Real-Time Radio Wave Propagation for Mobile
Ad-Hoc Network Emulation Using GPGPUSs

Brian J. Henz, David Richié, Evens JeanSong Jun Patk James A. Rods Dale R. Shires
*U.S. Army Research Laboratory, APG, MD 21005
TBrown Deer Technology, Forest Hill, MD 21050
fSecure Mission Solutions, APG, MD 21005
$Dynamics Research Corporation, Reston, VA 20190

Abstract—The accurate simulation and emulation of mobile performed off-line it is assumed that either the node mthbili
radios requires the computation of RF propagation path lossn s known apriori or some large data set of node locations
order to accurately predict connectivity and signal interference. are computed and stored in a look-up table. Limiting the

There are many algorithms available for computing the RF pra- bilit . b limitati h . i
agation path loss between wireless devices including the hgley- MODIlity apriori can be a severe limitation when experinsen

Rice model, the transmission line matrix (TLM), ray-tracing, May involve live components or mobility is controlled by a
and the parabolic equation method. Each of these methods hasthird party application such as a force modeling simulation
advantages and disadvantages but all require a large number One method to remove this limitation is to use interpolation
of floating point operations during execution. In this paper petyeen known data points but the accuracy and efficiency
we investigate using general purpose graphics processingnits - S

(GPGPUSs) to provide the computational capabilities requied to of this .method IS l'm'te.d by_a number _Of factor.s. These
perform these RF path loss calculations in real-time in orde factors include the physical size of the virtual environten
to support large scale mobile ad-hoc network emulation. Thee machine memory for storing and accessing a look up table,
specific methods, namely the Longley-Rice, TLM, and ray-traing signal phase, and fading affects from small obstructioasat
methods are explored including usage cases and performancecaptred because of the computed grid size. Computatjonall
analysis on GPUs. The Longley-Rice algorithm is solved in ed- . . .

time for 1000’s of transmitters and receivers, the TLM methal NEXPENSIVE methods such_as the various free-space models
is well suited for GPU acceleration as is ray-tracing. We wil are not a satisfactory solution either, as they do not captur
discuss the algorithm maodifications required for efficient U the effect of terrain, vegetation, precipitation or mane@ma
use, precision issues and optimization. structures on RF propagation path loss.

Keywords: Mobile Ad-Hoc Network, Emulation, GPGPU, RF propagation models play an essential role in the plan-
RF Propagation Path loss, Longley-Rice, Transmission Lifgng, analysis and optimization of radio networks [1], [}~
Matrix, Ray-Tracing For instance, coverage and interference estimates of mietwo
configurations are based on field strength predictionsjmgut

is also highly dependent upon computed path loss data. [1]

Large scale testing, evaluation and analysis of mobile@d-hThe increasing fidelity of MANET emulations from packet-
network (MANET) platforms is an expensive proposal with ¢evel to signal-level [8] analysis will require fast and acate
limited parameter space and repeatability under expetimhermodeling of the physical layer. [9], [10] Using GPUs to
conditions. [1] Therefore, simulation and emulation tdwdse provide the floating point performance required to compute
been developed that provide researchers with a contrellabthe RF propagation path loss algorithms in real time it is
and repeatable environment for analysis of MANET platfarmgossible to provide a more realistic physical layer for MANE
In particular, emulation holds great promise for limitinget emulations and simulations. The first algorithm discussed
amount of live experimentation required for MANET platwill be the Longley-Rice method as implemented within the
form development. Emulation provides for hardware-in-thérregular terrain model (ITM). The ITM is well suited for
loop (HIL) testing and analysis where the physical medium large scale emulations of 1000’s of devices located in a non-
replaced by a virtual environment and a physical or simdlateirban environment. The second method investigated is the
radio can be used with real applications. Much effort hasibegansmission line matrix or TLM which is targeted towards
performed in this area to make the virtual environment asphypico-cell scenarios within buildings or in relatively Idizad
ically meaningful as possible [1]-[3] but one limitationath urban environments. The final method investigated, the ray
remains for real-time emulation is the accurate computatitracing method, is used primarily for small scale to largalsc
of the RF propagation path loss between radios. urban environments.

RF propagation path loss predictions for MANET emulation
has traditionally relied on either off-line link analysising
various models including high fidelity finite difference #m The scale and complexity of MANETSs used by the Depart-
domain (FDTD) and ray-tracing methods [2] or real-timenent of Defense (DoD) continues to increase, and is inangasi
calculations with stochastic models. [3] When calculatiare particularily within the Army as a mobile fighting force. The

I. INTRODUCTION

Il. BACKGROUND

military is rapidly becoming a network-centric force, withpoint operations, necessitating a high FLOP (floating point
substantial access to sensor-derived surveillance irdbomas operations) rate for real-time path loss predictions.
well as an increasingly complicated application layer iagn Recently, the use of GPUs has been identified as a solution
over many different devices. Each layer introduces sigaific to provide the raw floating point performance [14] required
advantages to the war fighter, but also brings in hew depen-compute the RF propagation path loss in real-time. [q], [7
dencies and new risks from the rapid change in configuratio@siginally, GPUs were developed in order to quickly compute
of the MANETs that provide network access across thasterization which requires a large number of simple franti
battlefield. Headed by the U.S. Army Research Laboratoppint operations. This targeted design is the reason that th
(ARL), the Mobile Network Modeling Institute (MNMI) was architecture has been able to exceed the performance of CPU
established in 2007 to exploit High Performance Computiragchitectures for raw FLOP rates. [15] The MANET emulation
(HPC) resources through the development of computatioralvironment used here is EMANE (Extendable Mobile Ad-
software. Thus enabling the DoD to design, test, and opéiminoc Network Emulator) from DRS (formerly Cengen Labs)
networks at sufficient levels of fidelity and with sufficien{16]. In EMANE, the GPS locations of all mobile radios are
speed to understand the behavior of network technologiestiansmitted over an IP multicast group that is monitored by
the full range of conditions under which they will be depldye the emulated devices for self-location.
Operational goals of the MNMI include the development of Although a number of path loss algorithms exist, we down-
scalable computational modeling tools for simulations argklected the methods based on various scenarios we typicall
emulations, the ability to understand apriori the perfonce encounter. For instance we have criteria for large scale non
of proposed radio waveforms in the field, and to optimizerban environment, large scale urban environments and very
the network for U.S. Army war fighters. The results of théocalized analysis for moderate numbers of devices. In or-
MANET modeling effort presented here are from an effort aler to provide a robust path loss calculation for the non-
the ARL that is focused on the development of a framewotkban environments we selected the Longley-Rice model. The
for large scale MANET emulations, e.g. up to 5000 emulatdtngley-Rice model is capable of predicting path loss in
devices. A large scale emulation environment will providan area or point to point mode, with the later used here.
a testbed for the research, development, and evaluationLohgley-Rice is designed for frequencies between 20 MHz
network algorithms, applications and devices in a corgmbll and 20 GHz and for path lengths between 1 km and 2000
environment. [11] km [17], both within our scenario operating ranges. In point
to-point mode the model considers input parameters such
as distance, antenna height, surface reflectivity, clinzatd

As previously mentioned, there are many approaches fibie terrain profile between the transmitter and receives] [1
field strength prediction and they can be roughly divided infThe rest of the environmental parameters can be transient
semi-empirical, time-domain methods and ray-optical modr fixed upon initialization. This implementation is robust
els. For example, the semi-empirical COST-Walfisch-lkeganthat it allows all parameters to change each time the GPU
model [12] estimates the received power predominantly en tkernel is executed. The TLM method [19] is related to the
basis of frequency and distance to the transmitter. Rai@ipt FDTD method and as such discretizes space and time for
[13] approaches identify ray paths through the scene, basgmnputing the electromagnetic field. One advantage of the
on wave guiding effects like reflection and diffraction. Sem TLM method over FDTD for this application is the larger
empirical algorithms usually offer fast computation timespatial discretization possible, and is well-suited foalgigis
but suffer from inherent low prediction quality. Ray-otic of local areas or pico-cells. The final method investigated
algorithms feature a higher prediction quality at the coist ¢s ray tracing [13], using the shooting bouncing ray (SBR)
higher computation times, while time-domain methods typmethod. The ray tracing method is computationally expensiv
cally increase accuracy further with even higher compateti but many of the algorithms required to compute this method
costs. translate efficiently onto GPUs, and is capable of producing

At the physical layer, the interactions between devices iigsults for large urban environments. In the interest oftepa
governed by the RF propagation characteristics of the envir we will give details below on the implmentation of the TLM
ment. MANET emulation with HIL capabilities further regair algorithm before discussing the achieved performance lfor a
that the RF path loss data must be computed and providedhoee methods.
the emulation environment in real-time. The algorithmsduse o]]]
to compute path loss must be computed in real-time for eah The Transmission Line Matrix Algorithm for Real-Time
of the possible propagation paths. Initially assuming tlat Radio Wave Propagation Path Loss in Pico-Cells
devices in a single emulation scenario are within propagati The transmission line matrix method or transmission line
range of each other the computational complexity of the RRodeling method relies on the relationship between electro
path loss algorithm isO (n2) where n is the number of magnetic field quantities and voltage and current on tragsmi
transmitter/receiver device pairs in the scenario. Allothe sion lines. [20] The formulation followed in this work is the
computational cost varies, the methods available for cdmgu three-dimensional symmetrical condensed node (SCN). [21]
the RF path loss data all require a large number of floatifgthough this method is more efficient that the FDTD method

Ill. RF PROPAGATION PATH LOSSALGORITHMS

Initialization fo fi fa
N_step/ N_burst [o]rT2]3] 456]7] 8]0 n[1z]13[1a]18] .. [52] 53] 4] 58] 56 [57] 58] 59]

StreamRead
Nbust | - --T= - fo f1 f2 *

ApplyExcitation e Apply Excitation [o]s[n]ss] 1]1s[a1] %] 2 [17]32]a7[3] 18] 8] 48] ... [13[28] 43] 8] 14] 20] 4a[50 [u8[B0 6] x|
e DN e

__________ TLMUpdate Exchange

TLMUpdate Exchange

Fig. 2. The memory layout for the shuffled grid method usinghaoffset.

Stream Write

Finalization

operation. In Figure 2 consider the simple 1D stencil.
Fig. 1. TLM kernels showing those ported to GPU on the rigid arere
communication can be limited but increasing the number efstper burst. go=ax fo+bxfi+cx*fo (2)

In order to leverage float4 SIMD operations the memory is
shuffled as shown in Figure 2. The calculation from Equation
that requires approximately 10 grid points per wavelengtB,is then rewritten using float4 SIMD operations.
each node in the cubic mesh requires solution of 12 values.

More details of this algorithm can be found elsewhere [19]- Gi=coxFoterxFitoxh ®)
[22]. Which is equivalent to performing the following set of calcu
1) TLM Implementation Details for the GPU: The TLM lations.

implementation used in this work is solved using a regular g = qx fo+bx f1 + c* fo (4a)
Cartesian grid and therefore memory accesses from neighbor

. . L . . . = b 4b
ing grid points is well defined and memory efficient. This ' @ fis +bx fio +cx fir (4b)
is very important for porting of an application to the GPU 931 = @ * fao +b* for +c* fo (4c)
architecture as cache misses are much more expensive than on gis = a * fas + b * fag + c* far (4d)

a general purpose CPU. In our implementation the memory

access is based on a 3D stencil and calculations are mOStI,yAlthoughthere is a small amount of bookkeeping associated

MADDs (Multiply-Add). The TLM code is based on a pre- .) : . .
vious FDTD code optimized for GPUs using the Brook+ la with the shuffling and unshuffling of grid points, these are pe

i) L . ormed as pre- and post-processing steps with little oathe
guage. The alg_orlthm, lllustrated |n_F|gure_ 1 s c_omposbd Wvhile the potential performance gains for the TLM algorithm
7 primary functions. Of these functions Initialization r&tm

Read, Stream Write and Finalization are executed on e close to a 4x speedup.

CPU. The functions within the Nourst loop, namely Apply V. NUMERICAL STABILITY AND CONSISTENCYACROSS
Excitation, TLM Update Local and TLM Update Exchange are ARCHITECTURES

all executed on the GPU hardware. By increasing the ratio ofAS noted previously,
computation to communication the transfer of data across t
PCle bus between CPU and GPU can be limited, pOtent'a‘&rformance, the trade-off being possibly decreased acyur

increasing performance significantly. Since the Longley-Rice model uses statistical estimates to
In the TLM implementation used here the number afompute the variability of signal path loss due to situation
time steps (Nstep) for which the entire grid of Voltages istime and location. The actual received signal is expected
computed is predefined. This is reasonable since for a regu@ deviate from the computed value due to these variables
grid size, the maximum distance that a wave will travel befobut the model still provides a reasonable estimate. Thegefo
the input Voltage is insignificant can be estimated from themall variations due to single versus double precision ate n
medium attenuation coefficient. The maximum mesh sizk, expected to invalidate the computed results for its intende

single precision floating point compu-
ions are used on the GPU in order to achieve maximum

can be estimated from the following equation. purpose of estimating signal loss over irregular terraiar F
Al the Longley-Rice algorithm there are a large number of
5y <0.1 (1) transcendental functions that do not have a double precisio

WhereAl is the mesh size antlis the wavelength of interest. com_pl_Jtatlon ava|lable_. Algorithm deve_lopment V.Vlth smgl_e_
20] precision accuracy ralsgd concerns with numerical stgbili
and consistency, especially, in the context of forward and
2) TLM algorithm optimization for GPUs. As previously inverse transcendental functions with small angles. Wdeere
discussed, the TLM method is well suited for the GPU is possible, although not guaranteed, that reasonalelyise
architecture. An important optimization developed by ofie @onsistency might be expected across these architectores f
the authors is called shuffled grids. Using this method it Emple algorithms based on multiply-add operations, tha-co
possible to efficiently combine 4 single precision floatimyp plexity and reliance upon complex transcendental operatio
operations of the TLM method into a single float4 SIMDmakes exact agreement here unlikely. Factors impacting the

difference in results include extended bit precision used i Distance is then computed using Equation (7). Efforts to
some operations, differences in rounding behavior, anférdif improve the numerical stability resulted in good agreement
ences in the software implementation of complex operatior®tween a CPU and AMD Cypress and Cayman GPUs. We
Additionally, the GPU implementation introduces the pessiake as an assumption that the CPU hardware provides a
bility of order-of-operation effects as a result of the fig)gin - reasonable baseline for comparison since the implementati
parallelism within some kernels. of all relevant math operations are well established, more
. thoroughly tested, and provide better edge cases relative t
An issue identified across many elements of the algorith Us. Results for the NVIDIA Eermi GPU exhibited notable

was the repeated use of forward and inverse transcenden das . : .
iscrepancies, with a complete understanding of the cause

at small angles. An example of this small-angle effect is the” " =™ . S : .
; . . : remaining for further investigation. Numerical consistgmvas
use of great circle calculations over small areas in which th : } . :
; tested across these architectures using a simple synthstic
correction due to the curvature of the earth was small. . . : . . 4
. L . . e . case involving an 8 by 8 uniform grid of radio transceiversiov
serious numerical instability was identified with the patte - . . : .
. : ; .—a DEM (digital elevation map) with 1.2M elevation points.
of successive operations of cosine, followed by a mmqr . .
: . able | shows the percentage of the point-to-point path loss
calculation, and then followed by an arc cosine. Such pagter : .
. : . . results calculated on a particular GPU architecture thateg
had the potential to produce an intermediate value sllghtlvy. e
. ith the results calculated on the CPU to within a tolerance
greater than 1.0 and a final result of NaN (not a number). Tr(l)?l dB. 2 dB. and 10 dB. respectivel
effects of this numerical instability can be complicated éme ' ' fesp Y-
impact on the final path loss can range from a small error to an TABLE |
undefined result (NaN). In some cases a less severe numeric4ONSISTENCY OF THE RESULTS CALCULATED WITH VARIOUSPUs
error results from differences in transcendental functia COMPARED TO THE BASELINE RESULTS FROM THEPU.
limiting values. Secondary impacts were also identified, fo
example differences in the projected map location withi
the digital terrain map can introduce differences in elievat
within the extracted height profile that only impact results
by changing the statistical metrics calculated for thesghie
profiles. The solution to many of these issues was to re factor
the formulas found in the original reference implementatio As observed in Table |, the ATI/AMD devices provide a
and introduce forms with greater stability at the limitiranges result more consistent with the baseline CPU. We have been

found within the typical uses cases. Consider the originghable to determine at this time the cause of the discrepancy

Processor <1dB| <2dB | <10 dB
ATl Radeon HD 5870 | 98 % | 99 % | 100 %
AMD Radeon HD 6970 98 % | 99 % | 100 %
NVIDIA Tesla C2070 86 % | 90 % 94 %

distance calculation, that begin by first calculating, between the two vendors but the ATI/AMD solution consis-
a = cos(90 — lats) * cos(90 — lat1)+ tently pr_ovided results more consistent with the CPU baseli
) . calculations.
sin(90 — lata) * sin(90 — laty)* (5)

V. PERFORMANCE ANDSCALING

In this section we explore the achieved performance on each
the algorithms on several GPU platforms. In the process
comparing vendor we also compare solutions from ATI/AMD
and NVIDIA. Each of the algorithms has its own peculiarities
b = arccos (a) (6) that affect performance, for instance the Longley-Riceoalg
rithm is heavily dependent upon transcendental functiors a
Where for the earth, not on more typical MADD (multiply add) operations, whereas
distance = Rogpes, * b (7) TLM has very structured memory accesses and contains
almost exclusively MADD operations. This results in come
Here Req,+n, is the radius of the earth. For small angles thigteresting comparisons as the reported FLOP rates are for
calculation can be unstable using single precision so we US§ADD operations, and transcendental function performance

cos(long — lon)

Where lat,, lon; refer to the transmitter coordinates andOf
laty, long refer to the receiver coordinates. Using the value
computed in Equation (5),

the following approximation, is not directly related.
Alon =lons — long (8a) A. ITM Performance
Alat =laty — laty (8b) The ITM algorithm was the first method investigated and
therefore this section contains a number of results and eomp
a = (sin(Alat))2 4 isons. We start by giving the overall application computati
Alon\ \ 2 9) times in Table II which lists the wall clock time required for
cos(laty) x cos(lata) * (sin (5)) three different architectures to compute all point-torpdRF
path loss values using the Longley-Rice algorithm.
S As illustrated in Table Il using the current ITM imple-
b =2 arcsin(min(1, v/a)) (10) mentation, all of the tested GPU architectures are capable o

TABLE Il
TIMING RESULTS FOR256 TRANSMITTERSYRECEIVERS USING THE
OPENCL VERSION OF THELONGLEY-RICE ALGORITHM RUN ONAMD
AND NVIDIA GPUSs.

time when directly measured in a fully blocking mode of
operation. In order to investigate whether the ITM imple-
mentation is effectively using the GPU compute capability,
the stripe size over which the computation is distributed wa

Processor Time (s) varied to observe the effect of changing the amount of work
ATl Radeon HD 5870 0.72 performed per kernel execution. Initially the stripe sizasw
AMD Radeon HD 6970 0.55 set at 4096 with subsequent test cases of 2048 and 1024
NVIDIA Tesla C2070 0.39 point-to-point calculations. The results in Table Il show

an improvement on the order of 10% when increasing the

block size from 1024 to 4096, thus providing more work
. per kernel execution. This indicates that the block size of
4096 is performing only slightly better than the block sife o
2048, therefore increasing the block size further woulddyie
o diminishing returns. Increasing the block size further Vdou
- also decrease the efficiency of performing calculationsrevhe
the number of point-to-point paths was not commensurate wit
o block size. For example, with a workload of 65536 point-to-
point calculations, increasing the block size will appto#te
size of the work load resulting in an efficient calculationemh
the work load is not a multiple of the block size.

AMD Radeon HD 6970 o []
L] NVIDIA C2070 rJ []

"
=)

T
LI

Calculation Time (s)
L]
L)

,_‘
15)

T T
[]

128

Number of Transmitters (Receivers)

TABLE Il
PERFORMANCE FORAMD AND NVIDIA GPUS AS A FUNCTION OF
BLOCK SIZE IN TERMS OF THE NUMBER OF POINITO-POINT PATHS
EVALUATED PER KERNEL EXECUTION

Fig. 3. Plot of total ITM (Longley-Rice) calculation time rgeis number
of transmitters/receivers. The 0.5 second line represtr@smaximum time
allowed for real-time computations.

Processor Block Size| Time (s)
ATI Radeon HD 5870 1024 0.83
providing computed RF path loss results for 256 transcejver ATl Radeon HD 5870 2048 0.75
or 65,536 point-to-point calculations, in less than 1 secon ATl Radeon HD 5870 4096 0.72
on a single GPU device. For 256 radios, the fastest time to ["AMD Radeon HD 6970 1024 0.65
solution is reported as 0.39 sec using an NVIDIA C2070 ["AMD Radeon HD 6970 2048 058
[23] as compared with 0.72 sec and 0.55 sec using an ATl ~AvD Radeon HD 6970 4096 0.55
Radeon HD 5870 and AMD Radeon HD 6970, respectively.
[24] Complete performance results are plotted in Fig. 3 for a m//:g:ﬁ Ez:z g;g;g ;gig 83(2)
range of 32 to 1024 transceivers. .
L NVIDIA Tesla C2070 4096 0.39
3 a line is drawn at 0.5 seconds to show

In Figure
approximately the number of transceivers a particular GPU
is capable of considering in real-time. It is interestingntite
that the theoretical peak FLOP rate of the AMD Radeon HB- TLM Performance
6970 is 2.703 TFLOPs and the NVIDIA C2070 is only 1.288 As noted previously, the TLM algorithm, much like FDTD,
TFLOPs. Conversely, the number of radios supported by tiewell suited for the GPU architecture. In this case the bgig
Longley-Rice algorithm in less than 0.5 seconds of compbottleneck is expected to be data transfer across the PCle
tation time is higher for the NVIDIA GPU. This apparentous which is known to be a bottle neck for applications
inefficiency in the AMD hardware is due to the fact that mangxecuting on GPUs. By limiting the number of times results
of the floating-point operations in the Longley-Rice algfum are transported across the PCle bus in the TLM algorithm
are transcendental functions such as cosine, sine, tangentwe were able to optimize the calculation time by an order of
secant, etc., The performance of a specific architecturév@n magnitude, Figure 4.
Longley-Rice algorithm is therefore not easily predicted b Notice in Figure 4 that the time per step for CPUs remains
theoretical peak performance. Additionally, the memorgess fairly constant from 10 to 1000 steps, whereas the GPU ®sult
patterns within the kernels are non-trivial, and this wik@ show an order of magnitude decrease in time per step. This
contribute to the observed performance. illustrates the importance of increasing the computation t
Performance of complex multi-kernel algorithms can beommunication ratio when using GPUs as a co-processor.
impacted by many factors including pure computational Joath Figure 4 the cpu-opt and gpu-opt lines refer to the use
memory access, host-device data transfer, and kernel haun€ the shuffled grid method discussed previously. The gpu-
latency. In the case of the 10 kernels in the ITM implemeropt time per step line shows a nearly ideal 4x speedup
tation, each individual kernel shows a very low executioaver the unoptimized version, whereas the cpu-opt line show

FireStream 9170 vs Xeon - Grid [136][128][128] 600000

—e—cpu —A—cpu-opt O gpu —®—gpu-opt |

1.000 500000

(=]

400000

300000 mes

0.100 -
w128
0 256
200000
100000
0.010
10 100 1000
0
1 2 3 4

Number of Steps (nstep)

Number of Rays

Number of Reflections
Fig. 4. Plot of time per step computed showing performanceemmses for
GPUs with modest gains for CPUs. By increasing the nstepanpeter the
ratio of computation to communication is increased. Notioe power scale Fig. 6. The number of rays generated during the ray tracifetstion with
on the y-axis. a maximum of 1 to 6 reflections and an angular partitioning 4f 28 or
256 partitions.

The ray tracing method is developed using OpenCL in order
to take advantage of multiple platforms, although for these
results we used an NVIDIA Quadro FX4800 GPGPU with
1.5GB GDDR3 of GPU memory. The total number of rays
in the system is computed, and Figure 6 plots the number
of rays in the system fong andn, as they vary from 64
to 256. In Figure 6 the maximum number of reflections that
individual rays are permitted to undergo is varied from 1 to
6. It is expected that some predetermined maximum number
Fig. 5. Side view of 3D polygon data from Tonsberg, Norwayditm ray O reflections or unfolded ray length will be used to limit the
tracing algorithm development. run time while preserving accuracy.

Using the parameters from Figure 6 the run time for each
configuration is collected and plotted against the number of
about a 1.2x speedup over the unoptimized CPU version. Tiags generated, Figure 7. Figure 7 shows a linear relatipnsh
nearly 4x speedup indicates that the algorithm is able te taketween run time and number of rays, but with offsets de-
advantage of the GPU ability to perform MADD functions orpending on the initial angular partitioning used. This igted

4 32-bit floating point values simultaneously. to the cost of initial ray generation and generating new rays
) after intersection with a surface has occurred. The offasts
C. Ray Tracing Performance approximately equivalent to the difference between theseg

The primary factor in determining execution time for thef the number of angular partitions. E.jp8? — 64% = 12288
ray tracing algorithm is the number of rays generated amhd256% —128% = 49152. Note that for each ray, the system
computed. The total number of rays in the system depenglgrently needs to analyze all of the 68,356 planar surfates
on the number of rays emitted by individual transmitterghe environment to determine its endpoint. Future perforcea
the number of reflections, scattering, diffraction and aefr enhancements will therefore focus on the size of the modl an
tion allowed as well as the number of planar surfaces withe number of polygons that need to be interrogated for each
which the rays can interact. Note that in this experimen@y.
we are solely focusing on emitted and reflected rays. The
environment in use in our research is a polygon-based 3D
representation of the town of Tonsberg, Norway, Figure 5. MANET emulation of large scale networks is a useful tool
As noted earlier this model contains 68,356 triangle and tiier network analysts but without realistic RF propagatiba t
benchmark scenario contains two transmitters that spdiric accuracy of the results are questionable. Using GPUs we have
emit rays in all directions. The emission angles of indidtiu developed three RF propagation path loss methods that oan ru
rays is dependent upon the user-specifigdand n,, values. in real time or near real time along side a MANET emulation
The values ofny and ny are equivalent over each run ando provide realistic path loss data. These algorithms caver
vary their values between 64, 128 and 256. Each emitted ragoad range of the typical scenarios encountered by MANETS
is traced throughout the environment to generate refleetesl rin the field, namely, non-urban large networks, large scale
based on their interactions with the planar surfaces. Thie parrban networks and pico-cells of around 20 nodes in a local
of the reflected ray is computed based on the laws of reflectiarea. We have investigated the use of the standard OpenCL
in light propagation. language against vendor solutions such as Brook+ and CUDA.

VI. CONCLUSIONS ANDFUTURE WORK

400000
350000
300000

250000 [1]

200000

Time (ms)

& Time (ms)

150000

(2]

100000
50000

0
0 100000 200000 300000 400000 500000 600000

Number of Rays [3]

Fig. 7. Ray Tracing algorithm run time versus number of gatesf rays. The [4]
three different slopes correspond to the number of initrajudar partitioning
of 64, 128 and 256 patrtitions.

(5]

We have also shown how algorithm development for GPUg;)
is very important for achieving maximum performance, such
as the shuffled grid method, modifying calculations to use
single precision where possible, etc. Additionally for thié1 [7]
it was possible to use reduced precision calculationsutitio
the use of alternative calculations for edge cases to irrqorO\f8
performance on GPUs. Load distribution and communication
costs were mimed by the creation of computation blocks that
limit kernel calls and minimize wasted computation cycles.[9
These developments enable the emulation framework at ARL
to provide real time situational awareness data to live field
. ; il ; . - [10
exercises and will have applicability to the integratiorthwi
future modeling simulations and the fielding of upcoming
devices. [11]
Although vendor supplied languages for GPUs have shown
to currently provide superior performance we have settlegh)
on using a portable standard for parallel computing systems
namely OpenCL. Using OpenCL we have developed t
Longley-Rice ITM and ray tracing methods for real time R
path loss computations that supports MANET emulation. EH4]
abled MANET emulation provides the capability to augment
live exercises, integrate MANET emulation with simulaton
and to drive programmable attenuators for laboratory exped]
imentation with physical devices. Prior to the developme
of these capabilities with GPUs, the wireless node mobility
and path loss for a scenario needed to either be computed
apriori or to use a large number of (i.e. 10,000) CPU coreg8
dedicated to path loss calculation. This was not acceptable

Enhancement, Technology Transfer and Training) program.

REFERENCES

Arne Schmitz and Martin Wenig. The effect of the radio wav
propagation model in mobile ad hoc networks. Tine 9th ACM/IEEE
International Symposium on Modeling, Analysis and Smulation of
Wireless and Mobile Systems (MSWM 2006), October 2006.

Michael A. Kaplan, Ta Chen, Mariusz A. Fecko, Provin Gagy
Ibrahim Hokelek, Sunil Samtani, Larry Wong, Mitesh Patetjsfides
Staikos, and Ben Greear. Realistic wireless emulation ésfopmance
evaluation of tactical manet protocols. |BEE Military Communications
Conference (MILCOM), October 2009.

Thomas Nitsche and Thomas Fuhrmann. A tool for raytrqdiased
radio channel simulation. 18 MUTools, March 2010.

T. Rick and R. Mathar. Fast edge-diffraction-based oadave propaga-
tion model for graphics hardware. Wintennas, 2007. INICA '07. 2nd
International ITG Conference on, pages 15-19, March 2007.

Glenn Judd and Peter Steenkiste. Design and impleniemtaf an rf
front end for physical layer wireless network emulation. |EEE 65th
Vehicular Technology Conference (VTC2007), April 2007.

D. Catrein, M. Reyer, and T. Rick. Accelerating radio wawopagation
predictions by implementation on graphics hardware. Vehicular
Technology Conference, 2007. VTC2007-Spring. |EEE 65th, pages 510
-514, april 2007.

David Michéa and Dimitri Komatitsch. Accelerating ad¢le-dimensional
finite-difference wave propagation code using gpu grapbéess. Geo-
physical Journal International, 182(1):389—402, 2010.

] P. Andelfinger, J. Mittag, and Hartenstein. H. GPU-basechitectures

and their Benefit for Accurate and Efficient Wireless Netw&ikula-
tions. InIEEE MASCOTS pages 421-424, July 2011.

] LK. Eltahir. The impact of different radio propagatiomodels for

mobile ad hoc networks (manet) in urban area environmentMieless
Broadband and Ultra Wideband Communications, 2007. AusWreless
2007. The 2nd International Conference on, page 30, aug. 2007.

] lllya Stepanov and Kurt Rothermel. On the impact of a encealistic

physical layer on manet simulations resulésl Hoc Networks, 6(1):61
— 78, 2008.

Esten Ingar Gratli and Tor Arne Johansen. Path planfongiavs under
communication constraints using splat! and milg. Intell. Robotics
Syst., 65(1-4):265-282, January 2012.

E. Damasso, editor.Digital mobile radio towards future generation
systems. Office for Official Publications of the European Commurstie
Luxembourg, 1999.

] Henry L. Bertoni. Radio Propagation for Modern Wreless Systems.

Prentice Hall Professional Technical Reference, 1999.

Yang Song and Ali Akoglu. Parallel implementation ofetfrregular
terrain model (itm) for radio transmission loss predictiasing gpu and
cell be processorslEEE Trans. Parallel Distrib. Syst., 22:1276-1283,
August 2011.

NVIDIA. NVIDIA CUDA C Programming Guide, Version 4.0, 2011.

6] Various. EMANE Developer Manual 0.7.3. DRS CenGen, LLC, 2012.
1 G.A. Hufford, A.G. Longley, and W.A. Kissick. A Guide tthe

Use of the ITS Irregular Terrain Model in the Area Predictiblode.
Technical Report 82-100, National Telecommunications laf@mation
Administration, April 1982.

] G. Hufford. The ITS Irregular Terrain Model, version 1.2.2 The Al-

gorithm. National Telecommunications and Information Administra

because the CPUs cores are required to host virtual machines Institute for Telecommunication Sciences, 1995.

for MANET emulation and by using GPU co-processors it hdd”!
been possible to over come this hurdle for efficient largéescazo)

MANET emulation.
[21]

VIl. ACKNOWLEDGMENTS

The authors would like to acknowledge the support ré?2l
ceived from the High Performance Computing Moderniza-
tion Program Office (HPCMPO) under the Mobile Networkz3]
Modeling Institute (MNMI). The authors would also like
to acknowledge the support of the HPCMP PETTT (Higﬁﬂ']
Performance Computing Modernization Program Produgtivit

C. ChristopoulosThe Transmission Line Modeling Method: TLM. IEEE
Press, 1995.

Sadasiva M. Rao.Time Domain Electromagnetics. Academic Press,
1999.

P.B. Johns. A symmetrical condensed node for the tlmhotet
Microwave Theory and Techniques, |IEEE Transactions on, 35(4):370
— 377, apr 1987.

P. Naylor and R. A. Desai. New Three Dimensional Symivekr
Condensed Lossy Node for the Solution of ElectromagneticveNa
Problems by TLM.Electronics Letters, 26(7):492-494, 1990.
Benchmarks used the OpenCL implementation providetheyNVIDIA
CUDA Toolkit v3.2.

Benchmarks used the OpenCL implementation providedhiey AMD
ATI Stream SDK v2.3.

