a single partition results in the
occupation of only part of the page-locked memory. The
next partitions in line can use the remaining portions. In the
meantime, the PostProcessFilter can release the page-locked
memory occupied by the first partition and make it available
for use by further partitions. The multiple-buffering solution
is implemented in HyPi.

2.2.2 Kernel

For HyPi to be able to automatically call the user-defined
CUDA kernel, the kernel must be registered with the frame-
work. As mentioned in Section 2.2.1, kernel arguments must
also be registered. However, CUDA kernel configuration
parameters — such as maximum grid dimension and threads
per block — can be configured by the user.

2.2.3 Stream and Event Management

Once all the required information is available to the frame-
work, for each segment, the kernel processes all partitions.
Depending on the problem size, processing each partition
may require launching multiple grids. For each grid, separate
streams and events are used to ensure efficient asynchronous
memory transfer between Host and Device. All these steps
are handled by the framework.

2.2.4 Device-Host Event Communication

Once a partition has been processed by the Device, output
generated by the kernel is transferred from Device to Host
asynchronously. This means that the Device can start pro-
cessing the next partition without waiting for the Device-to-
Host transfer to complete. Therefore, the DeviceFilter may
issue tokens for which the Host has not yet received the
result data. In order to make sure that the Host is aware
of when the data transfer is complete, callback functionality
introduced in CUDA 5.0 is used. As soon as the data transfer
is complete, a callback function is executed that updates the
state of the CallbackFilter stage. This update is correlated
with the token received from the DeviceFilter. Therefore,
at this point, the CallbackFilter knows that the process is
complete and sends out a token to the next stage.

3. Use Case

In this section, we present the application of HyPi to the
problem of enumerating elementary flux modes in metabolic
networks.

The process of metabolism comprises of chemical com-
pounds, called metabolites, transformed into other chemical
compounds through reactions catalyzed by enzymes. A
group of such related metabolites and reactions can be
viewed as a network, modeled mathematically as a node-
weighted directed hypergraph. A node in such a hyper-
graph stands for the number of molecules of a particular
metabolite; while a directed hyper-edge represents a reaction.
Elementary Flux Modes (EFMs) are minimal subnetworks
that operate at equilibrium. Removal of any component
results in the EFM being unusable. In order to use EFMs
to characterize the behavior of a metabolic system, it is
required to enumerate all EFMs in the system. A commonly
used algorithm for EFM enumeration is the Nullspace algo-
rithm [19]. For a detailed description of the algorithm, we



refer the reader to [20]. Here we summarize the main steps
of the algorithm:

1) The Nullspace algorithm operates on the Stoichiometic
matrix. Rows in the stoichiometric matrix correspond
to metabolites, and the columns correspond to reac-
tions. The matrix can be viewed as the incidence
matrix corresponding to the hypergraph that represents
the metabolic network to be analyzed. The stoichio-
metric matrix is compressed [21] in order to improve
performance.

2) An underdetermined system of homogeneous linear
equations is solved to obtain the nullspace, where the
stoichiometric matrix is the coefficient matrix. The
nullspace is permuted to simplify further operations.
The permutation results in two parts of the matrix:
RM and R®,

3) For each row in R®:

a) Algebraic combinations are generated for se-
lected columns in R(®) and bitwise combinations
are generated for the corresponding parts in R(!)

b) Duplicate candidates are removed

c) Each candidate is verified for elementarity

d) The verified candidates are appended as column
vectors to the nullspace

A row in R® that has been processed is converted into
a binary representation, and moved to R(}).
Due to its combinatorial nature, the candidate generation
phase is extremely expensive both in terms of computation
and memory. Even for small to medium sized networks,
parallel computation is a necessity.

3.1 Combinatorial Candidate Generation

The combinatorial candidate generation algorithm refers
to the generation of bitwise combinations in R("). Figure 2
describes the pseudocode. R is split into two bit matrices,
X and Y. A candidate vector is generated by performing a
bitwise OR operation between a column in X and a column
in Y, and then performing a popcount operation on the result
vector. Indices corresponding to the operand columns in X
and Y are stored, marking the result vector as a candidate for
elementarity testing if the popcount is greater than a certain
threshold value X\ (determined elsewhere in the Nullspace
algorithm).

In previous work [14], we developed a hybrid pipeline
based parallel solution to the combinatorial candidate gen-
eration problem. There we implemented a pipeline using
OpenMP and CUDA that was tightly coupled with, and opti-
mized for the given problem. In our current work, we present
an implementation based on HyPi stages and compare the
performance of the two implementations. There are three
reasons for choosing this application: 1) The pipeline pattern
is not obviously applicable to the parallelization problem at
hand, and represents a class of problems where an efficient
pipeline implementation is not straightforward; 2) The nature

Input : Matrices: X, Y — Vectors: indX, indY
Integer: A

Qutput: Ordered pairs of column indices:
{(z,y) | x € indX and y € indY'}

1 foreach colX: column in X do

2 foreach colY: column in Y do

3 candidate = colX V colY;

4 numNonZeros = popcount(candidate);

5 if numNonZeros < )\ then

6 | store pair (indX [colX], indB[colY]);

7 end

8 end

9

end

Fig. 2: Combinatorial candidate generation algorithm. ind X,
indY contain column indices of X and Y respectively; V is
the bitwise OR operation; A is a threshold value (as described
in Section 3.1).

of this algorithm is different from those for which pipeline
implementations are typically used (such as those mentioned
in Section 1.1), and therefore presents additional challenges;
and 3) We can compare HyPi performance against a custom-
tailored and optimized pipeline for a complex algorithm.
The hybrid pipeline implementation of combinatorial candi-
date generation (as described in [14]) divides the algorithm
into two phases: 1) Generate; and 2) Map. The Generate
phase is implemented as a CUDA Device kernel. It is
responsible for generating all candidates, computing the
popcount values, and processing the condition to verify if
the result vector should be kept for elementariy testing.
Results from the Generate phase are stored in a bit array.
The Map phase takes this bit array and maps the results
to the corresponding column indices in X and Y. The Map
phase is implemented as a post-processing step computed on
the Host.

3.2 HyPi Implementation of the Candidate
Generation Pipeline

The HyPi implementation of the combinatorial candidate
generation algorithm is done using HyPi stages. Just the
three pre-defined HyPi stages are used, i.e., DeviceFilter,
CallbackFilter and PostProcessFilter. First, the kernel signa-
ture is registered with the framework, so that the DeviceFilter
can automatically call the kernel. Then the Map phase is
registered with the framework as a post-processing function.
In this case, we chose to implement the Map phase as a
multithreaded function parallelized using OpenMP. This is
to show that even though HyPi uses Intel TBB for pipeline
parallelism, it does not imply that the entire program must
be dependent on Intel tools only.

The custom-tailored pipeline from the previous implemen-
tation [14] was encapsulated in what we call the Maximum
Resource Utilization Framework (MRU). MRU is designed



to utilize all available Host threads when running a pipeline.
This is done by having (in addition to the pipeline imple-
mentation) a Host-only multithreaded version of the given
algorithm. We have an OpenMP parallel version of the
combinatorial candidate generation algorithm. MRU divides
the input into two parts. One part is processed by the
Host-only parallel implementation, and the other part is
processed by the pipeline implementation. This way, no Host
threads are idle while the algorithm is executed. The HyPi
implementation of the candidate generation algorithm also
utilizes MRU as a harness.

4. Evaluation

We compare HyPi performance against: 1) a serial imple-
mentation of the candidate generation algorithm as available
in EIMo-Comp [22], 2) an OpenMP based Host-only parallel
implementation, and 3) the custom-tailored pipeline executed
inside MRU. All our implementations are based on the E/Mo-
Comp code base.

4.1 Test Environment

The machine used for performance comparison consists
of an Intel Nehalem EX architecture based quad-core Xeon
E5520 CPU with 4 cores, where each core supports 2
hardware threads. The machine is equipped with 17GB of
RAM. In addition to the CPU, the machine has an NVIDIA
GTX 680 GPU with 4GB of device memory, supporting
compute capability 3.0. All tests were carried out with
CUDA driver version 5.5. However, it is possible to use
the framework with CUDA 5.0, which is the earliest version
supporting the callback functionality. The operating system
used for the experiments is Ubuntu 12.04 LTS. The code
was compiled using GCC 4.6.3 and NVCC 5.5.

4.2 Results

Given the machine available (as described in Section 4.1),
it was not possible to conduct performance comparisons
using real biological networks. This is because even for
smaller networks, memory requirements are too high, and
only three or four networks can be evaluated. This results in
a very small sample against which performance comparisons
can be done. In order to have a larger number of network
samples, datasets of controlled sizes were artificially gen-
erated. Moreover, since we are concerned only with the
combinatorial candidate generation part of the Nullspace
algorithm, our measure of network size is the number of
candidate vectors generated during the execution of the
candidate generation algorithm.

Figure 3 presents a comparison of the serial, Host-only
parallel and HyPi versions of the code. The plot indicates
that as the number of candidates increases, the margin with
which HyPi outperforms the other implementations gets
wider. This behavior is expected, since it was shown in [14]

that a pipeline implementation coupled with MRU is superior
to the other implementations.

275
~—Serial ~~Host-only Parallel HyPi

250
225
200

Time (seconds)

50 /

500 million 2 billion 2.5 billion 3.5 billion 4.5 billion 6.3 billion 8.1 billion

No. of candidate vectors generated

Fig. 3: Performance comparison between serial, Host-only
parallel and HyPi implementations.

Figure 4 plots the performance of the custom-tailored

OpenMP based pipeline implementation (designed during
previous work [14]) with the HyPi implementation. As the
plot depicts, HyPi performance is on par with the custom
tailored pipeline. In fact, HyPi performance is slightly better.
Although the difference is only marginal, we thought it
necessary to investigate the cause.
Even though most of the pipeline design features are shared
among the two implementations, management of tokens in
flight is different. For HyPi, this is handled by the underlying
TBB framework. In bb::pipeline, the number of tokens
in flight is specified by the programmer. The HyPi results
plotted in Figure 4 are based on pipeline execution with two
tokens in flight (if we change the number of tokens in flight
to one, the resulting HyPi performance is poorer than the
custom-tailored pipeline, which is expected because a single
token essentially serializes the pipeline). The custom-tailored
pipeline on the other hand has tightly-coupled stages without
an explicit notion of tokens in flight. We believe that the
performance improvement seen in HyPi is due to a superior
token management strategy implemented in Intel TBB.

5. Conclusion and Future Work

5.1 Summary

We have presented the Hybrid Pipeline Framework (HyPi)
intended to simplify the process of implementing pipeline
parallelism in hybrid CPU-GPU architectures. The frame-
work is implemented in C++ using Intel TBB and NVIDIA
CUDA, and is suitable for pipeline applications where some
stages execute on the CPU, while others execute on the
GPU. HyPi exposes pre-developed stages as well as library
routines that automate the processes of data partitioning,
asynchronous data transfer from CPU-to-GPU and GPU-to-
CPU, callback mechanism for communication between GPU
and CPU, as well as automated execution of the CUDA



—#—Host-only Parallel ~#—Custom Pipeline HyPi

Time (seconds)
5 8
~‘\

B Ar"//
10 /'
L=
g

500 million

2 billion 2.5 billion 3.5 billion 4.5 billion

No. of candidate vectors generated

6.3 billion 8.1 billion

Fig. 4: Performance comparison between Host-only parallel,
custom-tailored pipeline and HyPi implementations.

kernel over multiple data partitions. We have evaluated the
performance of the framework against a real-world applica-
tion from computational biology, and shown that it performs
on par with a custom-tailored pipeline for the same problem.

5.2 Discussion

In the future, we intend to combine HyPi and MRU (men-

tioned in Section 3.2). At the moment, static load balancing
provided by MRU cannot be used within the pipeline, i.e.,
an individual pipeline stage cannot be replicated on both
the CPU and GPU for load balancing. Instead, the entire
pipeline has to be replicated as CPU code and executed in
parallel using OpenMP threads. Moreover, we believe it is
important to introduce dynamic load balancing, since not all
workloads can be dealt with using static schemes.
Similarly, the automated partitioning algorithms will be
extended to support more complex data structures. At the
moment only linear data structures are supported. Once
these features have been implemented, we intend to test
the framework with other scientific simulations that present
different challenges in terms of hybrid pipelining.
In Section 1, we introduced the term productivity vs. per-
formance trade-off. This term encapsulates our long-term
research objectives. Our hypothesis is that various charac-
teristics of a computational kernel such as Degree of Par-
allelism, Arithmetic Intensity, Degree of Control Divergence
etc., make the kernel suitable for execution on either the
CPU or an accelerator such as the GPU. We conjecture that
a scientific simulation can be broken down into multiple
computational kernels, where each kernel constitutes a stage
in a hybrid pipeline. The assignment of stages to different
execution architectures will depend on the above mentioned
and certain other characteristics. Therefore a scientific sim-
ulation could be executed as a hybrid pipeline. Work is in
progress to investigate this hypothesis, and results will be
presented in a later publication.

References

(1]

(2]
(3]
[4]
[5

—_

(6]

(71

[8

—_

[9

—

[10]

[11]
[12]

[13]

[14]

[15]

[16]
[17]

[18]

[19]

[20]

[21]

[22]

J. R. Humphrey, D. K. Price, K. E. Spagnoli, A. L. Paolini, and E. J.
Kelmelis, “CULA: hybrid GPU accelerated linear algebra routines,”
pp. 770502-770 502-7, 2010.

NVIDIA, “CUBLAS Library,” User Guide DU-06702-001_v5.5, July
2013.

T. Mattson, B. Sanders, and B. Massingill, Patterns for Parallel
Programming. Addison-Wesley Professional, 2004.

M. McCool, J. Reinders, and A. Robison, Structured Parallel Pro-
gramming: Patterns for Efficient Computation. Elsevier, 2012.

L. Chen, X. Huo, and G. Agrawal, “Accelerating MapReduce on a
coupled CPU-GPU architecture,” in Proceedings of the International
Conference on High Performance Computing, Networking, Storage
and Analysis. 1EEE Computer Society Press, 2012, p. 25.

M. T. Garba and H. Gonzdlez-Vélez, “Asymptotic peak utilisation
in heterogeneous parallel CPU/GPU pipelines: A decentralised queue
monitoring strategy,” Parallel Processing Letters, vol. 22, no. 02, p.
1240008, 2012.

V. H. Allan, R. B. Jones, R. M. Lee, and S. J. Allan, “Software
pipelining,” ACM Comput. Surv., vol. 27, no. 3, pp. 367-432, Sept.
1995.

J. Dongarra, I. Foster, G. Fox, W. Gropp, K. Kennedy, L. Torczon, and
A. White, Eds., Sourcebook of Parallel Computing. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 2003.

Y. Chen, Z. Qiao, S. Davis, H. Jiang, and K.-C. Li, “Pipelined multi-
GPU MapReduce for Big-Data processing,” in Computer and Infor-
mation Science, ser. Studies in Computational Intelligence, R. Lee,
Ed. Springer International Publishing, 2013, vol. 493, pp. 231-246.
J. Stuart and J. Owens, “Multi-GPU MapReduce on GPU clusters,”
in Parallel Distributed Processing Symposium (IPDPS), 2011 IEEE
International, May 2011, pp. 1068-1079.

M. Xie, K.-D. Kang, and C. Basaran, “Moim: A multi-GPU MapRe-
duce framework.”

NVIDIA, “CUDA C programming guide,” Design Guide PG-02829-
001_v6.0, February 2014.

D. Merrill and A. Grimshaw, “High performance and scalable radix
sorting: A case study of implementing dynamic parallelism for GPU
computing,” Parallel Processing Letters, vol. 21, no. 02, pp. 245-272,
2011.

F. Khalid, Z. Nikoloski, P. Troger, and A. Polze, “Heterogeneous
combinatorial candidate generation,” in Euro-Par 2013 Parallel Pro-
cessing, ser. Lecture Notes in Computer Science, F. Wolf, B. Mohr,
and D. Mey, Eds. Springer Berlin Heidelberg, 2013, vol. 8097, pp.
751-762.

M. Goli, M. Garba, and H. Gonzélez-Vélez, “Streaming dynamic
coarse-grained CPU/GPU workloads with heterogeneous pipelines
in FastFlow,” in High Performance Computing and Communication
2012 IEEE 9th International Conference on Embedded Software and
Systems (HPCC-ICESS), 2012 IEEE 14th International Conference
on, June 2012, pp. 445-452.

J. Reinders, Intel Threading Building Blocks: Outfitting C++ for
Multi-core Processor Parallelism. O’Reilly Media, Inc., 2007.

K. O. W. Group, “The OpenCL specification, Standard Specification,”
December 2011.

D. E. Knuth, The Art of Computer Programming, Volume 1 (3rd Ed.):
Fundamental Algorithms. Redwood City, CA, USA: Addison Wesley
Longman Publishing Co., Inc., 1997.

C. Wagner, “Nullspace approach to determine the elementary modes
of chemical reaction systems,” The Journal of Physical Chemistry B,
vol. 108, no. 7, pp. 2425-2431, 2004.

D. Jevremovié¢, C. T. Trinh, F. Srienc, and D. Boley, “On algebraic
properties of extreme pathways in metabolic networks,” Journal of
Computational Biology, vol. 17, no. 2, pp. 107-119, 2010.

J. Gagneur and S. Klamt, “Computation of elementary modes: a uni-
fying framework and the new binary approach,” BMC bioinformatics,
vol. 5, no. 1, p. 175, 2004.

D. Jevremovié, C. T. Trinh, F. Srienc, C. P. Sosa, and D. Boley, “Par-
allelization of nullspace algorithm for the computation of metabolic
pathways,” Parallel Computing, vol. 37, no. 6-7, pp. 261-278, 2011.



