

DEF-G: Declarative Framework for GPU Environment

Robert Senser and Tom Altman

Department of Computer Science and Engineering, University of Colorado Denver, Denver, CO

Abstract - DEF-G is a declarative language and framework

for the efficient generation of OpenCL GPU applications.

Using our proof-of-concept DEF-G implementation, run-

time and lines-of-code comparisons are provided for three

well-known algorithms (Sobel image filtering, breadth-first

search and all-pairs shortest path), each evaluated on three

different platforms. The DEF-G declarative language and

corresponding OpenCL kernels generated complete OpenCL

applications in C/C++. Initial lines-of-code comparison

demonstrates that the DEF-G applications require

significantly less coding than hand-written CPU-side

OpenCL applications. The run-time results demonstrate very

similar performance characteristics compared to the hand-

written applications. We also provide useful observations,

which we found to be noteworthy for practitioners,

concerning the effectiveness of certain OpenCL API options.

Keywords: OpenCL, graph algorithms, declarative

language

1 Introduction
 Producing high performance computing (HPC)

software for use on graphical processing units (GPUs) is

often a difficult and daunting task. This type of software

tends to require the use of specialized, parallel algorithms

and requires the use of low-level application programming

interfaces (APIs), in the context of a thorough understanding

of the GPU architecture. The Declarative Framework for

GPUs (DEF-G) provides a domain-specific computer

language (DSL) to assist the software developer. It mitigates

the need for a deep understanding of the full CPU-side API

used with technologies such as OpenCL, while allowing the

user to focus on the algorithms being used and on the most

efficient usage of the overall GPU architecture.

Our research in processing large, sparse graphs on

GPUs has, out of necessity, led to the direct development of

DEF-G. As these large graphs tend to lack locality of

reference, the parallel algorithms needed to process them

efficiently tend to be complex. Sample problem domains

range from graph problems such as the Breadth-First Search

(BFS), Single-Source Shortest Path (SSSP), and All-Points

Shortest Path (APSP) to iterative matrix inversion, parallel

prefix computation, and parallel sorting. Using DEF-G

permits us to focus on the algorithms, which were coded

mainly in the GPU kernels, and to spend less time focusing

on the CPU-side code. In this proof-of-concept

implementation of DEF-G, we have implemented and

measured, in terms of lines-of-code and run-time

performance, three well-known algorithms: Sobel image

filtering for edge detection [1] and from the graph theory:

BFS and APSP [2].

Common GPU environments in use today, such as

OpenCL [3] and NVIDIA’s proprietary CUDA [4], tend to

provide low-level, very specialized APIs. Their usage

requires an understanding of complex, CPU-side APIs [5].

DEF-G provides several higher-level design patterns that

abstract the CPU-side coding to a declarative level. Much

as the now-ubiquitous relational databases accept database

requests as declarative SQL statements and quickly return

the requested data, DEF-G uses design patterns and

declarative statements to produce high performance CPU-

side code, which performs the desired computations. This

implementation of DEF-G supports OpenCL; we expect

future versions to support both OpenCL and CUDA. Once

the developer has produced the kernel code to be executed

on the GPU, DEF-G simplifies the task of executing the

kernel code. Complex CPU-side operations outside the

context of the DEF-G design patterns can be utilized by

DEF-G as callable functions.

The current DEF-G implementation consists of a parser

written in Java, using ANTLR 3 [6], and our code generator,

which is written in C++. The parser handles syntax

checking and results in an abstract syntax tree, expressed as

an XML document. This abstract syntax tree is then

processed by our code generator, which uses the TinyXML2

library [7] to accept the syntax tree. For example, the twelve

lines of DEF-G code shown in Figure 1 result in

approximately 200 lines of C/C++ code, a snippet of which

is shown in Figure 2. The OpenCL kernel executed by this

code is shown in Figure 3. Note that this generated OpenCL

code is intended to execute on any supported OpenCL

device, including the CPU.

OpenCL is an open and cross-platform standard for

developing high performance applications on parallel

hardware. This standard is supported by major vendors

including NVIDIA, AMD, and Intel. There are two major

components defined by the standard: the OpenCL C

programming language used on the parallel device and the

CPU-side APIs for C/C++ that provide access to the

device’s OpenCL kernels. The CPU manages the execution

of the kernels on the OpenCL parallel device.

01. declare application sobel
02. declare integer Xdim (0)
03. declare integer Ydim (0)
04. declare integer BUF_SIZE (0)
05. declare gpu gpuone (any)
06. declare kernel sobel_filter SobelFilter_Kernels ([[2D,Xdim,Ydim]])
07. declare integer buffer image1 ($BUF_SIZE)
08. integer buffer image2 ($BUF_SIZE)
09. call init_input (image1(in) $Xdim (out) $Ydim (out) $BUF_SIZE(out))
10. execute run1 sobel_filter (image1(in) image2(out))
11. call disp_output (image2(in) $Xdim (in) $Ydim (in))
12. end
Figure 1: Sample DEF-G Code

// *** buffers in
cl_mem buffer_image1 = clCreateBuffer(context, CL_MEM_READ_ONLY|CL_MEM_COPY_HOST_PTR, (BUF_SIZE *
sizeof(int)),(void *) image1, &status);
if (status != CL_SUCCESS) { handle error }
status = clSetKernelArg(sobel_filter, 0, sizeof(cl_mem), (void *)&buffer_image1);
if (status != CL_SUCCESS) { handle error }
cl_mem buffer_image2 = clCreateBuffer(context, CL_MEM_WRITE_ONLY, (BUF_SIZE * sizeof(int)),(void *) NULL, &status);
if (status != CL_SUCCESS) { handle error }
status = clSetKernelArg(sobel_filter, 1, sizeof(cl_mem), (void *)&buffer_image2);
if (status != CL_SUCCESS) { handle error }
// *** execution
size_t global_work_size[2]; global_work_size[0] = Xdim ; global_work_size[1] = Ydim ;
status = clEnqueueNDRangeKernel(commandQueue, sobel_filter, 2, NULL, global_work_size, NULL, 0, NULL, NULL);
if (status != CL_SUCCESS) { handle error }
// *** result buffers
status = clEnqueueReadBuffer(commandQueue, buffer_image2, CL_TRUE, 0, BUF_SIZE * sizeof(int), image2, 0, NULL, NULL);
if (status != CL_SUCCESS) { handle error }
Figure 2: Snippet of Generated OpenCL Code

__kernel void sobel_filter(__global uchar4* inputImage, __global uchar4* outputImage) {
 uint x = get_global_id(0); uint y = get_global_id(1);
 uint width = get_global_size(0); uint height = get_global_size(1);
 float4 Gx = (float4)(0); float4 Gy = Gx;
 int c = x + y * width;
 /* Read each texel component and calculate ..*/
 if(x >= 1 && x < (width-1) && y >= 1 && y < height - 1)
 {
 float4 i00 = convert_float4(inputImage[c - 1 - width]);
 // similar lines omitted
 float4 i22 = convert_float4(inputImage[c + 1 + width]);
 Gx = i00 + (float4)(2) * i10 + i20 - i02 - (float4)(2) * i12 - i22;
 Gy = i00 - i20 + (float4)(2)*i01 - (float4)(2)*i21 + i02 - i22;
 /* taking root of sums of squares of Gx and Gy */
 outputImage[c] = convert_uchar4(hypot(Gx, Gy)/(float4)(2));
 }
}

Figure 3: Snippet of Sobel OpenCL Kernel Code (from AMD APP SDK 2.8) [18]

The OpenCL C/C++ CPU-side code is required to obtain

the kernel source code and call appropriate OpenCL APIs to

compile the kernel code. In addition, the OpenCL CPU-side

code is required to acquire and manage the low-level buffers

accessed by the device kernel. These two requirements tend

to make the CPU-side code verbose and often complex;

additional complexity is added by the OpenCL requirement to

support many different types of parallel platforms and

devices, examples being CPUs, GPUs, and even specialized

FPGA [8] and DSP [9] hardware. This requirement adds

numerous specialized API parameters to the OpenCL API. It

can be argued that the OpenCL API is unnecessarily complex,

not easily learned, and somewhat hard to use and debug.

DEF-G takes over much of the burden of writing the OpenCL

CPU-side code, permitting the developer more focus on the

device kernels and parallel algorithms proper.

We approached our work as follows: using three existing

OpenCL applications and using the existing OpenCL kernels

without any changes, we replaced the existing CPU-side code

with the DEF-G generated code. The DEF-G source modules

needed on average about 90% fewer lines of code. We then

compared the computational performance of the three

applications over three different OpenCL platforms.

Performance variations between the DEF-G results and the

reference results were identified and analyzed.

The next sections describe related work, followed by the

three existing OpenCL applications that were used as

reference/benchmark applications and converted to DEF-G.

We then present our experimental results in terms of lines of

code and run times, and make some observations for GPU

practitioners. A summary of ongoing and future work is

presented in the last section.

2 Related Work
Numerous attempts have been made to construct

languages, compilers, and tools to make the production of

high performance parallel solutions easier. In 2005, Shen et

al. [10] talked about the “holy grail” of parallelization, which

is the automated parallelization of serial programs, being out

of reach. However, progress is being made. One approach

towards the efficient production of GPU-based parallel

solutions is the use of domain-specific languages (DSL).

DEF-G is a DSL, a language and associated tools that

facilitate the production of OpenCL applications. Martin

Fowler defines a DSL as a “computer programming language

of limited expressiveness focused on a particular domain,”

and suggests that DSLs can be broken into two categories:

internal DSLs and external DSLs [11]. DSLs of both

varieties have been produced for GPU-based HPC.

Internal DSLs for GPU-based HPC include extensions to

Python such as: PyGPU [12], PyCUDA [13], and PyOpenCL

[14]. These DSLs tend to consist of Python wrappers placed

around a particular GPU API. There are also C/C++

extensions such as Bacon [15]. Aside from DEF-G, other

GPU external DSLs include the SPL digital signal processing

language [16] and the MATLAB Parallel Computing Toolbox

(which supports CUDA and permits passing some MATLAB

functions to the GPU and permits GPU kernel execution

[17]). Both MATLAB and DEF-G require that the GPU

kernel be provided.

The BFS and APSP implementations we chose for our

DEF-G testing were existing implementations, easily obtained

from software development kits (SDKs) and benchmarks [18-

19]. There exists many other published algorithms and

implementations that may provide better overall run-time

performances. We anticipate implementing a subset of these

in DEF-G. For example, Merrill, et al. suggest a much faster

BFS solution which uses prefix sum to help distribute the

work among GPU threads without locking [20]. We intend to

apply the prefix sum lock-avoidance approach to graph-

oriented algorithms, which were not addressed in this study.

For APSP, Katz and Kider provide a method for using tiling

with the Floyd-Warshall APSP algorithm to minimize GPU

global memory access times [21].

3 DEF-G Framework Language
The DEF-G declarative language consists of a number

of declare, execute and call statements, and some optional

statements such as sequence/times and loop/while. An

example DEF-G source file is shown in Figure 1. The declare

statement is used to name the DEF-G application, define and

name the GPU kernels to be executed, define any required

scalar variables such as a graph’s node count, and define the

buffers to be given to the GPU. Lines 1 to 8, in the DEF-G

sample, show declare statements. The syntax on line 6

enclosed in “[[“and”]]” brackets is our method for setting the

global grid size. The call statement is used to invoke C/C++

functions, e.g., to obtain the input data; the sample has call

statements on lines 9 and 11. The execute statement on line

10 is used to execute the kernel. The flow of control is a

design pattern built into DEF-G.

The optional statements are used to provide support for

more complex design patterns where the kernels may have to

be executed a variable number of times. Figure 4 contains a

DEF-G example which executes the kernel once for each

graph node. Figure 4, line 9, shows the sequence statement

application. DEF-G contains statements to process scalar

values returned by kernels. This capability was used in the

DEF-G BFS solution to conditionally stop the parallel device

processing. DEF-G generates OpenCL 1.1 code.

4 Discussion of Results
To test the viability of DEF-G, we selected three existing

OpenCL solutions based on well-known algorithms: Sobel

image filtering and Floyd-Warshall APSP, both from the

AMD APP SDK [16], and breadth-first search from the

OpenDwarfs benchmark [17]. We will refer to these solutions

as SOBEL, FW, and BFS, respectively. SOBEL was chosen

because it represents the class of simpler GPU problems,

where a single kernel is called once and because it has

significant RAM locality of reference.

01. declare application floydwarshall
02. declare integer NODE_CNT (0)
03. declare integer BUF_SIZE (0)
04. declare gpu gpuone (any)
05. declare kernel floydWarshallPass FloydWarshall_Kernels ([[2D,NODE_CNT]])
06. declare integer buffer buffer1 ($BUF_SIZE)
07. integer buffer buffer2 ($BUF_SIZE)
08. call init_input (buffer1(in) buffer2(in) $NODE_CNT(out) $BUF_SIZE(out))
09. sequence $NODE_CNT times
10. execute run1 floydWarshallPass (buffer1(inout) buffer2(out) $NODE_CNT(in) $CNT(in))
11. call disp_output (buffer1(in) buffer2(in) $NODE_CNT(in))
12. end
Figure 4: Sample DEF-G Code Showing a Sequence

In future implementations of DEF-G, we expect to support

several concurrent GPU devices in a declarative manner

and SOBEL provides a good test case for this added

support.

FW and BFS were selected because they represent two

different classes of graph-oriented GPU problems, with BFS

being the more complex. The FW algorithm requires the same

operation to be repeated for each graph node; in this

implementation, the FW kernel is called once for each node.

This call-for-each-node behavior must be managed from the

CPU-side. The OpenDwarfs BFS implementation is based on

the work by Harish [22] and uses a version of Dijkstra’s

algorithm [2]. The actual OpenDwarfs code is a port of the

BFS CUDA code from the Rodinia benchmark [23]. This

BFS implementation requires that a pair of kernels be repeated

until success is indicated by the second kernel. This repetition

is managed by the CPU-side code.

All three of these were converted to DEF-G, keeping the

unmodified OpenCL kernels. The conversions to DEF-G

produce exactly the same results as the corresponding

reference version. Before discussing the performance results,

we summarize the hardware and software used. The tests were

run on three different configurations, which we call CPU,

GPU-GT 430, and GPU-Tesla T20, which are listed in order

of increasing power, as shown in Table 1.

In terms of module line count results, the three DEF-G

versions were much smaller than their reference counterparts.

Table 2 shows the line counts for SOBEL, BFS, and FW.

Shown are the number of lines of DEF-G declarative code, the

number of lines of generated code, and the estimated number

of non-comment lines in the reference version. This data is

shown graphically in Plot 1. On average, the DEF-G code is

7.7 percent of the generated code, and 4.4 percent of the

reference code. It should be noted that the reference code

tended to include additional functionality; therefore, the

comparison with the generated code is likely to be more

indicative of the DEF-G’s effectiveness.

The run-time performance comparison turned out to be

very interesting. The raw run times, in milliseconds, are

presented in Table 3. Plot 2 shows this data presented in 3D

form. The results shown are the average of ten runs done for

each case. Where we encountered unexpected results, we

often reran the tests with manual code changes to isolate the

underlying technical causes. We made these code changes to

both the DEF-G and reference OpenCL code. However, the

numbers shown here are only the original times, i.e., those

prior to any manual code modifications.

SOBEL is the simplest application and the run-time

performance results between DEF-G and the reference cases

are comparable. The SOBEL results are shown on the graph

in purple. The DEF-G performance was slightly faster on the

CPU and GPU-GT 430 runs, and was slightly slower on the

GPU-Tesla T20. This similarity of results is not surprising as

the CPU-side support needed for SOBEL is not complex.
The run-time results of the FW tests, which are shown in

green, were a surprise to us. We saw no obvious explanation

for why DEF-G should be consistently faster. We reviewed

the OpenCL code for both DEF-G and the AMD SDK-

supplied reference case, and did not find any significant

differences in buffer usage or the OpenCL API functions used.

We did notice that the reference case was using asynchronous

events when not required and we temporarily disabled them

and reran the reference case. The FW reference case run

Table 1: Test Configurations

Name Configuration Data

CPU Windows 7, Intel I3 Processor, 1.33 GHz, 4 GB RAM, using AMD OpenCL SDK 2.8 (no GPU)

GPU-GT
430

Windows 7, Intel Pentium 4 Processor, 3.2 GHz, 1.5 GB RAM, using NVIDIA OpenCL SDK 4.2, NVIDIA
GT 430 GPU with 2 Compute Units, 1400 MHz and 1024M RAM

GPU-Tesla
T20

Penguin Computing Cluster, Linux Cent OS 5.3, AMD Opteron 2427 Processor, 2.2 GHz, 24 GB RAM,
using NVIDIA OpenCL SDK 4.0, NVIDIA Tesla T20 with 14 Compute Units, 1147 MHz and 2687M RAM

Table 2: Lines of Code

times dropped three-fold from an average 51.2 ms to 17 ms.

This difference was later traced to what we identified as an

error in the OpenCL event handling. We feel the DEF-G Tesla

time of 11.3 ms and the reference case time of 17 ms are

reasonably close and this test tends to show that, for this

implementation of the Floyd-Warshall algorithm, both

implementations’ run times were comparable.

The BFS run-time comparisons used two different

graphs. The first graph has 4,096 nodes, shown in blue on the

graph, and the second has 65,536 nodes, shown in red. It is

clear that the reference case runs significantly faster than

DEF-G. For example, on the Tesla, the reference case ran in

an average of 11.3 ms and DEF-G in an average of 59.4 ms.

As we had done with the FW tests, we analyzed the

performance difference. We found that DEF-G was moving

buffers to the OpenCL device when not required. After

manually adjusting the code to eliminate the movement of

these buffers in the generated OpenCL code, the 59.4 ms run

time dropped to an average of 28.6 ms. This performance can

be improved even more by enhancing the DEF-G language to

distinguish between buffers that are moved on each kernel

execution and those that are initialized only once, and by the

addition of buffer-use optimization to the DEF-G OpenCL

code generator. The current code generator contains very

little optimization functionality, but we are optimistic DEF-G

can come close to the reference-case performance with these,

and perhaps additional, enhancements.

We cannot leave the BFS performance topic without

noting that the OpenCL CPU configuration’s performance was

better than either of the GPU performances, except for the

Tesla 65,536 node case. We postulate that this is explained by

the BFS implementation being used. This graph algorithm

implementation is based on the work by Harish [22], which

does not compensate for the lack of memory caching on many

GPUs. The CPU version most likely fared so well due to the

multiple levels of memory caching provided by the Intel I3; it

is also likely that the 65,536 node case did not fit entirely in

the Intel I3’s cache.

In summary, these four comparison tests have shown

that, at least in these three cases, the declarative approach used

in DEF-G can be used to produce OpenCL applications with

fewer lines of code and comparable performance levels.

Plot 1: Size Comparison of Module Sizes

Plot 2: Performance Comparison of Run Times

 DEF-G DEF-G

 Declarative Generated Reference

BFS 33 291 364

FW 12 238 478

SOBEL 12 208 442

Table 3: Run-time Performance, in milliseconds

5 Observations for Practitioners
Although our performance tests were limited to three

platforms and four tests cases, we have two important

observations for OpenCL HPC developers.

Observation One: The OpenCL “implicit model” worked

well. The OpenCL clEnqueueNDRangeKernel() API call is

used to execute kernels and its sixth parameter describes the

number of work items that make up a work group. This can be

hard to calculate and optimize. There is an option to set this

parameter to NULL and allow OpenCL to set this internally.

This is referred to as the “implicit model,” by Munshi, et al.

[24]. The proof-of-concept version of DEF-G uses this

implicit model; much to our surprise the implicit model

performance was equal in many cases to the tuned setting. We

suggest that practitioners may want to try using the implicit

mode as part of their performance testing to help verify that

their explicitly-set values are superior.

Observation Two: The clCreateBuffer()

CL_MEM_COPY_HOST_PTR option gave inconsistent

performance. This option permits the clCreateBuffer() call to

provide the address of the host buffer and avoid later calls to

clEnqueueReadBuffer()/clEngueueWriteBuffer(). Use of

this option appeared to introduce performance issues in a

limited number of our tests; we encountered cases where using

this option and avoiding the associated

clEnqueueReadBuffer()/clEngueueWriteBuffer() calls did

add significantly to the run time. We suspect the performance

of this option could vary by GPU vendor and device; we

suggest trying both approaches with your specific OpenCL

device.

6 Ongoing and Future Work
This proof-of-concept DEF-G implementation has

shown that our declarative approach is able to produce results

with less code written and still maintain similar run-time

performance, at least for this family of test cases. The

addition of buffer optimization to DEF-G would greatly

benefit its buffer management performance and, hence, the

overall run times. DEF-G also needs the addition of high-

performance data loaders and result displays, as well as

simple debugging aids such as logging and formatted buffer

dumps. We anticipate expanding the DEF-G toolkit to

support the use of multiple GPUs, to have optional automatic

tuning of various GPU parameters, and to have callable

modules generated by DEF-G. Once we have automatic

tuning capabilities, we will consider producing a code

generator for NVIDIA’s CUDA. We also expect to

implement the generation of human-readable OpenCL C/C++

code that is a starting point for customized GPU applications

and to implement other higher-performance approaches to

BFS and APSP.

DEF-G was developed as a result of a specific need; that

need being the rapid and efficient production of CPU-side

code for use in GPU-based parallel algorithms research. Our

DEF-G results look very promising. DEF-G provides a tool

to achieve the quick performance analysis of new OpenCL

kernels and algorithms. Given this success, we anticipate

enhancing DEF-G and making this tool publicly available.

The DEF-G toolkit should be a useful asset in future GPU

high-performance algorithms research.

7 References
[1] Vincent, O. R., and O. Folorunso. "A descriptive

algorithm for sobel image edge detection." In Proceedings of

Informing Science & IT Education Conference (InSITE), pp.

97-107. 2009.

[2] Cormen, Thomas H.; Leiserson, Charles E., Rivest,

Ronald L., Stein, Clifford. Introduction to Algorithms (3rd

ed.). MIT Press and McGraw-Hill. 2009.

[3] “The OpenCL Specification 1.1,” [Online]. Available:

http://www.khronos.org/opencl/

[4] “CUDA 5 Programing Guide,” [Online]. Available:

http://docs.nvidia.com/cuda/cuda-c-programming-guide

[5] OpenCL Reference Pages, [Online]. Available:

http://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/

[6] ANTLR 3, [Online]. Available: http://www.antlr3.org/

[7] Tiny XML2, [Online]. Available:

http://www.grinninglizard.com/tinyxml2/index.html

[8] Altera Corporation OpenCL, [Online]. Available: http:

www.altera.com/opencl

[9] Texas Instruments OpenCL, [Online]. Available:

http://e2e.ti.com/support/dsp/omap_applications_processors/f/

447/t/132798.aspx

[10] Shen, John Paul, and Mikko H Lipasti. Modern

Processor Design : Fundamentals of Superscalar Processors.

Boston: McGraw-Hill Higher Education, 2005.

[11] Fowler, Martin. Domain-specific languages, Addison-

Wesley Professional, 2010.

[12] PyGPU, [Online]. Available:

http://fileadmin.cs.lth.se/cs/Personal/Calle_Lejdfors/pygpu/

 CPU GPU-GT 430 GPU-Tesla
T20

 DEF-G Ref. DEF-G Ref. DEF-G Ref.

BFS-
4096

4.7 2.6 27.2 10.7 10.6 5.8

BFS-
65536

40.9 14.2 143.9 26.5 59.4 11.3

FW 115.6 152.0 17.9 73.5 11.3 51.2

SOBEL 23.0 24.8 11.1 20.0 5.3 4.1

http://www.khronos.org/opencl/
http://docs.nvidia.com/cuda/cuda-c-programming-guide
http://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/
http://www.antlr3.org/
http://www.grinninglizard.com/tinyxml2/index.html
http://www.altera.com/opencl
http://e2e.ti.com/support/dsp/omap_applications_processors/f/447/t/132798.aspx
http://e2e.ti.com/support/dsp/omap_applications_processors/f/447/t/132798.aspx
http://fileadmin.cs.lth.se/cs/Personal/Calle_Lejdfors/pygpu/

[13] PyCUDA, [Online]. Available:

http://mathema.tician.de/software/pycuda

[14] PyOpenCL, [Online]. Available:

http://mathema.tician.de/software/pyopencl

[15] Tuck, Nat. "Bacon: A GPU Programming Language

With Just in Time Specialization (Draft)." University of

Massachusetts Lowel, Lowel MA 01854.

[16] Jianxin Xiong, Jeremy Johnson, Robert Johnson, and

David Padua.. SPL: a language and compiler for DSP

algorithms. In Proceedings of the ACM SIGPLAN 2001

conference on Programming language design and

implementation (PLDI '01). ACM, New York, NY, USA,

298-308, 2001.

[17] Matlab Parallel Computing Toolbox, [Online].

Available: http://www.mathworks.com/products/parallel-

computing/

[18] AMD APP SDK 2.8, [Online]. Available:

http://developer.amd.com/tools/heterogeneous-

computing/amd-accelerated-parallel-processing-app-sdk/

[19] OpenDwarfs Benchmark, [Online]. Available:

https://github.com/opendwarfs/OpenDwarfs

[20] Duane Merrill, Michael Garland, and Andrew

Grimshaw. 2012.”Scalable GPU graph traversal.” In

Proceedings of the 17th ACM SIGPLAN symposium on

Principles and Practice of Parallel Programming (PPoPP '12).

ACM, New York, NY, USA, 117-128.

[21] Katz, Gary J., and Joseph T. Kider Jr. "All-pairs

shortest-paths for large graphs on the GPU." In Proceedings

of the 23rd ACM SIGGRAPH/EUROGRAPHICS symposium

on Graphics hardware, pp. 47-55. Eurographics Association,

2008.

[22] Harish, Pawan, and P. Narayanan. "Accelerating large

graph algorithms on the GPU using CUDA." High

Performance Computing–HiPC 2007 (2007): 197-208.

[23] Rodinia GPU Benchmark, [Online]. Available:

http://lava.cs.virginia.edu/Rodinia/

[24] Munshi, Aaftab, Benedict Gaster, and Timothy G.

Mattson. OpenCL programming guide. Addison-Wesley

Professional, 2011.

http://mathema.tician.de/software/pycuda
http://mathema.tician.de/software/pyopencl
http://www.mathworks.com/products/parallel-computing/
http://www.mathworks.com/products/parallel-computing/
https://github.com/opendwarfs/OpenDwarfs
http://lava.cs.virginia.edu/Rodinia/

