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Abstract— Modern General Purpose Graphics Processingwill not receive an event with a smaller timestamp than its
Units(GPGPUSs) offer much more computational power tharcurrent clock from another LP. However, An LP may wait
recent CPUs by providing a vast number of simple, datdor events that never arrive. Therefore, LPs may send null
parallel, multithreaded cores. In this study, we focus onmessages to other LPs to avoid deadlocks [2]. Optimistic
the use of a GPGPU to perform parallel discrete-eventmechanisms ignore inter-process synchronization issugs,
simulation. Our approach is to use a modified service timemake compensations by performing rollbacks to a check-
distribution function to allow more independent eventsdo b pointed consistent state when a causality error occurs [3].
processed in parallel. The implementation issues and-altefThis requires periodic state-saving of the simulator.

native strategies will be discussed in detail. We use Thrust i

an open-source parallel algorithms library which resensble ~ With the advance of graphics hardware technology, pro-
the C++ Standard Template Library (STL), to build our tool. 9r@mming and executing general applications on GPGPUs
The experimental results show that our implementation cafs More feasible. Nowadays, a single GPGPU with hundreds

be more than 60 times faster than the sequential simulatiorp” €ven thousands of processing cores has great potential

Furthermore, the speedup curve scales well which indicate" improving the performance of various computational

that our implementation is suitable for large-scale digere Ntensive applications. In this paper, we focus on the use
event simulation models. of a GPGPU to perform parallel discrete-event simulation.

Note that the architecture of GPGPU can be classified as
Keywords: Parallel Simulation, Discrete-Event Simulation, Single Instruction, Multiple Data(SIMD). To allow more

GPGPU, CUDA, Thrust Library events to be processed in parallel based on SIMD, our
) approach is to use a modified service time distribution
1. Introduction function which guarantees that the events clustered to be

Discrete Event Simulation (DES) is a widely-used tech-£xecuted simultaneously are independent of each other and

nique that allows an analyst to study the dynamic behavigfence causality errors will not occur. In other words, our

of a complex system. DES exploits a computer to model &€thod can be treated as a conservative approach from
system stochastically at discrete points in simulated time C€rtain viewpoint.

simulation program operates on a model's state variables implementation is done with the Thrust [4] on

during each of a sequence of time-ordered events angie NvIDIA Compute Unified Device Architecture(CUDA)

schedules future events during such processing. HOWeV&Siqirorm Thrust is a CUDA library of parallel algorithms
simulation is usually computationally intensive and time-iih 4 user-friendly interface resembling the C++ Stan-

consuming. Typical simulation applications often exedate 45,4 Template Library (STL). It hides the details of low-

hours or even days. Therefore, exploiting the availabilityjo,e| CUDA function calls and provides highly-optimized

and the power of multiprocessors to speed up the simulatiog,plementation of standard algorithms, such as searching,

execution is of considerable interest. sorting, reduction, compaction, etc., which greatly emiesn
Parallel discrete event simulation (PDES) attempts tcHeveIoper productivity. Therefore, GPGPU-based applica-

speed up a simulation’s execution by partitioning the simyjsns implemented with Thrust are readable, concise, and
ulation model into components, each of which has its owngicient.

event set and is executed bylLagical Procesd.P) on a

different processor. To guarantee the distributed eveilts w The organization of this paper is as follows. Section

be executed in an appropriate order, two main types of sy2 describes related work. In Section 3, an old algorithm

chronization mechanisms among LPs have been proposeahich we borrow some ideas from is investigated. Section

conservative and optimistic [1]. Conservative mechanidms 4 presents our implementation strategies. In Section 5, the
not allow an LP to process an event until it is certain thaexperiments and the results for performance evaluation are
causality violation will not occur. This means that an LP presented. We give a short conclusion in Section 6.



2. Related Work while ( current_time < sinulation_tine)

) . . mn_timestanp = find_m n(future_event_set);
In the area of practical parallel simulation, two appanentl current_step = the smallest nultiple of tine

orthogonal streams of effort have developed over the past interval greater than or
equal to min_timestanp;

de.cades. Theepllcatlonpgsed effort entails natural paral- . a1 el for each event e in future event set
lelism and is able to utilize massive data-parallel compu- if (the tinmestanp of e <= current_step)
tational power. TheEcliPSe toolkit described in [5], [6] extract e fromfuture event_set;

. . process e and gener ate new events
has proven to be a very successful system for replication- into future event set:
based simulations. Thaistributionbased effort emphasizes end if B B

functional decomposition of a model across processors. Ex- end for
. L . . . current _tine = current_step;

amples of systems supporting distributed simulation id€lu .4 wni | e

ModSim[7], Sim++[8], ParaSi[9], and ParaSol[10]. An

inherent difference between the two approaches is that repl Fig. 1: The pseudo code of the old algorithm

cation exploits statistical sampling to speed up the geioera

of multiple (typically, but not necessarily independersis

ple paths, while distribution exploits model partitionitg

Z

speed up the generation of a single sample path. XF@K /\C01 v

Because of its massively data parallel computing power, J N S —I
GPGPU has been used by more and more researchers
for simulating large-scale models over the past few years.
For example, a discrete-event simulation of heat diffusion ~N N .. /}
performed on GPGPU can be found in [11]. The algorithm FCJ o/ S —I
selects the minimum among all update times and uses it as a
timestep to perform a synchronous update of state across all
elements in the grid. Another work reported in [12] focuses . . .
on a high-fidelity network modeling and uses the GPU as a . . .
co-processor to distribute computation-intensive waal
Our approach is similar to the work in [13] and [14] which
develop an event clustering and execution scheme based on ~N N Ve
the concept of approximation time. In these two papers, FCA/ \A/ e \P<—|
the former illustrates practical implementation stragsgi ] ] ]
while the latter presents an analysis of the approximation
error in their algorithm. Our algorithm borrows some ideas Fig. 2: Torus Queuing Network
from their algorithm for updating service facilities. Thilo
algorithm will be studied in detail in the next section.
3. TheOld Algorithm However, the old algorithm cannot be directly used in the

The work in [13] and [14] introduced a time- precise-time PDES. Note that the PDES should handle the
synchronous/event algorithm using a time interval instea@vents in a causal consistent way exactly as the sequential
of a precise time. Figure 1 shows the pseudo code dPES does. Let's use the simulation of a torus queueing
the hybrid algorithm. To achieve more parallel processingnétwork as an example. As shown in Figure 2, a torus
their algorithm clusters events within a time interval. Tha consists of service facilities arranged in a two dimendiona
is, the simulation time is divided into many fixed-sized mesh. Each facility has four outgoing and four incoming
time slots which is similar to the time-based simulation, achannels. When a token arrives at a service facility, it gets
methodology usually used for continuous physics/dynamicte service for some random amount of time if the server is
simulation [15]. However, unlike the pure time-based simu-dle. Otherwise, the token has to wait in the server’s wgitin
lation which advances the time slot by slot, the old algonith queue. After being served, the token moves to one of the four
directly moves the clock to the slot which contains the evengeighbors. For simplicity, we assume that the probatslitie
with the minimum timestamp in the future event set. Thisof a token leaving a facility on any given outgoing channel
could reduce the execution time if a slot doesn’t have angre equal (i.e. 0.25).
events to be processed. Therefore, as shown in Figure 1, Assume that there are three tokens X, Y, and Z in the torus
all of the events whose timestamps are less than or equaktwork (see Figure 2). The token X and the token Y enter
to the time slot boundary (i.e. the smallest multiple of timethe service facility[0,0] at time 0.6 and 0.7, respectively
interval greater than or equal to the minimum timestamp) cafhe token Z will arrive at the facility[0,1] at time 0.9. Also
be extracted from the future event set and then be executealssume that the service time for the token X being served at
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the invocation of the service time distribution functionoié
precisely, if the service time is exponentially distribdite
we change the expression of calling exponential distriputi
function from

expon(M

d=05
(b) after parallel processing

Fig. 3: Causality Error

to

expon(Md) + d
Mvhere M is the mean service time. Note that in the modified
formula, the mean service time is still M, but the service

is greater than 0.6). The scenario is depicted in Figure 3(a§';ne for any to(l;en IS all]ways greffllfer thdnThe::efore, the |
Note that an event E in Figure 3 represents a combine ore_ment|one c}aur?a ity errgr Wi not/ oc_curl. or ex?mphe
departure/arrival event. the timestamp of the new departure/arrival event for the

; o token X in Figure 3 will be at lead1.6 + d = 1.1 which is
Since both X and Y enter the facility[0,0], the old algo- o
y10,0] g fter the token Z enters the facility[0,1].

rithm uses the original timestamps to keep the causal orde?! i -
Another advantage of using the modified formula for the

That is, the token X will get the service immediately, while | i ; 4 ,
the token Y will stay in the waiting queue. However, if service time is that the full time interval can be used to

we use the original timestamp for the token X to calculatélUSter events for parallel processing. Our algorithmants

its departure/arrival time, the token X should enter the®NY €ventwhich has the timestamp less than or equal to
facility[0,1] at time 0.8. As shown in Figure 3(b), a causali mnimumtimestanp + d _
error occurs because the token Z, with the arrival time a@nd hence will include more events than the old algorithm.
0.9, has been served in the facility[0,1] already. Theesfor The more parallel events be executed, the faster program

the old algorithm cannot process the events exactly as tH&NS: For example, assume that= 0.5 and the minimum

causal order in the sequential DES. We also conducted ginestamp in the future event set is 1.42, the events with
the timestamp between 1.42 and 1.50 can be processed

experiment to verify this. We recorded the last arrival time ) ’ ) ;

for each service facility. If the timestamp of a new arrival i concurrently in the old algorithm. The effective range size

smaller than the last arrival time, a causality error is cle. 'S Only 0.08. Using our algorithm, the range is between
i1-42 and 1.92. In general, giving the same intemathe

Figure 4 shows that the larger the interval, the more caysa ; ) . '
average effective range size of the old algorithm is half of

errors occurred in the simulation. -HY ) -
the range size in our algorithm. However, our method still
. has its disadvantage. The biased distribution functioth wil
4. Thel mproved | mplementatlon yield a small difference as compared with the result of using
Our algorithm for PDES is based on the precise time, nothe original distribution function. The empirical evaliost
the approximation time as in [13], [14]. The first issue weof the difference will be reported in the next section.
need to deal with is the potential causality error as disediss  Figure 5 shows our implementation on the host using
in the previous section. To solve the problem, we let thehe Thrust library. As mentioned before, Thrust is a CUDA
service time for each token contain the constant time iaterv library of parallel algorithms with an interface resemblin
d and subtract the constaiitfrom the mean service time in the C++ Standard Template Library (STL). One of the

the facility[0,0] is 0.2. Using the old algorithm with therte
intervald = 0.5, all of these three events can be processed i
parallel at the time 1.0 (i.e. the smallest multipledofvhich



thrust::device ptr<FACTYPE> all _fac = thrust::device_mall oc<FACTYPE>( N«N) ;
FACTYPE +«facp = thrust::raw_pointer_cast(all _fac);

thrust::device_ptr<TOKENTYPE> al |l _tkn = thrust::device_mal | oc<TOKENTYPE>(1);
TOKENTYPE *tknp = thrust::raw pointer_cast(all_tkn);

thrust::device_ptr<float> events = thrust::device_malloc<float>(N«tN);
float »ep = thrust::raw_pointer_cast(events);

thrust::device_ptr<int> chzn = thrust::device_nalloc<int>(N«N);
int *cp = thrust::raw_pointer_cast(chzn);

t hrust:: device_ptr<bool > rdndnt = thrust::device_mall oc<bool >(N«tN);
bool *rp = thrust::raw_pointer_cast(rdndnt);

while (clock < SIMIIME ) {
thrust::device_ptr<float> nptr = thrust::mn_el ement(events, events + N«N);

clock = »nptr + d;

thrust::device_ptr<int> chzn_last =thrust::copy_if(key, key+N«N, events, chzn, | eq(cl ock));
int chzn_num = chzn_l ast - chzn;

int gridSize = (chozen_numtbl ocksi ze- 1)/ bl ocksi ze;

process_depart ure<<<gri dSi ze, bl ocksi ze>>> (facp, tknp, ep, cp, chzn_num ;

chk_r edundant <<<gri dSi ze, bl ocksi ze>>> (facp, tknp, ep, cp, rp, chzn_num ;

process_arrival <<<gri dSi ze, bl ocksi ze>>> (facp, t knp, ep, cp, rp, chzn_nunj ;

Fig. 5: The improved implementation using the Thrust ligrar

reasons we use Thrust is that it abstracts away the detaidgpproach, in which the distance between the two elements
of low-level CUDA function calls, such as cudaMalloc, to be compared in the array is doubled for each reduction
cudaMemcpy, kernel launch, etc. For example, it providestep. The latter adopts the sequential addressing approach
the device pointer which allows programmers access thim which the distance is reduced half in every step. In theory
device memory without calling cudaMemcpy explicitly. The there is no difference between these two methods because
*npt r in Figure 5 is such a case. For interoperability withboth needD(log n) steps to find the minimum value among

C, the device pointer can be converted into a raw pointer and elements. In practice, the latter is bank conflict free and
then the users can use it as a parameter to launch a CUDAkes advantage of the CUDA memory coalescing within a
C kernel. warp to improve performance [16].

Another reason we use the Thrust library is that it provides Another important thing is how to extract the aggregated
the mi n_el ement and thecopy_i f functions. So we events from the future event set. It is straightforward that
don’t need to write our own and hence the programmingomparison of each event's timestamp with the interval's
effort can be saved greatly. Furthermore, both functionsipper bound can be done in parallel on each thread. The
have been tuned and optimized particularly for the NVIDIAissue here is the management of the chozen events to run
GPGPU architecture. For example, the code used in the olafter the comparison. The way how this is implemented
algorithm to find the minimum element based on the paralleis not discussed in [13]. The simplest approach is to let
reduction method is out-of-date and inefficient. Figure 6the thread discontinue to run if the selection criteria i$ no
shows the general ideas of how the parallel reduction stepset, while the thread which gets TRUE in the comparison
are performed in the old algorithm and in the Thrust library,will continue to execute the event, i.e., handling the depar
respectively. The former uses the interleaved addressintgre/arrival, updating the facility, generating new e etc.
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However, based on our experience, only a small portion odnd mess up the computation. To solve the problem, we
events will be selected in a large-scale simulation. Henceyse the pre-defined port order, east south — west —

this approach will cause many threads idle and only two onorth, to determine which thread has to process the arrivals
three threads in a warp can run. at the facility. As shown in the Figure 5 and Figure 7,

The better approach is to use two phases of processing. IRe decision making is a separated kernel launch of the
the first phase, the parallel events are collected into ayarr function chk_r edundant () . For processing the arrivals
which stores the identifiers of the selected events. Thezefo at a facility, we append all of the incoming tokens to the
the number of the chozen events can be known and then weaiting queue if the service facility is busy. Otherwiseg th
can run that many of threads to execute the events in theewly arrived token with the smallest timestamp can start
second phase. For collecting the chozen events into an arrdfe service, while the rest of incoming tokens will be put in
each thread needs to figure out the correct position to b&€ waiting queue based on their timestamp order.
stored in the array. There are two implementation methods Note that the processing of the departures, the checking
for this. One method is that we can use an index counte®f the redundant threads, and the processing of the arrivals
which will be incremented by one for each newly selectecshould be launched from the kernel respectively. This is
event. Since the index counter is shared by many threadgecause we have to wait until all of the threads finishes
the addition has to be an atomic operation. This can bene kernel launch and then start running the next kernel
done by using the CUDAt oni cAdd() function. Another function. Otherwise, the incoming port data will not be
method, which is used in the Thrusbpy i f function, consistent due to the clean up at the end of the function
adopts the list ranking algorithm with the parallel prefix Process_arrival (). Furthermore, the CUDA function
sum operation[17] to obtain the position of each selected_synct hreads() cannot be used here as a barrier
event. Currently, we use the latter because of its avaifpbil because it can only synchronize the threads within a warp,
However, the choice of which method depends on how mangot all of the threads.
items satisfy the condition. Basically, if the number ohite .
that satisfy the condition is small, usirgf omi cAdd() 9. EXperimental Results

could be better. The empirical comparison of these two |n this section, we compare our PDES implementation on
methods is worth further investigation. the GPGPU with a sequential heap-based DES on the CPU.
Figure 7 shows the pseudo code of event execution ifthe experimental platform, supported by Ohio Supercom-
the second phase of processing. When a token leavespating Center, has one HP ProLiant SL390s G7 Node with
facility, the first token, if any, in the waiting will get its two Intel Xeon x5650 CPUs (2.67GHz, 48GB memory).
service and a departure event will be scheduled for itThe OS is 64-bit Linux, kernel version 2.6.32. The GPGPU
For the leaving token, an uniform random variable will beused in the experiments is a NVIDIA Tesla M2070, which
generated to determine its destination and its token ifienti contains 14 multiprocessors (448 CUDA cores in total)
and timestamp will be put into the next service facility’s and 6GB GDDR5 memory. A warp, the scheduling unit in
corresponding incoming port. Note that it is possible thereaCUDA, has 32 threads and these 32 threads perform SIMD
are more than one token arrived at the same facility. Thisomputation on a multiprocessor. The device programs use
will cause more than one thread handling of the same facilitf’UDA compiler driver 5.0. The parallel algorithm runs on



__global __ void process_departure( paraneters )

{
cal cul ate the statistics; or
If the facility' s waiting queue is enpty

set the state of the facility to be idle; 50 |-
el se

renove the front token fromthe waiting

queue and put it in service.;
schedul e a departure event for the token;

determ ne destination for the |eaving token;
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Fig. 8: Speedups

__global __ void process_arrival ( paraneters )

if the thread is nmarked as redundant
return; 120
sort the incom ng tokens by their tinmestanps;
if the state of the facility is idle 10 |
let the first incom ng token get the service d=20 ——
and schedul e a departure event for it;
put the rest of incoming tokens into the
waiting Q

80

el se
append the inconming tokens to the waiting Q
clean up the data in the four incomng ports.

40 -

Avg. Number of Selected Events (unit: K)
@
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T

Fig. 7: Pseudo code for event processing
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the host and the device, while the sequential algorithm runs 6ax64 12828 Numbzejﬁj%:mes 5124512 iwzaniozs
on the host.

The torus queueing network model mentioned in the
earlier section was used for the simulation. In the first
experiment, we measured the simulation execution times _ . o o
by varying the number of facilities and the interval Sizes_ference in the facility server utilization for varied inteis.

The mean service time (i.e. the parameter M in caIIingThe simulation with smaller time interval behaves closer to

the functionexpon() ) of the service facility is set to 10. running the simulation with the original service distrilout
Figure 8 shows the performance improvement in the cpgpffinction. As the intervald increases, the utilization also
experiments compared to sequential simulation on the CP

Jncreases because the service time is at least largé as
The speedups grow when the number of facilities increase§'9ure 11 shows similar effect on the system waiting time,
In particular, our PDES implementation outperforms t

hewhich is the average time of a token staying in a service

sequential DES by 60x speedup for 1024x1024 faciliied@Cility, including the service time and the waiting time
with d — 2.0. The curve also scales well which implies " the queue. Un_llke utilization, the system waiting time
that the speedup could be increased further for simulating &OPS as interval increases. For the purpose of comparison,
larger scale torus network. It can also be seen in Figure ¥ als_o used two mean service times: 1(_) and 20. For the
that the larger the interval valué the larger the speedup same mteryald, _t.he _Iarger mean service .t|me. has smaller
obtained. This is because a larger interval allows mordifference in utilization and system waiting time because
parallel events to run. To verify this, we also measured ththe intervald occupies a smaller portion in the service time.

average number of parallel events for different number o% lusi d K

facilities and different interval sizes. The result can berfd . Conclusion and Future Wor

in Figure 9. We presented a fast implementation of PDES on GPGPU
In another experiments, we evaluated the difference itby using the productivity-oriented Thrust library. Our

simulation summary statistics due to the use of the modifiedcheme exploits a modified service distribution function to

service time distribution function. Figure 10 shows the dif allow clustered events to be processed in parallel, while

Fig. 9: Average number of parallel events
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preserving timestamp ordering and causal relationships ¢fs;
events. Thrust, which provides a collection of optimized
data parallel primitives such as reduce, stream compactio
prefix sums, etc., makes our implementation more efficient.
The experimental results are encouraging. We were able
to achieve 60x speedup using our implementation at thE"]
expense of accuracy in the results. The speedup curve scalgg
well which indicates that our implementation utilizes the
massively data parallel processing power of GPGPU and iﬁ7]
suitable for large-scale simulation models.

In the future, we plan to investigate various optimization
techniques, such as using shared memory and/or register
file, to improve the program performance. Moreover, the
performance comparison of Thrustopy i f() and the
implementation usingt om cAdd() in our simulation tool
is worth of further studies.

4]
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