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ABSTRACT

Floating point precision and performance and the ratio
of floating point units to integer processing elements on a
graphics processing unit accelerator all continue to present
complex tradeoffs for optimising core utilisation on modern
devices. We investigate various hybrid CPU and GPU com-
binations using a range of different GPU models occupying
different points in this tradeoff space. We analyse some per-
formance data for a range of numerical simulation kernels
and discuss their use as benchmark problems for character-
ising such devices.
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1 Introduction

Graphical Processing Units [10, 11] have become almost
mainstream accelerator devices in many applications ar-
eas. They remain non-trivial to program even with the ad-
vent of highly developed software libraries and tools such
as NVidia’s Compute Unified Device Architecture (CUDA)
[12] and Open Compute Language (OpenCL) [16]. There
are still some applications and parts of applications for
which GPUs provide very good speedups and others for
which they are less suitable. To further complicate the users
decision on which platform to deploy upon there have been
many different GPU models released over the last five years
each of which has different design features and performance
characteristics.

In this paper we use some very simple synthetic bench-
marks to experiment with a range of different GPU devices
and benchmark performance across them. Our particular fo-
cus of interest in integer versus floating point performance.

Other factors such as memory transfer bandwidth and the
exact ratio of floating point, double precision and special
function evaluation units also play a part.

Our long term goal is to develop a set of GPU related
benchmarks appropriate for computational fluid dynamics
(CFD) [1,2, 18] and comparing conventional CFD calcula-
tions [9] that are formulated in terms of partial differential
equations that require raw floating point performance [6]
with those formulated in terms of integer calculations and
a lattice gas model approach [8].

There are a number of well known benchmarks for float-
ing point performance in the context of linear algebra and
matrix calculations [4, 17]. The NAS parallel benchmarks
[3] also exercise some features that are specific to CFD
problems as well. Other benchmarks have considered asyn-
chronous coupling effects between the GPU and its hosting
CPU [13], or have been tailored to specific applications ar-
eas such as particle dynamics [7, 15] or graph and network
problems [5].

There is topical scope to consider multiple GPUs [14,19]
attached to the same CPU and driven or serviced by different
cores. In this present paper however we focus on rather low-
level capabilities of the various GPU accelerators we study
and the main contribution is that we have been able to study
quite a large collection of different vintage devices and can
comment on which particular features contribute to which
low level performance trend.

Our article is structured as follows: We review some of
the key architectural features of graphical processing units
in Section 2. We benchmark the GPUs by separating and
emphasising the individual elements that make GPGPU and
specifically NVidia GPUs both powerful and limiting. The
areas we identified were: integer and double precision com-
putation and global memory access. These elements repre-
sent the greatest divide between the various devices and we
see in Section 3 both the strengths and weaknesses of each



device relative to the other generations of NVidia hardware.
We present a selection of benchmarks for low level opera-
tions in Section 4. We discuss their implications in Section 5
and offer some tentative conclusions, directions for the fu-
ture and other areas for further investigation in Section 6.

2  GPU Architecture

Since the initial release of CUDA and the rise of GPGPU
computing, NVIDIA has released several GPU architec-
tures. Each of these subsequent GPU architecture releases
have brought with them higher performance and additional
chip capabilities that make GPGPU programs faster and eas-
ier to develop.

The GT200 released in 2008 saw the introduction of dou-
ble precision processing and a reduction on the performance
penalties on non-coalesced memory accesses. The GF100
Fermi architecture GPUs released in 2010 in the GeForce
400 series and saw an increase in the number of cores per
multiprocessor to 32 and most significantly for the GPGPU
community the introduction of an L1/L2 cache structure.
The GF110 was released later in 2010 in the GeForce 500
series which brought with it performance improvements
over the GeForce 400 series. The general architecture of the
Fermi architecture multiprocessor can be seen in Figure 1.

Figure 1: The architecture of a Fermi GPU multiprocessor
with 32 cores, 16 Load/Store units and 4 special function
units.

In 2012 NVIDIA released the new Kepler architecture
GPU featuring the new generation Streaming Multipro-

cess architecture (SMX). These multiprocessors contain 192
cores which has allowed the maximum number of cores in a
single GPU to be increased to 1,536. These GPUs provide
higher performance than the previous generation Fermi de-
vices while using significantly less power. The architecture
of these GPUs is shown in Figure 2.

Figure 2: A Kepler architecture multiprocessor containing
192 cores, 32 Load/Store units and 32 special function units.

While these Kepler GPU have significantly higher perfor-
mance than the previous generation GPUs (theoretical peak
of 3090.4 GFlops for a GeForce GTX680 as compared to
1581.1 GFlops for a GeForce GTX580) the overall mem-
ory bandwidth has remained almost the same 192.2 GB/sec
(GTX680) compared to 192.4 GB/sec (GTX580). This
presents a problem for some GPGPU applications which
maybe limited by memory speed and not computational per-
formance. We evaluate the practical performance of these
two GPU architectures and compare them in terms of com-
putational throughput and memory access.

3 Implementation Method

We decided to reduce the benchmarks (micro bench-
marks) to their simplest possible state. For computation we
chose a basic Linear Congruential random number genera-
tor as shown in Listing 1. While, not the best random num-
ber generator for high quality randomness it only uses in-
teger calculations and no memory access. Each thread has



one kernel which generates one thousand random numbers.
Only kernel execution time is recorded and averaged over
multiple separate runs.

__global__ void int_compute_benchmark ()
{
int ix = blockDim.x *blockIdx.x +threadIdx.x;
int M = 8;
int a
int ¢
int
int i;
for (i=0; 1i<1000; i++)
{

= ix;
= 3;
1;

i
Il

X = (a*x X+ c) % M;
}
}

Listing 3 shows the algorithm we use to test the coalesced
memory reads and writes. Firstly we allocate two integer ar-
rays and populate them with random integers. The memory
allocation and population is not included in the benchmark
timing. Each element is then copied from array A to array
B, incremented and written back to A. This allows for large
coalesced reads and writes with very little other computa-
tion.

Listing 1: Device kernel generating one thousand random
numbers using a Linear Congruential generator for the
integer computation benchmark.

To evaluate the double precision speed of the GPUs we
use the same idea as the integer but change the algorithm
to a simple quadratic equation solver as shown in Listing 2.
This uses both double precision computation as well as the
special function units in each of the multi processors.

__global__ wvoid
coalesced_memory_benchmark (int *A, int *B,int =
rStore)
{
unsigned int i = ((((blockIdx.y % gridDim.x)
+ blockIdx.x) * blockDim.x) +
threadIdx.x);

A[i] = B[i];
Bli]++;
B[i] = A[i];

}

Listing 3: Device kernel to benchmark the coalesced
memory read and write speed of the devices.

__global__ void double_compute_benchmark ()
{
int ix = blockDim.x xblockIdx.x +threadIdx.x;
double linear = ix;
double cons = blockIdx.xx*blockIdx.y;
double numl=0, num2=0;
double power=0;
for (int i=0; 1i<1000; i++){
double quadratic = i+l;
power=pow (linear / 2 , 2.0);

numl= ( - linear + sqrt (power - ( 4 x*
quadratic * cons )) ) / (2 x
quadratic);

num2= ( - linear - sqrt(power - ( 4 x
quadratic = cons )) ) / (2 =*

quadratic);

}

__global__ wvoid
random_memory_benchmark (int *A, int *B,int =«
rStore)
{
unsigned int i = ((((blockIdx.y =x
gridDim.x) + blockIdx.x) x*
blockDim.x) + threadIdx.x);

int rndl = rStorel[i];
int rnd2 = rStore[rndl];
int rnd3 = rStore[rnd2];
int rnd4 = rStore[rnd3];
Alrndl] = B[rnd2];
Blrnd3] = A[rnd4];

}

Listing 2: Device kernel to solve one thousand different
quadratic equations for the double precision computation
benchmark.

We examine how memory reading and writing speed dif-
fer between the devices. Again we use the most simple ex-
ample to exasperate memory transfer cost. Examining both
random and coalesced reads and writes exposes the advan-
tages and flaws for differing architecture. We expect that
the random reads will perform much worse on all devices
but will affect the 600 series cards the most, as the number
of multi-processes have been reduced.

Listing 4: Device kernel to benchmark random memory read
and writes to device global memory.

Listing 4 shows the algorithm we have used to benchmark
the random memory access time for the various GPUs. Each
thread must perform two random reads and two random
writes to global memory. Using the same random number
for multiple threads may result in some collisions. However
as this is consistent across all of the benchmark it does not
present any advantage to a specific device.

4 Performance Results

Figure 3 shows the plot of kernel execution time for the
integer computation benchmark vs the number of thread
blocks, which contain 32 threads each. We see generally
predictable results. With the GTX 680 the fastest followed
but the: 2090, 580, 590 and so on. The order is represen-
tative of the number of cores per GPU and for devices with



260 480 580 590 660m | 680 M2050 | M2070 | M2075 | M2090
Compute Version 1.3 2.0 2.0 2.0 3.0 3.0 2.0 2.0 2.0 2.0
Total Global Memory(MB) | 896 1536 1536 1536 512 2048 2687 5375 5375 5375
Number of Compute Cores | 216 480 512 512 384 1536 | 448 448 448 512
Number of Multi Procs 27 15 16 16 2 8 14 14 14 16
GPU Clock Rate(MHz) 1400 1400 1590 1225 950 706 1150 1150 1150 1301
Memory Clock (MHz) 1000 1848 2004 1710 256 3004 1546 1494 1556 1848
Memory Bus(Bit) 448 384 384 384 256 256 384 384 384 384
L2 Cache(KBytes) 0 768 768 768 512 512 768 768 768 768
Const Memory Size(KB) 64 64 64 64 64 64 64 64 64 64
Shared Memory Size(KB) 16 48 48 48 48 48 48 48 48 48
Registers Per Block 16384 | 32768 | 32768 | 32768 | 65536 | 65536 | 32768 | 32768 | 32768 | 32768
Has ECC No No No No No No Yes Yes Yes Yes

Table 1: Table comparing the various NVidia GPU models that we benchmark.
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Figure 3: Integer computation test

the same number of cores the clock speed separates them.

Figure 4 shows the kernel execution time for the double
precision computation benchmark vs the number of thread
blocks, again containing 32 threads each. Unlike the integer
computation benchmark we see some unexpected results.
We see that the most recent GPU tested the GTX 680 is the
slowest aside from the 200 series GPUs. As expected the
Tesla compute cards are the best performing cards in this
test. With the 2050 and 2070 again showing nearly identical
results as the main difference between them is the memory
size and minute GPU clock rate difference. The 2075 shows
an improvement over the 2070 and 2050 which is then fol-
lowed by the 580 and 480.

We see in Figure 5 the results of the random access mem-
ory benchmark. Again the results of this test are unusual

Kernel Execution Time For Double Precision Computation
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Figure 4: Double computation test

as the most recently released GPU the GTX 680 is not the
fastest as it is beaten by the 480, 580 and 590. We believe
this is due to the smaller number of multiprocessors in the
680 with eight compared with sixteen in the 580 and 590
and 14 in the 480. Because the multiprocessors handle the
memory operations for the cores within each one, randomly
accessing the memory will significantly affect the devices
with lower numbers of multiprocessors.

Figure 6 shows us the results of the coalesced memory
access bench mark. We see that unlike the random access
benchmark the 680 performs very well. The 580 also per-
forms well and comes in a close second. The GPUs seem
to be grouped into three distinct groups with the 260 and
the 295 performing surprisingly well compared to the Tesla
GPUs.
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Figure 7: GFlops (above) and GFlops per core (below)

5 Discussion

GPUs are primarily designed to render computer graph-
ics and only recently have begun to be used for general pur-
pose computing (GPGPU). Producing graphics requires pri-
marily integer calculations and we see the result of this in
Figure 3 where each generation of NVidia GPU performs
better than the previous. The main factor in the integer com-
putation performance seems to be the number of cores fol-
lowed by the clock speed. We see evidence of the impact

clock speed makes in the difference between the 580 and
590 which have almost identical specifications aside from a
lower GPU clock speed and lower memory clock speed. The
2075 is also significantly slower than the 2070 and the 2050
as with the memory benchmark this cannot be explained by
the specifications.

Double precision has historically been a weak point for
GPGPU and specifically the NVidia GeForce consumer
GPUs. In the Tesla series they have concentrated on bridg-



Kernel Execution Time for Random Access Memory Benchmark
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Figure 5: Integer memory test random access

Kernel Execution Time for Coalesced Memory Access
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Figure 6: Integer memory test with contiguous access

ing this divide and we see the results of this in Figure 4.
The Tesla cards: 2050, 2070, 2075 and the 2090 all perform
much better than their GeForce counterparts. More surpris-
ingly the best of these cards was the oldest Fermi architec-
ture card, the 480. The 680 being the slowest card despite
being one of the new generation Kepler is reflective of the
growing divide between the consumer graphics cards and
the professional level GPGPU devices such as the 2090 and
consumer graphics focused GeForce cards such as the 680.
Although the 680 has many more cores that all of the other
GPUs, the ratio of special function units to compute cores is
much lower.

The random access memory benchmark shows some sur-

prising results as explained in Section 4. Again we see
the 680 being out performed by the previous generation
of GPUs. As with the Double precision benchmark the
evolving architecture prioritising the number of cores over
the number of multiprocessors and special function units.
The relatively large improvement of the 2075 over the 2050
and the 2070 cannot be fully explained by the specifications
shown in table 4 we can only assume that the change in ar-
chitecture from GF100 to GF110 in the 2070 and 2075 re-
spectively has some unseen performance benefit in access-
ing random memory.

The coalesced memory access benchmark is similar to
the integer computation benchmark as it reflects the NVidia
ideal where all memory access is coalesced. The 680 is not
massively faster than the 580 it represents an evolutionary
improvement over the previous generation. The biggest sur-
prise is the speed of the Tesla cards, which are mostly much
slower than their equivalent GeForce cards. The 2050, 2070
and 2075 are all beaten by both of the 200 series cards.
We believe this is due to the higher memory clock and core
speed.

Figure 7 (lower) illustrates the overall trend of the NVidia
GPGPU architecture. We see that while the overall GFlops
per GPU has been increasing as shown in Figure 7(above),
the computational power per core has been decreasing. This
clearly shows NVidia’s plan for GPU architectures moving
forward. It may reduce the effectiveness of NVidia GPGPU
for memory intensive simulations and possibly more impor-
tantly simulations which rely on special function units as
shown in Figure 4

6 Conclusion

We have shown that by creating simple micro benchmarks
we can easily identify and compare specific functions of
GPUs. We see that although some of the latest NVidia GPU
architectures have raw performance in certain areas they
do not perform as well in fifty percent of our benchmarks.
While we do not propose buying older generation GPUs, it
may give insight into why simulations are not performing as
well on some GPUs and not others. We also show that there
is a growing divide between the GeForce consumer cards
and the professional GPGPU Tesla GPUs. The next genera-
tion of GPUs that have been announced are the K20x and its
GeForce cousin the Titan show the continuing trend towards
the many core less multiprocessors architecture.
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