
PH5WRAP: A Parallel Approach To Storage Server of Dicom Images
PDPTA

Tiago S. Soares∗, Thiago C. Prado†, M.A.R Dantas‡, Douglas D.J. de Macedo§, Michael A. Bauer¶
∗†‡Informatics and Statistic Department

Federal University of Santa Catarina
Florianópolis, Brazil

Email: steinmetz@telemedicina.ufsc.br, coeio@inf.ufsc.br, mario@inf.ufsc.br
§Post-Graduate Program of Knowledge Engineering and Management

Federal University of Santa Catarina
Florianópolis, Brazil

Email: macedo@inf.ufsc.br
¶Department of Computer Sciencet

University of Western Ontario
London, Canada

Email: bauer@uwo.ca

Abstract—Nowadays has been observed a large increase
in the volume of images generated by medical devices. The
manipulation of medical images has one known as DICOM
standard that allows interoperability between these images in
different devices. The server CyclopsDCMServer was devel-
oped in order to work with Hierarchical Data Format (HDF5)
for manipulation of medical images (DICOM) on a distributed
file system. This work aims to improve the performance of
the server through an approach that uses the functions of
reading and writing parallel. The experimental results indicate
a gain of the proposed approach with respect to the original
environment.

Keywords-HDF5; MPI; PVFS; DICOM; Parallel I/O;

I. INTRODUCTION

Databases alternative to conventional database for data
storage has been a solution more sought by researchers and
companies when it faces to large volumes of data in systems
of high performance computing. Among the alternatives
that are available and active development, currently the
Hierarchical Data Format (HDF) has been highly seeking by
researchers. HDF5 is the fifth version of this format, and was
developed by the group ”HDFGroup” from the University of
Illinois in the United States. Since the release of HDF many
general purpose and scientific began using it as an efficient
alternative and high performance for storing and accessing
large files. As examples, NASA use HDF to store data from
global monitoring, clinical applications for managing large
collections of images of X-rays and oil companies that store
large amounts of data from 3D seismic surveys [1].

CyclopsDCMServer is a work being done by the group
INCoD at Federal University of Santa Catarina in Brazil
[2] and it aims to supply storage of DICOM images [3]
provided by medical devices connected on Rede Catarinense
de Telemedicina (RTCM) [4]. RTCM connects different

health institutions such as hospitals and primary care that
encompasses 286 cities in the state of Santa Catarina. This
network provides service access to more than 10 DICOM
modalities, among them are: electrocardiogram (ECG), mag-
netic resonance imaging (MRI), computed tomography (CT)
and computed radiography (CR) [5]. For this integration
occur between server and DICOM modalities, the RCTM
use Picture Archiving and Communication System (PACS)
[6] which includes hardware and software support for most
medical equipment masking all part of communication,
safety and accessibility. In Santa Catarina, the system is
available almost over the state, and trend in few years cover
the entire state.

A research mode of this server uses HDF5 as the data
format to DICOM images and a distributed file system
PVFS (Parallel Virtual File Systems), in order to focus on
storage performance, DICOM image queries and solve the
problem of scalability generated by storing vast amounts
of files generated by PACS system. This work involves
on a version of this server that includes the parallelization
of the reading and writing DICOM files in HDF5. This
study focuses on presents the architecture and experiments
of reading and writing in parallel , with the goal of achieving
better performance in access to the database and collect
communication delays. This work has as motivated some
parallel writing function tests performed in work [7], which
demonstrated improvements in writing time.

This work is structured in six sessions. The next session
begins with a base of how the CyclopsDCMServer works,
and in section 3 presents the introduction of the approach of
proposed architecture. In Section 4, we describe some related
work. In section 5 depicts the hardware and software used in
this project, the experiments and results. Finally, in Chapter
6, we ended the study with conclusions and future work.



II. CYCLOPSDCMSERVER

CyclopsDCMServer was developed in order to provide
service integration of DICOM in PACS environment, in
order to provide medical imaging storage and accessibility
for manipulating these images through workstations. The
application is multiplatform and can run on the Linux
machine, Windows and other systems. Currently, in real
system, the application CyclopsDCMServer stores all infor-
mation provided by PACS system in a relational database
called PostgreSQL. The DICOM files generated by available
modalities on PACS system, generate files with different
sizes, ranging from 300 Kbytes to 600Mbytes per image,
and should remain stored on the server for at least 10
years. In measuring the increase in volume of data they
generate problems such as scalability, latency in queries and
maintenance costs.

Based on these problems described above, studies were
carried out by Macedo et al [5] seeking to circumvent issues
of telemedicine environments based in server with relational
database systems. These issues considered are scalability,
distribution of information, ability to use techniques for high
system performance and operating costs. The result of this
research led to a new server architecture based on PVFS and
HDF5. Among the usual procedures of the current approach,
the contribution was storing all the information hierarchi-
cally, such as organize and store data in HDF5 format. The
second step was to use a cluster with distributed file system
in order to seek high-performance disk access. Another
contribution was to create an object called H5WRAP to
handling with HDF5 interface.

A. H5WRAP

Due to lack of a procedure that incorporate a DICOM
image in HDF5, it was necessary to create a library called
H5WRAP, which converts a DICOM file in the format HDF5
data. The library contains an object that is used to create,
find, collect and store information related to DICOM images
in HDF5 files and this information is represented in Figure
1. Among various metadata contained in a DICOM file [8],
for the H5WRAP, were collected only metadata that are
importance to the PACS system used in Santa Catarina.

HDF5 files are organized in a hierarchical structure. It
is observed that were selected three DICOM layers, each
layer represent a group of study, serie and image, where the
hospital attributes and patient studies are contained in the
study layer. Their primary structures are two datasets and
groups [1] . An HDF5 group is a grouping structure that
can contain zero or more instances of groups or datasets,
while an HDF5 dataset is a multidimensional array of data
and also contains metadata that describes the dataset. In the
next section, we explain how the read and write in parallel
was built in H5WRAP

Figure 1. DICOM layers in HDF format

B. PH5WRAP

The PH5WRAP is an architecture oriented to work in
reading and writing parallel only the binary. The reason for
this restriction is due to the fact that the binary image repre-
senting on average 90% of a DICOM file, ignoring the need
to parallelize small disk accesses to metadata, which could
result in a longer process, due to communication necessary
to distributed these layers. This architecture is designed
to work in the same environment previously proposed in
H5WRAP, based in PVFS and HDF5, with the addition of
the Message Passing Interface (MPI).

The parallel access is provided by processes that are
initiated at each node. The parallel access comes from the
HDF5 API, which uses ROMIO interface to access the
file system. ROMIO is a portable implementation of MPI-
IO access which was created to provide high performance
access to distributed file system. Its development is restricted
to support some types of file system and among the most
widely used, we have the PVFS and NFS [9]. In terms of
characteristics of parallel access, the Parallel Virtual File
Systems designed to support multiple access models, such as
collective and independent access, as well as non-contiguous
access patterns and structured. PVFS has three important
structures: the metadata node, data node and client node.
A node can represent all the structures simultaneously. The
metadata nodes are controllers of permission file, directories
and file names. Data nodes store physically data files and
the client makes requests to the file system commands using
POSIX or through APIs .

The Figure 2 illustrates the architecture of PH5WRAP,
which illustrates the communication between the usual
H5WRAP with the parallel application. The implementation
of parallel application will be used by the server as it needs
to perform a read operation or write a binary image DICOM.



Figure 2. Ph5wrap architecture

Basically, the dicom file is unpacked to the data type and
attributes, wrapping these contents into HDF5 format and
throwing the binary image to parallel application. In this
application, two main procedures are performed, the reading
and writing functions. In case of Figure 3, it illustrates the
division of binary image between the application processes
when the master node receives the buffer from H5wrap. The
division it’s make simple, based on number of parallel nodes,
which more nodes, smaller the buffer to distributed to other
nodes.

The next two sections, it’s describe the functionality of
the both main function.

1) Write function: The write function begins with a
request for some DICOM modality available on the PACS
for storage an image in CyclopsDCMServer. As the object
H5WRAP performs file analysis , it is create indexes in
Clucene index table [10]. Before writing the metadata, it
is checked whether the study groups, series and image
metadata are already available in the HDF5 file, otherwise
it is create the layers. Stored metadata, the server creates a
connection through socket with the master process, sending
the type of operation, the operation path and binary buffer,
awaiting return the status of communication process. The
Master process distributes the binary partition for nodes
according to number of nodes in the system, and they store
their respective buffer in system PVFS.

2) Read function: The process of reading function is
similar to the writing process. Start with a client application
consulting an image. This query is performed on server via
Clucene index table where DICOMS images can be filtered
by modalities study, series and images. The retrieve for an
image is performed after the step above, that returns the

Figure 3. Shows the binary buffer distribution between nodes

object path that will be accessed in HDF5 file. The reading of
metadata is performed by H5WRAP, while the binary image
is performed by the parallel application. To performing the
reading of the binary, H5WRAP create connection with
master process, sending only the type of operation and
location of the binary access. The Master node distributes
to other nodes the location, which each node retrieves a
region of binary. After reading their region, the nodes return
a binary portion to master process. The Master, taken up all
the regions, it sends the binary to H5WRAP. The H5WRAP
ends the DICOM file, returning to the client.



III. RELATED WORK

The first two works are themes that seek to resolve I/O
performance issue of large amounts of stored data, using
the parallel HDF5 library. The first related work [11], is
very similar to ours where this work focus on the use of
parallel I/O library for scalability problems involving many
fermions dynamics for nuclear structure (MFDn). This study
used a parallel version of HDF5 and performed tests on
the independent and collective models. The results showed
that files with size up to 20 GB, parallel HDF5 became
more productive than sequential. The work [12] focuses in
using parallel-IO for particle-based accelerator simulations
that involved large amounts of data and dimensional arrays.
They used two different API, the first is well-known MPI-
IO and the second is the parallel HDF5 called H5part. He
compared the simulations performance of read and write
file operation between the API H5part, MPI-IO and the
primary (file per process). HDF5 showed good performance
in writing, although MPI-IO showed better results in both
operations.

The works [13] [14] [15] are interesting because they
focused in working with comparisons and performance
improvements of I/O in platforms such as Jaguar and Red
Storm. These are supercomputing platforms, which provide
computer services, such as GTC for spectrum, Parallel
Ocean Program (POP) ocean modeling, physics calculations
program and others. The work proposed by Yu et al has
some interesting comparisons with different types of I/O.
They propose to improve and enhance access in a parallel
application called Jaguar of Oak Ridge National Laboratory
and aimed at several objectives such as, the characterization
of performance parallel-IO on storage unit and scalability of
the entire system. The results showed a better performance
and less scalability in parallel-IO in collective mode and
showed that using technique called FLASH I/O, the per-
formance can improve by 34% with certain adjustments on
collective I/O .

About the file systems, the work [16] conducted three
experiments in an atmospheric model system, distinguishing
the access mode on disk. The experiments deal with applying
a single application with a differential in system architec-
ture that adds Threads on its processes. The written tests
with local disk had the best performance by not requiring
communication between the nodes of the file system. The
environment with threads had a better performance when
used the parallel virtual file system (PVFS), because it
has facilities when use MPI interface. The experiments
were performed using 30 clients in one PVFS environment
with four nodes. As each process accesses the file system
constantly to write the atmospheric results, when you have
more than one process per machine, they compete for access
disk, reducing the execution time. This does not occur with
the application threads, since it runs one process per machine

and performs better memory used.

IV. ENVIRONMENT AND EXPERIMENTAL RESULTS

The environment used for the experiments is a virtualized
with eight virtual machines, both PVFS nodes and nodes
of the parallel application. Another virtual machine is used
to host the server CyclopsDCMServer. For virtualization
platform environment, we used VMware vSphere 5. The
host machine has an Intel Xeon E5310 with 4 cores at
1.6 GHz each and a total of 10Gbytes of memory and 460
Gbytes of disk. Each virtual machine has virtualized 1077
Gbytes of memory and 23:26 Gbyte disk.

To assemble the virtual cluster, it was necessary to set
up an environment with PVFS, MPICH2and HDF5, and
their arguments are meant for installation work with parallel
features. Each of the parallel application process will also
be a PVFS data storage node. We use the same number of
PVFS data nodes as parallel application processes in order
to use the maximum use of the environment. The graphs
bellow shows the number of attempts on y axis and time
spent in seconds on x axis to complete the experiments.

In reading experiments were total conducted 24 experi-
ments, 16 collecting only the read time of binary from two
DICOM images in HDF file, discarding the communication
delay and assembly of the DICOM file. The other eight
experiments represent the total value of reading the images,
plus the assembly of the DICOM file. The first binary
image has 92.16Mbytes while the second has 52.42 Mbytes.
Experiments were performed with the serial server, three
more experiments with 2, 4 and 8 parallel nodes. These
experiments were performed twice, resulting in a total of
eight experiments per image. Each reading experiment was
repeated 25 times on the same image. From these results,
it is collected the average and presented in the comparison
chart of the averages in Figure 4.

It can be observed in the first average graph of image 1 on
the first attempt, a difference up to 6 milliseconds of average
serial reading with 4 parallel nodes. In the second attempt,
the parallel reading with 8 nodes have underperformed with
a difference of approximately 7 milliseconds compared to
the serial reading and near twice worse compared with 4
nodes. The same can be observed in image 2, although
the results are better than eight nodes serial reading, the
difference between the applications with four nodes is almost
twice. Finally, the Figura 6 graph is a noteworthy the impact
of the runtime application when used CyclopsDCMServer
with 8 nodes.

One important factor that causes the loss of performance
of parallel application with 8 nodes in the three graphs is due
to be working with one processor with four cores and using
8 vitual machines, running one process. This process will
disputed to use one core, therefore, others have to wait. This
causes saturation in processor use, rather than working with
a virtual machine requires a high processing power. This



Figure 4. Reading comparisons graphics

Figure 5. Server runtime

conclusion can be proved also by the fact that when we use
only four nodes, no process have to wait, the performance is
approximately 2 times faster. This underperformance provide
by 8 nodes is also observed in Figures 5.

The next figures illustrate two graphs of average for
written experiments performed with about 1000 DICOM
images each attempts. These images are sent to the server
CyclopsDCMServer, which is responsible to communicate
with parallel application.

In Figure 6 shows the average time of writing an image
in the HDF. For this first graph, we collected the time of
writing only, discarding the time of the system. Among
the two attempts, there is the bottleneck described above

Figure 6. Written comparisons graphics and graph of transfer rate

about the 8 nodes and performance gain of 2 and 4 nodes.
This gain is around 50 milliseconds and 33 respectively
compared with serial mode. The transfer rate is shown in
the second graph. This transfer rate is the measurement of
the binary transmission from the server to the MASTER
of the parallel application. Unlike the total time of the
system, the transfer rate does not take into account other
communications between the MASTER and the server, as
well as communication between the application processes.
Note that the speed of data communication is directly
interconnected to the number of processes in the system.

V. CONCLUSION AND FUTURE WORK

This work was done in order to show new results for
the parallel architecture introduced earlier in [7], in order
to detect failures and performance in reading and writing
parallel of a DICOM image in HDF format. The environment
is virtualized and configured with parallel virtual file system
(PVFS) and HDF5, where more tests were realized to collect
more consistent results.

The results showed a gain in reading and writing parallel,
but the number of nodes exceeds the number of processing
from the host machine, the performance of the architecture
is low. Other problem in this system is the poor time of
runtime system, provided by the communication between
the server and parallel approach to transfer binary buffer.
One solution to overcome the time problem is to move the
H5wrap object to the master process, with goal to remove
the necessity of binary transfer.



As future work, we intend that run parallel architecture
in a real environment and dedicated to collect results that
do not depend mainly on the processing power. Analyze the
performance of system access in accordance with increasing
the number of nodes. Finally, more tests with different types
of DICOM modalities, mainly work with larger files.

REFERENCES

[1] HDFGroup, Access: January, January 2011. [Online].
Available: http://www.hdfgroup.org

[2] “Romio: A high-performance, portable mpi-io implemen-
tation,” Access: December. 2010, December. [Online].
Available: http://cyclops.telemedicina.ufsc.br

[3] O. Pianykh, Digital Imaging and Communications in
Medicine (DICOM): A practical introduction and survival
guide. Springer Verlag, 2008.

[4] J. Wallauer, A. von Wangenheim, R. Andrade, and
D. De Macedo, “A telemedicine network using secure tech-
niques and intelligent user access control,” in 21st IEEE In-
ternational Symposium on Computer-Based Medical Systems.
IEEE, 2008, pp. 105–107.

[5] D. De Macedo, A. Von Wangenheim, M. Dantas, and H. Per-
antunes, “An architecture for dicom medical images storage
and retrieval adopting distributed file systems,” International
Journal of High Performance Systems Architecture, vol. 2,
no. 2, pp. 99–106, 2009.

[6] T. Cradduck, “Pacs: Basic principles and applications,”
Physics in Medicine and Biology, vol. 45, p. 2444, 2000.

[7] T. Soares, D. de Macedo, M. Bauer, and M. Dantas, “A
parallel architecture using hdf for storing dicom medical
images on distributed file systems.”

[8] “Digital imaging and communications in medicine,”
Access: December. 2011, December. [Online]. Available:
http://en.wikipedia.org/wiki/DICOM

[9] M. Division, “Romio: A high-performance, portable mpi-io
implementation,” Access: March. 2011. [Online]. Available:
http://www.mcs.anl.gov/research/projects/romio/

[10] Sourceforge, “Clucene,” Access: December, December 2011.
[Online]. Available: http://clucene.sourceforge.net/

[11] N. Laghave, M. Sosonkina, P. Maris, and J. Vary, “Benefits
of parallel i/o in ab initio nuclear physics calculations,”
Computational Science–ICCS 2009, pp. 84–93, 2009.

[12] A. Adelmann, R. Ryne, J. Shalf, and C. Siegerist, “H5part: A
portable high performance parallel data interface for particle
simulations,” in Particle Accelerator Conference, 2005. PAC
2005. Proceedings of the. IEEE, 2006, pp. 4129–4131.

[13] M. Fahey, J. Larkin, and J. Adams, “I/o performance on a
massively parallel cray xt3/xt4,” in Parallel and Distributed
Processing, 2008. IPDPS 2008. IEEE International Sympo-
sium on. IEEE, 2008, pp. 1–12.

[14] J. Laros, L. Ward, R. Klundt, S. Kelly, J. Tomkins, and
B. Kellogg, “Red storm io performance analysis,” in Cluster
Computing, 2007 IEEE International Conference on. IEEE,
2007, pp. 50–57.

[15] W. Yu, J. Vetter, and H. Oral, “Performance characterization
and optimization of parallel i/o on the cray xt,” in Parallel
and Distributed Processing, 2008. IPDPS 2008. IEEE Inter-
national Symposium on. IEEE, 2008, pp. 1–11.

[16] F. Boito, R. Kassick, L. Pilla, N. Barbieri, C. Schepke,
P. Navaux, N. Maillard, Y. Denneulin, C. Osthoff, P. Grun-
mann et al., “I/o performance of a large atmospheric model
using pvfs,” Rencontres francophones du Parallélisme (Ren-
Par20), 2011.


