
Real-Time Radio Wave Propagation for Mobile
Ad-Hoc Network Emulation Using GPGPUs

Brian J. Henz∗, David Richie†, Evens Jean‡,Song Jun Park∗, James A. Ross§, Dale R. Shires∗
∗U.S. Army Research Laboratory, APG, MD 21005
†Brown Deer Technology, Forest Hill, MD 21050

‡Secure Mission Solutions, APG, MD 21005
§Dynamics Research Corporation, Reston, VA 20190

Abstract—The accurate simulation and emulation of mobile
radios requires the computation of RF propagation path lossin
order to accurately predict connectivity and signal interference.
There are many algorithms available for computing the RF prop-
agation path loss between wireless devices including the Longley-
Rice model, the transmission line matrix (TLM), ray-tracing,
and the parabolic equation method. Each of these methods has
advantages and disadvantages but all require a large number
of floating point operations during execution. In this paper
we investigate using general purpose graphics processing units
(GPGPUs) to provide the computational capabilities required to
perform these RF path loss calculations in real-time in order
to support large scale mobile ad-hoc network emulation. Three
specific methods, namely the Longley-Rice, TLM, and ray-tracing
methods are explored including usage cases and performance
analysis on GPUs. The Longley-Rice algorithm is solved in real-
time for 1000’s of transmitters and receivers, the TLM method
is well suited for GPU acceleration as is ray-tracing. We will
discuss the algorithm modifications required for efficient GPU
use, precision issues and optimization.
Keywords: Mobile Ad-Hoc Network, Emulation, GPGPU,
RF Propagation Path loss, Longley-Rice, Transmission Line
Matrix, Ray-Tracing

I. I NTRODUCTION

Large scale testing, evaluation and analysis of mobile ad-hoc
network (MANET) platforms is an expensive proposal with a
limited parameter space and repeatability under experimental
conditions. [1] Therefore, simulation and emulation toolshave
been developed that provide researchers with a controllable
and repeatable environment for analysis of MANET platforms.
In particular, emulation holds great promise for limiting the
amount of live experimentation required for MANET plat-
form development. Emulation provides for hardware-in-the-
loop (HIL) testing and analysis where the physical medium is
replaced by a virtual environment and a physical or simulated
radio can be used with real applications. Much effort has been
performed in this area to make the virtual environment as phys-
ically meaningful as possible [1]–[3] but one limitation that
remains for real-time emulation is the accurate computation
of the RF propagation path loss between radios.

RF propagation path loss predictions for MANET emulation
has traditionally relied on either off-line link analysis using
various models including high fidelity finite difference time
domain (FDTD) and ray-tracing methods [2] or real-time
calculations with stochastic models. [3] When calculations are

performed off-line it is assumed that either the node mobility
is known apriori or some large data set of node locations
are computed and stored in a look-up table. Limiting the
mobility apriori can be a severe limitation when experiments
may involve live components or mobility is controlled by a
third party application such as a force modeling simulation.
One method to remove this limitation is to use interpolation
between known data points but the accuracy and efficiency
of this method is limited by a number of factors. These
factors include the physical size of the virtual environment,
machine memory for storing and accessing a look up table,
signal phase, and fading affects from small obstructions are not
captured because of the computed grid size. Computationally
inexpensive methods such as the various free-space models
are not a satisfactory solution either, as they do not capture
the effect of terrain, vegetation, precipitation or man-made
structures on RF propagation path loss.

RF propagation models play an essential role in the plan-
ning, analysis and optimization of radio networks [1], [4]–[7].
For instance, coverage and interference estimates of network
configurations are based on field strength predictions, routing
is also highly dependent upon computed path loss data. [1]
The increasing fidelity of MANET emulations from packet-
level to signal-level [8] analysis will require fast and accurate
modeling of the physical layer. [9], [10] Using GPUs to
provide the floating point performance required to compute
the RF propagation path loss algorithms in real time it is
possible to provide a more realistic physical layer for MANET
emulations and simulations. The first algorithm discussed
will be the Longley-Rice method as implemented within the
irregular terrain model (ITM). The ITM is well suited for
large scale emulations of 1000’s of devices located in a non-
urban environment. The second method investigated is the
transmission line matrix or TLM which is targeted towards
pico-cell scenarios within buildings or in relatively localized
urban environments. The final method investigated, the ray
tracing method, is used primarily for small scale to large scale
urban environments.

II. BACKGROUND

The scale and complexity of MANETs used by the Depart-
ment of Defense (DoD) continues to increase, and is increasing
particularily within the Army as a mobile fighting force. The



military is rapidly becoming a network-centric force, with
substantial access to sensor-derived surveillance information as
well as an increasingly complicated application layer running
over many different devices. Each layer introduces significant
advantages to the war fighter, but also brings in new depen-
dencies and new risks from the rapid change in configurations
of the MANETs that provide network access across the
battlefield. Headed by the U.S. Army Research Laboratory
(ARL), the Mobile Network Modeling Institute (MNMI) was
established in 2007 to exploit High Performance Computing
(HPC) resources through the development of computational
software. Thus enabling the DoD to design, test, and optimize
networks at sufficient levels of fidelity and with sufficient
speed to understand the behavior of network technologies in
the full range of conditions under which they will be deployed.
Operational goals of the MNMI include the development of
scalable computational modeling tools for simulations and
emulations, the ability to understand apriori the performance
of proposed radio waveforms in the field, and to optimize
the network for U.S. Army war fighters. The results of the
MANET modeling effort presented here are from an effort at
the ARL that is focused on the development of a framework
for large scale MANET emulations, e.g. up to 5000 emulated
devices. A large scale emulation environment will provide
a testbed for the research, development, and evaluation of
network algorithms, applications and devices in a controlled
environment. [11]

III. RF PROPAGATION PATH LOSSALGORITHMS

As previously mentioned, there are many approaches for
field strength prediction and they can be roughly divided into
semi-empirical, time-domain methods and ray-optical mod-
els. For example, the semi-empirical COST-Walfisch-Ikegami
model [12] estimates the received power predominantly on the
basis of frequency and distance to the transmitter. Ray-optical
[13] approaches identify ray paths through the scene, based
on wave guiding effects like reflection and diffraction. Semi-
empirical algorithms usually offer fast computation times
but suffer from inherent low prediction quality. Ray-optical
algorithms feature a higher prediction quality at the cost of
higher computation times, while time-domain methods typi-
cally increase accuracy further with even higher computational
costs.

At the physical layer, the interactions between devices is
governed by the RF propagation characteristics of the environ-
ment. MANET emulation with HIL capabilities further require
that the RF path loss data must be computed and provided to
the emulation environment in real-time. The algorithms used
to compute path loss must be computed in real-time for each
of the possible propagation paths. Initially assuming thatall
devices in a single emulation scenario are within propagation
range of each other the computational complexity of the RF
path loss algorithm isO

(

n2
)

, where n is the number of
transmitter/receiver device pairs in the scenario. Although the
computational cost varies, the methods available for computing
the RF path loss data all require a large number of floating

point operations, necessitating a high FLOP (floating point
operations) rate for real-time path loss predictions.

Recently, the use of GPUs has been identified as a solution
to provide the raw floating point performance [14] required
to compute the RF propagation path loss in real-time. [6], [7]
Originally, GPUs were developed in order to quickly compute
rasterization which requires a large number of simple floating
point operations. This targeted design is the reason that the
architecture has been able to exceed the performance of CPU
architectures for raw FLOP rates. [15] The MANET emulation
environment used here is EMANE (Extendable Mobile Ad-
hoc Network Emulator) from DRS (formerly Cengen Labs)
[16]. In EMANE, the GPS locations of all mobile radios are
transmitted over an IP multicast group that is monitored by
the emulated devices for self-location.

Although a number of path loss algorithms exist, we down-
selected the methods based on various scenarios we typically
encounter. For instance we have criteria for large scale non-
urban environment, large scale urban environments and very
localized analysis for moderate numbers of devices. In or-
der to provide a robust path loss calculation for the non-
urban environments we selected the Longley-Rice model. The
Longley-Rice model is capable of predicting path loss in
an area or point to point mode, with the later used here.
Longley-Rice is designed for frequencies between 20 MHz
and 20 GHz and for path lengths between 1 km and 2000
km [17], both within our scenario operating ranges. In point-
to-point mode the model considers input parameters such
as distance, antenna height, surface reflectivity, climateand
the terrain profile between the transmitter and receiver. [18]
The rest of the environmental parameters can be transient
or fixed upon initialization. This implementation is robustin
that it allows all parameters to change each time the GPU
kernel is executed. The TLM method [19] is related to the
FDTD method and as such discretizes space and time for
computing the electromagnetic field. One advantage of the
TLM method over FDTD for this application is the larger
spatial discretization possible, and is well-suited for analysis
of local areas or pico-cells. The final method investigated
is ray tracing [13], using the shooting bouncing ray (SBR)
method. The ray tracing method is computationally expensive
but many of the algorithms required to compute this method
translate efficiently onto GPUs, and is capable of producing
results for large urban environments. In the interest of space
we will give details below on the implmentation of the TLM
algorithm before discussing the achieved performance for all
three methods.

A. The Transmission Line Matrix Algorithm for Real-Time
Radio Wave Propagation Path Loss in Pico-Cells

The transmission line matrix method or transmission line
modeling method relies on the relationship between electro-
magnetic field quantities and voltage and current on transmis-
sion lines. [20] The formulation followed in this work is the
three-dimensional symmetrical condensed node (SCN). [21]
Although this method is more efficient that the FDTD method



Fig. 1. TLM kernels showing those ported to GPU on the right and where
communication can be limited but increasing the number of steps per burst.

that requires approximately 10 grid points per wavelength,
each node in the cubic mesh requires solution of 12 values.
More details of this algorithm can be found elsewhere [19]–
[22].

1) TLM Implementation Details for the GPU: The TLM
implementation used in this work is solved using a regular
Cartesian grid and therefore memory accesses from neighbor-
ing grid points is well defined and memory efficient. This
is very important for porting of an application to the GPU
architecture as cache misses are much more expensive than on
a general purpose CPU. In our implementation the memory
access is based on a 3D stencil and calculations are mostly
MADDs (Multiply-Add). The TLM code is based on a pre-
vious FDTD code optimized for GPUs using the Brook+ lan-
guage. The algorithm, illustrated in Figure 1, is composed of
7 primary functions. Of these functions Initialization, Stream
Read, Stream Write and Finalization are executed on the
CPU. The functions within the Nburst loop, namely Apply
Excitation, TLM Update Local and TLM Update Exchange are
all executed on the GPU hardware. By increasing the ratio of
computation to communication the transfer of data across the
PCIe bus between CPU and GPU can be limited, potentially
increasing performance significantly.

In the TLM implementation used here the number of
time steps (Nstep) for which the entire grid of Voltages is
computed is predefined. This is reasonable since for a regular
grid size, the maximum distance that a wave will travel before
the input Voltage is insignificant can be estimated from the
medium attenuation coefficient. The maximum mesh size,△l,
can be estimated from the following equation.

△l

λ
≤ 0.1 (1)

Where△l is the mesh size andλ is the wavelength of interest.
[20]

2) TLM algorithm optimization for GPUs: As previously
discussed, the TLM method is well suited for the GPU
architecture. An important optimization developed by one of
the authors is called shuffled grids. Using this method it is
possible to efficiently combine 4 single precision floating point
operations of the TLM method into a single float4 SIMD

Fig. 2. The memory layout for the shuffled grid method using a 15 offset.

operation. In Figure 2 consider the simple 1D stencil.

g1 = a ∗ f0 + b ∗ f1 + c ∗ f2 (2)

In order to leverage float4 SIMD operations the memory is
shuffled as shown in Figure 2. The calculation from Equation
2 is then rewritten using float4 SIMD operations.

G1 = c0 ∗ F0 + c1 ∗ F1 + c2 ∗ F2 (3)

Which is equivalent to performing the following set of calcu-
lations.

g1 = a ∗ f0 + b ∗ f1 + c ∗ f2 (4a)

g16 = a ∗ f15 + b ∗ f16 + c ∗ f17 (4b)

g31 = a ∗ f30 + b ∗ f31 + c ∗ f32 (4c)

g46 = a ∗ f45 + b ∗ f46 + c ∗ f47 (4d)

Although there is a small amount of bookkeeping associated
with the shuffling and unshuffling of grid points, these are per-
formed as pre- and post-processing steps with little overhead.
While the potential performance gains for the TLM algorithm
are close to a 4x speedup.

IV. N UMERICAL STABILITY AND CONSISTENCYACROSS

ARCHITECTURES

As noted previously, single precision floating point compu-
tations are used on the GPU in order to achieve maximum
performance, the trade-off being possibly decreased accuracy.
Since the Longley-Rice model uses statistical estimates to
compute the variability of signal path loss due to situation,
time and location. The actual received signal is expected
to deviate from the computed value due to these variables
but the model still provides a reasonable estimate. Therefore,
small variations due to single versus double precision are not
expected to invalidate the computed results for its intended
purpose of estimating signal loss over irregular terrain. For
the Longley-Rice algorithm there are a large number of
transcendental functions that do not have a double precision
computation available. Algorithm development with single-
precision accuracy raised concerns with numerical stability
and consistency, especially, in the context of forward and
inverse transcendental functions with small angles. Whereas
it is possible, although not guaranteed, that reasonably precise
consistency might be expected across these architectures for
simple algorithms based on multiply-add operations, the com-
plexity and reliance upon complex transcendental operations
makes exact agreement here unlikely. Factors impacting the



difference in results include extended bit precision used in
some operations, differences in rounding behavior, and differ-
ences in the software implementation of complex operations.
Additionally, the GPU implementation introduces the possi-
bility of order-of-operation effects as a result of the fine-grain
parallelism within some kernels.

An issue identified across many elements of the algorithm
was the repeated use of forward and inverse transcendentals
at small angles. An example of this small-angle effect is the
use of great circle calculations over small areas in which the
correction due to the curvature of the earth was small. A
serious numerical instability was identified with the pattern
of successive operations of cosine, followed by a minor
calculation, and then followed by an arc cosine. Such patterns
had the potential to produce an intermediate value slightly
greater than 1.0 and a final result of NaN (not a number). The
effects of this numerical instability can be complicated and the
impact on the final path loss can range from a small error to an
undefined result (NaN). In some cases a less severe numerical
error results from differences in transcendental functions at
limiting values. Secondary impacts were also identified, for
example differences in the projected map location within
the digital terrain map can introduce differences in elevation
within the extracted height profile that only impact results
by changing the statistical metrics calculated for these height
profiles. The solution to many of these issues was to re factor
the formulas found in the original reference implementation
and introduce forms with greater stability at the limiting ranges
found within the typical uses cases. Consider the original
distance calculation, that begin by first calculating,

a =cos(90 − lat2) ∗ cos(90 − lat1)+

sin(90 − lat2) ∗ sin(90 − lat1)∗
cos(lon2 − lon1)

(5)

Where lat1, lon1 refer to the transmitter coordinates and
lat2, lon2 refer to the receiver coordinates. Using the valuea

computed in Equation (5),

b =arccos (a) (6)

Where for the earth,

distance = Rearth ∗ b (7)

Here Rearth is the radius of the earth. For small angles this
calculation can be unstable using single precision so we used
the following approximation,

∆lon =lon2 − lon1 (8a)

∆lat =lat2 − lat1 (8b)

a =(sin(∆lat))
2
+

cos(lat1) ∗ cos(lat2) ∗
(

sin

(

∆lon

2

))2 (9)

b =2 ∗ arcsin(min(1,
√

a)) (10)

Distance is then computed using Equation (7). Efforts to
improve the numerical stability resulted in good agreement
between a CPU and AMD Cypress and Cayman GPUs. We
take as an assumption that the CPU hardware provides a
reasonable baseline for comparison since the implementation
of all relevant math operations are well established, more
thoroughly tested, and provide better edge cases relative to
GPUs. Results for the NVIDIA Fermi GPU exhibited notable
discrepancies, with a complete understanding of the cause
remaining for further investigation. Numerical consistency was
tested across these architectures using a simple synthetictest
case involving an 8 by 8 uniform grid of radio transceivers over
a DEM (digital elevation map) with 1.2M elevation points.
Table I shows the percentage of the point-to-point path loss
results calculated on a particular GPU architecture that agree
with the results calculated on the CPU to within a tolerance
of 1 dB, 2 dB, and 10 dB, respectively.

TABLE I
CONSISTENCY OF THE RESULTS CALCULATED WITH VARIOUSGPUS

COMPARED TO THE BASELINE RESULTS FROM THECPU.

Processor <1 dB <2 dB <10 dB
ATI Radeon HD 5870 98 % 99 % 100 %
AMD Radeon HD 6970 98 % 99 % 100 %
NVIDIA Tesla C2070 86 % 90 % 94 %

As observed in Table I, the ATI/AMD devices provide a
result more consistent with the baseline CPU. We have been
unable to determine at this time the cause of the discrepancy
between the two vendors but the ATI/AMD solution consis-
tently provided results more consistent with the CPU baseline
calculations.

V. PERFORMANCE ANDSCALING

In this section we explore the achieved performance on each
of the algorithms on several GPU platforms. In the process
comparing vendor we also compare solutions from ATI/AMD
and NVIDIA. Each of the algorithms has its own peculiarities
that affect performance, for instance the Longley-Rice algo-
rithm is heavily dependent upon transcendental functions and
not on more typical MADD (multiply add) operations, whereas
TLM has very structured memory accesses and contains
almost exclusively MADD operations. This results in come
interesting comparisons as the reported FLOP rates are for
MADD operations, and transcendental function performance
is not directly related.

A. ITM Performance

The ITM algorithm was the first method investigated and
therefore this section contains a number of results and compar-
isons. We start by giving the overall application computation
times in Table II which lists the wall clock time required for
three different architectures to compute all point-to-point RF
path loss values using the Longley-Rice algorithm.

As illustrated in Table II using the current ITM imple-
mentation, all of the tested GPU architectures are capable of



TABLE II
T IMING RESULTS FOR256TRANSMITTERS/RECEIVERS USING THE

OPENCL VERSION OF THELONGLEY-RICE ALGORITHM RUN ON AMD
AND NVIDIA GPUS.

Processor Time (s)
ATI Radeon HD 5870 0.72
AMD Radeon HD 6970 0.55
NVIDIA Tesla C2070 0.39

Number of Transmitters (Receivers)

C
al

cu
la

ti
o

n
 T

im
e 

(s
)

12
8

25
6

38
4

51
2

64
0

76
8

89
6

10
24

10-2

10-1

100

101
AMD Radeon HD 6970
NVIDIA C2070

0.5 Second Line

Fig. 3. Plot of total ITM (Longley-Rice) calculation time versus number
of transmitters/receivers. The 0.5 second line representsthe maximum time
allowed for real-time computations.

providing computed RF path loss results for 256 transceivers,
or 65,536 point-to-point calculations, in less than 1 second
on a single GPU device. For 256 radios, the fastest time to
solution is reported as 0.39 sec using an NVIDIA C2070
[23] as compared with 0.72 sec and 0.55 sec using an ATI
Radeon HD 5870 and AMD Radeon HD 6970, respectively.
[24] Complete performance results are plotted in Fig. 3 for a
range of 32 to 1024 transceivers.

In Figure 3 a line is drawn at 0.5 seconds to show
approximately the number of transceivers a particular GPU
is capable of considering in real-time. It is interesting tonote
that the theoretical peak FLOP rate of the AMD Radeon HD
6970 is 2.703 TFLOPs and the NVIDIA C2070 is only 1.288
TFLOPs. Conversely, the number of radios supported by the
Longley-Rice algorithm in less than 0.5 seconds of compu-
tation time is higher for the NVIDIA GPU. This apparent
inefficiency in the AMD hardware is due to the fact that many
of the floating-point operations in the Longley-Rice algorithm
are transcendental functions such as cosine, sine, tangent, co
secant, etc., The performance of a specific architecture on the
Longley-Rice algorithm is therefore not easily predicted by
theoretical peak performance. Additionally, the memory access
patterns within the kernels are non-trivial, and this will also
contribute to the observed performance.

Performance of complex multi-kernel algorithms can be
impacted by many factors including pure computational load,
memory access, host-device data transfer, and kernel launch
latency. In the case of the 10 kernels in the ITM implemen-
tation, each individual kernel shows a very low execution

time when directly measured in a fully blocking mode of
operation. In order to investigate whether the ITM imple-
mentation is effectively using the GPU compute capability,
the stripe size over which the computation is distributed was
varied to observe the effect of changing the amount of work
performed per kernel execution. Initially the stripe size was
set at 4096 with subsequent test cases of 2048 and 1024
point-to-point calculations. The results in Table III show
an improvement on the order of 10% when increasing the
block size from 1024 to 4096, thus providing more work
per kernel execution. This indicates that the block size of
4096 is performing only slightly better than the block size of
2048, therefore increasing the block size further would yield
diminishing returns. Increasing the block size further would
also decrease the efficiency of performing calculations where
the number of point-to-point paths was not commensurate with
block size. For example, with a workload of 65536 point-to-
point calculations, increasing the block size will approach the
size of the work load resulting in an efficient calculation when
the work load is not a multiple of the block size.

TABLE III
PERFORMANCE FORAMD AND NVIDIA GPUS AS A FUNCTION OF

BLOCK SIZE IN TERMS OF THE NUMBER OF POINT-TO-POINT PATHS
EVALUATED PER KERNEL EXECUTION.

Processor Block Size Time (s)
ATI Radeon HD 5870 1024 0.83
ATI Radeon HD 5870 2048 0.75
ATI Radeon HD 5870 4096 0.72

AMD Radeon HD 6970 1024 0.65
AMD Radeon HD 6970 2048 0.58
AMD Radeon HD 6970 4096 0.55

NVIDIA Tesla C2070 1024 0.42
NVIDIA Tesla C2070 2048 0.40
NVIDIA Tesla C2070 4096 0.39

B. TLM Performance

As noted previously, the TLM algorithm, much like FDTD,
is well suited for the GPU architecture. In this case the biggest
bottleneck is expected to be data transfer across the PCIe
bus which is known to be a bottle neck for applications
executing on GPUs. By limiting the number of times results
are transported across the PCIe bus in the TLM algorithm
we were able to optimize the calculation time by an order of
magnitude, Figure 4.

Notice in Figure 4 that the time per step for CPUs remains
fairly constant from 10 to 1000 steps, whereas the GPU results
show an order of magnitude decrease in time per step. This
illustrates the importance of increasing the computation to
communication ratio when using GPUs as a co-processor.
In Figure 4 the cpu-opt and gpu-opt lines refer to the use
of the shuffled grid method discussed previously. The gpu-
opt time per step line shows a nearly ideal 4x speedup
over the unoptimized version, whereas the cpu-opt line shows



Fig. 4. Plot of time per step computed showing performance increases for
GPUs with modest gains for CPUs. By increasing the nsteps parameter the
ratio of computation to communication is increased. Noticethe power scale
on the y-axis.

Fig. 5. Side view of 3D polygon data from Tonsberg, Norway used for ray
tracing algorithm development.

about a 1.2x speedup over the unoptimized CPU version. The
nearly 4x speedup indicates that the algorithm is able to take
advantage of the GPU ability to perform MADD functions on
4 32-bit floating point values simultaneously.

C. Ray Tracing Performance

The primary factor in determining execution time for the
ray tracing algorithm is the number of rays generated and
computed. The total number of rays in the system depends
on the number of rays emitted by individual transmitters,
the number of reflections, scattering, diffraction and refrac-
tion allowed as well as the number of planar surfaces with
which the rays can interact. Note that in this experiment,
we are solely focusing on emitted and reflected rays. The
environment in use in our research is a polygon-based 3D
representation of the town of Tonsberg, Norway, Figure 5.
As noted earlier this model contains 68,356 triangle and the
benchmark scenario contains two transmitters that spherically
emit rays in all directions. The emission angles of individuals
rays is dependent upon the user-specifiednθ and nφ values.
The values ofnθ and nφ are equivalent over each run and
vary their values between 64, 128 and 256. Each emitted ray
is traced throughout the environment to generate reflected rays
based on their interactions with the planar surfaces. The path
of the reflected ray is computed based on the laws of reflection
in light propagation.

Fig. 6. The number of rays generated during the ray tracing calculation with
a maximum of 1 to 6 reflections and an angular partitioning of 64, 128 or
256 partitions.

The ray tracing method is developed using OpenCL in order
to take advantage of multiple platforms, although for these
results we used an NVIDIA Quadro FX4800 GPGPU with
1.5GB GDDR3 of GPU memory. The total number of rays
in the system is computed, and Figure 6 plots the number
of rays in the system fornθ and nφ as they vary from 64
to 256. In Figure 6 the maximum number of reflections that
individual rays are permitted to undergo is varied from 1 to
6. It is expected that some predetermined maximum number
of reflections or unfolded ray length will be used to limit the
run time while preserving accuracy.

Using the parameters from Figure 6 the run time for each
configuration is collected and plotted against the number of
rays generated, Figure 7. Figure 7 shows a linear relationship
between run time and number of rays, but with offsets de-
pending on the initial angular partitioning used. This is related
to the cost of initial ray generation and generating new rays
after intersection with a surface has occurred. The offsetsare
approximately equivalent to the difference between the squares
of the number of angular partitions. E.g.1282 − 642 = 12288
and2562 − 1282 = 49152. Note that for each ray, the system
currently needs to analyze all of the 68,356 planar surfacesin
the environment to determine its endpoint. Future performance
enhancements will therefore focus on the size of the model and
the number of polygons that need to be interrogated for each
ray.

VI. CONCLUSIONS ANDFUTURE WORK

MANET emulation of large scale networks is a useful tool
for network analysts but without realistic RF propagation the
accuracy of the results are questionable. Using GPUs we have
developed three RF propagation path loss methods that can run
in real time or near real time along side a MANET emulation
to provide realistic path loss data. These algorithms covera
broad range of the typical scenarios encountered by MANETs
in the field, namely, non-urban large networks, large scale
urban networks and pico-cells of around 20 nodes in a local
area. We have investigated the use of the standard OpenCL
language against vendor solutions such as Brook+ and CUDA.



Fig. 7. Ray Tracing algorithm run time versus number of generated rays. The
three different slopes correspond to the number of initial angular partitioning
of 64, 128 and 256 partitions.

We have also shown how algorithm development for GPUs
is very important for achieving maximum performance, such
as the shuffled grid method, modifying calculations to use
single precision where possible, etc. Additionally for theITM
it was possible to use reduced precision calculations, through
the use of alternative calculations for edge cases to improve
performance on GPUs. Load distribution and communication
costs were mimed by the creation of computation blocks that
limit kernel calls and minimize wasted computation cycles.
These developments enable the emulation framework at ARL
to provide real time situational awareness data to live field
exercises and will have applicability to the integration with
future modeling simulations and the fielding of upcoming
devices.

Although vendor supplied languages for GPUs have shown
to currently provide superior performance we have settled
on using a portable standard for parallel computing systems,
namely OpenCL. Using OpenCL we have developed the
Longley-Rice ITM and ray tracing methods for real time RF
path loss computations that supports MANET emulation. En-
abled MANET emulation provides the capability to augment
live exercises, integrate MANET emulation with simulations
and to drive programmable attenuators for laboratory exper-
imentation with physical devices. Prior to the development
of these capabilities with GPUs, the wireless node mobility
and path loss for a scenario needed to either be computed
apriori or to use a large number of (i.e. 10,000) CPU cores,
dedicated to path loss calculation. This was not acceptable
because the CPUs cores are required to host virtual machines
for MANET emulation and by using GPU co-processors it has
been possible to over come this hurdle for efficient large scale
MANET emulation.

VII. A CKNOWLEDGMENTS

The authors would like to acknowledge the support re-
ceived from the High Performance Computing Moderniza-
tion Program Office (HPCMPO) under the Mobile Network
Modeling Institute (MNMI). The authors would also like
to acknowledge the support of the HPCMP PETTT (High
Performance Computing Modernization Program Productivity

Enhancement, Technology Transfer and Training) program.

REFERENCES

[1] Arne Schmitz and Martin Wenig. The effect of the radio wave
propagation model in mobile ad hoc networks. InThe 9th ACM/IEEE
International Symposium on Modeling, Analysis and Simulation of
Wireless and Mobile Systems (MSWiM 2006), October 2006.

[2] Michael A. Kaplan, Ta Chen, Mariusz A. Fecko, Provin Gurung,
Ibrahim Hokelek, Sunil Samtani, Larry Wong, Mitesh Patel, Aristides
Staikos, and Ben Greear. Realistic wireless emulation for performance
evaluation of tactical manet protocols. InIEEE Military Communications
Conference (MILCOM), October 2009.

[3] Thomas Nitsche and Thomas Fuhrmann. A tool for raytracing based
radio channel simulation. InSIMUTools, March 2010.

[4] T. Rick and R. Mathar. Fast edge-diffraction-based radio wave propaga-
tion model for graphics hardware. InAntennas, 2007. INICA ’07. 2nd
International ITG Conference on, pages 15–19, March 2007.

[5] Glenn Judd and Peter Steenkiste. Design and implementation of an rf
front end for physical layer wireless network emulation. InIEEE 65th
Vehicular Technology Conference (VTC2007), April 2007.

[6] D. Catrein, M. Reyer, and T. Rick. Accelerating radio wave propagation
predictions by implementation on graphics hardware. InVehicular
Technology Conference, 2007. VTC2007-Spring. IEEE 65th, pages 510
–514, april 2007.

[7] David Michéa and Dimitri Komatitsch. Accelerating a three-dimensional
finite-difference wave propagation code using gpu graphicscards.Geo-
physical Journal International, 182(1):389–402, 2010.

[8] P. Andelfinger, J. Mittag, and Hartenstein. H. GPU-basedArchitectures
and their Benefit for Accurate and Efficient Wireless NetworkSimula-
tions. In IEEE MASCOTS, pages 421–424, July 2011.

[9] I.K. Eltahir. The impact of different radio propagationmodels for
mobile ad hoc networks (manet) in urban area environment. InWireless
Broadband and Ultra Wideband Communications, 2007. AusWireless
2007. The 2nd International Conference on, page 30, aug. 2007.

[10] Illya Stepanov and Kurt Rothermel. On the impact of a more realistic
physical layer on manet simulations results.Ad Hoc Networks, 6(1):61
– 78, 2008.

[11] Esten Ingar Grøtli and Tor Arne Johansen. Path planningfor uavs under
communication constraints using splat! and milp.J. Intell. Robotics
Syst., 65(1-4):265–282, January 2012.

[12] E. Damasso, editor.Digital mobile radio towards future generation
systems. Office for Official Publications of the European Communities,
Luxembourg, 1999.

[13] Henry L. Bertoni. Radio Propagation for Modern Wireless Systems.
Prentice Hall Professional Technical Reference, 1999.

[14] Yang Song and Ali Akoglu. Parallel implementation of the irregular
terrain model (itm) for radio transmission loss predictionusing gpu and
cell be processors.IEEE Trans. Parallel Distrib. Syst., 22:1276–1283,
August 2011.

[15] NVIDIA. NVIDIA CUDA C Programming Guide, Version 4.0, 2011.
[16] Various. EMANE Developer Manual 0.7.3. DRS CenGen, LLC, 2012.
[17] G.A. Hufford, A.G. Longley, and W.A. Kissick. A Guide tothe

Use of the ITS Irregular Terrain Model in the Area PredictionMode.
Technical Report 82-100, National Telecommunications andInformation
Administration, April 1982.

[18] G. Hufford. The ITS Irregular Terrain Model, version 1.2.2 The Al-
gorithm. National Telecommunications and Information Administration
Institute for Telecommunication Sciences, 1995.

[19] C. Christopoulos.The Transmission Line Modeling Method: TLM. IEEE
Press, 1995.

[20] Sadasiva M. Rao.Time Domain Electromagnetics. Academic Press,
1999.

[21] P.B. Johns. A symmetrical condensed node for the tlm method.
Microwave Theory and Techniques, IEEE Transactions on, 35(4):370
– 377, apr 1987.

[22] P. Naylor and R. A. Desai. New Three Dimensional Symmetrical
Condensed Lossy Node for the Solution of Electromagnetic Wave
Problems by TLM.Electronics Letters, 26(7):492–494, 1990.

[23] Benchmarks used the OpenCL implementation provided bythe NVIDIA
CUDA Toolkit v3.2.

[24] Benchmarks used the OpenCL implementation provided bythe AMD
ATI Stream SDK v2.3.


