
Cluster-SkePU: A Multi-Backend Skeleton Programming Library
for GPU Clusters

Mudassar Majeed, Usman Dastgeer, and Christoph Kessler
Department of Computer and Information Sciences (IDA), Linköping University, Sweden

{mudassar.majeed, usman.dastgeer, christoph.kessler}@liu.se

Abstract— SkePU is a C++ template library with a simple
and unified interface for expressing data parallel computa-
tions in terms of generic components, called skeletons, on
multi-GPU systems using CUDA and OpenCL. The smart
containers in SkePU, such as Matrix and Vector, perform
data management with a lazy memory copying mechanism
that reduces redundant data communication. SkePU pro-
vides programmability, portability and even performance
portability, but up to now application written using SkePU
could only run on a single multi-GPU node. We present
the extension of SkePU for GPU clusters without the need
to modify the SkePU application source code. With our
prototype implementation, we performed two experiments.
The first experiment demonstrates the scalability with regular
algorithms for N-body simulation and electric field calcula-
tion over multiple GPU nodes. The results for the second
experiment show the benefit of lazy memory copying in terms
of speedup gained for one level of Strassen’s algorithm and
another synthetic matrix sum application.

Keywords: Structured parallel programming, Skeleton Program-
ming, GPU Cluster, SkePU, Scalability, Scientific Applications

1. Introduction
Many supercomputers in the Top500 list contain Graphics

Processing Units (GPUs) for accelerating data parallel com-
putations in large-scale parallel applications. For example,
Titan, a Cray XK7 system installed at Oak Ridge, contains
560,640 processors, plus 261,632 NVIDIA K20x accelerator
cores [1].

These recent developments in multi- and many-core based,
multi-GPU systems and GPU clusters and increasing de-
mands for performance in scientific computing have pushed
the change in programming paradigms. In order to exploit
the processing power of the aforementioned architectures,
legacy serial codes for scientific applications have to be
rewritten using parallel programming paradigms. For in-
stance, many scientific applications with computationally
intensive data parallel computations have been ported to
CUDA and OpenCL for performance reasons. However,
CUDA and OpenCL are at relatively low level of abstrac-
tion, requiring the explicit offloading of the computationally
intensive tasks by transfering their operand data to/from
the accelerators, invoking kernels etc. GPU performance

tuning requires that programmers are experts in the specific
languages and architectural features. Several other program-
ming models such as distributed memory and bulk syn-
chronous parallelism exist that require the knowledge of task
and data partitioning, orchestration, communication and syn-
chronization from the application programmer. Furthermore,
debugging, maintaining and porting a parallel application to
other (and future) architectures requires code modification,
leading scientific application programmers to focus more on
development details instead of domain specific issues.

We have taken initiative towards a structured approach
for writing massively parallel applications with multiple
backends. The aim is to develop a rich skeleton library
for heterogeneous multi-node architectures with a number
of accelerators like GPUs for writing structured and non-
trivial large-scale massively parallel applications. Writing
large-scale parallel applications in different domains may
require different kinds of distributed sparse or regular data
structures, like graphs, trees, vectors, matrices, meshes etc
[2] and high level computation and communication patterns
or algorithmic skeletons. In this prototype, we provide the
regular data structures with smartness of data management
(we refer to such data structures as smart containers).
Similarly we provide simple high-level algorithmic skeletons
for expressing relatively regular algorithms in terms of the
provided skeletons. In on-going work, we are extending the
design and implementation of SkePU so that it can be used
for (certain kinds of) irregular applications as well.

Those applications may also require several optimizations
at different points, like the communication of data at differ-
ent levels of granularity, data caching, prefetching and data
locality etc. So the library has to be equipped with certain
flexibilities for making better (online or offline) choices, like
the data partitioning granularity, communication and compu-
tation patterns and other important parameters. Initially, for
that purpose, we have implemented several real scientific
applications with the provided simple algorithmic skeletons.

In earlier work [3] we started with the structured parallel
programming approach using skeletons as a solution for the
portability, programmability and even performance portabil-
ity problems in GPU-based systems. Skeleton programming
frameworks provide generic constructs, so-called skeletons,
that are based on higher order functions parameterizable
in problem-specific sequential code, that express frequently

occurring patterns of control and data dependence, and for
which efficient (also parallel and platform specific) expert-
provided implementations may exist [4], [5], [6]. The ap-
plication programmer expresses the scientific computation
in terms of the given skeletons. The programming interface
remains sequential, all parallelism, data transfer, synchro-
nization and other platform specific details are encapsulated
in the skeleton implementations. A number of skeleton
programming systems have been developed in the last 20
years, in particular in the form of libraries such as Muesli [7],
a C++ skeleton library for clusters, SkelCL [8], a skeleton
library for GPU systems, BlockLib [9], a C skeleton library
for IBM Cell/B.E., and the C++ based SkePU [3] for multi-
GPU systems. Most of these skeleton libraries are specific to
a particular backend like BlockLib is for the IBM Cell/B.E.
and work for simple kernels.

Muesli [7] was initially designed for MPI/OpenMP clus-
ters and has recently evolved to CUDA and GPU computing.
On the contrary, SkePU was initially designed for single-
node GPU-based system (OpenMP/CUDA/OpenCL) and is
evolving towards MPI based clusters. This difference in
approach results in several key programming differences.
SkePU supports OpenCL which makes it much more appli-
cable to other GPU and accelerator (FPGA etc.) platforms
not supporting CUDA. Although Muesli supports task paral-
lel skeletons for MPI/OpenMP, only a data parallel skeleton
(Map) for CUDA with few communication variations is
supported which limits program portability. SkePU supports
a wide range of data parallel skeletons (Map, Reduce,
MapOverlap, MapArray, Scan etc.) uniformly across all
backends. There exists no equivalents of the MapArray,
MapOverlap skeletons in Muesli which allow to implement
applications ranging from N-body simulation to Conjugate
Gradient solver.

In this work, we extend SkePU for providing scalability
across multiple nodes of GPU clusters, such that the same
SkePU application can now run on several nodes for the
provided simple and regular skeletons. Each node, being a
complete multi-GPU system, runs one instance of SkePU
and the given computation is partitioned among the nodes.
By a simple compiler switch, the application programmer
can run the code on a GPU cluster e.g. for running the
application for larger problem sizes that may not fit in one or
two GPUs’ device memory space. We perform experiments
for four scientific applications and one synthetic matrix sum
application by expressing their computation intensive parts
in terms of SkePU skeletons. We explain one application
in details. Initially, we see that simple algorithms like the
brute force implementation of N-body simulation and the
calculation of electric field on a 3D grid scale across mul-
tiple nodes. We also show that extending the lazy memory
copying mechanism across multiple nodes gives benefit in
terms of speedup.

The rest of this paper is outlined in the following way. In

Section 2, we provide some background knowledge about
the SkePU skeleton library. Section 3 presents the extension
of SkePU, in our current prototype for all its dataparallel
skeletons and the vector container. Section 4 explains one
of the four scientific applications rewritten in SkePU and
how the extended version of SkePU works for it with respect
to data communication, synchronizations and other details.
Section 5 gives the experimental results and discussion.
Finally, Section 6 concludes the paper.

2. The SkePU Library
SkePU is a C++ template library that provides a simple

and unified interface for specifying data- and task-parallel
computations with the help of skeletons on GPUs using
CUDA and OpenCL [3]. The interface is also general enough
to support other architectures, and SkePU implements both
a sequential CPU and a parallel OpenMP backend. SkePU
provides six data parallel skeletons including Map, Ma-
pArray, MapOverlap, Scan, Reduce and MapReduce and one
Generate skeleton for data initialization. These skeletons can
operate on vector and matrix containers, which encapsulate
the skeleton operand data and keep track of copies and thus
allow to optimize memory transfers.

An example code written in SkePU using the MapOverlap
skeleton is shown in Figure 1. The SkePU library provides
a way to generate user functions using macros. The user
function over is written using the OVERLAP_FUNC macro,
where over is the name of the user function, float is the
return type, 3 is passed as the overlap size parameter, a is
a reference to an element in the used container. The last
parameter is the actual user code that is translated into the
selected backend. Notice that the semantics of the MapOver-
lap skeleton requires that here only 3 elements (before and
after) the element pointed by a can be accessed in the user
function over in the example SkePU code (Figure 1). The
computation in the user function is expressed in terms of
these seven values. During execution, the SkePU container
transfers the required data according to the same semantics.

During compilation, the macro is converted into actual
code based on the compilation flags set for backend se-
lection. The set of SkePU user function variants generated
from a macro based specification are placed in a struct over
with member functions for CUDA and CPU, and strings for
OpenCL. An instance of the struct over is passed to create
an instance of the MapOverlap skeleton named conv in the
main function in Figure 1. A vector v0 is initialized with
40 elements and the user function over is applied on every
element of v0 using the skeleton MapOverlap. The code in
the main function looks pretty sequential, but it is executed
in parallel according to the selected backend.

The SkePU containers (Vector and Matrix) are imple-
mented using the STL vector. These containers are smart and
perform the necessary data transfers using a lazy memory
copying mechanism. This means that the data is transferred

OVERLAP_FUNC(over, float, 3, a,
 return a[-3]*0.8f + a[-2]*0.4f + a[-1]*0.2f +
 a[0]*0.1f + a[1]*0.2f + a[2]*0.4f + a[3]*0.8f;
)
int main()
{
 skepu::Init(NULL,NULL);
 skepu::MapOverlap<over> conv(new over);
 skepu::Vector<float> v0(40, (float)10);
 skepu::Vector<float> r;
 skepu::cout << "v0: " << v0 << "\n";
 conv(v0, r, skepu::CONSTANT, (float)0);
 skepu::cout << "r: " << r << "\n";
 skepu::Finalize();
 return 0;
}

Fig. 1: SkePU code for a 1D convolution using the MapOver-
lap skeleton

SkePU Application

SkePU MPI Layer

SkePU
Instance

SkePU
Instance

SkePU
Instance

SkePU
Instance

Intercommunication Network

node 1 node 2 node 3 node p

Fig. 2: SkePU instances with MPI layer

only when it is needed for performing computation or
saving output data. If the input data is used for some other
computation (kernel), it is not copied again. Furthermore, the
data for intermediate results remains available for further
computation (on GPU memory, with the CUDA/OpenCL
backend) and transferred back to the host memory once
it is required. The SkePU skeleton library is an on-going
work with addition of more containers like sparse matrices
for implementing irregular computations and dynamically
changing data distributions. Furthermore, auto-tuning for
selecting the execution plan has been addressed in [10]. In
the current version of SkePU, the code is run on a single
multi-GPU node and in the rest of the paper, we present the
extension of SkePU for multiple nodes.

3. Extending SkePU by a MPI Layer
In this work we consider the extension of SkePU for the

vector container only. On a single multi-GPU system (i.e.,
one cluster node), the skeletons can execute on one or more
GPUs and upload their data to the device memory according
to the selected number of GPUs or cores. The data access
patterns for the vector container for different skeletons are
shown in the upper portion of Figure 3. For example, in case
of the Map skeleton, the user function f2 is applied on the
ith element of the input vector(s) and the result is stored
in the corresponding ith index of the output vector. In the
MapOverlap skeleton, the neighbouring overlap elements
are also used in the calculation of ith output element.

f1

f2

f3

f4 g1

f5

f6

MapOverlap

Map

Reduce

MapReduce

Scan

MapArray

overlap = 1

Patterns of data access on a single node

Partitioning of data for 3 nodes

Map

MapOverlap

MapArray

Fig. 3: Data access patterns for single node and data parti-
tioning for 3 nodes.

The MPI Layer: In order to run skeletons on several
nodes, each SkePU instance on a node runs the same
code but the data is internally partitioned according to
the semantics of the selected skeleton. For the necessary
communication we add an MPI layer connecting the SkePU
instances running on the nodes. The block diagram for the
SkePU extension is given in Figure 2. The grey colored
box shows the root node that runs the MPI process with
rank 0. For broadcasting, scattering and gathering data over
several nodes, we use the collective MPI calls, MPI_BCast,
MPI_Scatterv and MPI_Gatherv respectively. There can be
any number of nodes (and SkePU instances) over the MPI
layer that is actually determined by the number of MPI
processes selected while executing the parallel application.
The MPI layer remains transparent to the user but the same
SkePU code for the application will internally use the MPI
layer to partition the data and computations.

Data Partitioning over Multiple GPU Nodes: The data
partitioning is performed when a skeleton on the vector
inputs is called. For example, in case of a Map skeleton
and 3 nodes, a vector of length 8 is partitioned into 3 parts
as shown in the lower portion of Figure 3. The output vector
is also initialized on each node with the same lengths (as the
lengths of the partitions of input vector). Then each instance
of SkePU on each node computes the smaller computation
with the same semantics of the Map skeleton. Notice that
the MapArray skeleton has two vector inputs, when the ith

element of the output vector is calculated (with the user
function f5, in Figure 3) by using the ith element of the
second input vector and all the elements of first input vector.
So, while partitioning, the second vector is partitioned in a
similar way as in the Map skeleton case, but the first vector
is broadcasted to each node. In this way, the MapArray
computation is subdivided into smaller computations (that
are performed according to MapArray semantics) on the

partitioned data. Similarly, in MapOverlap, the partitioning
of the vector is similar as in the Map skeleton but overlap
elements are attached in the beginning and the end of each
partition as shown in Figure 3.

Data Partitioning Granularity: The partitioning is per-
formed at the granularity level of the vector container and
not at finer granularity. So, even for an update of a single
element of a vector the whole partition will be communicated
(if required). The number of partitions is the same as the
number of MPI processes. For more complex containers and
finer granularities of data communication, the container will
also handle coherency (being addressed in on-going work).

Convolution Example for Multiple Nodes: In the exam-
ple of Figure 1, we considered a 1D convolution computation
using the MapOverlap skeleton. The SkePU code for the
MapOverlap instance (conv), when executed on the GPU
cluster, runs on all the nodes. The root process (MPI process
with rank 0) initializes the vector v0 with data and all the
other processes (running on other nodes) keep the vector
empty. When every process calls the conv skeleton, the root
process partitions v0 in p parts where p is the number of
MPI processes (or nodes used), and scatters the parts to p
MPI processes. In each part, additional d elements, on both
sides, are appended where d is the overlap size (here d =
3), which is a (statically known) parameter of the skeleton.
Every MPI process (running one instance of SkePU) fills its
v0 vector with the part it receives and performs the over
kernel on the respective part (on CPU or GPU, according to
the preselection made by the programmer). The results are
gathered on the root process when they are required.

Lazy Memory Copying on Multiple Nodes: The lazy
memory copying mechanism of the vector container is also
extended for the cluster implementation of SkePU. In case
the SkePU application is executed on a single node with
CUDA or OpenCL backend, the input vector containers
are uploaded on the device from the host memory and the
references of those vectors are maintained in a hash table.
Maintaining the hash table adds an extra overhead in the lazy
memory copying mechanism but access to the hash table is
an expected O(1) operation. If any of these input vectors is
required again for another skeleton call, the reference of that
vector already resides in the hash table so the vector is not
uploaded again.

When the data in the vector is changed on the GPU and
then accessed on the CPU the reference is removed from
the hash table and the updated vector is downloaded. The
lazy memory copying involves only the data uploading and
downloading to/from the device memory. Whereas, in case
of multiple nodes, data communication over the network
is also involved besides the data uploading/downloading
on device. As mentioned earlier the computation carried
out for a skeleton on multiple nodes is actually done by
the same skeleton calls on the different partitions of the
operand data (vector) so the hash tables are also maintained

on all the nodes including the root node. The root process
performs the check whether the data is already distributed
or not. It performs this check by finding the reference of the
(partitioned) vector in the hash table. Then it either scatters
the vector or does nothing depending upon absence or
availability of the partitioned vector’s reference in the hash
table. On all the other nodes, similar checks are performed
and the vector data is either gathered or nothing is done
depending upon the absence or availability of vector data on
the nodes’ GPU devices.

In case of a backend not requiring a GPU device, there
is no data uploading or downloading but the lazy memory
copying is still useful in saving redundant communications
over the network. This intelligent mechanism of data man-
agement is effective in terms of saving the redundant data
transfers over the PCIe bus or the communication network. It
can also happen that the capacity of the memory is less than
the total required memory for all the operand vector elements
used (in a large application) so lazy memory copying will
cause an out of memory error. We have not considered this
constraint in the current extension of SkePU. On the other
hand, executing the application on several nodes may resolve
this problem because the accumulated storage capacity of
multiple GPUs will be larger than for a single GPU device
memory and the data will be partitioned (requiring less
memory on each GPU device). We will see in the results
that the benefit of lazy memory copying depends upon the
nature of the computations and data dependencies.

Implicit Barriers: As we are using the blocking collective
calls of MPI, like MPI_BCast etc, there will be an implicit
barrier in each collective call. There is no overlapping of
data communications and computations. The semantics of
SkePU as suggested by the sequential programming interface
requires barrier synchronization where multiple nodes exe-
cute the code in an SPMD fashion. Certain applications may
require barriers for correct computations so these implicit
barriers are helpful. We will discuss possible benefits of
these implicit barriers in the discussion of the N-body
problem in Section 4.

Utilization of CPU Cores: The SkePU code follows the
serial execution semantics between calls and for computation
intensive data parallel kernels, it uses the selected backend
for parallel execution. So at least one core is used for
data uploading, downloading (on one node) and for data
distribution (in case of multiple nodes). On each node, only
one MPI process executes (irrespective of the number of
CPU cores or GPUs) and based on backend selection, like
the OpenCL, CUDA or OpenMP, the GPU and CPU cores
are used (on each node).

The programmer needs not modify the code for running on
the cluster, and in case the code is executed on the cluster,
the distribution and synthesis of data is hidden from the
programmer. The programmability of SkePU code is not
affected, but scalability is achieved. We will discuss the

scalability in the Section 5. For all the other skeletons, the
partitioning of the data is performed in the similar way.

4. N-body Simulation
The N-body simulation is a well known problem for

understanding the interaction of N bodies (e.g. electric
particles or galactic bodies). The time complexity of the
naive serial algorithm is O(KN2) where N is the number
of particles and K is the number of timesteps of the whole
simulation.

The simple algorithm for N-body simulation in SkePU
is shown in Figure 4. The application starts the se-
rial execution and initializes the skeleton instances
nbody_init and nbody_simul-ate_step using the user func-
tions init_kernel and move_kernel respectively. Then two
vectors of size N are created. The skeleton instance
nbody_init is used to initialize the particles’ initial posi-
tions, velocities, accelerations and masses. The particles are
positioned in a 3D space with some initial velocities and
accelerations. ARRAY_FUNC and GENERATE_FUNC are
macros like OVERLAP_FUNC as explained in Section 2.
After initialization of all the particles, the actual simulation
starts in a for-loop using the nbody_simulate_step skeleton
instance of MapArray. After every time step, the user func-
tion move_kernel is called using the nbody_simulate_step
skeleton instance. The SkePU vector all_particles contains
the positions, velocities and accelerations of all particles in
the previous time step, and ith_particle points to the ith

particle in all_particles. The move_kernel updates the ith

particle as shown in Figure 4. The nature of the application
is such that the output data is updated on the host (or root
node in case of multiple nodes) so that the next skeleton call
is made on the current state of the system. The skeletons
are called time_steps times, with the first argument as the
updated vector.

Execution using Multiple Nodes: In case the application
is executed on a cluster (with multiple nodes), the first
vector is internally broadcasted and the second vector is
distributed/scattered to every MPI process in each iteration.
In this way, the large problem is divided into smaller problem
of the same nature. But due to the large computations the
partitioning still gives benefit even there is communication
overhead.

Synchronizations and Barriers: In each iteration, the
skeleton call nbody_simulate_step is made two times. This
is because the first argument requires the current state of the
system of particles. The implicit barriers make it possible
that the current state of the system is used after it is com-
puted completely. This synchronization is inherently present
in the nature of the computation of the N-body problem
but using the current implementation (Cluster-SkePU) this
synchronization is also enforced for any other application
and overlapping of computation and communication cannot
be exploited (we are addressing this in on-going work).

GENERATE_FUNC(, Particle, index, seed,
 Particle p;
 // initialize location, velocity etc
 return p;
)
ARRAY_FUNC(, Particle, all_particles, ith_particle,
 // calculate the force exerted on ith_particle from
 // all the other particles given in all_particles
 // update acceleration, velocity and position of ith_particle
 return ith_particle;
)
int main()
{
 skepu::Generate< > nbody_init(new);
 skepu::MapArray< > nbody_simulate_step(new);
 skepu::Vector<Particle> particles(n);
 skepu::Vector<Particle> latest(n);
 nbody_init(n, particles);
 nbody_init(n, latest);
 for(t=0;t<time_steps/2; t=t+1)
 {
 nbody_simulate_step(particles, latest, latest);
 // Update vectors on the host
 nbody_simulate_step(latest, particles, particles);
 // Update vectors on the host
 }
}

init_kernel

init_kernelinit_kernel

move_kernel

move_kernel move_kernel

Fig. 4: SkePU code for N-body Simulation

Ratio of Computations and Communications: In this
application, the parallel computations performed by the
threads (either CUDA, OpenMP) are O(N2) in each update
of the system of particles whereas the amount of data
communicated is O(N).

Effect of Lazy Memory Copying: The nature of com-
putation of N-body simulation does not exploit the benefit
of lazy memory copying.

The code for N-body simulation is simply written as serial
code in C++ in terms of skeletons but executes on several
SkePU backends including the GPU cluster backend.

All the other selected scientific applications are expressed
in SkePU in a similar way in terms of MapArray, Generate
and Map skeletons by following their semantics. The code
looks serial but, following the semantics of the given skele-
tons, the expressed code can be executed on all backends
implemented in SkePU.

5. Experimental Results
We have implemented several scientific applications (ex-

pressing their data parallel computations in terms of SkePU
skeletons) including, N-body simulation, electric field cal-
culation, smoothed particles hydrodynamics, one-level of
Strassen’s recursive matrix multiplication algorithm, and a
synthetic matrix sum application. We performed experiments
on two machines M1 and M2 and used OpenMP/MPI and
CUDA/MPI backends respectively. Machine M1 has 805
nodes (for checking the scalability, we use up to 16 nodes
only as more than 16 nodes were not accessible to us),
each with two 2.33 GHz Xeon quad core chips and at
least 16 GiB RAM, running under CentOS5. The nodes
are interconnected by Infiniband. Machine M2 has 6 nodes
each with 2 Intel Xeon E5620 CPUs, 3 NVIDIA Tesla
M2090 GPUs with NVIDIA CUDA Toolkit V.4.0, and nodes

are interconnected by Infiniband. We could use up to 3
accessible nodes with single GPU (with CUDA only) on
each node for experiments.

Scalability over Multiple Nodes: In the first experiment,
the results show the scalability for the first three scientific ap-
plications with CUDA/MPI and/or OpenMP/MPI backends
as shown in Figure 5. The horizontal axis in Figure 5 shows
the number of particles for N-body simulation, smoothed
hydrodynamics and electric field applications. The vertical
axis shows the speedup for the three applications. The graphs
mentioned with 1C/2C show the speedup for 2 CUDA nodes
against a single CUDA node on M2 for each application
in Figure 5. We also found that the CUDA/MPI backend
with three nodes on M2 gives at most 4X performance
than the OpenMP/MPI backend with 16 nodes on M1 for
two scientific applications (shown by 16P/3C in Figure 5)
besides the performance portability across different par-
allel architectures without code modification. These three
scientific applications are computation intensive such that
each node gets considerably large computations to perform
for the given amount of communicated data among the
nodes. For example, (considering the CUDA/MPI backend),
in case of N-body simulation, O(N) parallel tasks (each
containing O(N) operations) are performed by P nodes
and data communication per iteration of N-body simulation
will be O(N). In this case, distributing the computation
will have more benefit than the communication overhead.
Note also that these computations are quite regular and use
brute force algorithms, whereas better O(N logN) work
algorithms exist that we considered in on-going extension
work of SkePU.

For the SkePU implementation of other scientific appli-
cations with O(N) parallel tasks each of asymptotically
less than O(N) work (e.g. O(logN) operations), we ex-
perienced increased communication cost outweighing the
benefit of distributing the computation among several GPU
nodes. This is because of the regular patterns of (block-
ing) communication (at the granularity level of containers)
hidden in the simple skeletons in which the data parallel
computations of the applications are expressed. Here we
experience that finer granularity levels of communications
are required for optimizing the communication as in [11]
and [12]. The authors in [11] and [12] demonstrate the
scalability of scientific applications like fluid dynamics,
Strassen’s algorithm and conjugate gradient method using
CUDA and MPI over multiple nodes by using non-blocking
(optimized) communication among the nodes. Hence, more
complex skeletons and smart containers are required to
express non-trivial and irregular scientific applications with
varying granularity of data partitioning, prefetching and data
caching. As we noted above certain computation intensive
scientific applications can still get benefits from scaling over
multiple nodes with ease of writing the parallel code (we
demonstrated three).

Lazy Memory Copying over Multiple Nodes: In the
second experiment, we implemented a one-level recursive
variant of Strassen’s algorithm for matrix muliplication
and another synthetic matrix sum application that simply
adds 12 N × N matrices. The results are shown in Fig-
ure 6. In the one-level Strassen’s algorithm, two matrices
A and B with dimensions N × N are partitioned into
submatrices A11, A12, A21, A22 and B11, B12, B21, B22

respectively. These submatrices are used (more than once,
but communicated only once with lazy memory copying)
in the computations of intermediate product submatrices
P1, ..., P7. Similarly, the intermediate product submatrices
P1, ..., P7 stay distributed (not communicated) and the final
result’s submatrices C11, C12, C21, C22 are computed (see
Figure 7). We see that lazy memory copying reduces the
communication and gives speedup against the application
that does not use lazy memory copying. Similarly, in our
synthetic matrix sum application, the intermediate result
matrix R is not communicated until the last addition is done
(see Figure 7). Here, we see even more benefit than with
Strassen’s algorithm. This is because most of this synthetic
matrix sum application benefits from lazy memory copying.

We further observe that the benefit of lazy memory
copying decreases for the two applications when multiple
nodes are used (as shown in Figure 6). For example, we see
that the speedup decreases for both the applications when
two nodes are used. Whereas, when 3 nodes are used, the
benefit decreases even more in the synthetic matrix sum
application but increases in case of Strassen’s algorithm.
This is because of the following reasons. In case of a single
node, more data is transferred to the device memory using
the PCIe bus (without partitioning of data). Whereas, in
case of 2 nodes, first the data is partitioned in to 2 parts
(scattered over the network) and then smaller partitions are
transferred to device memories (on each node) in parallel.
This decreases the overall transfer time on PCIe bus. So
if we save these data transfers, we save less data transfer
time (on 2 nodes) and hence speedup decreases as compared
to a single node. A further increase in the number of
nodes (and partitions) decreases the benefit even more in
the case of the synthetic matrix sum application because the
data is scattered over the network and even more smaller
(three) partitions are transferred on three device memories
in parallel. But in Strassen’s algorithm we are using the
MapArray skeleton (in several skeleton calls with broadcasts
of several matrices) that increases the communication over
the network with increasing number of nodes. So saving
the communication with lazy memory copying gives more
benefit. Although we get a benefit by lazy memory copying
on multiple nodes, the nature of the application affects
the speedup. The benefit achieved using the lazy memory
copying also suggests to explore more smartness in future
work on regular and irregular distributed containers.

Fig. 5: Speedup of three scientific applications. xC: x nodes are used each with 512 CUDA threads. xP: x nodes are used
each with 8 OpenMP threads.

Synthetic

Fig. 6: Speedup gained by using lazy memory copying for
one level Strassen’s algorithm and a synthetic matrix sum
application

P1 = (A11+A22)*(B11+B22)
P2 = (A21+A22)*B11

P3 = A11*(B12-B22)
P4 = A22*(B21-B11)
P5 = (A11+A12)*B22

P6 = (A21 - A11)*(B11+B12)
P7 = (A12 - A22)*(B21+B22)

C11 = P1 + P4 - P5 + P7

C21 = P2 + P4

C12 = P3 + P5

C22 = P1 + P3 - P2 + P6

Strassen's Algorithm

R = A1 + A2

R = R + A3

R = R + A4

R = R + A5

R = R + A6

...
R = R + A12

(Recursive step) Synthetic Matrix Sum App.

Fig. 7: Possibilities of lazy memory copying in one-level
Strassen’s algorithm and synthetic matrix sum application

6. Conclusions and Future Work
We have provided the principles and a first prototype for

the extension of SkePU for GPU clusters and implemented
four scientific and one synthetic matrix sum application. To
the best of our knowledge, this is the first skeleton library
implementation for GPU clusters that is also evaluated on
a GPU cluster (note that the recent framework by Ernsting
et al. [7] is evaluated with multiple MPI processes running
either on a single GPU node or on a non-GPU cluster). We
performed two experiments where the results show scala-
bility, portability and programmability. SkePU code looks
serial (easy to maintain and debug) and can be compiled
and executed using a number of backends without code
modification. We found that certain computation intensive
applications (expressed in SkePU skeletons) can scale over
multiple nodes even with the current extension of SkePU.
The smartness of the containers can give speedup (depending
upon the nature of computations). Future work will address
improvements in the containers and skeletons in order to
make Cluster-SkePU more useful in different domains of

scientific computing.

Acknowledgments
This work was partly funded by Higher Education Commission

Pakistan (HEC), Swedish e-Science Research Center (SeRC), and
EU FP7 project PEPPHER (www.peppher.eu). We are also thank-
ful to Supercomputing Centers NSC (www.nsc.liu.se) and PDC
(www.pdc.kth.se) for providing us with the computing resources
and technical support.

References
[1] Top500 supercomputer sites. www.top500.org, Nov. 2012.
[2] K. A. Yelick, S. Chakrabarti, E. Deprit, J. Jones, A. Krishnamurthy,

and C. po Wen. Data structures for irregular applications, DIMACS
Workshop on Parallel Algorithms for Unstructured and Dynamic Prob-
lems, 1993.

[3] J. Enmyren and C. W. Kessler. SkePU: a multi-backend skeleton
programming library for multi-GPU systems, Proceedings of the fourth
international workshop on High-level parallel programming and appli-
cations, pages 5-14, New York, NY, USA, 2010.

[4] M. Cole. Recursive splitting as a general purpose skeleton for parallel
computation, Proceedings of the Second International Conference on
Supercomputing, pages 133-140. 1987

[5] M. Cole. Algorithmic skeletons: structured management of parallel
computation, MIT Press, Cambridge, MA, USA, 1991.

[6] M. Cole. A skeletal approach to the exploitation of parallelism,
Proceedings of the conference on CONPAR, pages 667-675, 1988 New
York, NY, USA, 1989.

[7] S. Ernsting and H. Kuchen. Algorithmic skeletons for multicore, multi-
GPU systems and clusters, International Journal of High Performance
Computing and Networking, pages 129-138, 2012.

[8] M. Steuwer, P. Kegel, and S. Gorlatch, SkelCL - A portable skeleton
library for high-level gpu programming, Parallel and Distributed Pro-
cessing Workshops (IPDPSW-11), pp. 1176-1182. 2011.

[9] M. Alind, M. V. Eriksson, and C. W. Kessler. Blocklib: a skeleton
library for Cell broadband engine, 1st Int. Workshop on Multicore
Software Engineering (IWMSE-08) , pages 7-14, Leipzig, Germany
2008.

[10] U. Dastgeer , J. Enmyren , C. W. Kessler, Auto-tuning SkePU:
a multi-backend skeleton programming framework for multi-GPU
systems, Fourth Int. Workshop on Multicore Software Engineering
(IWMSE-11) USA, p.25-32, May 2011.

[11] D. Jacobsen, J. C. Thibault, and I. Senocak. An MPI-CUDA imple-
mentation for massively parallel incompressible flow computations on
multi-GPU clusters, Aerospace Sciences Meeting and Exhibit (AIAA-
10), 2010.

[12] N. Karunadasa and D. N. Ranasinghe. Accelerating high perfor-
mance applications with CUDA and MPI, ICIIS’09, pages 28-31.

