
Comparative Study of High Performance Computing
Using Multi-core Parallel Systems

Hyo Jong Lee1,2, Hyeon Kyu Kim1

1 Division of Computer Science and Engineering
 2 Center for Advanced Image & Information Technology

 Chonbuk National University, Jeonju Korea
hlee@jbnu.ac.kr, hkskyp@gmail.com

Abstract - Multi-core based high performance computing
systems are available with a reasonable price. Parallel
programming paradigm needs to be adjusted to an individual
system. Parallel computing systems were compared in this
paper. Electroencephalography signals were collected in order
to measure performance of parallel computing for CPU and
GPU based systems. A CPU based system showed better
performance for smaller data set, while a GPU system showed
better performance for larger data set. GTX580 processor,
which has 512 CUDA cores, showed consistent speedup as
input data was increased continuously. However, CPU has a
limited speedup due to the lack of parallelism. For the FIR
filter computation, GPU showed a good scalability, while a
CPU system did not. The performance of GPU was better than
CPU system slightly.

Keywords: CPU; GPU; multi-core; High Performance
Computing; parallel FIR filter;

1 Introduction
 Recently the high performance computing systems are
taking a direction to multi-core based microprocessor since
the power demands of increased clock speeds cannot be
managed efficiently. Owing to the advanced VLSI and CPU
design technology, multi-core systems are becoming popular
satisfying customers’ needs. Some scientists expect the core
counts per chip would rise as the number of transistor
increase according to Moore’s law [1]. It is experienced that
high performance computing (HPC) system is easy to build
up by using basic building block of multi-core chips sharing
memory in a single node. Clustering those basic computing
blocks with a high speed network would be a convenient way
to construct more powerful computing systems.

 Programming models for parallel systems require
different approaches. Traditionally it was common to develop
parallel programming models for heterogeneous systems
equipped with hybrid memory systems. Parallel library
developers take advantage of the shared memory within a
single node, but tried to optimize the inter-connected
communications. Thus, a user may get good performance for
his parallel applications using a single standardized

programming model. A programming model for shared
memory system is easy to control, but must overcome
increased memory bandwidth for a large scale problem. Jin et
al. [1] proposed a hybrid method to program multi-core based
HPC systems combining standardized programming models.
They also extended the OpenMP model with new data
locality extensions to better match the more complex memory
system.

 GPU (Graphics Processing Units) system is a typical
many-core system. In the beginning they were used for
graphics processing only. Since NVIDIA released CUDA,
the GPU becomes GPGPU (general-purpose computing on
graphics processing units) and more applications became
much accessible on it. Although programming on GPU
requires optimization to utilize the maximum potential of the
CPU, its performance was proved to be worth to pay the cost
for optimization. For example, 2D Discrete Cosine Transform
(DCT) problem for a 256x256 grey image took 10 seconds on
a CPU, but just 48 milliseconds on a CPU using an optimized
implementation [2].

 There are other criteria besides performance to evaluate
parallel programming models, such as scalability and the cost
to performance ratio. The scale of some problems is not big to
require an expensive supercomputer, although parallel
programming approach would help users. Thus, it is
important to investigate performance characteristics
considering the cost to performance ratio. The low priced
parallel computing system may be beneficial to a small scale
parallel computing.

 In this study we compare the performance of four
different systems, a common desktop PC with a quad-core, a
medium level work station, a low and a high priced GPU
system. They are all easy to purchase depending on a user’s
various circumstance. A target problem was selected from a
bioinformatics area called analysis of electroencephalography
(EEG) signals. The same problem was implemented for each
system for performance measurement. Each implementation
did not require any special skill or serious programming time.
That is, the cost for implementation would be considered as
similar level.

2 Background
2.1 Electroencephalography signal
 A target problem adopted in this study is to select
correct bandwidth from electroencephalography (EEG). It is
required to understand the concept of EEG. EEG is the
recording of electrical activity along the scalp. Electrical
recordings from the surface of the brain or even from the
outer surface of the head demonstrate that there are
continuous electrical activities in the brain. Both the intensity
and the patterns of this electrical activity depend on the level
of excitation of different parts of the brain resulting from
sleep, wakefulness, or brain diseases such as epilepsy or even
psychoses. The undulations in the recorded electrical
potentials are known as brain waves, and the entire record is
called an EEG [3]. Intensity of EEG recording range from 0
to 200 microvolt on the surface of the scalp, and their
frequency ranges from once every few seconds to 50 or more
per second. The characteristics of the waves are dependent
on the degree of activity in respective parts of the cerebral
cortex. The waves change markedly between the states of
emotions. Much of the time, the brain waves are irregular,
and no specific pattern can be discerned in the EEG.

 There are mainly five types of Brain waves: Delta waves
(0.5-4 Hz) which are considered to be related to the deep
sleep [4] in the adults or premature babies. It is usually found
in the frontal region of brain in adults and posterior region in
children. A common Theta wave (4-8 Hz) which occurs in
children and adults when they are in emotional stress or they
have deep midline disorders. It is found in parietal and
occipital region. Another type of theta waves is named frontal
midline theta. The theta waves exist during the various tasks
which need the correlation of the increased mental effort and
sustained concentration [5]. Alpha wave (8-13 Hz), which
occurs in quiet resting state but not sleep, is found in the
occipital region. Alpha waves can reflect the relaxation level
a person is having. They are also believed to be responsible
for the movement related brain activity. Another role of
Alpha rhythms is to handle a perceptual processing, memory
tasks, and emotions [4]. Beta wave (13-30 Hz) occurs in
active and busy concentration or anxious thinking state. It is
found in the frontal and parietal region and is related to the
concentration level of people [6]. An increase in a beta power
may reflect the increase of the arousal level of an emotional
state [5]. Gamma wave (30-100 Hz) which occurs in certain
cognitive or motor functions. It is often used for diagnosis of
the certain brain illness [4].

2.2 Finite Impulse Response filter
 A finite impulse response (FIR) is a digital filter whose
impulse response is of finite duration in signal processing.
This is in contrast to infinite impulse filters, which may have
internal feedback and may continue to respond indefinitely.
The output y of a linear time invariant system is determined
by convolving its input signal x with its impulse response h.
Figure 1 displays a discrete-time FIR filter of order M. For a

discrete-time FIR filter, the output is a weighted sum of the
current and a finite number of previous values of the input
marked as h in Figure 1.

Fig 1. Diagram of discrete-time FIR filter design

 The operation of FIR filter is described by Equation (1),
which defines the output sequence Y(z) in terms of its input
sequence X(z).

 y[z] = ∑ [ − ] (1)

 One property of the FIR filter is not to require feedback.
That is, any rounding errors are not compounded by summed
iterations. The same relative error occurs in each calculation.
Another property is that the filter is inherently stable. This is
due to the fact that all the poles are located at the origin and
thus are located within the unit circle. Generally speaking, it
is easy to design to be linear phase by making the coefficient
sequence symmetric. Selection of coefficients is a key step in
designing of filters. Most of the time filter specifications
refer to the frequency response of the filter.

 Applying the FIR filter to EEG signals, desired
bandwidth of brain waves may be selected. First of all, FIR
filter can eliminate unwanted artifact signals from the raw
EEG signals. Figure 2 shows the original EEG signals for
each channel. Each channel is affected by electrical noises or
eye blinking noise. Since the magnitude of EEG signal is very
low compared to those artifact signals, those unwanted signal
must be removed.

Fig 2. Example of original raw EEG signals

 Figure 3 shows the result signals after applying FIR
filter to eliminate electrical noise. The part of artifact signals
were cleanly removed by selecting band of 4~50Hz. The

electrical noise is distributed around 60Hz, the FIR filter was
able to remove noise components.

Fig 3. Result signals of Fig. 2 after applying FIR filter of
4~50HZ

2.3 CUDA
 Since NVIDIA introduced CUDA, a general purpose
parallel computing and programming model became available
to developers as an ideal tool to solve many complex
computational problems in a more efficient way than a
traditional model on a CPU. CUDA comes with a
programming environment that developers can use C
programming language as a native to a GPU system. The
proposed programming model exploits the maximum power
of multi-core CPU or GPU system by deploying parallel
technique. The challenge of multi-core system is to develop
application software that transparently scales its parallelism to
leverage the increasing number of processor cores. The
CUDA programming model is designed to overcome this
problem.

 In CUDA programming tasks are handled by kernel
function call. A kernel function is the function being executed
in GPU and consists with blocks and grids. The
computational grid consists of a grid of thread blocks. Each
thread executes the kernel. Figure 4 shows the relationship
between CPU and GPU.

 The parallel kernel in Figure 4 can be executed on CPU
either synchronously or asynchronously. Thus, GPUs are
multi-thread computational engines based on stream
computing. They can execute hundreds of threads
simultaneously. That is, a CUDA process, which constructs
the multiple of eight streams multiprocessor, executes kernel
functions. A single stream multiprocessor consists of 32 or 48
CUDA processors in the Fermi architecture. A single stream
multiprocessor can execute 1,536 threads at maximum
concurrently [7]. The construction of threads in a unit block is
critical to the performance of CUDA programming. It is
important to make sure the optimal construction for the best
performance.

Fig 4. Relationship between CUDA and CPU

3 Experiment
 Data processing time of EEG data is obviously
proportional to the number of channels and experimental
duration. The size of data is 17Mbytes (for double precision)
approximately for one hour collection from a single channel.
In this experiment the international standard 10-20 system
was used to measure EEG signals using19 channels. The
international 10-10 system has 71 electrodes to cover a whole
brain. Assuming one hour of experiment duration, data size
would be 260Mbytes and 973Mbyes approximately for 10-20
and 10-10 system, respectively. In this paper data collection
time was controlled so that 24.7Mbytes, 49.4Mbytes,
98.8Mbytes, and 197.6Mbytes of data were collected.

 The FIR filter function has been implemented for both
CPU and GPU system. Two main systems were used for this
experiment. The first system is a desktop PC equipped with
Intel Core i5-2500 3.30GHz, which has a quad-core. This
system also has NVIDIA GeForce GTX550 Ti 1GiB installed.
This system runs on Window7 Enterprise 64-bit. The other
system is a middle class server, which has a Dual Intel Xeon
X5650 2.67GHz. The system has total 12 physical CPUs or
24 logical CPUs permitting the Hyper Threading technology.
This system also has a NVIDIA GeForce GTX 580 3GiB
installed. The system runs on CentOS 6.3 64-bit. Both system
installed Version 5.0 of CUDA driver.

 Different parallel approaches were applied for a CPU
system based on multicores and GPU system based on many
cores. Total number of electrodes were distributed to each
core similarly (or equally) for a CPU system. In this case a
single core processed all data distributed to the core by
deploying FIR filter. In the case of a GPU system data
collected by a single channel is processed on to a single
kernel function. That is, a single thread handled a single input
data stream. For example, a single core of a quad-core CPU
system will process data collected from 5 channels, while a
single thread processes a single channel data by calling a
kernel function 20-times.

 Firstly, the coefficient b from Equation 1 was
implemented based on EEGLab [9] implementation. Then,
FIR filter was parallelized separately for both of CPU system
and GPU system. A loop unrolling technique has been used
for optimization for both CPU and CUDA. OpenMP 2.0 was
used for CPU parallel implementation, which required
minimal code changes for a shared memory system. A SSE
(Streaming SIMD Extensions) 2.0 operations were also used
for CPU parallelism. The pseudo code of FIR filter for a CPU
system is depicted in Figure 5. The usage of directive was
prohibited in order to minimize variable spaces, which
increases due to the directives under loop unrolling. At line
07 from Figure 5 (0:6) means that seven variables from zero
to six were used. (0:2:120 represents that variable 0 to 12
were used for only even numbered variables. Since the data
was double type, two SSE instructions were processed at lines
between 07 and 12 from Figure 5.

 The FIR filter was translated to CUDA version of C
language. . In the CUDA, add and multiply operators called in
a FIR filter were translated into a single MAD (multiply / add)
operator. Figure 6 shows a pseudo code of FIR filter for
CUDA. The function fir_filter was executed on a CPU system
and a kernel function was executed on a GPU system. The
bandwidth of data communication between GPU and GPU
was efficiently reduced by using OpenMP. The line 07 was
optimized by substitution of MAD instructions after CUDA
compilation options.

 The source codes were compiled with Visual Studio
2010 SP1 with an O3 option for code optimization. For
CentOS system, GCC 4.6.3 was used for compilation. A
binary code was created with the same level of optimization –
O3. The CUDA compiler nvcc was used for both systems
with the same compiler option level.

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20

#pragma omp parallel for
for(size_t i = 0; i < eeg_data.size(); ++i) {
 size_t j = 0;
 size_t size = (Y.size()/14)*14;
 for(; j < size; j+=14) {
for(size_t k = 0; k < b.size(); ++k) {
__m128d sb = _mm_set_pd(b[k], b[k]);
__m128d sY(0:6) = _mm_load_pd(&Y[j+(0:2:12)]);
__m128d sX(0:6) = _mm_load_pd(&X[j+(0:2:12)+k]);
sX(0:6) = _mm_mul_pd(sb, sX(0:6));
sY(0:6) = _mm_add_pd(sY(0:6), sX(0:6));

 _mm_store_pd(&Y[j+(0:2:12)], sY(0:6));
}
}
 for(; j < Y.size(); ++j) {
 for(size_t k = 0; k < b.size(); ++k) {
 Y[j] += b[k]*X[j+k];
 }
 }
}

Fig 5. Pseudocode of FIR filter for CPU parallelism

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19

__global__ void kernel(b, X, Y) {
int gid = blockDim.x*blockIdx.x + threadIdx.x;
if(gid < Y_size) {
double sum = 0.0;
#pragma unroll 8
for(size_t i = 0; i < b_size; ++i) {
sum = b[i]*X[gid+i]+sum;
}
Y[gid] = sum;
}
}
function fir_filter(b, X, Y) {
#pragma omp parallel for
for(size_t i = 0; i < eeg_data.size(); ++i) {
memcpy host to device;
kernel<<<blocks, threads>>>(b, X[i], Y[i]);
 memcpy device to host;
}
}

Fig 6. Pseudocode of FIR filter for CUDA

4 Result And Discussion
 The FIR filter function has been successfully
implemented and compiled as described in Section III. In
order to measure correct execution times, four different
executable files were created for a desktop PC, a server, and
two GPU programs for both systems. Table I and II
summarized execution times for both systems.

Table 1. Performance measurement of CPU and GPU for FIR
filter for a desktop (unit: milli-second)

Data length
x Multiples

CPU(Intel i5-2500) GPU

Thread 1 Thread 4 Thread 8 GTX 550 Ti

161,890x1 1,405 379 533 351

161,890x2 2,189 617 753 531

161,890x4 4,021 1,133 1264 976

161,890x8 7,429 2,175 2262 1,517

Table 2. Performance Measure of CPU and GPU In FIR filter
for a server (unit: milli-second)

Data length x
Multiples

CPU(Dual Xeon X5650) GPU

Thread 1 Thread 4 Thread 8 Thread12 Thread24 GTX 580

161,890x1 1,632 423 280 208 270 339

161,890x2 2,747 713 470 357 429 393

161,890x4 5,058 1301 851 625 759 522

161,890x8 9,431 2446 1601 1,197 1,422 820

 The desktop PC supported up to four cores. Table I
shows the execution time decreased as the number of cores
increased linearly. The GTX 550 Ti supports 192 CUDA
cores. According to Table I the execution on the GPU system

is slightly better than quad-core system. Table II summarized
the result from a server processor, which provides 24 HT
cores including 12 physical cores. The execution time of a
server processor showed decreased linearly as the number of
threads increased until 12-thread. However, the execution
time of 24-thread is longer than the 12-thread due to the
limited ALU functionality. The HT technique allows two
logical cores for a single physical core; however, those two
logical cores must share a single ALU. This restriction
becomes speedup bottle neck for computing intensive
problems. Since a FIR filter is belongs to a computing
intensive problem, it experienced slow-down for more logical
cores. GPU system installed on a server was GTX 580, which
has 512 CUDA cores. Its performance was slightly better than
the GPU installed on a desktop PC. It also shows slightly
better than six-core case, but 60% slower than 12-core for
small problem cases (161,890x1x20 and 161,890x2x20). This
delay was caused by the same reason as shown in a desktop
PC. However, as the problem size gets larger, GPU upbeats
the server system.

 Figure 7 displays the speedups of each system based on
the Xeon X5650 single-thread, which showed the slowest
processing time. In the case of CPU parallel implementation,
a speedup reached up to 8-fold. However, both systems did
not demonstrate that their performances would be better than
the 8-fold. A GPU system on a server showed about 11-fold
faster speedup. As the size of problem is increased, the
speedup is also increased because more computing available
threads are available. The speedups of GTX are higher
compared to CPU for larger problem domains. The reason for
this better performance is caused by wider memory
bandwidth in a GPU processor. In the case of GTX 580, the
speedup is worse than CPU due to the increased
communication overhead.

Fig 7. Speedups for GPU and CPU based on Xeon CPU

5 Conclusions
 In this paper the performances of FIR filter execution
were compared on various machines. The input data were
collected through EEG system, of which sample rate was
500Hz. The EEG signals were assumed to be collected for
5min, 10min, 20min and 40 minutes. CPU showed better
performance for smaller data set, which were collected for 5
min and 10 min, while GPU showed better performance for
larger data set, which were collected for 20 min and 40 min.
GTX580 processor, which has 512 CUDA cores, shows
consistent speedup as input data is increased continuously.
However, CPU has a limited speedup due to lack of
parallelism. For the FIR filter computation, GPU showed a
good scalability, while CPU did not. The performance of
GPU was better than CPU, however, the difference was not
significant due to small problem size of a FIR filter.

Acknowledgment

 This work was supported by the National Research Foundation
of Korea (NRF) grant funded by the Korea government (MEST) (No.
2012R1A2A2A03).

References

[1] H. Jin, D. Jespersen, P. Mehrotra, R. Biswas, L. Huang,
B. Chapman, "High performance computing using MPI and
OpenMP on multi-core parallel systems", Parallel Computing
Vol 37, pp. 562-575, 2011.
[2] M. Nixon and A. Aguado, Feature Extraction & Image
Processing, Newnes, 2002.
[3] Guyton,A.C.,Hall J.E, Textbook Of Medical
Physiology, Elsevier Inc., Philadelphia, 2005.
[4] S. Sanei and J. Chambers, EEG signal processing.
Chichester, England; Hoboken, NJ: John Wiley & Sons, 2007.
[5] D. Sammler, M. Grigutsch, T. Fritz, and S. Koelsch,
“Music and emotion: Electrophysiological correlates of the
processing of pleasant and unpleasant music,”
Psychophysiology, vol. 44, pp. 293-304, 2007.
[6] Larsen, R. J., & Buss, D. M. Personality psychology.
NewYork: McGraw-Hill, 2002
[7] NVIDIA. (2009). FERMI Compute Architecture White
Paper (v1.1ed.). http://www.nvidia.com/
[8] Kennett R. Modern electroencephalography. J Neurol
2012;259: 783-9
[9] D. A and M. S., "EEGLAB: an open source toolbox for
analysis of single-trial EEG dynamics including independent
component analysis," Journal of Neurosci Methods, vol. 134,
pp. 9-21, 2004.

