
Fingerprint grid enhancement on GPU

Raja Lehtihet1, Wael El Oraiby2, and Mohammed Benmohammed3

1Computer Science Departement, University of Constantine, Constantine, Algeria
2AIFU Ltd, Montreal, Quebec, Canada

3LIRE Laboratory, University of Constantine, Constantine, Algeria

Abstract— This paper presents an optimized GPU (Graph-
ics Processing Unit) implementation for fingerprint images
enhancement using a Gabor filter-bank based algorithm.
Given a batch of fingerprint images, we apply the Gabor
filter bank and compute image variances of the convolution
responses. We then select parts of these responses and
compose the final enhanced batches. The algorithm exploits
GPU parallelism by partitioning the data elements on the
GPU parallel threads. The implementation was tested on
different batch sizes and different image qualities from the
FVC2004 DB2 database. We then compare the execution
speed between the CPU and GPU. This comparison shows
that the algorithm is by order of magnitudes faster on a
GPU than the CPU.

Keywords: biometrics, fingerprints, enhancement, Gabor filtering,
GPGPU.

1. Introduction
fingerprint identification represents one of the most ef-

ficient and lowest cost detection systems in the biometric
security market.

A fingerprint image presents a flow-like ridge structure.
The structure of the ridges contains many local interesting
characteristics such as islands, short ridges, enclosures,
ridges endings and bifurcations. The ridge endings and
bifurcations (called minutiae) are the most prominent iden-
tification characteristics.

A person is usually identified by an automated Fingerprint
Identification Systems (AFIS) by matching his fingerprint
minutiae-based signature with registered ones [14]. The
result of such matching depends heavily on the quality of the
input fingerprint image. However, the ridge structures and
minutiae are not always well defined because of the presence
of spurious features and discontinuities due to acquisition
parameters and/or to reasons inherent to the fingerprint
owner. Thus, fingerprint enhancement is a crucial step in
a fingerprint identification process where an enhancement
algorithm must retrieve and enhance the ridge structure for
further minutiae extraction.

Several approaches for fingerprint image enhancement
were proposed. they are often based on flow orientation and
local ridge directional binarization [17]. In [13] frequency
and orientation filters in the Fourier domain were designed.

This method is computation intensive since it involves trans-
formation to the frequency domain and multiple filtering.
In [10] the properties of orientation and ridge frequency as
parameters for a single Gabor filter were used and a short-
time Fourier transform was proposed in [5].

Enhancing fingerprint images in real-time is a challenge
given the computation time required in the process. With
the current generation of programmable Graphics Processing
Units (GPU), this is now possible since they currently have
teraflops of floating point performance. General Purpose
computing or programming on GPUs (GPGPU) was intro-
duced as a parallel programming model for these devices,
where developers decompose the problem into sub process-
ing elements to exploit high level parallelism of the GPU.

Computer scientists and researchers are starting to use
GPUs for running computational scientific applications.
First, in [4], color image processing was mapped for GPU
programming. In [1], Fast Fourier Transform (FFT) on GPU
was computed giving faster execution time than on CPU. A
set of frameworks for GPGPU processing are proposed such
as: Image processing framework [12], the OpenVidia library
[6], GPU accelerated generalized bi-dimensional distance
transform [19], motion estimation [18], GPU4Vision for
real-time optical flow [22] and total variation based image
segmentation on GPU [21]. Now Cuda [15], DirectCompute
[16] and OpenCL [8] are proposed as GPGPU programming
APIs, allowing programmers to interface with the GPU
directly to make massively parallel programs.

This paper presents a GPU implementation for enhancing
batches of fingerprint images using a Gabor filter bank based
algorithm in an accelerated execution time. The algorithm
selects pixels corresponding to the maximum values of vari-
ances in the Gabor responses. The Gabor based enhancement
of fingerprints has shown good results in works of [10], [9]
and [3]. The algorithm scales very well on multiple core
GPUs.

Experimental results with fingerprint images from the
FVC2004 DB2 database [7] show that the execution of the
algorithm gives enhanced images by order of magnitudes
faster on the GPU in comparison to the CPU.

2. GPU Programming
In the GPGPU programming model, the CPU acts as a

master controlling the GPU which acts as a slave. The GPU



is composed of multiple cores and is designed to execute
the same program called a kernel on different data elements
simultaneously. These kernels are executed in threads di-
vided across the multiple cores (see Figure 1). These threads
are mapped relatively to the data elements, where each
element is consumed in its own thread. For image processing
algorithms such as filtering, that are designed to work on
pixel blocks independently of previous steps, the GPGPU
model is ideal. When a step is dependent on the previous
one, the algorithm can be divided into multiple execution
passes executed one after the other on the GPU as well.

Fig. 1: Multi threaded program partitioned into blocks of
threads.

In this direction, computing the FFT on GPU has been
addressed successfully and efficiently with fast algorithms
such as [2], [15], [20]. Most of these algorithms use butterfly
algorithm [2] with multi-passes for different levels of the
algorithm (where each level requires a pass).

3. Fingerprint enhancement

3.1 2-D Gabor wavelets
Let G(x, y; θ, λ) be the Gabor filter function centred

at the origin with 1/λ as the spatial frequency and θ
as the orientation. The response of a Gabor filter to an
image is obtained by a 2D convolution operation, we
can proceed by convoluting pixels of the image with an
even symmetric filter [11] that can be constructed as follows:

g(x, y; θ, λ) = exp

(
−1

2

(
x2
θ

σ2
G

+
y2θ
σ2
G

))
cos(

2π

λ
xθ) (1)

xθ = x cos θ + y sin θ (2)

yθ = −x sin θ + y cos θ (3)

Figure 2 shows one response of a Gabor filter: a filter with
45◦ of orientation, here we notice that high responses are
located wherever there are ridges with the same orientation.

(a) (b)

Fig. 2: (a) Original fingerprint image. (b) Response for a
Gabor filter of orientation θ = 45◦

3.2 Gabor filter based enhancement algorithm
First we combine a set of m = n2 2D discreet fingerprint

images with L-Gray levels into a tiled image I of n×n tiles.
The image I is made of W×H pixels and I(x, y) designates
a pixel in this image (where W is the image width, H the
image height, 0 ≤ x < W and 0 ≤ y < H).

The proposed algorithm is composed of several stages as
resumed in Figure 3:

• Gabor filtering: Apply a Gabor filter bank of 8 differ-
ent orientations and 3 different frequencies to I . The
result is made of 24 response images {R0 . . . R23} for
every set.

• Variance images computing: Compute the local vari-
ance on the pixel neighbouring b × b of each Gabor
response image of the 24 images resulting from the
precedent filtering, this will give us 24 variance images,
{V0 . . . V23}.

V (x, y) =
1

b2

b−1∑
s=0

b−1∑
t=0

(I(x− s, y − t)− µ(x, y))2 (4)

where µ is the mean gray level of the b× b block:

µ =
1

b2

b−1∑
s=0

b−1∑
t=0

I(x− s, y − t) (5)

The mean was computed using a two-passes filter (one
for x and then for y). This leads to significant increase
in speed and reduces the bottlenecks on the GPU
significantly.

• Best coefficient selection: Let Ti(x, y) =
(Ri(x, y), Vi(x, y)), be the tuple linking the pixel
Ri(x, y) with the variance value Vi(x, y). We select
the pixels with maximum local variance such that the
final pixel P (x, y) = Argmaxi∈[0,23] Ti(x, y).

• fingeprint binarization: Binarize the image using a
pixel values threshold.

4. Implementation
For the implementation we chose the following values:

b = 15, n ∈ {2.04.0, 8.0}, σ = 4, λ ∈ {6.0, 8.0, 10.0} and



Fig. 3: Overview of the Gabor based enhancement algorithm.

θ ∈ {0, 22.5, 45, 67.5, 90, 112.5, 135, 157.5}. Both λ and σ
are empiric values since they provide best response to our
image set. The orientations are chosen based on the work
done in [9], [11] while the λ values were chosen related to
fingerprint image resolutions. λ = 8 is the average value.

First the n × n target images are grouped into one
image, then 24 Gabor bank images are constructed in the
frequency domain. The resulting image is then transformed
to frequency domain using FFT as well. We then multiply
this image with all the 24 filters and store the results in 24
Gabor response images. These Gabor response images are
then transformed back with inverse FFT to spatial domain.
For each transformed Gabor response image we compute the
variance using (4) in a different result image where the mean
(5) was computed through FFT. Processing variance in this
way is numerically more stable. Finally the pixels who have
the maximum variance from the 24 Gabor response images
are copied to the final image.

The CPU implementation was done in C language using
FFTW in single precision, while the GPU version was coded
in CUDA given its fast and stable implementation of FFT.
On the GPU, the 24 Gabor filter banks are created in the
frequency domain. These filters are noted GF

i . The original
image is converted to the frequency domain image IF . The
algorithm works in 4 passes, and for each pixel in every pass,
a thread on the GPU is allocated. The memory needed for all
operations is allocated before we enter the execution phase.
This is needed to prevent overhead spent in data copy and
resource synchronization between the GPU and the CPU.

Moreover, shared memory was used to compute variance.
The speed increase is dramatic since it reduces GPU cores
idling time waiting for memory fetches. There were between
12 to 16 speed increase using this approach on the current
test configuration.

The 4 passes of the algorithm are as follows:

• Pass 1: Each gabor filter is multiplied with the fre-
quency domain image, this will give a Gabor response
image: RF

i = GF
i İ

F . Depending on the GPU power
and memory, these multiplications can all be done
simultaneously.

• Pass 2: RF
i is converted back to spatial domain, giving

Ri.
• Pass 3: The variance image Vi is computed from Ri.
• Pass 4: Once all variance images are done, the last step

is to select pixels with highest variance.

Thus, the chosen pixel is the one for P (x, y) =
Argmaxi∈[0,23] Ti(x, y).

5. Experimental results

Table 1: Performance on GPU in milliseconds.

GPU
Batch size 4 16 64
Algorithm 151.3 413.09 1707.63

FFT/Multiplication
(24 imgs) 99.17 257.08 1087.02

Variance(24 imgs) 19.68 77.28 348.24
ArgMax(24 imgs) 28.31 65.23 212.65

CPUMem to GPUMem 0.77 3.95 15.71
GPUMem to CPUMem 3.37 9.55 44.01

Table 2: Performance on CPU in milliseconds.

CPU
Batch size 4 16 64
Algorithm 1128.74 5025.56 20115.39

FFT/Multiplication
(24 imgs) 1012.10 4467.28 17838.72

Variance(24 imgs) 31.92 228.4 970.54
ArgMax(24 imgs) 84.72 329.88 1306.13

We tested the implementations of the algorithm on an
nvidia GeForce 560 Ti GPU with 192 cores running at
900Mhz and with 1024MB video memory. The test was also
performed on an intel i7-2600K CPU at 3.40GHz and with
8GB of memory. The tests were performed on both Windows
7 and Ubuntu 12.04.

Results on GPU and CPU are shown in Tables 1 and 2.
We applied the algorithm implementation on image batches
from the FVC2004 DB2 database with batches of 4, 16 and
64 images. The graphical representations of these tables (as
shown in Figure 4) show that for our fingerprint enhance-
ment implementation, the GPU is at least 11 times more
efficient than a CPU running at a significantly higher clock
rate.

0

5000

10000

15000

20000

25000

GPU

CPU

Batch sizes

4, 16 and 64

T
im

e
in

m
s

Fig. 4: GPU vs CPU performance

Figure 5 shows an example of the final result of the
enhancement algorithm.



(a) (b)

Fig. 5: (a) Original fingerprint image. (b) fingerprint image
after Gabor enhancement application.

6. Conclusion
In this paper, we presented a study of the implementation

on CPU and GPU of a fingerprint enhancement algorithm.
The GPU implementation was done in an optimal way giving
an accelerated time execution up to at least 11 times the CPU
execution time. The used algorithm is based on a Gabor filter
bank convolution and variance computing which are both
costly on CPU.

Experimentations were realized on the FVC2004 finger-
print image database, as shown in the graphical represen-
tations of time execution values, the algorithm gives good
enhancement results in an accelerated time execution.

Finally, the obtained results are encouraging to implement
other costly fingerprint enhancement algorithms in a batched
way in order to reduce processing time. Thus, future work
will be oriented to process images using the big possibilities
of GPGPU programmming.

References
[1] Edward Angel and Kenneth Moreland. Integrated image and graphics

technologies. chapter Fourier processing in the graphics pipeline,
pages 95–110. Kluwer Academic Publishers, Norwell, MA, USA,
2004.

[2] Eric Bainville. Opencl fast fourier transform. http://www.
bealto.com/gpu-fft_dft.html, 2010.

[3] Sylvain Bernard, Nozha Boujemaa, David Vitale, and Claude Bricot.
Fingerprint segmentation using the phase of multiscale gabor wavelets,
2002.

[4] Nabil Boukala, Jerome Da Rugna, and Universite Jean Monnet. Fast
and accurate color image processing using 3d graphics cards. In In
Proceedings Vision, Modeling and Visualization, 2003.

[5] Sharat Chikkerur, Chaohang Wu, and Venu Govindaraju. A systematic
approach for feature extraction in fingerprint images. In ICBA, pages
344–350, 2004.

[6] James Fung and Steve Mann. Openvidia: parallel gpu computer vision.
In Proceedings of the 13th annual ACM international conference
on Multimedia, MULTIMEDIA ’05, pages 849–852, New York, NY,
USA, 2005. ACM.

[7] FVC2004. Fingerprint database. http://bias.csr.unibo.it/
fvc2004/, 2004.

[8] Khronos group. Opencl khronos group. http://www.khronos.
org/opencl/, 2011.

[9] Lin Hong, Anil K. Jain, Sharath Pankanti, and Ruud Bolle. Fingerprint
enhancement. Technical Report MSU-CPS-96-45, Department of
Computer Science, Michigan State University, East Lansing, Michi-
gan, January 1996.

[10] Lin Hong, Yifei Wan, and Anil Jain. Fingerprint image enhancement:
Algorithm and performance evaluation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 20:777–789, 1998.

[11] Anil K. Jain, Salil Prabhakar, Lin Hong, and Sharath Pankanti.
Filterbank-based fingerprint matching. IEEE Transactions on Image
Processing, 9:846–859, 2000.

[12] Franck Jargstorff. A framework for image processing. In Randima
Fernando, editor, GPU Gems: Programming Techniques, Tips and
Tricks for Real-Time Graphics, pages 445–467. Addison Wesley, 2004.

[13] T. Kamei and M. Mizoguchi. Image filter design for fingerprint
enhancement. Computer Vision, International Symposium on, 0:109,
1995.

[14] D. Maltoni, D. Maio, A. K. Jain, and S. Prabhakar. Handbook of
Fingerprint Recognition. New York, 2003.

[15] Nvidia. Cuda presentation. http://www.nvidia.com/
object/what_is_cuda_new.html, 2011.

[16] Nvidia. Direct compute. http://www.nvidia.com/object/
cuda_directcompute.html, 2011.

[17] A. Ravishankar Rao. A taxonomy for texture description and identifi-
cation. Springer-Verlag New York, Inc., New York, NY, USA, 1990.

[18] Robert Strzodka and Christoph Garbe. Real-time motion estimation
and visualization on graphics cards. In Proceedings of the conference
on Visualization ’04, VIS ’04, pages 545–552, Washington, DC, USA,
2004. IEEE Computer Society.

[19] Robert Strzodka and Alexandru Telea. Generalized Distance Trans-
forms and skeletons in graphics hardware. In Proceedings of EG/IEEE
TCVG Symposium on Visualization (VisSym ’04), pages 221–230,
2004.

[20] Thilaka Sumanaweera. Medical image reconstruction with the fft.
In GPU Gems 2: Programming Techniques for High-Performance
Graphics and General-Purpose Computation (Gpu Gems). Addison
Wesley, 2005.

[21] Manuel Werlberger, Thomas Pock, and Horst Bischof. Motion estima-
tion with non-local total variation regularization. In IEEE Computer
Society Conference on Computer Vision and Pattern Recognition
(CVPR), San Francisco, CA, USA, June 2010.

[22] Manuel Werlberger, Werner Trobin, Thomas Pock, Andreas Wedel,
Daniel Cremers, and Horst Bischof. Anisotropic Huber-L1 optical
flow. In Proceedings of the British Machine Vision Conference
(BMVC), London, UK, September 2009.


