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Abstract - We have proposed two algorithms for 

simultaneously optimizing performance, energy, and 

temperature while scheduling a set of tasks on a multi-core 

system (PET-Scheduling). The proposed algorithms differ in 

the way they use task allocation and voltage selection 

decisions to obtain multiple schedules (trade-off solutions) 

with a wide range of values along each objective. PET-PPF 

combines a power and performance-aware allocation 

scheme with probabilistic voltage selection to obtain these 

trade-off solutions. PET-DCP, on the other hand, first 

adjusts the task execution times using probabilistic voltage 

selection before leveraging a performance-optimal scheduler 

to generate the final schedule. Our results on several 

application task graphs demonstrate that both of the 

proposed algorithms can obtain the trade-off curves 

comprising of multiple solutions to the PET-Scheduling 

problem. PET-DCP, however, is able to achieve identical 

energy and thermal improvements as that of PET-PPF but at 

the same time degrades the performance by as much as 1.5 

times less than that of the PET-PPF. 

Keywords: dynamic thermal management, frequency 

allocation, multi-core systems, task scheduling, DVFS. 

1 Introduction 

  The rapidly scaling multi-core architecture has already 

spanned to 100 cores on a single chip [20]. However, this 

quick performance gain has resulted into the complex 

problems of energy and thermal management. Amplified 

chip temperatures not only require extra efforts for cooling 

in the form of expensive thermal packaging or larger fan size 

but can also lead to problems which can affect lifespan, 

reliability and performance of these modern systems. For 

example, a higher temperature can degrade the lifespan of a 

system to half of its value with a nearly 10
o
C increase in the 

operating temperature [2].  It has also been found that in 

addition to the higher temperatures, large magnitude of 

thermal gradients can also adversely affect the performance 

of the interconnects and thus can limit the performance of a 

system [3]. Therefore, scheduling schemes that can help to 

control or maintain the temperature below a given threshold 

are an essential requirement for the extensive use of these 

systems.  A lot of research in the last few years has focused 

on temperature management, temperature-aware scheduling 

and performance issues related to these schemes [5], [9], 

[10]. Most of the research contributions target to satisfy an 

energy budget or a thermal constraint while minimizing the 

consequential performance degradation [1], [11]. While 

these schemes can serve to meet the imposed system-based 

constraints, they are unable to explore the best possible 

trade-off between performance and energy or performance 

and temperature. In addition, some important issues cannot 

be addressed by constraint-satisfying approaches. For 

example, for a certain margin of trade-off in performance, 

what are various improvements possible in energy and 

thermal profile? For different possible energy budgets and 

thermal constraints, what is the maximum value of 

performance that can be achieved? Given a set of schedules 

with varying values of performance, energy, and 

temperature, how to select the best trade-off solution? These 

questions demand a holistic approach for integrating 

performance (P), energy (E), and temperature (T) (PET 

quantities) into the scheduling process. For this, we address 

the problem of simultaneously optimizing performance, 

energy, and temperature while scheduling tasks on a multi-

core system (PET-Scheduling). Such joint optimization of 

performance, energy, and temperature is not only complex 

and challenging but is also a rather unexplored problem.  

 PET-Scheduling problem is an aggregate of task 

allocation, task scheduling, and voltage selection problems 

with the goal of minimizing the performance, energy and 

temperature. We have developed novel algorithms namely 

PET-PPF and PET-DCP that can judiciously trade-off 

performance with energy and temperature.  PET-PPF 

generates a set of probability distributions for selecting a 

voltage level for each task. Each distribution corresponds to 

a different value of expected voltage level and thus enables 

PET-PPF to obtain several trade-off solutions. PET-DCP, 

uses the same voltage selection scheme as PET-PPF, 

however, a significant difference is that PET-DCP performs 

the voltage selections before the task allocation phase. In 

contrast to PET-PPF, PET-DCP first updates the execution 

times of the tasks based on the corresponding voltage level 

selected for each task and then uses a performance-optimal 

scheduler (DCP [19]) to generate the complete schedule. 

The key strength of our proposed methods is that they do not 

aim to provide a single solution to the problem. Rather 

several trade-off solutions are determined for the PET-

Scheduling problem. This approach to the PET-Scheduling 

problem is correct as in the presence of multiple conflicting 

objectives one solution can dominate the other along 



different objectives. And for such cases, where all quantities 

are equally important, one quantity cannot be directly 

preferred over the other.  

 The rest of the paper is organized as follows: Section II 

covers the related work on energy and thermal-aware 

scheduling. Section III presents the details of the problem 

under consideration. Section IV explains the proposed 

algorithms for the solution of the problem and Section V 

highlights the evaluation setup. Section VI explains the 

results of the simulation while Section VII concludes the 

paper.  

2 Related Work 

 Most of the research efforts in the energy and thermal-

aware scheduling, target to satisfy a given thermal or energy 

constraint at the cost of some loss in performance. Primarily, 

dynamic voltage and frequency scaling (DVFS) is used to 

adjust the voltage levels of the cores to reduce the power 

consumption and thus the energy and temperature. The 

methods in [6], [9], [10], [15] aim to meet the thermal 

constraints for different kinds of workloads and systems 

under consideration. A solution for maximizing performance 

under the imposed power and thermal constraints, by solving 

the frequency assignment problem for multi-core systems is 

presented in [9]. Another frequency planning method 

leveraging combinatorial optimization framework to 

maximize performance of multi-core systems with thermal 

limits is developed in [10]. An Event based scheduling 

method that can improve the peak temperature along with 

the total number of DTMs without excessive computation 

overhead is presented in [15]. The scheme proposed in [6] 

uses a non-DVFS approach to calculate the optimal core 

states for the given thermal constraints. For tasks 

represented as DAGs (Directed Acyclic Graphs), several 

iterative techniques in terms of performance degradation and 

computational complexity are compared in [11]. These 

techniques aim to find the most suitable task for the voltage 

adjustment to satisfy the given thermal constraint. There are 

also several methods that handle DTM with an alternate 

perspective, instead of considering temperature as a form of 

constraint, they try to improve thermal profile of the system 

within the allowed performance margins [5], [8], [14]. 

Similarly, there are numerous research efforts which aim to 

meet the given energy budget while sacrificing as little 

performance as possible. A power shifting method in [25] 

that controls the power of the different components of a 

server system is shown to improve the power budget based 

on workload conditions. A method to minimize schedule 

length under an energy constraint by determining the optimal 

power supplies on each processor is outlined in [18].  

 However, there are far lesser number of contributions 

in the pursuit of joint optimization of performance and 

energy or performance and temperature. The scheme 

presented in [4] minimizes the energy consumption and 

performance penalty leveraging Complier-Driven 

techniques. A hybrid hardware-software approach can 

improve performance loss consequential to the application 

of DVFS by leveraging reconfigurable fetch, issue, and 

retirement units etc., without exceeding the thermal limit 

[12].  The impact on the thermal profiles of cores due to the 

power activation at different locations of the chip 

represented as look-up tables have been used in [16] to 

allocate tasks to different cores. The proposed approach 

targets to improve the peak temperature as well as guarantee 

the thermal limit while at the same time decreases the 

rejection ratios under thermally constrained CMPs. A few 

research efforts report improvements in performance and 

energy under an efficient DTM policy [13]; however, these 

improvements are usually the by-products of the thermal 

management.  

 In contrast to the above mentioned research 

contributions we have targeted the simultaneous 

optimization of performance, energy, and temperature for 

allocating tasks on a multi-core system. We have compared 

our solutions to the schedules which only target to achieve 

maximum performance and do not take energy and 

temperature into consideration. This comparison can help to 

quantify the actual performance loss exhibited by various 

solutions in the pursuit of energy and temperature 

minimization. 

3 PET-Scheduling Problem 

 Given a task graph with N tasks, the total number of 

cores (M) and the set of available voltage levels (L), we aim 

to minimize makespan, energy consumption and temperature 

simultaneously while solving the task allocation, task 

scheduling, and voltage selection problem for the given task 

set. Thus the required objectives are: 
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fti represents the finish time of the ith task. Pi is the power 

dissipated during the execution of the ith task and eti is 

corresponding execution time. Ti 
j
 is the temperature of the 

jth core during the execution of the ith task (details of 

thermal model will be presented in Section V). Our goal is 

not to only produce one solution for solving the above 

mentioned min-min-min problem but to explore the whole 

Pareto front that exists between performance, energy, and 

temperature (PET quantities). These trade-off solutions can 

be used to guide the overall scheduling process to meet the 

required objectives. For workload, we considered tasks with 

precedence relationships represented as directed acyclic 

graphs (DAGs). Several scientific and multimedia 

applications can be conveniently represented as DAGs. A 

DAG consists of weighted nodes and edges, where the 



weight of the node represents the cost associated with the 

computation of the task and the weight on an edge represents 

the communication cost between the two tasks or nodes.  

Critical path in a DAG is defined as the path of longest 

length in the graph and hence governs the latest finishing 

time of a scheduled DAG [7]. The nodes constituting critical 

path are known as critical path nodes (CPNs) and the cores 

on which these tasks are scheduled are called the critical 

cores. Nodes having successors on critical path are known as 

In-bound nodes (IBNs). All other nodes are called out-

bound nodes (OBNs) [7].  

4 Proposed Solution 

 We will explain the algorithms proposed for solving 

the PET-Scheduling problem by highlighting their task 

allocation and voltage selection phases followed by their 

computational complexities. While doing so, it is assumed 

that there are M cores in the system which can switch across 

K voltage levels and the DAG to be scheduled has N 

tasks/nodes. 

4.1 PET-PPF 

 For DAG scheduling, the decision space for the Pet-

Scheduling problem spans not only the task allocation 

decisions but also include task ordering and voltage 

selection decisions. PET-PPF solves the problem in a 

hierarchical manner. For task allocation, PET-PPF aims to 

minimize the product of total power consumption of the 

cores and their available time for allocating the upcoming 

task. The intuition is to include performance and power 

directly into the allocation decisions as both energy 

consumption and temperature are related to the power 

dissipation. In other words, while allocating ith task we 

select the core with minimum PP
j
i which is defined as: 
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s
1− represents the finish time of the jth core after 

allocating i-1 tasks to all the cores. j
i

P
1− is the total power 

consumption of the jth core just before allocating ith task. 

Therefore, ith task is allocated to the core such that: 
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In (5), yi,j is set to 1 if ith task is allocated to the jth core. The 

makespan of a scheduled DAG varies significantly with how 

tasks are prioritized during the allocation phase. We 

assigned priorities to the tasks according to their 

classification in the DAG. CPNs are given the highest 

priority followed by IBNs while OBNs are kept at the lowest 

priority. The list of tasks generated by this classification is 

usually termed as CPN Dominant Sequence (CPN-DS) [7]. 

However, while constructing CPN-DS the precedence 

constraints are evaluated to ensure that the parent nodes are 

added to the list prior to the task itself. In voltage selection 

phase, a set of probability distributions is generated. Each 

probability distribution is used to select the voltage level for 

every task in the DAG, thus generating a potentially 

different schedule in the objective domain. In other words, 

to obtain τ trade-off solutions, we generate τ probability 

distributions. For generating this set of distributions, we start 

with a uniform distribution (allowing each voltage level to 

have the equal chance of getting selected for every task). We 

then transform the distribution in each step to first shift the 

peak of distribution towards the maximum voltage level and 

then repeat the procedure starting with uniform distribution 

to shift the peak of distribution towards the lowest available 

voltage level. In other words, we start with a uniform 

probability distribution in first step, as: 
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In the above equation L represents the set of available 

voltage levels. Now, to adjust the peak of this distribution we 

define a partition index on the set L. Such that in each 

PET-PPF 

  1: K=Total number of voltage levels 

  2:Initialize Pdist � uniform distribution for voltage selection 

  3:// First Shifting the peak towards highest voltage level 

  4:pivot_ point � select a partition point on the set of voltage levels 

  5:for given number of adjustment steps (τ)   

  6:  for all levels from start to pivot_point  

  7:   reduction � Pdist(level)  / reductionPerStep (η) 

  8:    Pdist(level)  � Pdist(level)  -reduction 

  9:   creduction+= reduction 

10:  end for  

11:  for all levels from pivot_point to K 

12:   Pdist(level) = Pdist(level)+ proportional factor*creduction  

13:   // Higher voltage levels get large components of creduction 

14:  end for  

15:  Vlevels =generateVlevels( Pdist) 

16:  for all tasks ϵ DAG (V, E) 

17:   selected_core � find the core with minimum TPproduct 

18:   Allocate task to selected_core at the earliest possible time ST 

19:   udateSystemState(); 

20:  endfor 

21:  updateSolutionSet(currentSchedule); 

22:end for 

23:Initialize Pdist � 1/K   

24:// Shifting the peak towards lowest voltage level 

25:for given number of adjustment steps (τ)   

26:  for all levels from pivot_point to K 

27:   reduction � Pdist(level)  / reductionPerStep (η) 

28:   Pdist(level)  � Pdist(level)  -reduction 

29:   creduction+= reduction 

30:  end for  

31:  for all levels from start to pivot_point  

32:   Pdist(level) = Pdist(level)+ proportional factor*creduction  

33:   // Lower Voltage levels get large components of creduction 

34:  end for  

35:  Vlevels =generateVlevels( Pdist) 

36:  for all tasks ϵ DAG (V, E) 

37:   selected_core � find the core with minimum TPproduct 

38:   Allocate task to selected_core at the earliest possible time ST 

39:   updateSystemState(); 

40:  endfor 

41:  updateSolutionSet(currentSchedule); 

42:endfor 

Figure 1: PET-PPF 



transformation step the probabilities corresponding to the 

voltage levels with indexes up to the partition index are 

reduced by a certain factor and the collective reduction is 

then distributed to the probabilities of voltage levels present 

in the second partition. If α represents the partition index 

over the set of available voltage levels and η defines the 

fractional reduction in the probability values corresponding 

to the selected voltage levels. Then the new distribution can 

be given by: 
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In the above equation the parameters α and η can be 

adjusted to control the computational complexity of the 

overall approach. We found empirically that with α set to the 

middle of set L and η=2, several unique distributions can be 

obtained when size of L is not very large (|L| < 10). It must 

be noted that (7) represents the adjustments done for 

gradually shifting the probability distribution to favor the 

maximum voltage level and may be repeated τ times, where τ 

can be selected based on the value of η. In addition, the 

increase in the probability of selection for each level is 

proportional to the value of its voltage. The required 

modification is straight forward for the case where we need 

to favor the lowest voltage level.   Figure 1 presents the 

overall procedure used by the PET-PPF.  

4.1.1 Computational Complexity of PET-PPF 

 The total number of adjustments steps can be 

controlled by τ for each direction, therefore, the probability 

distribution adjustment phase is O(τK). In the task allocation 

phase, a single term as in (4) is evaluated for every core per 

each task.  Hence, the complexity of task allocation phase is 

O(M). So, for a DAG with N tasks, the overall complexity of 

PET-PPF is O(τN (M+K)). 

4.2 PET-DCP 

 PET-DCP takes an opposite approach to that of the 

conventional DTM and energy improvement schemes. Most 

of such schemes adjust a performance-optimal schedule to 

satisfy the given thermal and energy requirements. However, 

PET-DCP, starts with the task adjustment phase using the 

given trade-off margin, and then leverages a performance-

optimal scheduler to generate the final schedule. In other 

words, initially a set of probability distributions (similar to 

PET-PPF) for voltage selection phase is generated. Each 

distribution is then used to select the voltage level for every 

task in the DAG. Based on the selected voltage levels, the 

execution time of each task is updated. This updated DAG is 

then used as input to the DCP (Dynamic Critical Path) 

scheduler [21] which generates the final schedule. DCP is a 

performance-optimal scheduler which keeps track of the 

critical path after every task allocation and assigns priorities 

to the remaining tasks accordingly. DCP has been shown to 

generate schedules with near-optimal makespan [7]. As the 

expected voltage level varies across the probability 

distributions generated in the voltage selection phase. 

Therefore, each distribution allows a different level of 

performance trade-off which translates into possibly 

different energy and thermal improvements. It should be 

noted that any change in the execution time of tasks can 

result into a possible modification of the critical path and 

thus the initial schedule as generated by DCP no longer 

remains optimal. Therefore, starting from a performance-

optimal schedule and then iteratively updating it for the 

desired energy and thermal requirements may potentially 

lose more performance in the pursuit of energy and 

temperature improvements. However, the use of 

performance-aware scheduler by PET-DCP as a second step 

ensures maximum performance for the modified task graph. 

Thus, PET-DCP can potentially achieve the performance-

energy and performance-temperature trade-offs without 

excessive performance degradation. Figure 2 briefly outlines 

the PET-DCP approach.  

4.2.1 Computational complexity of PET-DCP  

 The computational complexity of DCP to generate a 

schedule for a DAG of N tasks is O(N
3
). The total number of 

adjustments steps are 2τ, therefore the complexity of 

probability distribution adjustment phase is O(τK). Ignoring 

the time-complexity of drawing N levels from the given 

distribution (O(KN)) and the time to update the DAG 

(O(N)), the overall complexity of PET-DCP will be 

O(τKN
3
).  

5 Experimental Details 

 We assumed a 16-core system with cores arranged in a 

grid layout of 4x4. However, the proposed approach can be 

used for any number of cores and voltage levels. Each core 

was assumed to be able to switch across 5 different voltage 

levels in active mode, thus changing the power consumption 

and frequency of the system. The values of frequencies at 

different voltage levels along with their power consumption 

are outlined in Table 1. It should be noted that the 

frequency-power scaling relationship used in our evaluation 

PET-DCP 

  1:L=loadVoltageLevels 

  2:distributionData=generateProbDist()  

  3:for n=1 to size(distributionData) 

  4: currentprob=distributionData(n); 

  5: vLevels=generateVlevels(currentprob); 

  6: currenttaskgraph =updateTaskGraph(filename,currentprob); 

  7:  newshedule=dcpSchedule(currenttaskgraph); 

  8: makespan=getLatestCompletiontime(newschedule); 

  9:  energyconsumption= 

10: getEnergyConsumption(newschedule,vLevels) 

11:   maxTemp=max(getThermalProfiles(newschedule,vLevels)) 

12: updateSolutionSet(currentSchedule); 

13:endfor 

Figure 2: PET-DCP 



is not very aggressive in terms of reducing the power with 

the change in frequency/voltage level. Similar scaling 

relationships have been observed by other research efforts 

based on actual multi-core systems [17]. Various other 

parameters related to the system under consideration and the 

proposed algorithms are listed in Table 2. 

5.1 Thermal model 

 To estimate the temperature of the cores with various 

power dissipation levels, we can use a steady state thermal 

model as: 

  Ajthj TPRT +=   (8) 

In the above equation, Tj represents the temperature of the 

jth core due to a power dissipation of Pj watts. Rth is the 

thermal resistance and TA represents the ambient 

temperature. Though the model in (8) has been frequently 

used in various DTM related research efforts, however, it 

does not take into account the power consumption of the 

neighboring cores while calculating the temperature of each 

core. In order to cater for the power dissipation of the 

neighboring cores we can modify (8), similar to [24] as: 

  ∑
∈∀

++=

jneighborm
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In (9), neighborj represents the set of cores which are 

adjacent to the jth core.  The correlation between the power 

consumption of the neighboring cores and the temperature of 

a particular core can be controlled by γ. Though the model 

in (9) is still simplistic, however, it should be noted that any 

thermal and system model can be used in conjunction with 

the proposed algorithms. Since, the presented algorithms 

provide a mechanism to explore trade-off surfaces that exist 

between performance, energy, and temperature, therefore, 

the values of these quantities can be obtained from any 

complex and detailed models without having an impact on 

the results reported in Section VI. 

5.2 Task model 

 We used task graphs of various applications including 

Fast Fourier Transform [22], Laplace Equation [23], Gauss 

Elimination [22], Fpppp [21] and a Robot Control 

application [21]. Details of these task graphs can be found in 

the provided references. 

6 Results 

 Figures 3-5 compare the trade-off regions obtained by 

the proposed algorithms for various application task graphs. 

While figures 6-8 present the corresponding performance-

TABLE 1 
DVFS PARAMETERS 

f(MHz) 1600 2000 2200 2400 2600 
P(W) 23.61 48.90 72.48 93.12 105.00 

 

TABLE 2 
SYSTEM PARAMETERS 

Parameter No. of Cores Layout Freq. Switching Partition index (α) Adj. factor/step (η) Total adj. steps (τ) Total no. of solutions 

Value 16 Grid 4x4 Independent 3 2 10 27 

 

 

 
 Fig. 3. Pareto front for FFT. Fig. 4. Pareto front for Gauss Elimination. Fig. 5. Pareto front for Robot Control. 
 

  Fig. 6. Trade-off curves for FFT. Fig. 7. Trade-off curves for Gauss Elimination. Fig. 8. Trade-off curves for Robot Control. 



energy and performance-temperature trade-offs possible by 

leveraging the Pareto-fronts obtained from the proposed 

algorithms. Due to the space considerations, we have only 

presented the selected figures and tables. For comparison, 

we used an efficient temperature-aware allocation scheme 

called Post-Tm [16]. We used each of the available voltage 

level from Table 1 along with the Post-Tm allocation 

scheme to generate a base-line trade-off surface. A direct 

comparison of these Pareto surfaces (Figures 3-8) proves 

that both of the proposed algorithms can obtain trade-off 

solutions with wide range of values and with better spread 

along each objective as compared to the modified Post-Tm 

approach. However, a contrasting difference is that PET-

DCP is able to generate the Pareto fronts or trade-off 

surfaces which are much closer to the performance optimal 

point (shown by arrows in Figures 3-5). Since, the spread of 

solutions generated by the PET-DCP is not inferior to both 

PET-PPF and Post-Tm along energy and temperature axis, 

therefore, the closeness to origin along performance axis 

translates into energy-performance and temperature-

performance trade-offs with lesser performance degradation. 

Figure 9 compares the algorithms in terms of the distribution 

of the solution points (normalized to the minimum value 

obtained) along each objective. We can observe that PET-

DCP was able to achieve a range of values comparable to 

PET-PPF but on the other hand, attains a significantly lower 

mean value for most of the cases.  

 To further analyze the quality of trade-offs, Table 3 

compares the amount of performance degradation for the 

corresponding improvements in energy and temperature for 

each algorithm.  While calculating the performance 

degradation as well as energy and temperature reductions for 

each trade-off solution, the values of PET quantities 

corresponding to the performance-optimal schedule as 

generated by DCP were used as reference.  ∆Pm/∆Em 

represents the ratio of percentage performance degradation 

to the percentage decrease in energy and ∆Pm/∆Tm is the 

ratio of percentage performance degradation to the 

percentage reduction in peak temperature (averaged over all 

solutions generated by each algorithm for a given task 

graph). Negative values for ∆Pm/∆Em and ∆Pm/∆Tm in Table 

3 represent an average decrease in the energy and 

temperature consequential to the corresponding performance 

degradation. From the values in Table 3, it can be observed 

that both the PET-PPF and Post-Tm degrades the 

performance by a larger percentage than the corresponding 

percentage decrease in energy and temperature. For 

example, for Gauss Elimination task graph the values of 

∆Pm/∆Tm for PET-PPF and Post-Tm are -3.04 and -3.99 

which means that for every 1% reduction in peak 

temperature, performance has to be degraded by 3.04% and 

3.99% respectively. However, PET-DCP needs to degrade 

the performance only by 1.43% for every 1% improvement 

in peak temperature for the same application. Similar 

comparison exists for other task graphs. Figure 10 highlights 

this trend pictorially for all the task graphs used in our 

experiments. We also observe that PET-PPF, yields positive 

values for ∆Pm/∆Em for some of the task graphs. This points 

out that, PET-PPF is unable to obtain large number of trade-

off solutions that can improve energy consumption as 

             
(a)                                  (b)                            (c) 

Fig. 9. Comparison of PET-PPF and PET-DCP for various task graphs along (a) Performance, (b) Energy, and (c) Peak temperature.  

TABLE 3 
TRADE-OFF RATIOS 

 
 

 
Fig. 10. Comparison of Trade-off Ratios. 

Values that are negative and closer to zero are better 



compared to the base-line performance-optimal schedule.   

 Based on the performance of PET-DCP, we can note 

that in general, it may be potentially better to pre-adjust the 

tasks according to the system’s state and the given 

requirements of energy and temperature before targeting the 

maximal performance to obtain better trade-off solutions. It 

may also be noted that once the trade-off solutions are 

available, an operating point or schedule can be selected 

from them according to the imposed constraints and the 

given preferences. 

7 Conclusion 

 We proposed two schemes to explore the trade-off 

regions that may exist while trading loss in performance with 

the improvements in energy and peak temperature. Both 

algorithms were able to generate trade-off curves comprising 

of schedules that result into diverse range of values for 

makespan, energy consumption and peak temperature.  Our 

evaluation results indicate that PET-DCP, which pre-adjusts 

tasks probabilistically for energy and thermal improvements 

before using a performance-optimal scheduler, can produce 

multiple schedules that are very close to the performance-

optimal point. This leads the PET-DCP to achieve trade-off 

ratios better than the other algorithms (PET-PPF and Post-

Tm) by a factor of 2 on average. The work presented in this 

paper is an inaugural effort to jointly optimize performance, 

energy, and temperature while scheduling tasks on a multi-

core system and can be used as a framework to attain 

efficient trade-offs among the PET quantities. 
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