
Evaluation of power consumption in programming models

based on map reduce in shared memory systems

Zahra khoshmanesh
1

1
CSE and IT Department, Shiraz University, Shiraz, Iran

Abstract - One of the most common models in parallel

programming is Map reduce. In companies which use Map

reduce framework, at each time a lot of computers are

executing Map and Reduce functions. These functions are

executing many times and we can estimate the effect of any

small changes in response speed or consumed power in each

execution of the Map reduce model to be very high. On the

other hand, power and energy became an important

challenge in computer systems with high performance, so

that criteria such as consumed Power are as important as

performance criteria. Nowadays, because of the generated

heat and also because of decrease in energy sources, saving

the consumed power is very important. So, finding the parts

of the programs which needs more power is of prime

Importance, because by finding these parts, we can find the

ways to investigate and improves them in terms of power. In

this paper, we investigate the available Map Reduce

framework and programs in this regard from the point of

consumed power, which are implemented in multi-core

environment with common memory.

Keywords: consumed power, map reduce, multicores, parallel

programs, efficiency

1 Introduction

According to Moore law [5], numbers of transistors on a chip

are doubled each two years. As the size of the transistors is

reduced, more of them can be placed on the chips, so we can

have more cores on a chip. But the problem which arises is

the consumed power. One transistor has a low consumed

power by itself, but here we have a big number of transistors

which cause high amount of the heat. On the other hand,

transistors cannot be turned off completely, this means even

if they are completely turned off, they will have current

leakage, and some currents will pass through them, even

when they are turned off. And this will cause gradual loose

of energy and the power of connection wires will be too

high. Most power saving mechanisms like doing the task

slowly, will affect the performance. For two reasons,

increasing the speed of the processors by increasing the

frequency is not possible. These two challenges are memory

wall and heat wall. Memory wall is related to difference in

speed between memory and main processor and heat wall

related to the fact that as the execution speed of the computer

increases, consumed power which is proportional to cubic

root of the frequency, also will increase and subsequently

more heat will be generated [7]. To overcome these problems

and to increase computation power of the system, parallel

architecture was recommended among which multi-core

architecture was designed as the practical way of overcoming

problems. So, we have a number of cores on a processor and

in order to be able to use the power of all cores, we should

use multi-node programming. But the problem which arises

is that common multi-node programming leaves the whole

control to the user, and this is a disadvantage.

By increasing the use of information technology and

popularity of the issues such as automation and use of digital

equipment in business processes, in all cases we face data

generation, nowadays we come across with the problem

named data volume explosion. For example EBay Company

has announced that, it has more than 6.5 petabyte data. This

figure is 10 petabyte for Yahoo. The need to analyze the raw

data for different uses in increasing which in turn demand

appropriate and effective solutions for data analysis.

In 2004, Google introduced its programming model for use

in environment with several processor units which is called

Map reduce. This model which is inspired from functional

programming model does all the operations related to

passing, distributing and gathering data between computers

and just demands the computing core of the program from

user. In today world, in which we deal with a high amount of

the data, this programming model is very useful. If we

consider each computer in a distributed system as a core in

multi-core processors, we come with the conclusion that

models such as Map reduce is a good choice for use in this

processing unit.

This model is a simple programming model which is used for

solving computation problems in big scales and in

distributing form. Map reduce was developed by Google in

2003 and is a software framework which provide a safe and

scalable bed for development of distributing uses and is

implemented in different languages.

In fact, it contains a set of library functions which hide the

details and sophistication from the user. These details

include: automatic paralleling of the tasks, data load

balancing, optimization of network and disk transferring,

management of faults in machines. Moreover, each

improvement in library will be applied to all the places

which this library has been used.In this method, two main

steps exist: Map and Reduce.

Map step: main node, take the input and divides it into

smaller sub-problems and then distribute them between

nodes which are responsible for doing the tasks. It is

possible that, this node repeats the task and if so, we would

have a multi-surface architecture. Finally, these sub-

problems are processed and response is sent to the output.

Reduce step: for generating an output, the responses and

results which are received by main node, will be merged

together. To do so, some operations like filtering and

conversion may be applied on the data.

These two main operations are done on a regular pair (key,

value). Map function, take a regular pair of the data and

convert it to a list of regular pairs. Then, Map reduce

framework, gather all the pairs with the same keys from all

lists and produce a group. For each generated key, one group

is produced. And the reduce function act on all groups. Now,

map reduce framework, convert one list of (key, value) to a

list of values.

As an example, a framework called Mars is designed for

graphical processors for programs based on Map reduce.

Also some programs which are designed and developed by

Google based on the map reduce and focus on web based

search programs for ordinary CPU are tested and

implemented GPUs with high computation power and broad

band widths.

One of the common examples for solving problems by Map

reduce, is finding the number of occurrence of a word in a

document. Here document referee to web page. In this

problem, input is a file which has a text in each row. Map

function takes (key, value) pairs. In this case, key is the

address of the web page, and value is web content .[8]

Output of the map function will be a list of other regular

pairs :(number of occurrence, word) same as figure below:

Now map reduce framework gathers all the pairs with

common keys. Then reduce function, merges the value of the

pairs with common keys and assign a new value for that

which in this case is sum of the values.

And finally, output will be like this:

Word count pseudo codes are shown in following:

map(String key, String value):

 // key: document name

 // value: document contents

 for each word w in value:

 EmitIntermediate(w, "1");

reduce(String key, Iterator values):

 // key: a word

 // values: a list of counts

 int result = 0;

 for each v in values:

 result += ParseInt(v);

 Emit(AsString(result));

Algorithm 1 .word count pseudo-code

Studies show that direct monthly energy costs and expenses

for data center is about 23% of the total monthly operational

costs [9]. If we consider costs like power distribution and

cooling structure which affect the monthly energy costs

indirectly, it will be about 42% of monthly operational costs.

Trends show that performance of the processors increase

each 18 month in terms of number of cores, while

performance is doubled in each wat in each two years. [10].

so, it would not be surprising if a previous study has

estimated that servers in USA include 3% of the total

consumed energy in 2011. One reason for the high cost of

the energy of the servers is that nodes in clusters

environment are used 20 to 30% and the performance of the

energy in this range is below 50%. This reveals the fact that

42% of monthly operational cost contribute to power, which

decrease in it will increases the energy performance. [11]

Since map reduce framework can be used in computers in a

data center and its power can be determinable, investigation

and analysis of power is necessary in these environments.

[12, 13]

2. Previous works
In this part a brief description of the works which have been

done before, is presented. In [12] Map reduce programming

model for systems with common memory called Phoenix is

implemented. Creation of the nodes, dividing the data,

dynamic work timing and fault tolerance between nodes of

the processors are done automatically by Phoenix. In this

paper, codes written by low level APIs such as P-thread were

compared with those written by Map Reduce. Conclusion

was that performance of the Map Reduce programming

model on systems with common memory is as good as

simpler parallel codes. Despite, run time overloads, Phoenix

yield the same performance results for most of the applicable

programs. Obviously, there still exist programs which give

better results in P-thread than in Map Reduce model.

In [8] a framework called Mars is designed for graphical

processors for Map reduce based programs. Also some

programs are designed and developed by Google based on

the map reduce which focus on web based search programs

for ordinary CPU. Are tested and implemented in this

framework and for CPUs with higher computation power and

higher band widths and then are compared with Phoenix

which is a modern and updated Map Reduce framework on

multi-core CPUs. Above mentioned framework hides the

sophistications of GPU programming with map reduce

interface. And finally, they came with 16 time faster

execution of 6 common web programs compare to

executions on a CPU with four cores.

In [14] is focused on power and energy for clusters which

use Map Reduce programming model and propose

techniques to decrease the consumed energy. This technique

is turning off the nodes and attention goes towards the

number of nodes to be chosen to be off and have direct

impact on the consumed energy. Majority of the works

which have been done in this paper is systematic

consideration of different strategies for turning off the nodes

in Map Reduce model and their impacts on total consumed

energy and workloads response time. Two methods

investigated are CS & AIS. In the first method some of the

nodes with lower loads become off in low load period and

the second method is turning off all the nodes in low use

period which is proposed by the authors. These two methods

are compared to each other and conclusion is that the second

method which is proposed by them, give better results in

both saving consumed energy and قresponse time which is

shown by analytical models and laboratory results.

It is worth noting that in all the papers mentioned above just

the performance aspect is taken into account and consumed

energy and power are not considered at all and in [14] just the

consumed power of Map Reduce programs in distributed

environment is investigated. None of the papers dealt with

consumed power of Map Reduce base programs in

environments with common memory

3. Laboratory results
In this part first a brief explanation will be given about the

framework in which the test is done and then the

measurement results in multi-core environment with

common memory related to Phoenix Map reduce will be

presented.

3.1 The Phoenix System
Phoenix implements Map Reduce for shared-memory

systems. Its goal is to support efficient execution on multiple

cores without burdening the programmer with concurrency

management. Phoenix consists of a simple API that is visible

to application programmers and an efficient runtime that

handles parallelization, resource management, and fault

recovery. [12]

The current Phoenix implementation provides an application-

programmer interface (API) for C and C++. The API

includes two sets of functions. The first set is provided by

Phoenix and is used by the programmer’s application code to

initialize the system and emit output pairs. The second set

includes the functions that the programmer defines .Apart

from the Map and Reduce functions; the user provides

functions that partition the data before each step and a

function that implements key comparison. The API is quite

small compared to other models. The API is type agnostic.

The function arguments are declared as void pointers

wherever possible to provide flexibility in their declaration

and fast use without conversion overhead.

The API guarantees that within a partition of the intermediate

output, the pairs will be processed in key order. This makes it

easier to produce a sorted final output which is often desired.

There is no guarantee in the processing order of the original

input during the Map stage.

3.2 Basic Operation and Control Flow

Figure 1 shows the basic data flow for the runtime system.

The runtime is controlled by the scheduler, which is initiated

by user code. The scheduler creates and manages the threads

that run all Map and Reduce tasks. It also manages the

buffers used for task communication. The programmer

provides the scheduler with all the required data and function

pointers through the scheduler args t structure.

After initialization, the scheduler determines the number of

cores to use for this computation. For each core, it spawns a

worker thread that is dynamically assigned some number of

Map and Reduce tasks.

To start the Map stage, the scheduler uses the Splitter to

divide input pairs into equally sized units to be processed by

the Map tasks. The Splitter is called once per Map task and

returns a pointer to the data the Map task will process.

The Map tasks are allocated dynamically to workers and

each one emits intermediate <key, value> pairs. The Partition

function splits the intermediate pairs into units for the

Reduce tasks. The function ensures all values of the same

key go to the same unit. Within each buffer, values are

ordered by key to assist with the final sorting. At this point,

the Map stage is over. The scheduler must wait for all Map

tasks to complete before initiating the Reduce stage. [12]

Reduce tasks are also assigned to workers dynamically,

similar to Map tasks. The one difference is that, while with

Map tasks we have complete freedom in distributing pairs

across tasks; with Reduce we must process all values for the

same key in one task. Hence, the Reduce stage may exhibit

higher imbalance across workers and dynamic scheduling is

more important. The output of each Reduce task is already

sorted by key. As the last step, the final output from all tasks

is merged into a single buffer, sorted by keys. The merging

takes place in log2 (P/2) steps, where P is the number of

workers used. While one can imagine cases where the output

pairs do not have to be ordered, our current implementation

always sorts the final output as it is also the case in Google’s

implementation [8].

Fig. 1 the basic data flow for the phoenix runtime

For power consumer measurement, we use a power

measurement device, applications of study with a brief

description of them include:

Word Count: It counts the frequency of occurrence for each

word in a set of files. The Map tasks process different

sections of the input files and return intermediate data that

consist of a word (key) and a value of 1 to indicate that the

word was found. The Reduce tasks add up the values for

each word (key).

Reverse Index: It traverses a set of HTML files, extracts all

links, and compiles an index from links to files. Each Map

task parses a collection of HTML files. For each link it finds,

it outputs an intermediate pair with the link as the key and

the file info as the value. The Reduce task combines all files

referencing the same link into a single linked-list.

Matrix Multiply: Each Map task computes the results for a

set of rows of the output matrix and returns the (x,y) location

of each element as the key and the result of the computation

as the value. The Reduce task is just the Identity function.

String Match: It processes two files: the “encrypt” file

contains a set of encrypted words and a “keys” file contains a

list of non-encrypted words. The goal is to encrypt the words

in the “keys” file to determine which words were originally

encrypted to generate the “encrypt file”. Each Map task

parses a portion of the “keys” file and returns a word in the

“keys” file as the key and a flag to indicate whether it was a

match as the value. The reduce task is just the identity

function

.

KMeans: It implements the popular kmeans algorithm that

groups a set of input data points into clusters. Since it is

iterative, the Phoenix scheduler is called multiple times until

it converges. In each iteration, the Map task takes in the

existing mean vectors and a subset of the data points. It finds

the distance between each point and each mean and assigns

the point to the closest cluster. For each point, it emits the

cluster id as the key and the data vector as the value. The

Reduce task gathers all points with the same cluster-id, and

finds their centroid (mean vector). It emits the cluster id as

the key and the mean vector as the value.

PCA: It performs a portion of the Principal Component

Analysis algorithm in order to find the mean vector and the

covariance matrix of a set of data points. The data is

presented in a matrix as a collection of column vectors. The

algorithm uses two Map Reduce iterations. To find the mean,

each Map task in the first iteration computes the mean for a

set of rows and emits the row numbers as the keys, and the

means as the values. In the second iteration, the Map task is

assigned to compute a few elements in the required

covariance matrix, and is provided with the data required to

calculate the value of those elements. It emits the element

row and column numbers as the key, and the covariance as

the value. The Reduce task is the identity in both iterations.

Histogram: It analyzes a given bitmap image to compute the

frequency of occurrence of a value in the 0-255 range for the

RGB components of the pixels. The algorithm assigns

different portions of the image to different Map tasks, which

parse the image and insert the frequency of component

occurrences into arrays. The reduce tasks sum up these

numbers across all the portions.

Linear Regression: It computes the line that best fits a given

set of coordinates in an input file. The algorithm assigns

different portions of the file to different map tasks, which

compute certain summary statistics like the sum of squares.

The reduce tasks compute these statistics across the entire

data set in order to finally determine the best fit line.[12]

3.3 Measurement of consumed power of the

programs

In this part each program with different set of the data (small,

medium or large) have been executed and the consumed

power of the different phases including splitters, map,

reduce, partition, sort and hash is measured, if available, and

the results are shown in the following graphs.

Fig .2 power consumption in small data

Fig .3 power consumption with medium data

Fig .4 power consumption with large data

0

0.5

1

1.5

2

2.5

splitter
section

map
section

reduce
section

partition
section

sort section hash
section

power consumption with small data

histogram

string-match

matrix multiplication

linear regression

word count

0

1

2

3

4

5

splitter
section

map
section

reduce
section

partition
section

sort
section

hash
section

power consumption with medium data

histogram

string-match

matrix multiplication

linear regression

word count

0

20

40

60

80

100

120

splitter
section

map
section

reduce
section

partition
section

sort section hash
section

power consumption with large data

histogram

string-match

matrix multiplication

linear regression

word count

kmeans

pca

Fig.5 power consumption in word count application

Fig .6 power consumption in string match application

First, data is divided into 3 categories: small, medium and

large. And consumed power of each category for all

programs under study is measured and recorded. Tables 2 to

4 show these measurements. To see the consumed power

better, two more common and more important programs

named “word count” and “string match” which cover all

parts of the work are shown separately.

It is obvious from the above graphs and tables that most of

the activities occurred in the map part and consumed power

in map part of different programs is far from other phases of

each program. In “word count” program most of the

consumed energy is allocated to map. In sort part by

changing the size of the data, by doubling the data,

consumed energy increases more than two times,

unexpectedly. So, it is expected that by increasing size of

input data, consumed energy will paramount. In map part by

doubling the size of the data, consumed energy also is

doubled approximately.

In all programs, by increase in size of the input data,

consumed power will be much more evident. In matrix

multiplication program, by increasing the size of the data,

calculation increased and the consumed power is fixed and

by doubling size of the input, consumed power increased by

less than 2 times.

In “string match” program, consumed of hash part is

considerable and includes about ¼ of the total consumed

energy. By increasing size of the input file, the consumed

power increase non-linearly.

In programs which contain sort and hash, the rule of

consumed power is more evident and by increasing input

data, input of these tasks becomes more complicated.

consequently, sub-programs of these operations should be

0

0.2

0.4

0.6

0.8

1

1.2

1.4

splitter
section

map
section

reduce
section

partition
section

sort section

word count

power with 10mb data

power with 50 mb data

power with 100mb data

0
5

10
15
20
25
30
35

string match

power with 50MB data

power with 100MB data

power with 500MB data

improved and better algorithms should be used in these

operations.

In all programs consumed power of reduce part is not

considerable. But it should be noted that most of the program

either haven’t reduce part or a little work is done in this part.

4. Conclusion
Today, consumed energy plays an important role in the

world we are living in and we look for the cases which

consume less energy. This role is of the same importance in

computers and its programs. Moreover, volume of the data

which should be processed is increasing such that we face

explosion of the data.

Map reduce programming framework is used for processing

these huge data. Different implementations of this

framework in different environments are proposed.

One of these implementations is in multi-core environments

with common memory. Here, measurements are done in this

environment.

Based on the measurement following results obtained:

Most of the activities occurred in Map part and consumed

power in Map part of different programs is much more than

that of other phases of each program. In programs which

include sort and hash parts, role of consumed power is more

evident and by increasing input data, these tasks become

more complicated. So, sub-programs of these operations

should be improved and better algorithms should be used for

these operations.

5. Future works

Measurement in Mars framework and comparison with

Phoenix will be done in the future. And we will try to look

for algorithms which improve the sort and hash functions and

results of implementation of these algorithms will be

investigated.

6. References

[1] J. Lo, J. Emer, H. Levy, R. Stamm, D. Tullsen, and S. Eggers.

Converting Thread-Level Parallelism to Instruction-Level

Parallelism via Simultaneous Multithreading. ACM Transactions on

Computer Systems, 15(3):322–353, August 1997.

[2] NVIDIA Corporation. NVIDIA CUDA Programming Guide.

2009

[3] Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified

data processing on large clusters. In Proceedings of the 6th

conference on Symposium on Opearting Systems Design and

Implementation , San Francisco, CA, 2004.

[4] Soyean.park, weihang.jiang, yuanyuan.zhou, sarita. Managing

Energy –Performance Tradeoffs for Multithreaded Applications ON

Multiprocessor Architectures adveSIGMETRICS’07 June 12–16,

2007, San Diego, California, USA.

[5] G. E. Moore, “Cramming more components onto integrated

circuits”, Proc of Electronics, vol. 38, pp. 114-117, April 1965.

[6] W. A. Wulf, S. A. McKee, “Hitting the memory wall:

implications of the obvious”, ACM SIGARCH Computer

Architecture News,vol. 23, pp.20-24, March 1995

` | `

[7] Sh. Ryoo, Ch. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B.

Kirk and W. W. Hwu, “Optimization principles and application

performance evaluation of a multithreaded GPU using CUDA”,

Proc. ACM SIGPLAN Symposium on Principles and practice of

parallel programming, February 20-23, 2008, Salt Lake City, UT,

USA

 [8] B. He, W. Fang, Q. Luo, N. K. Govindaraju, and T. Wang.

Mars: A mapreduce framework on graphics processors. In

Proceedings of the Intl. Conference on Parallel Architectures and

Compilation Techniques (PACT) ,Toronto, Canada, October 2008.

[9] C. Belady. In the Data Center, Power and Cooling Costs More

than the IT Equipment it Supports. Electronics Cooling, 23(1),

2007.

[10] Report To Congress on Server and Data Center Energy

Efficiency. In U.S. EPATechnical Report, 2007.

[11] L. A. Barroso and U. H¨olzle. The Case for Energy-

Proportional Computing.IEEE Computer, 40(12), 2007.

[12] Colby Ranger, Ramanan Raghuraman, Arun Penmetsa, Gary

Bradski, and Christos Kozyrakis. Evaluating MapReduce for multi-

core and multiprocessor systems. In Proceedings of the 13th Intl.

Symposium on High-Performance Computer architecture (HPCA)

Phoenix,AZ, February 2007.

[13] B. He, W. Fang, Q. Luo, N. K. Govindaraju, and T. Wang.

Mars: A mapreduce framework on graphics processors. In

Proceedings of the Intl. Conference on Parallel Architectures and

Compilation Techniques (PACT) ,Toronto, Canada, October 2008.

[14]willis.lang , jignesh m.patel ,Energy Management for Map

reduce Clusters Proceedings of the VLDB Endowment, Vol. 3, No.

1Copyright 2010 VLDB Endowment

[15] K. Heafield, "Introduction To Hadoop," Google Inc, 2008

[16]y.chen,a.ganapathi,a.fox,r.katz,david.patterson,Statistical

Workload for Energy Efficient Mapreduce, Technical Report

No.UCB/EECS-2010-6,January21,

2010(http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-

2010-6.html)

[17] Apache Software Foundation. JIRA issue MAPREDUCE-

776.Gridmix:Trace-basedbenchmarkforMap/Reduce.

https://issues.apache.org/jira/browse/MAPREDUCE-776.

[18] J. Leverich and C. Kozyrakis. On the Energy (In)efficiency of

Hadoop Clusters. In HotPower ’09: Workshop on Power Aware

Computing and Systems, 2009.

[19] Google. Data center efficiency measurements. The Google

Blog, 2009.

http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-6.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-6.html
https://issues.apache.org/jira/browse/MAPREDUCE-776

