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Abstract— Modern General Purpose Graphics Processing
Units(GPGPUs) offer much more computational power than
recent CPUs by providing a vast number of simple, data
parallel, multithreaded cores. In this study, we focus on
the use of a GPGPU to perform parallel discrete-event
simulation. Our approach is to use a modified service time
distribution function to allow more independent events to be
processed in parallel. The implementation issues and alter-
native strategies will be discussed in detail. We use Thrust,
an open-source parallel algorithms library which resembles
the C++ Standard Template Library (STL), to build our tool.
The experimental results show that our implementation can
be more than 60 times faster than the sequential simulation.
Furthermore, the speedup curve scales well which indicates
that our implementation is suitable for large-scale discrete-
event simulation models.
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1. Introduction
Discrete Event Simulation (DES) is a widely-used tech-

nique that allows an analyst to study the dynamic behavior
of a complex system. DES exploits a computer to model a
system stochastically at discrete points in simulated time. A
simulation program operates on a model’s state variables
during each of a sequence of time-ordered events and
schedules future events during such processing. However,
simulation is usually computationally intensive and time-
consuming. Typical simulation applications often executefor
hours or even days. Therefore, exploiting the availability
and the power of multiprocessors to speed up the simulation
execution is of considerable interest.

Parallel discrete event simulation (PDES) attempts to
speed up a simulation’s execution by partitioning the sim-
ulation model into components, each of which has its own
event set and is executed by aLogical Process(LP) on a
different processor. To guarantee the distributed events will
be executed in an appropriate order, two main types of syn-
chronization mechanisms among LPs have been proposed:
conservative and optimistic [1]. Conservative mechanismsdo
not allow an LP to process an event until it is certain that
causality violation will not occur. This means that an LP

will not receive an event with a smaller timestamp than its
current clock from another LP. However, An LP may wait
for events that never arrive. Therefore, LPs may send null
messages to other LPs to avoid deadlocks [2]. Optimistic
mechanisms ignore inter-process synchronization issues,but
make compensations by performing rollbacks to a check-
pointed consistent state when a causality error occurs [3].
This requires periodic state-saving of the simulator.

With the advance of graphics hardware technology, pro-
gramming and executing general applications on GPGPUs
is more feasible. Nowadays, a single GPGPU with hundreds
or even thousands of processing cores has great potential
for improving the performance of various computational
intensive applications. In this paper, we focus on the use
of a GPGPU to perform parallel discrete-event simulation.
Note that the architecture of GPGPU can be classified as
Single Instruction, Multiple Data(SIMD). To allow more
events to be processed in parallel based on SIMD, our
approach is to use a modified service time distribution
function which guarantees that the events clustered to be
executed simultaneously are independent of each other and
hence causality errors will not occur. In other words, our
method can be treated as a conservative approach from
certain viewpoint.

Our implementation is done with the Thrust [4] on
the NVIDIA Compute Unified Device Architecture(CUDA)
platform. Thrust is a CUDA library of parallel algorithms
with a user-friendly interface resembling the C++ Stan-
dard Template Library (STL). It hides the details of low-
level CUDA function calls and provides highly-optimized
implementation of standard algorithms, such as searching,
sorting, reduction, compaction, etc., which greatly enhances
developer productivity. Therefore, GPGPU-based applica-
tions implemented with Thrust are readable, concise, and
efficient.

The organization of this paper is as follows. Section
2 describes related work. In Section 3, an old algorithm
which we borrow some ideas from is investigated. Section
4 presents our implementation strategies. In Section 5, the
experiments and the results for performance evaluation are
presented. We give a short conclusion in Section 6.



2. Related Work
In the area of practical parallel simulation, two apparently

orthogonal streams of effort have developed over the past
decades. Thereplication-based effort entails natural paral-
lelism and is able to utilize massive data-parallel compu-
tational power. TheEcliPSe toolkit described in [5], [6]
has proven to be a very successful system for replication-
based simulations. Thedistribution-based effort emphasizes
functional decomposition of a model across processors. Ex-
amples of systems supporting distributed simulation include
ModSim[7], Sim++[8], ParaSi[9], and ParaSol[10]. An
inherent difference between the two approaches is that repli-
cation exploits statistical sampling to speed up the generation
of multiple (typically, but not necessarily independent) sam-
ple paths, while distribution exploits model partitioningto
speed up the generation of a single sample path.

Because of its massively data parallel computing power,
GPGPU has been used by more and more researchers
for simulating large-scale models over the past few years.
For example, a discrete-event simulation of heat diffusion
performed on GPGPU can be found in [11]. The algorithm
selects the minimum among all update times and uses it as a
timestep to perform a synchronous update of state across all
elements in the grid. Another work reported in [12] focuses
on a high-fidelity network modeling and uses the GPU as a
co-processor to distribute computation-intensive workloads.
Our approach is similar to the work in [13] and [14] which
develop an event clustering and execution scheme based on
the concept of approximation time. In these two papers,
the former illustrates practical implementation strategies,
while the latter presents an analysis of the approximation
error in their algorithm. Our algorithm borrows some ideas
from their algorithm for updating service facilities. The old
algorithm will be studied in detail in the next section.

3. The Old Algorithm
The work in [13] and [14] introduced a time-

synchronous/event algorithm using a time interval instead
of a precise time. Figure 1 shows the pseudo code of
the hybrid algorithm. To achieve more parallel processing,
their algorithm clusters events within a time interval. That
is, the simulation time is divided into many fixed-sized
time slots which is similar to the time-based simulation, a
methodology usually used for continuous physics/dynamics
simulation [15]. However, unlike the pure time-based simu-
lation which advances the time slot by slot, the old algorithm
directly moves the clock to the slot which contains the event
with the minimum timestamp in the future event set. This
could reduce the execution time if a slot doesn’t have any
events to be processed. Therefore, as shown in Figure 1,
all of the events whose timestamps are less than or equal
to the time slot boundary (i.e. the smallest multiple of time
interval greater than or equal to the minimum timestamp) can
be extracted from the future event set and then be executed.

while ( current_time < simulation_time )
min_timestamp = find_min(future_event_set);
current_step = the smallest multiple of time

interval greater than or
equal to min_timestamp;

parallel for each event e in future_event_set
if (the timestamp of e <= current_step)

extract e from future_event_set;
process e and generate new events

into future_event_set;
end if

end for
current_time = current_step;

end while

Fig. 1: The pseudo code of the old algorithm
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Fig. 2: Torus Queuing Network

However, the old algorithm cannot be directly used in the
precise-time PDES. Note that the PDES should handle the
events in a causal consistent way exactly as the sequential
DES does. Let’s use the simulation of a torus queueing
network as an example. As shown in Figure 2, a torus
consists of service facilities arranged in a two dimensional
mesh. Each facility has four outgoing and four incoming
channels. When a token arrives at a service facility, it gets
the service for some random amount of time if the server is
idle. Otherwise, the token has to wait in the server’s waiting
queue. After being served, the token moves to one of the four
neighbors. For simplicity, we assume that the probabilities
of a token leaving a facility on any given outgoing channel
are equal (i.e. 0.25).

Assume that there are three tokens X, Y, and Z in the torus
network (see Figure 2). The token X and the token Y enter
the service facility[0,0] at time 0.6 and 0.7, respectively.
The token Z will arrive at the facility[0,1] at time 0.9. Also
assume that the service time for the token X being served at
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the facility[0,0] is 0.2. Using the old algorithm with the time
intervald = 0.5, all of these three events can be processed in
parallel at the time 1.0 (i.e. the smallest multiple ofd which
is greater than 0.6). The scenario is depicted in Figure 3(a).
Note that an event E in Figure 3 represents a combined
departure/arrival event.

Since both X and Y enter the facility[0,0], the old algo-
rithm uses the original timestamps to keep the causal order.
That is, the token X will get the service immediately, while
the token Y will stay in the waiting queue. However, if
we use the original timestamp for the token X to calculate
its departure/arrival time, the token X should enter the
facility[0,1] at time 0.8. As shown in Figure 3(b), a causality
error occurs because the token Z, with the arrival time at
0.9, has been served in the facility[0,1] already. Therefore,
the old algorithm cannot process the events exactly as the
causal order in the sequential DES. We also conducted an
experiment to verify this. We recorded the last arrival time
for each service facility. If the timestamp of a new arrival is
smaller than the last arrival time, a causality error is detected.
Figure 4 shows that the larger the interval, the more causality
errors occurred in the simulation.

4. The Improved Implementation
Our algorithm for PDES is based on the precise time, not

the approximation time as in [13], [14]. The first issue we
need to deal with is the potential causality error as discussed
in the previous section. To solve the problem, we let the
service time for each token contain the constant time interval
d and subtract the constantd from the mean service time in
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Fig. 4: Causality Errors with varying the number of facilities

the invocation of the service time distribution function. More
precisely, if the service time is exponentially distributed,
we change the expression of calling exponential distribution
function from

expon(M)
to

expon(M-d) + d
where M is the mean service time. Note that in the modified
formula, the mean service time is still M, but the service
time for any token is always greater thand. Therefore, the
aforementioned causality error will not occur. For example,
the timestamp of the new departure/arrival event for the
token X in Figure 3 will be at least0.6 + d = 1.1 which is
after the token Z enters the facility[0,1].

Another advantage of using the modified formula for the
service time is that the full time interval can be used to
cluster events for parallel processing. Our algorithm extracts
any event which has the timestamp less than or equal to

minimum_timestamp + d
and hence will include more events than the old algorithm.
The more parallel events be executed, the faster program
runs. For example, assume thatd = 0.5 and the minimum
timestamp in the future event set is 1.42, the events with
the timestamp between 1.42 and 1.50 can be processed
concurrently in the old algorithm. The effective range size
is only 0.08. Using our algorithm, the range is between
1.42 and 1.92. In general, giving the same intervald, the
average effective range size of the old algorithm is half of
the range size in our algorithm. However, our method still
has its disadvantage. The biased distribution function will
yield a small difference as compared with the result of using
the original distribution function. The empirical evaluation
of the difference will be reported in the next section.

Figure 5 shows our implementation on the host using
the Thrust library. As mentioned before, Thrust is a CUDA
library of parallel algorithms with an interface resembling
the C++ Standard Template Library (STL). One of the



thrust::device_ptr<FACTYPE> all_fac = thrust::device_malloc<FACTYPE>(N*N);
FACTYPE *facp = thrust::raw_pointer_cast(all_fac);

thrust::device_ptr<TOKENTYPE> all_tkn = thrust::device_malloc<TOKENTYPE>(1);
TOKENTYPE *tknp = thrust::raw_pointer_cast(all_tkn);

thrust::device_ptr<float> events = thrust::device_malloc<float>(N*N);
float *ep = thrust::raw_pointer_cast(events);

thrust::device_ptr<int> chzn = thrust::device_malloc<int>(N*N);
int *cp = thrust::raw_pointer_cast(chzn);

thrust::device_ptr<bool> rdndnt = thrust::device_malloc<bool>(N*N);
bool *rp = thrust::raw_pointer_cast(rdndnt);

...

while (clock < SIMTIME ) {
thrust::device_ptr<float> mptr = thrust::min_element(events, events + N*N);

clock = *mptr + d;

thrust::device_ptr<int> chzn_last =thrust::copy_if(key,key+N*N,events,chzn,leq(clock));

int chzn_num = chzn_last - chzn;

int gridSize = (chozen_num+blocksize-1)/blocksize;

process_departure<<<gridSize,blocksize>>> (facp,tknp,ep,cp,chzn_num);

chk_redundant<<<gridSize,blocksize>>> (facp,tknp,ep,cp,rp,chzn_num);

process_arrival<<<gridSize,blocksize>>> (facp,tknp,ep,cp,rp,chzn_num);
}

Fig. 5: The improved implementation using the Thrust library

reasons we use Thrust is that it abstracts away the details
of low-level CUDA function calls, such as cudaMalloc,
cudaMemcpy, kernel launch, etc. For example, it provides
the device pointer which allows programmers access the
device memory without calling cudaMemcpy explicitly. The
*mptr in Figure 5 is such a case. For interoperability with
C, the device pointer can be converted into a raw pointer and
then the users can use it as a parameter to launch a CUDA
C kernel.

Another reason we use the Thrust library is that it provides
the min_element and thecopy_if functions. So we
don’t need to write our own and hence the programming
effort can be saved greatly. Furthermore, both functions
have been tuned and optimized particularly for the NVIDIA
GPGPU architecture. For example, the code used in the old
algorithm to find the minimum element based on the parallel
reduction method is out-of-date and inefficient. Figure 6
shows the general ideas of how the parallel reduction steps
are performed in the old algorithm and in the Thrust library,
respectively. The former uses the interleaved addressing

approach, in which the distance between the two elements
to be compared in the array is doubled for each reduction
step. The latter adopts the sequential addressing approach,
in which the distance is reduced half in every step. In theory,
there is no difference between these two methods because
both needO(log n) steps to find the minimum value among
n elements. In practice, the latter is bank conflict free and
takes advantage of the CUDA memory coalescing within a
warp to improve performance [16].

Another important thing is how to extract the aggregated
events from the future event set. It is straightforward thatthe
comparison of each event’s timestamp with the interval’s
upper bound can be done in parallel on each thread. The
issue here is the management of the chozen events to run
after the comparison. The way how this is implemented
is not discussed in [13]. The simplest approach is to let
the thread discontinue to run if the selection criteria is not
met, while the thread which gets TRUE in the comparison
will continue to execute the event, i.e., handling the depar-
ture/arrival, updating the facility, generating new events, etc.
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However, based on our experience, only a small portion of
events will be selected in a large-scale simulation. Hence,
this approach will cause many threads idle and only two or
three threads in a warp can run.

The better approach is to use two phases of processing. In
the first phase, the parallel events are collected into an array
which stores the identifiers of the selected events. Therefore,
the number of the chozen events can be known and then we
can run that many of threads to execute the events in the
second phase. For collecting the chozen events into an array,
each thread needs to figure out the correct position to be
stored in the array. There are two implementation methods
for this. One method is that we can use an index counter
which will be incremented by one for each newly selected
event. Since the index counter is shared by many threads,
the addition has to be an atomic operation. This can be
done by using the CUDAatomicAdd() function. Another
method, which is used in the Thrustcopy_if function,
adopts the list ranking algorithm with the parallel prefix
sum operation[17] to obtain the position of each selected
event. Currently, we use the latter because of its availability.
However, the choice of which method depends on how many
items satisfy the condition. Basically, if the number of items
that satisfy the condition is small, usingatomicAdd()
could be better. The empirical comparison of these two
methods is worth further investigation.

Figure 7 shows the pseudo code of event execution in
the second phase of processing. When a token leaves a
facility, the first token, if any, in the waiting will get its
service and a departure event will be scheduled for it.
For the leaving token, an uniform random variable will be
generated to determine its destination and its token identifier
and timestamp will be put into the next service facility’s
corresponding incoming port. Note that it is possible there
are more than one token arrived at the same facility. This
will cause more than one thread handling of the same facility

and mess up the computation. To solve the problem, we
use the pre-defined port order, east→ south→ west→
north, to determine which thread has to process the arrivals
at the facility. As shown in the Figure 5 and Figure 7,
the decision making is a separated kernel launch of the
function chk_redundant(). For processing the arrivals
at a facility, we append all of the incoming tokens to the
waiting queue if the service facility is busy. Otherwise, the
newly arrived token with the smallest timestamp can start
the service, while the rest of incoming tokens will be put in
the waiting queue based on their timestamp order.

Note that the processing of the departures, the checking
of the redundant threads, and the processing of the arrivals
should be launched from the kernel respectively. This is
because we have to wait until all of the threads finishes
one kernel launch and then start running the next kernel
function. Otherwise, the incoming port data will not be
consistent due to the clean up at the end of the function
process_arrival(). Furthermore, the CUDA function
__syncthreads() cannot be used here as a barrier
because it can only synchronize the threads within a warp,
not all of the threads.

5. Experimental Results
In this section, we compare our PDES implementation on

the GPGPU with a sequential heap-based DES on the CPU.
The experimental platform, supported by Ohio Supercom-
puting Center, has one HP ProLiant SL390s G7 Node with
two Intel Xeon x5650 CPUs (2.67GHz, 48GB memory).
The OS is 64-bit Linux, kernel version 2.6.32. The GPGPU
used in the experiments is a NVIDIA Tesla M2070, which
contains 14 multiprocessors (448 CUDA cores in total)
and 6GB GDDR5 memory. A warp, the scheduling unit in
CUDA, has 32 threads and these 32 threads perform SIMD
computation on a multiprocessor. The device programs use
CUDA compiler driver 5.0. The parallel algorithm runs on



__global__ void process_departure( parameters )
{

calculate the statistics;
If the facility’s waiting queue is empty

set the state of the facility to be idle;
else

remove the front token from the waiting
queue and put it in service.;

schedule a departure event for the token;
determine destination for the leaving token;

}

__global__ void chk_redundant( parameters)
{

check the four incoming ports of the facility;
if there are more than one arrival, use the

predefined port order to determine which
arrival’s corresponding thread can run.

}

__global__ void process_arrival( parameters )
{

if the thread is marked as redundant
return;

sort the incoming tokens by their timestamps;
if the state of the facility is idle

let the first incoming token get the service
and schedule a departure event for it;

put the rest of incoming tokens into the
waiting Q;

else
append the incoming tokens to the waiting Q;

clean up the data in the four incoming ports.
}

Fig. 7: Pseudo code for event processing

the host and the device, while the sequential algorithm runs
on the host.

The torus queueing network model mentioned in the
earlier section was used for the simulation. In the first
experiment, we measured the simulation execution times
by varying the number of facilities and the interval sizes.
The mean service time (i.e. the parameter M in calling
the functionexpon()) of the service facility is set to 10.
Figure 8 shows the performance improvement in the GPGPU
experiments compared to sequential simulation on the CPU.
The speedups grow when the number of facilities increases.
In particular, our PDES implementation outperforms the
sequential DES by 60x speedup for 1024x1024 facilities
with d = 2.0. The curve also scales well which implies
that the speedup could be increased further for simulating a
larger scale torus network. It can also be seen in Figure 8
that the larger the interval valued, the larger the speedup
obtained. This is because a larger interval allows more
parallel events to run. To verify this, we also measured the
average number of parallel events for different number of
facilities and different interval sizes. The result can be found
in Figure 9.

In another experiments, we evaluated the difference in
simulation summary statistics due to the use of the modified
service time distribution function. Figure 10 shows the dif-
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Fig. 9: Average number of parallel events

ference in the facility server utilization for varied intervals.
The simulation with smaller time interval behaves closer to
running the simulation with the original service distribution
function. As the intervald increases, the utilization also
increases because the service time is at least large asd.
Figure 11 shows similar effect on the system waiting time,
which is the average time of a token staying in a service
facility, including the service time and the waiting time
in the queue. Unlike utilization, the system waiting time
drops as interval increases. For the purpose of comparison,
we also used two mean service times: 10 and 20. For the
same intervald, the larger mean service time has smaller
difference in utilization and system waiting time because
the intervald occupies a smaller portion in the service time.

6. Conclusion and Future Work
We presented a fast implementation of PDES on GPGPU

by using the productivity-oriented Thrust library. Our
scheme exploits a modified service distribution function to
allow clustered events to be processed in parallel, while
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preserving timestamp ordering and causal relationships of
events. Thrust, which provides a collection of optimized
data parallel primitives such as reduce, stream compaction,
prefix sums, etc., makes our implementation more efficient.
The experimental results are encouraging. We were able
to achieve 60x speedup using our implementation at the
expense of accuracy in the results. The speedup curve scales
well which indicates that our implementation utilizes the
massively data parallel processing power of GPGPU and is
suitable for large-scale simulation models.

In the future, we plan to investigate various optimization
techniques, such as using shared memory and/or register
file, to improve the program performance. Moreover, the
performance comparison of Thrust’scopy_if() and the
implementation usingatomicAdd() in our simulation tool
is worth of further studies.
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