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Abstract— This paper concentrated on a new application
of Deep Neural Network (DNN) approach. The DNN, also
widely known as Deep Learning(DL), has been the most
popular topic in research community recently. Through the
DNN, the original data set can be represented in a new
feature space with machine learning algorithms, and in-
telligence models may have the chance to obtain a better
performance in the “learned” feature space. Scientists have
achieved encouraging results by employing DNN in some
research fields, including Computer Vision, Speech Recogni-
tion, Natural Linguistic Programming and Bioinformation
Processing. However, as an approach mainly functioned
for learning features, DNN is reasonably believed to be
a more universal approach: it may have the potential in
other data domains and provide better feature spaces for
other type of problems. In this paper, we present some
initial investigations on applying DNN to deal with the time
series problem in meteorology field. In our research, we
apply DNN to process the massive weather data involving
millions of atmosphere records provided by The Hong Kong
Observatory (HKO)'. The obtained features are employed to
predict the weather change in the next 24 hours. The results
show that the DNN is able to provide a better feature space
for weather data sets, and DNN is also a potential tool for
the feature fusion of time series problems.
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1. Introduction

Deep Neural Networks (DNNs) or Deep Learning is
the general term of a series of multi-layer architecture
neural networks that are trained with the greedy layer-
wise unsupervised pre-training algorithms[1], [2], [3]. Albeit
controversial, DNNs have won great success in some fields
including Computer Vision, Speech Recognition, Natural
Linguistic Programming and Bioinformation processing. By
applying the greedy layer-wise unsupervised pre-training
mechanism, DNNs can reconstruct the original raw data
set, in other words, DNNs can “learn” features with Neural
Networks(NNs) instead of selecting features manually that
we did traditionally[4]. And the intelligence models, like
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classifiers or regressors usually can obtain higher accuracy
and better generalization with the learned features.

As its name suggested, DNN is a kind of NNs that
structured by multiple layers. The word “Deep” indicates
that such NN contains more layers than the “shallow” ones,
which mainly includes the most widely used three-layer
Feed Forward NNs in the past 30 years. Actually, multi-
layer NN is not a new conception, some earlier studies
have been conducted since 1990s[5], [6], but the successful
implementation of multi-layer NNs was not realized until the
provision of the novel Layer-wise unsupervised Pre-training
mechanism by Hinton in 2006 that is employed to solve the
training difficulties efficiently [1].

Although theoretically, a shallow NN with three layers
trained with Back-Propagation(BP) has been proved that can
approximate any nonlinear functions with arbitrary preci-
sion [7], when the number of hidden neurons is limited,
the learning ability of shallow NNs may not be enough
and poor generalization may be expected when using an
insufficiently deep architecture for representing some func-
tions. The significance of “deep” is that compared with
shallow models, NN with deep architecture can provide
a higher learning ability: functions that can be compactly
represented by a deep architecture might be required to
handle an exponential number of computational elements
(parameters) to be represented by a deep architecture. More
precisely, functions that can be compactly represented by a
depth k architecture might require an exponential number of
computational elements to be represented in a depth k£ — 1
architecture [3].

Based on the Layer-wise unsupervised Pre-training mech-
anism, DNN can map the raw data set from the original
feature space into a learned feature space layer by layer
in the training process. In each layer, the unsupervised
training may provide a kind of regularization to the data set
and minimize the variance in each layer. Therefore, in the
finally obtained feature spaces, classifiers or regressors have
chances to obtain higher accuracy and better generalization.
In some research areas, including computer vision [1],
Speech recognition [8], Natural Linguistic Programming [9],
and Bioinformation, DNNs have been reported achieving
great success in the past five years.

The objective of our investigations is to explore the poten-
tial of DNN in other research domains. In previous research,



we note that for time series problem, a good representation of
original feature space may be helpful for the applied model
to get better performance [10]. Meanwhile, in time series
problem, the correlations among features are obviously but
not easy to be identified. If we can analyze the correlations
and represent the features properly, the prediction accuracy
is expected to be improved, and DNNs could be a reasonable
and suitable tool to analyze the time series features. In
this investigation, we apply a DNN model to predict the
weather change in the next 24-hour period with a big
data set. The massive data involving millions of weather
records is provided by The Hong Kong Observatory (HKO).
Our training method is to use the latest proposed greedy
layer-wise unsupervised pre-training algorithm followed by
a supervised fine-tuning. In detail, we choose a revised Auto-
Encoder algorithm to build the network [11], the DNN is
used to learn the features from the larger volume of raw
data, and we evaluate the learned features according to
the prediction accuracy. The contribution and significance
of our investigation demonstrate that: compared with the
classical models, NNs with Deep architectures can improve
the prediction accuracy in weather forecasting domain, and
our initial study gives the results that can show the potential
of DNN on time series problems.

2. Weather Prediction Problem

The changes of climate that could impact people’s daily
life, therefore people never cease their efforts on predicting
the trend of weather changes. Unlike data sets in other
domain, weather data has some particularities. Specifically,
there is season-to-season, and year-to-year variability in the
trend of weather data. The cycle could be multi-month,
multi-season or multi-year, and the main difficulty of in-
vestigations is to capture all the possible cycles.

Many significant research efforts are utilized to develop
weather forecasting methods including artificial intelligence
technologies that have been accepted as appropriate means
for weather forecasting and reported encouraging results
since 1980s [12], [13], [14]. Among many different in-
telligence models, single variable time series regression
is the most fundamental and most widely applied one in
weather forecasting, especially short-term predictions. Since
our initial investigation is an exploration on the application
of DNN in the area of weather forecasting, in this paper,
we mainly concentrate on employing DNN to represent
the feature space for single variable time series regression
problem.

Generally speaking, for a certain variable, the objective
of single variable time series regression is to find the
relationship between its status in a certain future time point
and its status in a series of past time points, and estimate its
future status via:
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The function f, can be obtained by employing different
intelligence models such as Linear Regression, Generalized
Linear Model, Autoregressive Integrated Moving Average
Mode, etc.

In our investigation, we focus on forecasting four kinds
of weather information, including temperature, dew points,
Mean Sea Level Pressures(MSLP) and wind speed, in the
next few hours. We will input the raw data sets into our
DNN model, the input n-dimensional vector is composed of
the status in (¢ — 1)th, (t —2)th, ..., (t —n)th time points,
then we use the DNN to represent these status, and employ a
regressor to estimate the status in ¢th time point. We hope the
seasonal cycles can be captured via massive volume of data
by the superior learning ability of the multi-layer structured
NN.

3. Greedy Layer-wise Unsupervised Pre-
training and Aotuencoder DNN

The essential challenge in training deep architectures is to
deal with the strong dependencies that exist during training
between the parameters across layers [15]. Multi-layer NNs
have more parameters than shallow NNs. Moreover, in a
multi-layer NN, due to the non-convexity of the complex
model, the optimization with traditional BP training ap-
proach may fall in a local minimum rather than global
minimum. This may bring poor generalization to the model.

This problem isn’t well solved until Hinton et al. intro-
duced Deep Belief Network (DBN) that greedily trained up
one layer with a Restricted Boltzmann Machine (RBM) at a
time in 2006 [1]. Shortly after, strategies for building deep
architectures from related variants were proposed by Bengio
[16] and Ranzato[17]. They solved the training problem of
deep NN in two phases: in the first phase, unsupervised pre-
training, all layers are initialized using this layer-wise unsu-
pervised learning signal; in the second phase, fine-tuning, a
global training criterion (a prediction error, using labels in
the case of a supervised task) is minimized. Such training
approach is called the Greedy Layer-wise Unsupervised Pre-
training. Fig.1 [15] shows the comparison among different
training methods for NNs with deep architectures. There is
a family of training models categorized into the family of
Greedy Layer-wise Unsupervised Pre-training approaches,
In our investigation, with the consideration of the attribute
type of the weather data, i.e., the collected data are all real
numbers, we choose the Stacked Auto-Encoder to build the
deep architecture of our NN model.

The Stacked Auto-Encoder, as its name suggested, is a
stacked architecture NN that applies Auto-Encoder in each
layer. In NN, a single “neuron” is a computational unit that
taken as input vector X = x1, 22, ..., 2, (and a +1 intercept
term), and outputs hyp(z) = f(WTz) = f(Z?:l Wix; +
b) with a nonlinear function f : R +— R. W is the
weight matrix that stands for the connection among different
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Fig. 1: Training classification error vs training iteration on

DNNs, which shows the optimization difficulty for DNNs
and the advantage of pre-training methods.

neurons in the network. In most of cases, sigmoid function
f(z)= m is employed. A typical Auto-Encoder tries
to learn a function h,, ;(z) ~ x. In other words, it is trying
to learn an approximation to the identity function, so as to
output Z that is similar to « . The identity function seems
a typically trivial function trying to learn; but by placing
constraints on the network, such as by limiting the number
of hidden units, we can discover interesting structure about
the data [17], e.g., for a data set, suppose that the original
samples are collected from a 100-dimensional feature space,
ie. x € R0 set that there are 50 hidden units in the hidden
layer, based on the requirement hw’b(ac) ~ x, the network is
forced to learn a compressed representation of the input.
That is, given only the vector of hidden unit activations
a® € R0, it must try to reconstruct the 100-dimensional
input z. An illustration of Auto-Encoder is shown in Fig.2.
If the inputs were completely random, each x; comes from
an LLD. Gaussian independent of the other features, then
this compression task would be very difficult. But if there is
a certain structure hidden in the data, for example, if some of
the input features are correlated, such as in the feature space
of time series analysis, then this algorithm will be able to
discover some of those correlations.
The loss function of Auto-Encoder is:
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where m is the number of training samples. The objective
of the Auto-Encoder is to minimize Eq.(2) in order to make
sure that the output hw,b(x(i)) can approximate the raw
data 2" as far as possible. The second term in Eq.(2)
is a regularization term (also called a weight decay term)
controled by the weight decay parameter \ that tends to
decrease the magnitude of the weights, and helps prevent
overfitting. We can minimize Eq.(2) by gradient descent to
compute the configuration of the network.

Consequently, we need to combine Auto-Encoders layer
by layer with a stacked structure to build the DNN. For

Fig. 2: An illustration of Auto-Encoder Algorithms. Layer
L is the input layer, and Lg is the output layer. Via hidden
layer Ly, we hope to represent the information z in layer
L1, so that the output  in L3 can approximate the raw data
x.

each layer, we use an Auto-encoder to train the parameters
in this layer, and then have these layers combined together.
Specifically, in the training process of each layer, as shown
in Fig.1, the input vectors have to pass through three layers,
and the vectors in hidden layers (layer Lo, and for simplicity,
we call the vectors in layer Lo as the transformed vectors
of the initially input vectors) are representations of the input
vectors and can be used to reconstruct the input vectors.
Thus, in every layer of the deep NN, the input of the current
layer is the output of the previous layer, then we train the
input data via an Auto-Encoder, and use the transformed
vectors as the output of the current layer. Fig.4 shows the
detailed mechanism of stacked Auto-Encoder based DNN.
We can see that through a DNN, the raw data can be
represented in new feature spaces layer by layer. In other
words, DNN can learn features from the original data sets.
Consequently, we apply any proper intelligence models with
the learned features.

4. Experimental Results and Analysis

In our experiments, we concentrate on the evaluation of
the learned features: four types of weather data sets, are em-
ployed and simulated, and the results are compared between
models using raw features and models using represented
features.

4.1 Weather
processing

Data Collection and Pre-

The HKO has provided great support to our investigation.
Based on our collaboration with HKO, a massive volume of
high quality real weather data could be applied in our experi-
ment. Historical weather data sets, including the temperature,
dew points, MSLP and wind speed data are employed in



Fig. 3: A 5-hidden-layer DNN with Stacked Auto-Encoder
method, by which each layer is greedily pre-trained with
an unsupervised Auto-Encoder to learn a nonlinear transfor-
mation of its input (the output of the previous layer) that
captures the main variations in its input, i.e. hy(z) ~ .

our model. The time range of the data sets is almost 30-
year long, which covers the period from January 1, 1983 to
December 31, 2012. In detail, the number of records in each
data set is more than 260,000 respectively.

Unlike the temperature (measured with degree Celsius),
dew points (measured in degree Celsius)and MSLP (mea-
sured in hectopascal(hPa)) data which have only one dimen-
sion , the wind speed data has two dimensions: the polar
coordinate for the wind direction (measured with degree
angle) and the speed (measured with meters per second).
Moreover, for a certain time points, the direction of the air
motion is not stable, i.e. the wind direction at that time point
is not fixed. Such condition is denoted as “variable” in the
raw data. Therefore, according to the requirement of our
algorithm, we have to do some pre-processing on the data
sets.

Different from the temperature (as Fig.4), dew points (as
Fig.5) and MSLP (as Fig.6) data which are one-dimensional
scalar quantities, the wind speed data (in a fixed horizontal
plane) is a vector quantity that has two dimensions in the
polar coordinate (as Fig.7), i.e. the angle to show its direction
and the speed to measure the magnitude in this direction[18].
However, since our model is focused on single variable
time series problems, we have to transform the data set to
satisfy the model’s requirement. According to the physical
significance of the two dimensions, we denote the angle as
0 and the speed as v to obtain:

00 = cosb - v 3)

0

where v” is the vector components of the wind speed in
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Fig. 5: The distribution of dew points temperature data in
the last week of the data set

0 degree angle direction (as Fig.8). Thus, what we actually
simulate is the time series of the speed components of the air
motion in 0 degree angle direction. Moreover, there are about
3% wind speed data with the direction valued as “variable”,
for such condition, we consider it as a missing value in the
data set and use the average value of the wind direction in
its previous time point and its next time point to replace the
value “variable”.

4.2 Experiment on Temperature/Dew Points
Temperature Forecasting

In our first experiment, we use a 4-layer DNN model
to predict the temperature and dew points temperature in
the next time point. The temperature data set records the
real-time temperature, and the dew points temperature is a
more complex quantity: the dew point is the temperature at
which the water vapor in air at constant barometric pressure
condenses into liquid water at the same rate at which it
evaporates [19]. At temperatures below the dew point, water
will leave the air. From Fig.4 and Fig.5, we can see that both
of the two data sets show a smooth changing trend and are
not as unstable as other two data sets. We may also observe

Fig. 6: The distribution of MSLP data in the last week of
the data set



Fig. 7: The distribution of wind speed data in polar coordi-
nate
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Fig. 8: The distribution of wind speed at a fixed diection

that the temperature data set and the dew points data set
show very similar curves, which indicated that there may
be a high relevance between these two data sets. However,
the dew points curve is a little more fluctuating than the
temperature cure, which imply that other factors may have
effect on its values.

The objective of our experiments is to try to use the 7-
day hourly records to forecast these two temperature related
data in the next 24-hour period respectively, The whole
network is with an input layer, two stack-organized Auto-
Encoder layers, and the top layer which uses Support Vector
Regression (SVR) to output the prediction results [20], [21].
Table I shows the parameter configuration of our experiment.

In the experiments, the training set has more than 230,000
records, and about 26,000 samples are selected as testing set.
the ratio between training set and testing set is 9:1. The result
is compared with Classical SVR. Note that the parameters
in the Classical SVR are set as same as in the top SVR

Table 1: The parameter configuration of the experiments

Parameter Value
Number of neurons in hidden layer 1 82
Number of neurons in hidden layer 2 40
A 0.05
Learning rate 0.01
Max Iteration 400
Parameters in SVR Default as LibSVM [22]

Table 2: The comparison of temperature prediction by SVR
and DNN

Model NMSE DS R?
Classical SVR 2.179¢-2  0.75 0.872
DNN with SVR in Top Layer 8.117¢-3  0.82 0.915

Table 3: The comparison of dew points prediction by SVR
and DNN

Model NMSE DS R?
Classical SVR 2.132e-2  0.75 0.856
DNN with SVR in Top Layer 9.552¢-3  0.80 0.901

layer of the DNN model. In our experiment, we apply three
criteria including Normalised Mean Square Error (NMSE),
Directional symmetry (DS) and R? to evaluate the prediction
results. Table II and Fig.9 give the result of temperature
forecasting, and the results of dew points forecasting is given
as Table IIT and Fig.10.

From Fig.9 and Fig.10 we can observe that both SVR and
DNN can simulate the two temperature related real data sets
very well after training with a massive volume of data. For
the temperature data, the predicted results almost coincide
with the real data, the similar predict results are also obtained
in the dew points data. We can see that after training with a
massive volume of data set, the SVR can efficiently simulate
the temperature related data sets. Especially, the DNN isn’t
troubled with the overfitting problem when it is trained with
the large data set.

Results shown in Table II and Table III demonstrate the
positive role of the DNN in the simulation tasks. As we
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Fig. 9: The results of temperature prediction for the date in
the last week
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Fig. 10: The results of dew points temperature prediction for
the date in the last week



Table 4: The comparison of MSLP prediction by SVR and
DNN

Table 5: The comparison of wind speed prediction by SVR
and DNN

Model NMSE DS R2
Classical SVR 6.26 0.70 0.851
DNN with SVR in Top Layer 2.13 0.72 0.924
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Fig. 11: The results of temperature prediction for the date
in the last week

discussed in above, both of the two models have the same
configuration in SVR part, the only difference is that in
the DNN, we represent the raw features, and use the new
features to train the SVR in the top layer. We can see
that the DNN model greatly reduces the NMSE(the NMSE
in SVR model has already been very small, but after the
feature representation/granulation, the NMSE becomes even
smaller). Also, the higher R? values are obtained. These
results demonstrate that, with the represented features via a
deep NN, the SVR model in the top layer can learn the raw
data much better.

4.3 Experiment on MSLP Forecasting

In real applications, temperature simulation (in short term)
is not a challenging task since that the change of temperature
in short term is relatively stable. Therefore, although the
DNN can work very well on simulation of temperature
related data sets as shown in the previous experiments, the
academic and practical significance is weak, experiments on
more unstable data set is necessary to confirm the result.

In the following experiment, we apply the MSLP data to
verify our model. The MSLP is the atmospheric pressure
at sea level or (when measured at a given elevation on
land) the station pressure reduced to sea level assuming that
the temperature falls at a lapse rate of 6.5 K/km in the
fictive layer of air between the station and sea level [23].
Observing Fig.6, we may find that the curve of MSLP data
is more fluctuating than that of the temperature data. So
it is reasonable to apply MSLP data to verify our model
further. We adopt the parameter configuration of the previous
experiments. Table V and Fig.11 give the results.

From the results shown in Table IV and Fig.11, we shall
observe that there are obvious error values between the real
data and the predicted data, which is different from the
condition in previous experiments that the predicted curves
almost coincide with the actual curves. However, the high
R? value shows that both of the SVR and DNN model can

Model NMSE DS R?
Classical SVR 0.3721 0.72 0.831
DNN With SVR in Top Layer 0.2522 0.83 0.891
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Fig. 12: The results of temperature prediction for the date
in the last week

explain more than 85% of the errors in the simulation, and
the DNN model can avoid overfitting when training with the
large data set.

Again, compared with the SVR model, the DNN model
shows its advantages in this experiment. The NMSE is
reduced and the R? value is obviously improved, such
experimental results demonstrate that with the learned fea-
ture, the SVR model can provide higher accuracy in MSLP
prediction.

4.4 Experiment on Wind Speed Forecasting

As shown in Fig.4, Fig.5, Fig.6 and Fig.8, the change
of wind speed data is much more stochastic than other
three data sets. Accordingly, the simulation of wind speed
data is more difficult and has more academic and practical
significance. To improve the learning ability of our model,
we have made some modifications on the configuration of
the DNN, a hidden layer with more neurons is added in the
DNN, and the sparsity setting is given in this added layer.
The results are shown in Table V and Fig.12.

Fig.12 shows the simulation results of the wind speed
data in the last week of the data set. From Fig.12, we can
observe that after training with a big volume of wind speed
data, the model can capture the main trend of changes, and
the DNN can give a better performance than simply using
SVR. Inspecting the criteria in Table V, DNN can return a
lower NMSE and higher R? value.

There are two special points which should be noticed
in this experiment. (1) From the distribution of the MSLP
data set and the wind speed data set, we know that it is
more difficult to predict the wind speed than to predict
MSLP; however, in our simulation, the latter experiments
can obtain lower NMSE value. This fact implies that the
added hidden layer is able to improve the learning ability of
the whole network.(2) Note that a much higher DS value
is obtained in DNN, this maybe caused by the fact that



features generated via DNN may have the largest possible
variation, and such fact shows that the principle of DNN may
be considered as an advanced form of Principal Component
Analysis (PCA)[24].

Our experiments only make comparison between classical
SVR and Stacked Auto-Encoder DNN with SVR in the top
layer. Actually, some other models can also be applied to
deal with weather data related time series problem. However,
the main objective of our investigation is to attest the
models’ performance with the new represented features. The
results demonstrate that compared with the raw features, the
obtained features can explain the principle of the raw data
set better. Moreover, the DNN can be combined with many
other models, and the learned features can be employed to
improve the performances of most models in computational
intelligence field.

5. Conclusion, Limitation and Future
Work

In our investigation, we explore an approach that using a
novel computational intelligence technology to process mas-
sive volume of weather data. The proposed DNN model may
represent the features of the raw weather data layer by layer
, and experimental results show that the obtained features
can improve the performances of classical computational
intelligence models. The contribution of our investigation
is significant: we give an approach that using computational
intelligence method to learn features for weather forecasting,
and our experiments demonstrate that the DNN algorithm
also has the potential on time series problem.

Our initial investigation is to explore the use of DNN
to deal with the large volume of weather data. Therefore,
limitations also exist. The relation between the number of
hidden layers and the output accuracy should be quantified,
also, the number of hidden neurons should be optimized.

The main future work of our investigation is that, we
will try to employ our model on more difficult weather
data, such as rain fall data set; and moreover, we will
continue exploring the theoretical principle of computational
intelligence, especially, we will try to give the mathematical
explanation of the DNN.
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