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Abstract - DEF-G is a declarative language and framework 

for the efficient generation of OpenCL GPU applications.  

Using our proof-of-concept DEF-G implementation, run-

time and lines-of-code comparisons are provided for three 

well-known algorithms (Sobel image filtering, breadth-first 

search and all-pairs shortest path), each evaluated on three 

different platforms.  The DEF-G declarative language and 

corresponding OpenCL kernels generated complete OpenCL 

applications in C/C++. Initial lines-of-code comparison 

demonstrates that the DEF-G applications require 

significantly less coding than hand-written CPU-side 

OpenCL applications. The run-time results demonstrate very 

similar performance characteristics compared to the hand-

written applications.  We also provide useful observations, 

which we found to be noteworthy for practitioners, 

concerning the effectiveness of certain OpenCL API options. 
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1 Introduction 
 Producing high performance computing (HPC) 

software for use on graphical processing units (GPUs) is 

often a difficult and daunting task.  This type of software 

tends to require the use of specialized, parallel algorithms 

and requires the use of low-level application programming 

interfaces (APIs), in the context of a thorough understanding 

of the GPU architecture.  The Declarative Framework for 

GPUs (DEF-G) provides a domain-specific computer 

language (DSL) to assist the software developer.  It mitigates 

the need for a deep understanding of the full CPU-side API 

used with technologies such as OpenCL, while allowing the 

user to focus on the algorithms being used and on the most 

efficient usage of the overall GPU architecture. 

Our research in processing large, sparse graphs on 

GPUs has, out of necessity, led to the direct development of 

DEF-G.  As these large graphs tend to lack locality of 

reference, the parallel algorithms needed to process them 

efficiently tend to be complex.  Sample problem domains 

range from graph problems such as the Breadth-First Search 

(BFS), Single-Source Shortest Path (SSSP), and All-Points 

Shortest Path (APSP) to iterative matrix inversion, parallel 

prefix computation, and parallel sorting.  Using DEF-G 

permits us to focus on the algorithms, which were coded 

mainly in the GPU kernels, and to spend less time focusing 

on the CPU-side code.  In this proof-of-concept 

implementation of DEF-G, we have implemented and 

measured, in terms of lines-of-code and run-time 

performance, three well-known algorithms: Sobel image 

filtering for edge detection [1] and from the graph theory: 

BFS and APSP [2].    

Common GPU environments in use today, such as 

OpenCL [3] and NVIDIA’s proprietary CUDA [4], tend to 

provide low-level, very specialized APIs. Their usage 

requires an understanding of complex, CPU-side APIs [5].  

DEF-G provides several higher-level design patterns that 

abstract the CPU-side coding to a declarative level.  Much 

as the now-ubiquitous relational databases accept database 

requests as declarative SQL statements and quickly return 

the requested data, DEF-G uses design patterns and 

declarative statements to produce high performance CPU-

side code, which performs the desired computations.  This 

implementation of DEF-G supports OpenCL; we expect 

future versions to support both OpenCL and CUDA. Once 

the developer has produced the kernel code to be executed 

on the GPU, DEF-G simplifies the task of executing the 

kernel code.  Complex CPU-side operations outside the 

context of the DEF-G design patterns can be utilized by 

DEF-G as callable functions.   

The current DEF-G implementation consists of a parser 

written in Java, using ANTLR 3 [6], and our code generator, 

which is written in C++.   The parser handles syntax 

checking and results in an abstract syntax tree, expressed as 

an XML document.  This abstract syntax tree is then 

processed by our code generator, which uses the TinyXML2 

library [7] to accept the syntax tree.  For example, the twelve 

lines of DEF-G code shown in Figure 1 result in 

approximately 200 lines of C/C++ code, a snippet of which 

is shown in Figure 2.  The OpenCL kernel executed by this 

code is shown in Figure 3.  Note that this generated OpenCL 

code is intended to execute on any supported OpenCL 

device, including the CPU. 

OpenCL is an open and cross-platform standard for 

developing high performance applications on parallel 

hardware.  This standard is supported by major vendors 

including NVIDIA, AMD, and Intel.  There are two major 

components defined by the standard: the OpenCL C 

programming language used on the parallel device and the 

CPU-side APIs for C/C++ that provide access to the 

device’s OpenCL kernels.  The CPU manages the execution 

of the kernels on the OpenCL parallel device. 

 



 
01. declare application  sobel 
02.   declare integer Xdim (0) 
03.   declare integer Ydim (0)  
04.   declare integer BUF_SIZE (0) 
05.   declare gpu gpuone ( any ) 
06.   declare kernel  sobel_filter SobelFilter_Kernels  ( [[ 2D,Xdim,Ydim ]] ) 
07.   declare integer buffer image1 ( $BUF_SIZE ) 
08.           integer buffer image2 ( $BUF_SIZE ) 
09.   call init_input (image1(in) $Xdim (out) $Ydim (out) $BUF_SIZE(out))  
10.   execute run1 sobel_filter ( image1(in) image2(out) )  
11.   call disp_output (image2(in) $Xdim (in) $Ydim (in) ) 
12. end 
Figure 1:  Sample DEF-G Code 

 

// *** buffers in 
cl_mem buffer_image1 = clCreateBuffer(context, CL_MEM_READ_ONLY|CL_MEM_COPY_HOST_PTR, (BUF_SIZE * 
sizeof(int)),(void *) image1, &status); 
if (status != CL_SUCCESS) { handle error } 
status = clSetKernelArg(sobel_filter, 0, sizeof(cl_mem), (void *)&buffer_image1); 
if (status != CL_SUCCESS) { handle error } 
cl_mem buffer_image2 = clCreateBuffer(context, CL_MEM_WRITE_ONLY, (BUF_SIZE * sizeof(int)),(void *) NULL, &status); 
if (status != CL_SUCCESS) { handle error } 
status = clSetKernelArg(sobel_filter, 1, sizeof(cl_mem), (void *)&buffer_image2); 
if (status != CL_SUCCESS) { handle error } 
// *** execution 
size_t global_work_size[2]; global_work_size[0] = Xdim ; global_work_size[1] = Ydim ; 
status = clEnqueueNDRangeKernel(commandQueue, sobel_filter, 2, NULL, global_work_size, NULL, 0, NULL, NULL); 
if (status != CL_SUCCESS) { handle error } 
// *** result buffers 
status = clEnqueueReadBuffer(commandQueue, buffer_image2, CL_TRUE, 0, BUF_SIZE * sizeof(int), image2, 0, NULL, NULL); 
if (status != CL_SUCCESS) { handle error } 
Figure 2:  Snippet of Generated OpenCL Code 

 
__kernel void sobel_filter(__global uchar4* inputImage, __global uchar4* outputImage) { 
              uint x = get_global_id(0);  uint y = get_global_id(1); 
              uint width = get_global_size(0);  uint height = get_global_size(1);  
              float4 Gx = (float4)(0);  float4 Gy = Gx; 
              int c = x + y * width; 
              /* Read each texel component and calculate ..*/ 
              if( x >= 1 && x < (width-1) && y >= 1 && y < height - 1) 
              { 
                            float4 i00 = convert_float4(inputImage[c - 1 - width]); 
                            // similar lines omitted 
                            float4 i22 = convert_float4(inputImage[c + 1 + width]); 
                            Gx =   i00 + (float4)(2) * i10 + i20 - i02  - (float4)(2) * i12 - i22; 
                            Gy =   i00 - i20  + (float4)(2)*i01 - (float4)(2)*i21 + i02  -  i22; 
                            /* taking root of sums of squares of Gx and Gy */ 
                            outputImage[c] = convert_uchar4(hypot(Gx, Gy)/(float4)(2)); 
              } 
} 

Figure 3:  Snippet of Sobel OpenCL Kernel Code (from AMD APP SDK 2.8) [18] 
 

 



The OpenCL C/C++ CPU-side code is required to obtain 

the kernel source code and call appropriate OpenCL APIs to 

compile the kernel code.  In addition, the OpenCL CPU-side 

code is required to acquire and manage the low-level buffers 

accessed by the device kernel.  These two requirements tend 

to make the CPU-side code verbose and often complex; 

additional complexity is added by the OpenCL requirement to 

support many different types of parallel platforms and 

devices, examples being CPUs, GPUs, and even specialized 

FPGA [8] and DSP [9] hardware.  This requirement adds 

numerous specialized API parameters to the OpenCL API.  It 

can be argued that the OpenCL API is unnecessarily complex, 

not easily learned, and somewhat hard to use and debug.  

DEF-G takes over much of the burden of writing the OpenCL 

CPU-side code, permitting the developer more focus on the 

device kernels and parallel algorithms proper. 

We approached our work as follows: using three existing 

OpenCL applications and using the existing OpenCL kernels 

without any changes, we replaced the existing CPU-side code 

with the DEF-G generated code.  The DEF-G source modules 

needed on average about 90% fewer lines of code.  We then 

compared the computational performance of the three 

applications over three different OpenCL platforms.  

Performance variations between the DEF-G results and the 

reference results were identified and analyzed.  

The next sections describe related work, followed by the 

three existing OpenCL applications that were used as 

reference/benchmark applications and converted to DEF-G.  

We then present our experimental results in terms of lines of 

code and run times, and make some observations for GPU 

practitioners. A summary of ongoing and future work is 

presented in the last section.   

 

2 Related Work 
Numerous attempts have been made to construct 

languages, compilers, and tools to make the production of 

high performance parallel solutions easier.  In 2005, Shen et 

al. [10] talked about the “holy grail” of parallelization, which 

is the automated parallelization of serial programs, being out 

of reach.  However, progress is being made. One approach 

towards the efficient production of GPU-based parallel 

solutions is the use of domain-specific  languages (DSL).  

DEF-G is a DSL, a language and associated tools that 

facilitate the production of OpenCL applications.   Martin 

Fowler defines a DSL as a “computer programming language 

of limited expressiveness focused on a particular domain,” 

and suggests that DSLs can be broken into two categories: 

internal DSLs and external DSLs [11].  DSLs of both 

varieties have been produced for GPU-based HPC. 

Internal DSLs for GPU-based HPC include extensions to 

Python such as: PyGPU [12], PyCUDA [13], and PyOpenCL 

[14]. These DSLs tend to consist of Python wrappers placed 

around a particular GPU API.  There are also C/C++ 

extensions such as Bacon [15]. Aside from DEF-G, other 

GPU external DSLs include the SPL digital signal processing 

language [16] and the MATLAB Parallel Computing Toolbox 

(which supports CUDA and permits passing some MATLAB 

functions to the GPU and permits GPU kernel execution 

[17]).   Both MATLAB and DEF-G require that the GPU 

kernel be provided.    

The BFS and APSP implementations we chose for our 

DEF-G testing were existing implementations, easily obtained 

from software development kits (SDKs) and benchmarks [18-

19].  There exists many other published algorithms and 

implementations that may provide better overall run-time 

performances.  We anticipate implementing a subset of these 

in DEF-G.  For example, Merrill, et al. suggest a much faster 

BFS solution which uses prefix sum to help distribute the 

work among GPU threads without locking [20].  We intend to 

apply the prefix sum lock-avoidance approach to graph-

oriented algorithms, which were not addressed in this study.  

For APSP, Katz and Kider provide a method for using tiling 

with the Floyd-Warshall APSP algorithm to minimize GPU 

global memory access times [21]. 

 

3 DEF-G Framework Language 
The DEF-G declarative language consists of a number 

of declare, execute and call statements, and some optional 

statements such as sequence/times and loop/while. An 

example DEF-G source file is shown in Figure 1.  The declare 

statement is used to name the DEF-G application, define and 

name the GPU kernels to be executed, define any required 

scalar variables such as a graph’s node count, and define the 

buffers to be given to the GPU. Lines 1 to 8, in the DEF-G 

sample, show declare statements.  The syntax on line 6 

enclosed in “[[“and”]]” brackets is our method for setting the 

global grid size.  The call statement is used to invoke C/C++ 

functions, e.g., to obtain the input data; the sample has call 

statements on lines 9 and 11. The execute statement on line 

10 is used to execute the kernel.  The flow of control is a 

design pattern built into DEF-G.   

The optional statements are used to provide support for 

more complex design patterns where the kernels may have to 

be executed a variable number of times. Figure 4 contains a 

DEF-G example which executes the kernel once for each 

graph node.  Figure 4, line 9, shows the sequence statement 

application.  DEF-G contains statements to process scalar 

values returned by kernels. This capability was used in the 

DEF-G BFS solution to conditionally stop the parallel device 

processing.  DEF-G generates OpenCL 1.1 code.  

 

4 Discussion of Results 
To test the viability of DEF-G, we selected three existing 

OpenCL solutions based on well-known algorithms: Sobel 

image filtering and Floyd-Warshall APSP, both from the 

AMD APP SDK [16], and breadth-first search from the 

OpenDwarfs benchmark [17].  We will refer to these solutions 

as SOBEL, FW, and BFS, respectively. SOBEL was chosen 

because it represents the class of simpler GPU problems, 

where a single kernel is called once and because it has 

significant RAM locality of reference.  



01. declare application  floydwarshall 
02.   declare integer NODE_CNT (0) 
03.   declare integer BUF_SIZE (0) 
04.   declare gpu gpuone ( any ) 
05.   declare kernel  floydWarshallPass FloydWarshall_Kernels  ( [[ 2D,NODE_CNT ]] ) 
06.   declare integer buffer buffer1 ( $BUF_SIZE ) 
07.                 integer buffer buffer2 ( $BUF_SIZE ) 
08.   call init_input (buffer1(in) buffer2(in) $NODE_CNT(out) $BUF_SIZE(out))  
09.   sequence $NODE_CNT times 
10.     execute run1 floydWarshallPass ( buffer1(inout) buffer2(out) $NODE_CNT(in) $CNT(in) ) 
11.   call disp_output (buffer1(in) buffer2(in) $NODE_CNT(in)) 
12. end 
Figure 4:  Sample DEF-G Code Showing a Sequence 

 

In future implementations of DEF-G, we expect to support 

several concurrent GPU devices in a declarative manner 

and SOBEL provides a good test case for this added 

support. 

FW and BFS were selected because they represent two 

different classes of graph-oriented GPU problems, with BFS 

being the more complex.  The FW algorithm requires the same 

operation to be repeated for each graph node; in this 

implementation, the FW kernel is called once for each node.  

This call-for-each-node behavior must be managed from the 

CPU-side.  The OpenDwarfs BFS implementation is based on 

the work by Harish [22] and uses a version of Dijkstra’s 

algorithm [2].  The actual OpenDwarfs code is a port of the 

BFS CUDA code from the Rodinia benchmark [23].  This 

BFS implementation requires that a pair of kernels be repeated 

until success is indicated by the second kernel.  This repetition 

is managed by the CPU-side code. 

All three of these were converted to DEF-G, keeping the 

unmodified OpenCL kernels.  The conversions to DEF-G 

produce exactly the same results as the corresponding 

reference version.  Before discussing the performance results, 

we summarize the hardware and software used. The tests were 

run on three different configurations, which we call CPU, 

GPU-GT 430, and GPU-Tesla T20, which are listed in order 

of increasing power, as shown in Table 1.   

In terms of module line count results, the three DEF-G 

versions were much smaller than their reference counterparts.  

Table 2 shows the line counts for SOBEL, BFS, and FW. 

Shown are the number of lines of DEF-G declarative code, the 

number of lines of generated code, and the estimated number 

of non-comment lines in the reference version. This data is 

shown graphically in Plot 1.  On average, the DEF-G code is 

7.7 percent of the generated code, and 4.4 percent of the 

reference code.  It should be noted that the reference code 

tended to include additional functionality; therefore, the 

comparison with the generated code is likely to be more 

indicative of the DEF-G’s effectiveness. 

The run-time performance comparison turned out to be 

very interesting.  The raw run times, in milliseconds, are 

presented in Table 3.  Plot 2 shows this data presented in 3D 

form. The results shown are the average of ten runs done for 

each case.  Where we encountered unexpected results, we 

often reran the tests with manual code changes to isolate the 

underlying technical causes.  We made these code changes to 

both the DEF-G and reference OpenCL code.  However, the 

numbers shown here are only the original times, i.e., those 

prior to any manual code modifications. 

SOBEL is the simplest application and the run-time 

performance results between DEF-G and the reference cases 

are comparable.  The SOBEL results are shown on the graph 

in purple.  The DEF-G performance was slightly faster on the 

CPU and GPU-GT 430 runs, and was slightly slower on the 

GPU-Tesla T20.  This similarity of results is not surprising as 

the CPU-side support needed for SOBEL is not complex.  
The run-time results of the FW tests, which are shown in 

green, were a surprise to us.  We saw no obvious explanation 

for why DEF-G should be consistently faster.   We reviewed 

the OpenCL code for both DEF-G and the AMD SDK-

supplied reference case, and did not find any significant 

differences in buffer usage or the OpenCL API functions used.  

We did notice that the reference case was using asynchronous 

events when not required and we temporarily disabled them 

and reran the reference case.   The FW reference case run

  

Table 1:  Test Configurations 

Name Configuration Data 

CPU Windows 7, Intel I3 Processor, 1.33 GHz, 4 GB RAM, using AMD OpenCL SDK 2.8 (no GPU) 

GPU-GT 
430 

Windows 7, Intel Pentium 4 Processor, 3.2 GHz, 1.5 GB RAM, using NVIDIA OpenCL SDK 4.2,  NVIDIA 
GT 430 GPU with 2 Compute Units, 1400 MHz and 1024M RAM 

GPU-Tesla 
T20 

Penguin Computing Cluster, Linux Cent OS 5.3, AMD Opteron 2427 Processor, 2.2 GHz, 24 GB RAM, 
using NVIDIA OpenCL SDK 4.0,  NVIDIA Tesla T20 with 14 Compute Units, 1147 MHz and 2687M RAM 

 
Table 2: Lines of Code  



times dropped three-fold from an average 51.2 ms to 17 ms.   

This difference was later traced to what we identified as an 

error in the OpenCL event handling. We feel the DEF-G Tesla 

time of 11.3 ms and the reference case time of 17 ms are 

reasonably close and this test tends to show that, for this 

implementation of the Floyd-Warshall algorithm, both 

implementations’ run times were comparable. 

The BFS run-time comparisons used two different 

graphs.  The first graph has 4,096 nodes, shown in blue on the 

graph, and the second has 65,536 nodes, shown in red.   It is 

clear that the reference case runs significantly faster than 

DEF-G.  For example, on the Tesla, the reference case ran in 

an average of 11.3 ms and DEF-G in an average of 59.4 ms.  

As we had done with the FW tests, we analyzed the 

performance difference.  We found that DEF-G was moving 

buffers to the OpenCL device when not required.  After 

manually adjusting the code to eliminate the movement of 

these buffers in the generated OpenCL code, the 59.4 ms run 

time dropped to an average of 28.6 ms.  This performance can 

be improved even more by enhancing the DEF-G language to 

distinguish between buffers that are moved on each kernel 

execution and those that are initialized only once, and by the 

addition of buffer-use optimization to the DEF-G OpenCL 

code generator.  The current code generator contains very 

little optimization functionality, but we are optimistic DEF-G 

can come close to the reference-case performance with these, 

and perhaps additional, enhancements. 

We cannot leave the BFS performance topic without 

noting that the OpenCL CPU configuration’s performance was 

better than either of the GPU performances, except for the 

Tesla 65,536 node case.  We postulate that this is explained by 

the BFS implementation being used.  This graph algorithm 

implementation is based on the work by Harish [22], which 

does not compensate for the lack of memory caching on many 

GPUs.  The CPU version most likely fared so well due to the 

multiple levels of memory caching provided by the Intel I3; it 

is also likely that the 65,536 node case did not fit entirely in 

the Intel I3’s cache.   

In summary, these four comparison tests have shown 

that, at least in these three cases, the declarative approach used 

in DEF-G can be used to produce OpenCL applications with 

fewer lines of code and comparable performance levels.

 
Plot 1: Size Comparison of Module Sizes 
 

 
Plot 2: Performance Comparison of Run Times 

 DEF-G DEF-G  

 Declarative Generated Reference 

BFS 33 291 364 

FW 12 238 478 

SOBEL 12 208 442 
 

 



 
Table 3: Run-time Performance, in milliseconds 

 

5 Observations for Practitioners 
Although our performance tests were limited to three 

platforms and four tests cases, we have two important 

observations for OpenCL HPC developers. 

Observation One: The OpenCL “implicit model” worked 

well.   The OpenCL clEnqueueNDRangeKernel() API call is 

used to execute kernels and its sixth parameter describes the 

number of work items that make up a work group.  This can be 

hard to calculate and optimize.  There is an option to set this 

parameter to NULL and allow OpenCL to set this internally.  

This is referred to as the “implicit model,” by Munshi, et al. 

[24].  The proof-of-concept version of DEF-G uses this 

implicit model; much to our surprise the implicit model 

performance was equal in many cases to the tuned setting.  We 

suggest that practitioners may want to try using the implicit 

mode as part of their performance testing to help verify that 

their explicitly-set values are superior. 

Observation Two: The clCreateBuffer() 

CL_MEM_COPY_HOST_PTR option gave inconsistent 

performance. This option permits the clCreateBuffer() call to 

provide the address of the host buffer and avoid later calls to 

clEnqueueReadBuffer()/clEngueueWriteBuffer().  Use of 

this option appeared to introduce performance issues in a 

limited number of our tests; we encountered cases where using 

this option and avoiding the associated 

clEnqueueReadBuffer()/clEngueueWriteBuffer() calls did 

add significantly to the run time.  We suspect the performance 

of this option could vary by GPU vendor and device; we 

suggest trying both approaches with your specific OpenCL 

device. 

 

6 Ongoing and Future Work 
This proof-of-concept DEF-G implementation has 

shown that our declarative approach is able to produce results 

with less code written and still maintain similar run-time 

performance, at least for this family of test cases.  The 

addition of buffer optimization to DEF-G would greatly 

benefit its buffer management performance and, hence, the 

overall run times.  DEF-G also needs the addition of high-

performance data loaders and result displays, as well as 

simple debugging aids such as logging and formatted buffer 

dumps.  We anticipate expanding the DEF-G toolkit to 

support the use of multiple GPUs, to have optional automatic 

tuning of various GPU parameters, and to have callable 

modules generated by DEF-G.  Once we have automatic 

tuning capabilities, we will consider producing a code 

generator for NVIDIA’s CUDA.  We also expect to 

implement the generation of human-readable OpenCL C/C++ 

code that is a starting point for customized GPU applications 

and to implement other higher-performance approaches to 

BFS and APSP. 

DEF-G was developed as a result of a specific need; that 

need being the rapid and efficient production of CPU-side 

code for use in GPU-based parallel algorithms research.  Our 

DEF-G results look very promising.  DEF-G provides a tool 

to achieve the quick performance analysis of new OpenCL 

kernels and algorithms.  Given this success, we anticipate 

enhancing DEF-G and making this tool publicly available.  

The DEF-G toolkit should be a useful asset in future GPU 

high-performance algorithms research. 
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