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Abstract - A parallel formulation for the simulation of a 
branch prediction algorithm is presented. This parallel 
formulation identifies independent tasks in the algorithm 
which can be executed concurrently. The parallel 
implementation is based on the multithreading model and 
two parallel programming platforms: POSIX threads and 
Cilk++. Improvement in execution performance by up to 7 
times is observed for a generic 2-bit predictor in a 12-core 
multiprocessor system. 
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1 Introduction 
 A branch predictor is an algorithm implemented in 
hardware which is intended to improve the performance of 
instruction execution in the pipeline of modern 
microprocessors. This algorithm predicts whether a branch 
instruction should be taken (T) or not-taken (NT) by the 
microprocessor, based on stored history of execution of 
previous branches [1]. Prediction accuracy is inherent to 
the prediction algorithm and is frequently evaluated and 
quantified by computer simulation, using branch traces as 
input data. These branch traces contain a set of branch 
addresses and outcomes which represent every branch 
instruction seen by a processor when executing a 
computing task.  
 
 Typically, branch traces are collected from the 
execution of well-known benchmark programs, and stored 
in very large files with millions of addresses and outcomes. 
The simulation process executes a software model of the 
prediction algorithm and relates obtained results with 
observed outcomes. The analysis computes a prediction to 
each branch in the trace, compares this prediction with the 
actual outcome observed, and keeps a global tally of the 
number of comparison matches, referred to as hits.  
Behaviour and accuracy analysis of a branch prediction 
algorithm implies the execution of a batch process for a 
number of trace files, each one subject to different 

parameter values. This analysis requires a significant 
computational time.     
 
 In this paper, a parallel formulation of a generic 
branch predictor algorithm is described. This parallel 
formulation exploits the inherent parallelism of the 
algorithm and reduces the execution time of the analysis by 
simulation of a branch predictor using multiprocessor 
systems. The implementation of the parallel formulation 
has three main steps. Firstly, a concurrent classification of 
the branch traces, according to the branch address, is 
performed. Secondly, the execution of the predictor 
algorithm on each class of address proceeds concurrently. 
Thirdly, a final step to tally global hits is computed. Results 
show an improvement in execution performance by up to 7 
times when this implementation is evaluated on a 12-core 
system. 

2 Generic Branch Prediction 
Algorithm 

 Prediction algorithms are basically defined by two 
processes: a prediction function and an update procedure. 
The prediction function makes a prediction (T or NT) for a 
branch instruction based on information stored from 
previous branches.  The update procedure modifies the 
recorded history of branches based on the prediction and 
the actual outcome of the branch. A Branch Prediction 
Buffer (BPB) maintains information of previous branches 
as a table. BPB is indexed by a hash function of the branch 
instruction address. BPB typically contains a set of bits 
indicating whether the branch was recently taken or not [1].  
 
 Fig. 1 describes an algorithm of a generic branch 
predictor simulator, using a BPB table with 2S entries, with 
S > 0. Each entry in BPB table stores history for a branch 
instruction address.  
 
 Input arrays A and O in Fig. 1 contain the branch traces 
for the simulation. Variable hits stores the tally on the 
correct predictions. Every branch instruction in the trace is 
related with one element of the BPB table and evaluated by 



the prediction function (lines 2-3) making a Boolean 
decision as either taken (T) or not-taken (NT). This value is 
compared with the recorded outcome (line 4), and matches 
are stored in hits (line5). Finally, BPB table is updated (line 
7) at the corresponding entry for the branch instruction 
address. 
 
Input: 
   A ← array of addresses 
   O ← array of outcomes 
Output: 
 hits: correct predictions  
 
1. for i=1 to N do 
2.  entry ← Ai mod 2

S 
3.  p ← prediction(entry,BPB) 
4.  if (p=Oi) then 
5.     hits ← hits + 1 
6.  end if 
7.  update(entry,p,Oi,BPB) 
8. end for 
Figure 1. Pseudocode of a generic branch predictor 
simulator  algorithm.  
 

2.1 Parallel formulation  

 The pattern access to BPB table determines the 
behaviour of the algorithm in Fig.1: each branch instruction 
accesses only the entry in BPB corresponding to its 
address. Therefore, data decomposition can be applied 
sequentially over branch instruction addresses to classify 
outcomes. This classification creates a list of arrays, where 
each item in the list corresponds to outcomes for a specific 
address value in BPB. Thus, each array in the list can be 
processed by an independent predictor task, and all these 
tasks can be executed concurrently, although every 
individual task performs sequentially.  
 
 An example of this data decomposition is shown in 
Fig. 2. Arrays A and O represent the input traces. Array A 
contains a set of 13 hash values of branch instruction 
addresses, for a BPB table with 8 entries (entry values 
between 0 and 7). Array O contains its corresponding set 
of outcomes (T or NT). 

i 1 2 3 4 5 6 7 8 9 10 11 12 13 

A 5 6 2 4 6 1 7 1 5 3 5 3 7 

O T T NT NT  T T T NT NT NT T T NT 

 
  LO 

0 1 2 3 4 5 6 7 

 T NT NT NT T T T 

 NT  T  NT T NT 
     T   

Figure 2. Example of data decomposition of input 
traces. 

 The input data is arranged in a list of arrays, LO. Each 
item in list LO corresponds to an entry value in BTB table, 
and contains an array of outcomes ordered by appearance 
in the trace. For example, for an entry value of 5, LO item 
has three outcomes (T, NT, T) corresponding to the 
outcomes of elements 1, 9 and 11 in the input trace. 

Fig. 3 describes the parallel formulation for the algorithm 
presented in Fig. 1. In this parallel formulation, outcomes  
of the branch traces in array O are classified in a list of 2S 
arrays (LO) according to the value of its corresponding 
address (lines 1-4). Concurrent tasks process LO items. 
Each task k executes sequentially the predictor algorithm 
on the array elements (lines 5-13) and registers correct 
predictions in lhitsk. After all tasks conclude, all lhits are 
accumulated in a global tally (hits). 

Input: 
   A ← array of addresses 
   O ← array of outcomes 
Output: 
 hits: correct predictions  
 
1.  for i=1 to N do 
2.  entry ← Ai mod 2

S 
3.  LOentry.append(Oi) 
4.  end for 
5.  for each k in[0..2S-1] do parallel 
6.  while (LOk.get(Oki)) do 
7.     p ← prediction(k, BPB) 
8.     if (p=Oki) then 
9.   lhitsk = lhitsk + 1 
10.    endif 
11.    update(k,p,Oki,BPB) 
12.  end while 
13. end foreach 
14. for k=0 to 2S-1 do 
15.  hits = hits + lhitsk 
16. end for 
Figure 3. Pseudocode of the parallel formulation for the 
simulator of a generic branch predictor. 

3 Parallel implementation 
 The parallel formulation algorithm in Fig. 3 was 
implemented using a shared memory model for concurrent 
tasks in multiprocessor systems called multithreading [2]. 
Multithreading is a parallel programming model that 
allows concurrent execution of multiple threads in the 
same process. A thread is a sequence of instructions within 
a process that can be scheduled for independent execution 
with other threads. Every program has one main thread. 
This thread can perform all the tasks by itself, or create 
other threads with defined subtasks. These subtasks should 
be designed to encapsulate functionality in order to exploit 
the inherent concurrency in the algorithm. Thread 
synchronization operations influence on the overall 
execution time performance [3]. Two multithreading 
programming platforms were used to compare performance 
of parallel implementations: POSIX threads and Cilk++. 



3.1 POSIX threads 

 POSIX threads (pthreads) API (Application Program 
Interface) is a standard approved by IEEE for thread 
management. Pthreads is a portable threading library 
designed to provide a consistent programming interface 
across different operating systems platforms. Their main 
functions focus on thread creation, destruction and 
synchronization. The most common functions for thread 
synchronization are the mutual exclusion (mutex) locks  
and barriers. [4] 
 
 The pthreads version for parallel simulation of the 
branch predictor algorithm used in this paper encapsulates 
the classification of the outcomes and the predictor 
procedure. In the classification step, input arrays are 
divided in sub-arrays and each thread classifies a sub-array 
in a local version of LO list. After this classification is 
completed, corresponding arrays from all local LO lists are 
orderly merged in global arrays to create a global LO list. 
Then, the predictor function is executed concurrently, 
where each thread sequentially processes one item of the 
global LO list at a time.  Finally, every thread updates the 
global tally of correct predictions with its own local tally.  
 
 In this implementation, barrier synchronization is 
used at the end of the input classification and at the end of 
merging local LOs. Mutex synchronization is used for 
concurrent update of the tally of correct predictions. 

3.2 Cilk++ 

 Cilk++ is a language extension for programming 
languages C/C++. Three statements make up the main part 
of the extension; cilk_spawn, cilk_sync and cilk_for. 
cilk_spawn and cilk_for are used to create parallel tasks, 
either with complete functions or with loop iterations. The 
cilk_sync statement is a local barrier, and is used to 
synchronize parallel tasks created by cilk_spawn. 
Aditionally, Cilk++ includes a library for mutex locks. 
Locking tends to be used much less frequently than in other 
parallel environments, such as pthreads, because all 
protocols for control synchronization are handled by the 
Cilk++ runtime system. The Cilk++ runtime system is 
based on a work-stealing scheduler using threads. This is a 
dynamic load-balancing scheduler and improves the 
utilization rate of processing units in a system [5]. 
 
The Cilk++ version for parallel simulation of branch 
predictor algorithm used in this paper implements three 
stages: input array classification, merging of local LO and 
prediction with verification. Every stage is implemented 
with a cilk_for statement. cilk_for is a replacement for the 
conventional C++ for statement and executes loop 
iterations in parallel. Cilk++ compiler converts a cilk_for 
loop into a divide-and-conquer recursive function 

encapsulating the loop body. This strategy benefits Cilk++ 
scheduler performance [6]. After the three cilk_for loops, 
the sum of all the partial tally of correct predictions is 
performed sequentially.  

4 Results 
 Both parallel implementations were executed on an 
Intel 12-core (dual 6-core Xeon X5690, 3.47GHz) desktop 
system with Scientific Linux 6.0 (release 2.6.32-131). 
Pthreads version was compiled with gcc 4.4.4 (Red Hat 
4.4.4-13), and Cilk++ version was compiled with cilk++ 
(GCC) 4.2.4 (Cilk Arts build 8503). Branch traces were 
collected from  SPEC 2000 benchmark programs, with 
sizes of 10 million and 30 million of traces. BPB table was 
set at 4096 entries.  We specifically exercised a 2-bit 
branch predictor algorithm [1]. 

 
Figure 4. Speedups of the simulation of the parallel 
branch predictor in a 12-core system with 10 million 
traces. 
 

 
Figure 5. Speedups of the simulation of the parallel 
branch predictor in a 12-core system with 30 million 
traces. 



 Fig. 4 and Fig. 5 show the execution time speedup for 
pthreads and Cilk++ versions with input traces of 10 
million and 30 million of elements, respectively. 

 On each parallel execution, one thread was created 
for each executing core. The execution time was calculated 
by the average of 50 executions of every version of the 
program (sequential, pthreads parallel and Cilk++ 
parallel). 

5 Discussion 
 The Cilk++ implementation shows better performance 
than the pthread implementation for both sizes of branch 
traces files. Speedup in both implementations exhibits a 
sustained improvement on the first group of 6-cores. 
However, this improvement starts to decline with the 
second group of 6-cores. This behaviour is due to both the 
distribution of the data on cache memory of each processor 
and a slower external buffer that interconnects processors 
and  memory. 
 
 The speedup tendency is very similar for Cilk++ 
implementation with both sizes of input traces. However, 
for pthreads implementation, with 10 million input traces, 
speedup starts to decline when the number of threads 
increases. With 30 million traces this tendency is not 
observed. This behaviour reflects how the cost of creating 
and synchronizing threads influences the execution 
performance. 
   
 The increasing speedup in performance suggests that 
concurrent independent tasks have been effectively 
identified from the sequential algorithm. 

6 Conclusions 
 A parallel formulation for the simulation of a 2-bit 
branch prediction algorithm has been proposed. This 
parallel formulation was implemented, based on the 
multithreading model, using pthreads and Cilk++ 
programming platforms. Execution time performance 
exhibits an improvement with an incremental tendency by 
up to 7 times for a 12-core multiprocessor system. These 
results suggest that the parallel formulation effectively 
identifies inherent parallel tasks in the algorithm.  
 Future work is aimed at using the parallel formulation 
of the simulation of the 2-bit branch predictor with other 
branch predictor algorithms to analyze its performance. 
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