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Abstract - Multi-core based high performance computing 
systems are available with a reasonable price. Parallel 
programming paradigm needs to be adjusted to an individual 
system. Parallel computing systems were compared in this 
paper. Electroencephalography signals were collected in order 
to measure performance of parallel computing for CPU and 
GPU based systems. A CPU based system showed better 
performance for smaller data set, while a GPU system showed 
better performance for larger data set. GTX580 processor, 
which has 512 CUDA cores, showed consistent speedup as 
input data was increased continuously. However, CPU has a 
limited speedup due to the lack of parallelism. For the FIR 
filter computation, GPU showed a good scalability, while a 
CPU system did not. The performance of GPU was better than 
CPU system slightly. 
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1 Introduction 
  Recently the high performance computing systems are 
taking a direction to multi-core based microprocessor since 
the power demands of increased clock speeds cannot be 
managed efficiently. Owing to the advanced VLSI and CPU 
design technology, multi-core systems are becoming popular 
satisfying customers’ needs. Some scientists expect the core 
counts per chip would rise as the number of transistor 
increase according to Moore’s law [1]. It is experienced that 
high performance computing (HPC) system is easy to build 
up by using basic building block of multi-core chips sharing 
memory in a single node. Clustering those basic computing 
blocks with a high speed network would be a convenient way 
to construct more powerful computing systems.  

 Programming models for parallel systems require 
different approaches. Traditionally it was common to develop 
parallel programming models for heterogeneous systems 
equipped with hybrid memory systems. Parallel library 
developers take advantage of the shared memory within a 
single node, but tried to optimize the inter-connected 
communications. Thus, a user may get good performance for 
his parallel applications using a single standardized 

programming model. A programming model for shared 
memory system is easy to control, but must overcome 
increased memory bandwidth for a large scale problem. Jin et 
al. [1] proposed a hybrid method to program multi-core based 
HPC systems combining standardized programming models. 
They also extended the OpenMP model with new data 
locality extensions to better match the more complex memory 
system. 

 GPU (Graphics Processing Units) system is a typical 
many-core system. In the beginning they were used for 
graphics processing only.  Since NVIDIA released CUDA, 
the GPU becomes GPGPU (general-purpose computing on 
graphics processing units) and more applications became 
much accessible on it. Although programming on GPU 
requires optimization to utilize the maximum potential of the 
CPU, its performance was proved to be worth to pay the cost 
for optimization. For example, 2D Discrete Cosine Transform 
(DCT) problem for a 256x256 grey image took 10 seconds on 
a CPU, but just 48 milliseconds on a CPU using an optimized 
implementation [2]. 

 There are other criteria besides performance to evaluate 
parallel programming models, such as scalability and the cost 
to performance ratio. The scale of some problems is not big to 
require an expensive supercomputer, although parallel 
programming approach would help users. Thus, it is 
important to investigate performance characteristics 
considering the cost to performance ratio. The low priced 
parallel computing system may be beneficial to a small scale 
parallel computing. 

 In this study we compare the performance of four 
different systems, a common desktop PC with a quad-core, a 
medium level work station, a low and a high priced GPU 
system. They are all easy to purchase depending on a user’s 
various circumstance. A target problem was selected from a 
bioinformatics area called analysis of electroencephalography 
(EEG) signals. The same problem was implemented for each 
system for performance measurement. Each implementation 
did not require any special skill or serious programming time. 
That is, the cost for implementation would be considered as 
similar level. 



2 Background 
2.1 Electroencephalography signal 
 A target problem adopted in this study is to select 
correct bandwidth from electroencephalography (EEG). It is 
required to understand the concept of EEG.  EEG is the 
recording of electrical activity along the scalp. Electrical 
recordings from the surface of the brain or even from the 
outer surface of the head demonstrate that there are 
continuous electrical activities in the brain. Both the intensity 
and the patterns of this electrical activity depend on the level 
of excitation of different parts of the brain resulting from 
sleep, wakefulness, or brain diseases such as epilepsy or even 
psychoses. The undulations in the recorded electrical 
potentials are known as brain waves, and the entire record is 
called an EEG [3]. Intensity of EEG recording range from 0 
to 200 microvolt on the surface of the scalp, and their 
frequency ranges from once every few seconds to 50 or more 
per second.  The characteristics of the waves are dependent 
on the degree of activity in respective parts of the cerebral 
cortex. The waves change markedly between the states of 
emotions. Much of the time, the brain waves are irregular, 
and no specific pattern can be discerned in the EEG. 

 There are mainly five types of Brain waves: Delta waves 
(0.5-4 Hz) which are considered to be related to the deep 
sleep [4] in the adults or premature babies. It is usually found 
in the frontal region of brain in adults and posterior region in 
children. A common Theta wave (4-8 Hz) which occurs in 
children and adults when they are in emotional stress or they 
have deep midline disorders. It is found in parietal and 
occipital region. Another type of theta waves is named frontal 
midline theta. The theta waves exist during the various tasks 
which need the correlation of the increased mental effort and 
sustained concentration [5]. Alpha wave (8-13 Hz), which 
occurs in quiet resting state but not sleep, is found in the 
occipital region. Alpha waves can reflect the relaxation level 
a person is having. They are also believed to be responsible 
for the movement related brain activity. Another role of 
Alpha rhythms is to handle a perceptual processing, memory 
tasks, and emotions [4].  Beta wave (13-30 Hz) occurs in 
active and busy concentration or anxious thinking state. It is 
found in the frontal and parietal region and is related to the 
concentration level of people [6]. An increase in a beta power 
may reflect the increase of the arousal level of an emotional 
state [5]. Gamma wave (30-100 Hz) which occurs in certain 
cognitive or motor functions. It is often used for diagnosis of 
the certain brain illness [4]. 

2.2 Finite Impulse Response filter  
 A finite impulse response (FIR) is a digital filter whose 
impulse response is of finite duration in signal processing. 
This is in contrast to infinite impulse filters, which may have 
internal feedback and may continue to respond indefinitely. 
The output y of a linear time invariant system is determined 
by convolving its input signal x with its impulse response h. 
Figure 1 displays a discrete-time FIR filter of order M. For a 

discrete-time FIR filter, the output is a weighted sum of the 
current and a finite number of previous values of the input 
marked as h in Figure 1.  

 
Fig 1.  Diagram of discrete-time FIR filter design 

 The operation of FIR filter is described by Equation (1), 
which defines the output sequence Y(z) in terms of its input 
sequence X(z). 

 y[z] = ∑ [ − ]  (1) 

 One property of the FIR filter is not to require feedback. 
That is, any rounding errors are not compounded by summed 
iterations. The same relative error occurs in each calculation. 
Another property is that the filter is inherently stable. This is 
due to the fact that all the poles are located at the origin and 
thus are located within the unit circle. Generally speaking, it 
is easy to design to be linear phase by making the coefficient 
sequence symmetric. Selection of coefficients is a key step in 
designing of filters.  Most of the time filter specifications 
refer to the frequency response of the filter.  

 Applying the FIR filter to EEG signals, desired 
bandwidth of brain waves may be selected. First of all, FIR 
filter can eliminate unwanted artifact signals from the raw 
EEG signals. Figure 2 shows the original EEG signals for 
each channel. Each channel is affected by electrical noises or 
eye blinking noise. Since the magnitude of EEG signal is very 
low compared to those artifact signals, those unwanted signal 
must be removed. 

 
Fig 2. Example of original raw EEG signals 

 Figure 3 shows the result signals after applying FIR 
filter to eliminate electrical noise. The part of artifact signals 
were cleanly removed by selecting band of 4~50Hz. The 



electrical noise is distributed around 60Hz, the FIR filter was 
able to remove noise components. 

 
Fig 3. Result signals of Fig. 2 after applying FIR filter of 
4~50HZ 

2.3 CUDA 
 Since NVIDIA introduced CUDA, a general purpose 
parallel computing and programming model became available 
to developers as an ideal tool to solve many complex 
computational problems in a more efficient way than a 
traditional model on a CPU.  CUDA comes with a 
programming environment that developers can use C 
programming language as a native to a GPU system. The 
proposed programming model exploits the maximum power 
of multi-core CPU or GPU system by deploying parallel 
technique. The challenge of multi-core system is to develop 
application software that transparently scales its parallelism to 
leverage the increasing number of processor cores. The 
CUDA programming model is designed to overcome this 
problem. 

 In CUDA programming tasks are handled by kernel 
function call. A kernel function is the function being executed 
in GPU and consists with blocks and grids. The 
computational grid consists of a grid of thread blocks. Each 
thread executes the kernel. Figure 4 shows the relationship 
between CPU and GPU. 

 The parallel kernel in Figure 4 can be executed on CPU 
either synchronously or asynchronously. Thus, GPUs are 
multi-thread computational engines based on stream 
computing. They can execute hundreds of threads 
simultaneously. That is, a CUDA process, which constructs 
the multiple of eight streams multiprocessor, executes kernel 
functions. A single stream multiprocessor consists of 32 or 48 
CUDA processors in the Fermi architecture. A single stream 
multiprocessor can execute 1,536 threads at maximum 
concurrently [7]. The construction of threads in a unit block is 
critical to the performance of CUDA programming. It is 
important to make sure the optimal construction for the best 
performance. 

  
Fig 4. Relationship between CUDA and CPU 

 
 
3 Experiment 
 Data processing time of EEG data is obviously 
proportional to the number of channels and experimental 
duration. The size of data is 17Mbytes (for double precision) 
approximately for one hour collection from a single channel. 
In this experiment the international standard 10-20 system 
was used to measure EEG signals using19 channels. The 
international 10-10 system has 71 electrodes to cover a whole 
brain. Assuming one hour of experiment duration, data size 
would be 260Mbytes and 973Mbyes approximately for 10-20 
and 10-10 system, respectively. In this paper data collection 
time was controlled so that 24.7Mbytes, 49.4Mbytes, 
98.8Mbytes, and 197.6Mbytes of data were collected. 

 The FIR filter function has been implemented for both 
CPU and GPU system.  Two main systems were used for this 
experiment.  The first system is a desktop PC equipped with 
Intel Core i5-2500 3.30GHz, which has a quad-core. This 
system also has NVIDIA GeForce GTX550 Ti 1GiB installed. 
This system runs on Window7 Enterprise 64-bit. The other 
system is a middle class server, which has a Dual Intel Xeon 
X5650 2.67GHz. The system has total 12 physical CPUs or 
24 logical CPUs permitting the Hyper Threading technology. 
This system also has a NVIDIA GeForce GTX 580 3GiB 
installed. The system runs on CentOS 6.3 64-bit. Both system 
installed Version 5.0 of CUDA driver. 

 Different parallel approaches were applied for a CPU 
system based on multicores and GPU system based on many 
cores. Total number of electrodes were distributed to each 
core similarly (or equally) for a CPU system. In this case a 
single core processed all data distributed to the core by 
deploying FIR filter. In the case of a GPU system data 
collected by a single channel is processed on to a single 
kernel function. That is, a single thread handled a single input 
data stream. For example, a single core of a quad-core CPU 
system will process data collected from 5 channels, while a 
single thread processes a single channel data by calling a 
kernel function 20-times. 



 Firstly, the coefficient b from Equation 1 was 
implemented based on EEGLab [9] implementation. Then, 
FIR filter was parallelized separately for both of CPU system 
and GPU system. A loop unrolling technique has been used 
for optimization for both CPU and CUDA. OpenMP 2.0 was 
used for CPU parallel implementation, which required 
minimal code changes for a shared memory system. A SSE 
(Streaming SIMD Extensions) 2.0 operations were also used 
for CPU parallelism. The pseudo code of FIR filter for a CPU 
system is depicted in Figure 5. The usage of directive was 
prohibited in order to minimize variable spaces, which 
increases due to the directives under loop unrolling. At line 
07 from Figure 5 (0:6) means that seven variables from zero 
to six were used. (0:2:120 represents that variable 0 to 12 
were used for only even numbered variables.  Since the data 
was double type, two SSE instructions were processed at lines 
between 07 and 12 from Figure 5. 

 The FIR filter was translated to CUDA version of C 
language. . In the CUDA, add and multiply operators called in 
a FIR filter were translated into a single MAD (multiply / add) 
operator. Figure 6 shows a pseudo code of FIR filter for 
CUDA. The function fir_filter was executed on a CPU system 
and a kernel function was executed on a GPU system. The 
bandwidth of data communication between GPU and GPU 
was efficiently reduced by using OpenMP. The line 07 was 
optimized by substitution of MAD instructions after CUDA 
compilation options. 

 The source codes were compiled with Visual Studio 
2010 SP1 with an O3 option for code optimization. For 
CentOS system, GCC 4.6.3 was used for compilation. A 
binary code was created with the same level of optimization –
O3. The CUDA compiler nvcc was used for both systems 
with the same compiler option level. 
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#pragma omp parallel for 
for( size_t i = 0; i < eeg_data.size(); ++i ) { 
 size_t j = 0; 
 size_t size = (Y.size()/14)*14; 
 for( ; j < size; j+=14 ) { 
for( size_t k = 0; k < b.size(); ++k ) { 
__m128d sb = _mm_set_pd(b[k], b[k]); 
__m128d sY(0:6) = _mm_load_pd(&Y[j+(0:2:12)]); 
__m128d sX(0:6) = _mm_load_pd(&X[j+(0:2:12)+k]); 
sX(0:6) = _mm_mul_pd(sb, sX(0:6)); 
sY(0:6) = _mm_add_pd(sY(0:6), sX(0:6)); 

   _mm_store_pd(&Y[j+(0:2:12)], sY(0:6)); 
} 
} 
 for( ; j < Y.size(); ++j ) { 
  for( size_t k = 0; k < b.size(); ++k ) { 
   Y[j] += b[k]*X[j+k]; 
  } 
 } 
} 

Fig 5. Pseudocode of FIR filter for CPU parallelism 
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__global__ void kernel(b, X, Y) { 
int gid = blockDim.x*blockIdx.x + threadIdx.x; 
if( gid < Y_size ) { 
double sum = 0.0; 
#pragma unroll 8 
for( size_t i = 0; i < b_size; ++i ) { 
sum = b[i]*X[gid+i]+sum; 
} 
Y[gid] = sum; 
} 
} 
function fir_filter(b, X, Y) { 
#pragma omp parallel for 
for( size_t i = 0; i < eeg_data.size(); ++i ) { 
memcpy host to device; 
kernel<<<blocks, threads>>>(b, X[i], Y[i]); 
 memcpy device to host; 
} 
} 

Fig 6. Pseudocode of FIR filter for CUDA 

 

4 Result And Discussion 
 The FIR filter function has been successfully 
implemented and compiled as described in Section III. In 
order to measure correct execution times, four different 
executable files were created for a desktop PC, a server, and 
two GPU programs for both systems. Table I and II 
summarized execution times for both systems. 

Table 1. Performance measurement of CPU and GPU for FIR 
filter for a desktop (unit: milli-second) 

Data length 
x Multiples 

CPU(Intel i5-2500) GPU 

Thread 1 Thread 4 Thread 8 GTX 550 Ti 

161,890x1 1,405 379 533 351 

161,890x2 2,189 617 753 531 

161,890x4 4,021 1,133 1264 976 

161,890x8 7,429 2,175 2262 1,517 

 

Table 2. Performance Measure of CPU and GPU In FIR filter 
for a server (unit: milli-second) 

Data length x 
Multiples 

CPU(Dual Xeon X5650) GPU 

Thread 1 Thread 4 Thread 8 Thread12 Thread24 GTX 580 

161,890x1 1,632 423 280 208 270 339 

161,890x2 2,747 713 470 357 429 393 

161,890x4 5,058 1301 851 625 759 522 

161,890x8 9,431 2446 1601 1,197 1,422 820 

 
 The desktop PC supported up to four cores. Table I 
shows the execution time decreased as the number of cores 
increased linearly. The GTX 550 Ti supports 192 CUDA 
cores. According to Table I the execution on the GPU system 



is slightly better than quad-core system. Table II summarized 
the result from a server processor, which provides 24 HT 
cores including 12 physical cores. The execution time of a 
server processor showed decreased linearly as the number of 
threads increased until 12-thread. However, the execution 
time of 24-thread is longer than the 12-thread due to the 
limited ALU functionality. The HT technique allows two 
logical cores for a single physical core; however, those two 
logical cores must share a single ALU. This restriction 
becomes speedup bottle neck for computing intensive 
problems. Since a FIR filter is belongs to a computing 
intensive problem, it experienced slow-down for more logical 
cores. GPU system installed on a server was GTX 580, which 
has 512 CUDA cores. Its performance was slightly better than 
the GPU installed on a desktop PC. It also shows slightly 
better than six-core case, but 60% slower than 12-core for 
small problem cases (161,890x1x20 and 161,890x2x20). This 
delay was caused by the same reason as shown in a desktop 
PC. However, as the problem size gets larger, GPU upbeats 
the server system. 

 Figure 7 displays the speedups of each system based on 
the Xeon X5650 single-thread, which showed the slowest 
processing time. In the case of CPU parallel implementation, 
a speedup reached up to 8-fold. However, both systems did 
not demonstrate that their performances would be better than 
the 8-fold. A GPU system on a server showed about 11-fold 
faster speedup. As the size of problem is increased, the 
speedup is also increased because more computing available 
threads are available. The speedups of GTX are higher 
compared to CPU for larger problem domains. The reason for 
this better performance is caused by wider memory 
bandwidth in a GPU processor. In the case of GTX 580, the 
speedup is worse than CPU due to the increased 
communication overhead. 
 

 
Fig 7. Speedups for GPU and CPU based on Xeon CPU 

 
 
 
 
 

5 Conclusions 
 In this paper the performances of FIR filter execution 
were compared on various machines. The input data were 
collected through EEG system, of which sample rate was 
500Hz. The EEG signals were assumed to be collected for 
5min, 10min, 20min and 40 minutes. CPU showed better 
performance for smaller data set, which were collected for 5 
min and 10 min, while GPU showed better performance for 
larger data set, which were collected for 20 min and 40 min. 
GTX580 processor, which has 512 CUDA cores, shows 
consistent speedup as input data is increased continuously. 
However, CPU has a limited speedup due to lack of 
parallelism. For the FIR filter computation, GPU showed a 
good scalability, while CPU did not. The performance of 
GPU was better than CPU, however, the difference was not 
significant due to small problem size of a FIR filter. 
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