
Partial Parallelization of the Successive Projections
Algorithm using Compute Unified Device

Architecture
Lauro Cássio Martins de Paula,

Anderson da Silva Soares,
Telma Woerle de Lima,

Wellington Santos Martins
Institute of Informatics

Federal University of Goiás
Goiânia, Brazil

Arlindo Rodrigues Galvão Filho
Department of System and Control

Technological Institute of Aeronautics
São José dos Campos, Brazil

Clarimar José Coelho
Computer Science Departament

Pontifical University Catholic of Goiás
Goiânia, Brazil

Abstract—This paper proposes a partial parallelization for the
Successive Projections Algorithm (SPA), which is a variable selec-
tion technique designed for use with Multiple Linear Regression.
This implementation is aimed at improving the computational
efficiency of SPA, without changing the outcome of the algorithm.
For this purpose, a new strategy of inverse matrix calculation
is employed. The advantage of the proposed implementation is
demonstrated in an example involving large matrixes. In this
example, gains of speedup were obtained.

Keywords: Successive Projections Algorithm, parallelization,
Multiple Linear Regression, CUDA.

I. INTRODUCTION

The Successive Projections Algorithm (SPA) is a tech-
nique that aims at selecting variables to minimize collinearity
problems in Multiple Linear Regression (MLR). Originally
proposed in [9], the SPA has the restriction that the variable
incorporated in each iteration must be as less multicolinear
possible with the previously selected variables [11], [16], [18].
Through the use of SPA, it is possible to obtain good results in
various problems of multivariate analysis, such as determining
sulfur in diesel samples [2], determining the quality parameters
in vegetable oils [15], determining the levels of moisture and
protein in wheat samples [12], among others. The SPA is
composed of three stages. In phase 1 are generated chains of
minimally redundant variables. Phase 2 evaluates the subsets
of variables with higher predictive potential from the variable
chains obtained in stage 1. Such assessment is measured by the
prediction error in the multiple linear regression models. The
equation 1 shows how regression coefficients are calculated,
and the equation 2 shows how the predictive ability of a
particular subset of variables is measured by calculating the
error RMSEP (Root Mean Square Error).

β = (XTX)−1XTy, (1)

where X is the matrix of variables and samples, y is the
vector of dependent variables and β is the vector of regression
coefficients.

RMSEP =

√∑N
i=0(yi − ŷi)2

N
, (2)

where ŷ is the estimated value and y is the actual value of the
property of interest.

Regarding the computational cost, phase 2 represents the
highest cost compared to the other phases, because this stage
involves the calculation of an inverse matrix as shown in
equation 1. In [7] was proposed to reduce the cost of Phase 2 of
the SPA through sequential regressions. This idea is based on
updating the calculation of the inverse of the linear regression
when adding a new variable instead of performing any inverse
calculation. The benefit of the proposed implementation was
shown through an example involving a data set near-infrared
(NIR) of wheat samples. In such example, computational gains
were achieved compared with the traditional SPA implemen-
tation. Despite the results obtained, such technique does not
exploit the recent advances in computing power of computers,
in particular the possibility of performing tasks in parallel,
since sequential regressions have a sequential formulation.

In [17] was proposed the SPA parallelization in order to
explore the ability of multiple processing cores (multicore)
on new computer architectures. The results obtained showed
that it was possible to reduce the computational cost of the
algorithm as more than one processing core becomes available.
However, this processing architecture currently is limited to
using a maximum of eight cores.

Despite the use of sequential regressions and multicore
parallelization reducing the computational time, both strategies
do not make use of the latest advances in terms of processing
capacity in architecture computers Intel R©. Calculating the
inverse matrices using parallel programming can be more
interesting due to the fact of using the parallel computing
resources provided by GPUs (Graphics Processing Unit) [3],
[1], [10], [20].

In this work, a new strategy for reducing the computational

cost of the SPA is proposed. In particular a partial parallelizing
of phase 2 of the algorithm is proposed, involving calculation
of matrix inversion by using the Compute Unified Device
Architecture (CUDA) on GPUs. While the current multi-
core architectures have two, four or eight cores, GPUs have
hundreds or even thousands of processing cores. However,
unlike the parallelization on CPUs (Central Processing Unit)
multicore, the organization and number of threads, which
are executed independently on the GPU cores, are managed
manually by the programmer.

This article is organized as follows. Section 2 details the
Successive Projections Algorithm. The proposed paralleliza-
tion on phase 2 of the SPA is detailed in section 3. Section
4 describes the materials and methods used. The results are
discussed in section 5. Section 6 shows the conclusions.

II. SUCCESSIVE PROJECTIONS ALGORITHM REVIEW

The multivariate calibration refers to obtaining a mathemat-
ical model that allows to provide the value of a quantity y
based on values measured from a set of explanatory variables
x1, x2, ..., xk [12]. Thus, it is possible to obtain a suitable
model

y = β0 + β1x1 + ...+ βkxk + ε, (3)

where β0, β1, ..., βk, k = 1, 2, ..., K, are the coefficients
to be determined, and ε is a portion of random error. The
process for obtaining coefficients is also known as MLR,
typically being performed by the least squares method [8].
The Multiple Linear Regression is a statistical technique used
to build models that describe reasonably relationships between
several explanatory variables of a given process [14], [4].

The goal of SPA is to select a subset of variables with
low collinearity that allows the construction of a MLR model
with a capacity of adequate prediction. Data modeling for the
SPA implementation are divided into two sets: calibration,
containing Nc observations, and validation containing Nv

observations, where Nc + Nv = N . The data calibration and
validation are arranged respectively in matrixes Xc (Nc × K)
and Xv (Nv × K). In SPA’s phase 1 are generated K chains
with M variables each, being

M = min(Nc − 1,K). (4)

In step 2, the SPA uses the validation set to evaluate subsets
of variables extracted from the chains generated in stage 1. As
a result of phase 2, the best subset of variables is the one that
leads to the smallest value of RMSEP among subsets tested.
The algorithm of phase 2 is shown in the algorithm 1.

Obtaining RMSEP can be performed in two ways:
• If validation is used to test series, a set of
validation samples must be defined. Soon after, the
best subset is determined by the lowest root value
of mean squared error on a validation set calculated
by the equation 2 for all subsets of variables;

Algorithm 1: Step 2 of the SPA
1) Do k = 1
2) While k < K
3) Do m = 1
4) While m < M
5) Let Xkm be a subset of varibles formed by m first

elements of k-th chain generated on phase 1.
6) Let S−1

km
be the inverse of the equation 1.

7) Using the variables contained in Xkm, calculate the inverse
S−1
km

and subsequently the remainder of the equation 1.
8) Calculate the error RMSEP of k-th chain with m

variables, according to equation 2.
9) Do m = m+ 1

10) End While m < M
11) Do k = k + 1
12) End While k < K

• If the cross-validation is used, the best subset is
determined by the lowest root value of mean squared
error of cross validation in the calibration set, which
can be obtained by an equation similar to equation 2.

The third and last phase consists of eliminating variables
that do not contribute significantly to the predictive capacity
of the resulting MLR model. For such, each variable selected
in phase 2 is associated with a “relevancy index” given by the
product of the sample standard deviation and the regression
coefficient modulus of this variable [18].

III. PROPOSED PARALLELIZATION

A square matrix A is said to be invertible if there exists
another matrix A−1 such that A−1A = I and AA−1 = I ,
where I is called identity matrix. According to the literature,
A matrix has an inverse if and only if det(A) 6= 0.

Calculating the inverse of a matrix can require significant
computational effort, especially when A is large. Therefore,
using the parallel computing resources provided by a GPU
can be viable. The GPU was initially developed as a driven-
flow technology, optimized for calculations of intensive data
use, where many identical operations can be accomplished in
parallel on different data. Unlike a multicore CPU, which
normally executes some threads in parallel, the GPU was
designed to run thousands of threads in parallel [5].

Programming models such as CUDA [5] and OpenCL [19],
allows that applications can be run more easily on the GPU.
CUDA was the first architecture and interface for program-
ming application (API), created by NV IDIA R© in 2006 to
allow the GPU could be used for a wide variety of applications.
Like any technology, the GPU has its limitations. Depending
on the data volume, GPU’s computational performance may
prove inferior when compared to CPU performance. In this
case, the data amount to be transferred to the GPU memory
must be taken into account, because there is an overhead
associated with the parallelization of tasks on the GPU [13].
Factors regarding the access time to memory can also influence
the computational performance. In other words, access to GPU
global memory usually has a high latency and it is subject to
a coalesced access to data in memory [6].

In this paper, a strategy for the parallelization at step of the
calculation of inverse matrix used in phase 2 of the Successive
Projections Algorithm is presented.

Let An×n and In×n be the matrix to be calculated the
inverse and identity matrix, respectively. Recursively, i = 0, 1,
..., n−1, through the use of two kernel functions (kernel1 and
kernel2), each thread performs an operation on each element
of the matrix . In the first kernel function are set

√
n blocks

with
√
n threads each, where each thread accesses a single

element and divide it by the pivot of row i of the matrix A.
In the second function are created n blocks with n threads
each. Each block of threads handles a line of matrices, and
only threads whose its global identifier (id) divided by the
number of columns (idn) is different from index i implementing
operations. For example, in the first iteration (i = 0), threads
with id = 0, 1, ..., n − 1 do not satisfy the condition id

n
6= i. Only the threads that satisfy this condition continue
its execution and, after all threads have been executed, the
elements below the pivot of the first column are zeroed.

Figure 1 shows the strategy used. Each arrow in the figure
represents an iteration of the algorithm. Initially, there are the
matrixes A3×3 and I3×3. All operations applied to the matrix
elements A are also applied in parallel to the elements of the
matrix I . After the last iteration, the matrix A becomes the
identity matrix, and the matrix I becomes A−1.

𝐴 =
5 6 9
4 1 7
1 7 6

1 1.2 1.8
0 −3.8 −0.2
0 5.8 4.2

1 0 1.73
0 1 0.05
0 0 3.89

1 0 0
0 1 0
0 0 1

𝐼 =
1 0 0
0 1 0
0 0 1

0.2 0 0

−0.8 1 0
−0.2 0 1

−0.05 0.31 0
0.21 −0.26 0

−1.42 1.52 1

0.58 −0.36 −0.44
0.22 −0.28 −0.01

−0.36 0.39 0.25

Fig. 1. Parallelization strategy used in the calculation of the inverse of a 3x3
matrix.

Algorithms 2 and 3 respectively show the implementation
of the functions kernel1 and kernel2.

Algorithm 2: kernel1 implementation.

begin
Parameters: A, I , index, size = number of columns;

id ← thread global identification
if id < size then

pivo ← A(index, index)

A(index, id) ← A(index,id)
pivo

I(index, id) ← I(index,id)
pivo

end if
end

Algorithm 3: kernel2 implementation.

begin
Parameters: A, I , index, n = number of columns,
size = number of rows × number of columns;

id ← thread global identification
idBlock ← block identification
idThread ← thread local identification
if id < size then

if (idn) 6= index then
m ← A(idn , index)

A(idBlock, idThread) ← A(idBlock,
idThread) - (m × A(index, idThread))

I(idBlock, idThread) ← I(idBlock,
idThread) - (m × I(index, idThread))

end if
end if

end

IV. EXPERIMENTAL

The dataset employed in this work consists of 775 NIR
spectra of whole-kernel wheat, which were used as shoot-
out data in the 2008 International Diffuse Reflectance Confer-
ence (http://www.idrc-chambersburg.org/shootout.html). Each
spectrum comprises 1050 variables in the range 400-2500
nm. Protein content (%) was used as the y-property in the
regression calculations.

A. Computational setup

All calculations were carried out by using a desktop com-
puter with an Intel Core i7 2600 (3.40 GHz), 8 GB of RAM
memory and a NV IDIA R© GeForce GTX 550Ti graphics
card with 192 CUDA cores and 2 GB of memory config.
The Matlab 7.12.0 (R2011a) software platform was employed
throughout. All the matrices used in this paper were generated
by using randn(), which is a built-in function of Matlab.

V. RESULTS AND DISCUSSION

Figure 2 presents the time required for completion of Phase
2 depending on the maximum number M of variables to be
selected. For M = 100, for instance, regressions involving one
up to 100 variables are carried out and matrix inversion in the
same order (100x100). As can be observed, the computational
time increases with the matrix size, but the increase is less
pronounced if the parallel regression procedure is used. For
M = 1000, for example, this procedure reduces the time by
a factor of two. Although the computational gains obtained
for the sizes of small matrices time required for execution of
Phase 2 is lower by using CPU. This case can be observed
in Figure 3. The implementation using GPU is more efficient
for matrices from 300x300. Although the proposal is feasible
for matrices larger than 300x300, we believe that the proposal

is important once the devices used in this type of problem
have generated data with ever larger. Until five years ago the
appliances generated matrixes with few hundreds of variables,
while recently it is in the thousands. In this sense, the
development of computational algorithms used in this type of
problem is important to computational not to become unviable.

0 200 400 600 800 1000
0

0.5

1

1.5

2

2.5

Matrix dimension

C
om

pu
ta

tio
na

l t
im

e
(s

)

CPU time
GPU time

Fig. 2. Comparison of computational performance between CPU and GPU.

0 100 200 300 400 500
0

0.05

0.1

0.15

0.2

Matrix dimension

C
om

pu
ta

tio
na

l t
im

e
(s

)

CPU time
GPU time

Fig. 3. Detail of Figure 2, showing a comparison of computational perfor-
mance between CPU and GPU for matrix size up to 500x500.

VI. CONCLUSION

This paper proposed a partial parallelization of the Succes-
sive Projections Algorithm based on Compute Unified Device
Architecture. This procedure was employed in Phase 2 of SPA,
which is the computational bottleneck of the overall algorithm.
The results obtained by using a large dataset of NIR spectra
(775 samples and 1050 variables) revealed that substantial
gains in computational efficiency can be obtained by using
the proposed implementation.

ACKNOWLEDGMENT

The authors thank the research agencies CAPES and
FAPEG for the support provided to this research.

REFERENCES

[1] Nesrin Aydin Atasoy, Baha Sen, and Burhan Selcuk, Using gauss -
jordan elimination method with {CUDA} for linear circuit equation
systems, Procedia Technology 1 (2012), no. 0, 31 – 35.

[2] Mrcia C. Breitkreitz, Ivo M. Raimundo, Jr., Jarbas J. R. Rohwedder,
Celio Pasquini, Heronides A. Dantas Filho, and Mrio C. U. Jos, Gledson
E.and Arajo, Determination of total sulfur in diesel fuel employing
nir spectroscopy and multivariate calibration, The Analyst 128 (2003),
1204–1207.

[3] Lau Mai Chan and Rajagopalan Srinivasan, A graphic processing unit
(gpu) algorithm for improved variable selection in multivariate process
monitoring, 11th International Symposium on Process Systems Engi-
neering (Iftekhar A. Karimi and Rajagopalan Srinivasan, eds.), Computer
Aided Chemical Engineering, vol. 31, Elsevier, 2012, pp. 1532 – 1536.

[4] J. Cortina, Interaction, nonlinearity, and multicollinearity: Implications
for multiple regression, Journal of Management 19 (1993), no. 4, 915–
922.

[5] NVIDIA CUDA, Nvidia cuda c programming guide, 4.0 ed., NVIDIA
Corporation, 2701 San Tomas Expressway Santa Clara, CA 95050, 2011.

[6] NVIDIA CUDATM , Nvidia cuda c programming best practices guide,
NVIDIA Corporation, 2701 San Tomas Expressway Santa Clara, CA
95050, 2009.

[7] Anderson da Silva Soares, Arlindo Rodrigues Galv ao Filho, Roberto
Kawakami Harrop Galv ao, and Mário César Ugulino Araújo, Improving
the computational efficiency of the successive projections algorithm by
using a sequential regression implementation: A case study involving
nir spectrometric analysis of wheat samples, Journal of the Brazilian
Chemical Society 21 (2010), 760–763.

[8] Norman Richard Draper and Harry Smith, Applied regression analysis,
1998.

[9] Mario C. U. Araújo et al, The successive projections algorithm for vari-
able selection in spectroscopic multicomponent analysis, Chemometrics
and Intelligent Laboratory Systems (2001), 57–65.

[10] Fabio Fabris and Renato A. Krohling, A co-evolutionary differential evo-
lution algorithm for solving minmax optimization problems implemented
on {GPU} using c-cuda, Expert Systems with Applications 39 (2012),
no. 12, 10324 – 10333.

[11] Roberto Kawakami Harrop Galvao, Mario Cesar Ugulino Araujo, Wal-
lace Duarte Fragoso, Edvan Cirino Silva, Gledson Emidio Jose, Sofacles
Figueredo Carreiro Soares, and Henrique Mohallem Paiva, A variable
elimination method to improve the parsimony of {MLR} models using
the successive projections algorithm, Chemometrics and Intelligent
Laboratory Systems 92 (2008), no. 1, 83 – 91.

[12] Arlindo R. Galvao Filho, Roberto K. H. Galvao, and Mario Cesar U.
Araujo, Effect of the subsampling ratio in the application of subagging
for multivariate calibration with the successive projections algorithm,
Journal of the Brazilian Chemical Society (en).

[13] David B. Kirk, Nvidia cuda software and gpu parallel computing
architecture, NVIDIA Corporation, 2008.

[14] T. Naes and B. H. Mevik, Understanding the collinearity problem
in regression and discriminant analysis, Journal of Chemometrics 15
(2001), no. 4, 413–426.

[15] Alessandra Félix Costa Pereira, Márcio Jose Coelho Pontes, Francisco
Fernandes Gambarra Neto, Sergio Ricardo Bezerra Santos, Roberto
Kawakami Harrop Galvao, and Mario Cesar Ugulino Araujo, Nir spec-
trometric determination of quality parameters in vegetable oils using ipls
and variable selection, Food Research International 41 (2008), 341–348.

[16] Marcio Jose Coelho Pontes, Roberto Kawakami Harrop Galvao, Mario
Cesar Ugulino Araujo, Pablo Nogueira Teles Moreira, Osmundo Dan-
tas Pessoa Neto, Gledson Emidio Jose, and Teresa Cristina Bezerra
Saldanha, The successive projections algorithm for spectral variable
selection in classification problems, Chemometrics and Intelligent Lab-
oratory Systems 78 (2005), no. 1, 11 – 18.

[17] Anderson da Silva Soares, Roberto K. H Galvao, Mario C. U. Araujo,
S. F. C Soares, and Luiz Alberto Pinto, Multi-core computation in
chemometrics: case studies of voltammetric and NIR spectrometric
analyses, Journal of the Brazilian Chemical Society 21 (2010), 1626
– 1634 (en).

[18] Sófacles F. Soares, Adriano A. Gomes, Mario C. Araujo, Arlindo R.
Filho, and Roberto K. Galvo, The successive projections algorithm,
TrAC Trends in Analytical Chemistry 42 (2012), 94–98.

[19] Ryoji Tsuchiyama, Takashi Nakamura, Takuro Iizuka, Akihiro Asahara,
Jeongdo Son, and Satoshi Miki, The opencl programming book, Fixstars,
2010.

[20] Ahmet Artu Yldirim and Cem Ozdogan, Parallel wavelet-based cluster-
ing algorithm on {GPUs} using {CUDA}, Procedia Computer Science
3 (2011), no. 0, 396 – 400.

