
A Parallel Formulation for the Simulation of a Generic
Branch Predictor

L. Curi-Quintal1,2 and J. Cadenas1
1School of Systems Engineering, University of Reading, Reading RG6 6AY, UK

2FMAT - Universidad Autonoma de Yucatan, Merida, Mexico
 l.f.curiquintal@pgr.reading.ac.uk, o.cadenas@reading.ac.uk

Abstract - A parallel formulation for the simulation of a
branch prediction algorithm is presented. This parallel
formulation identifies independent tasks in the algorithm
which can be executed concurrently. The parallel
implementation is based on the multithreading model and
two parallel programming platforms: POSIX threads and
Cilk++. Improvement in execution performance by up to 7
times is observed for a generic 2-bit predictor in a 12-core
multiprocessor system.

Keywords: branch predictor simulator, parallel
formulation, multi-threading, Cilk++.

1 Introduction
 A branch predictor is an algorithm implemented in
hardware which is intended to improve the performance of
instruction execution in the pipeline of modern
microprocessors. This algorithm predicts whether a branch
instruction should be taken (T) or not-taken (NT) by the
microprocessor, based on stored history of execution of
previous branches [1]. Prediction accuracy is inherent to
the prediction algorithm and is frequently evaluated and
quantified by computer simulation, using branch traces as
input data. These branch traces contain a set of branch
addresses and outcomes which represent every branch
instruction seen by a processor when executing a
computing task.

 Typically, branch traces are collected from the
execution of well-known benchmark programs, and stored
in very large files with millions of addresses and outcomes.
The simulation process executes a software model of the
prediction algorithm and relates obtained results with
observed outcomes. The analysis computes a prediction to
each branch in the trace, compares this prediction with the
actual outcome observed, and keeps a global tally of the
number of comparison matches, referred to as hits.
Behaviour and accuracy analysis of a branch prediction
algorithm implies the execution of a batch process for a
number of trace files, each one subject to different

parameter values. This analysis requires a significant
computational time.

 In this paper, a parallel formulation of a generic
branch predictor algorithm is described. This parallel
formulation exploits the inherent parallelism of the
algorithm and reduces the execution time of the analysis by
simulation of a branch predictor using multiprocessor
systems. The implementation of the parallel formulation
has three main steps. Firstly, a concurrent classification of
the branch traces, according to the branch address, is
performed. Secondly, the execution of the predictor
algorithm on each class of address proceeds concurrently.
Thirdly, a final step to tally global hits is computed. Results
show an improvement in execution performance by up to 7
times when this implementation is evaluated on a 12-core
system.

2 Generic Branch Prediction
Algorithm

 Prediction algorithms are basically defined by two
processes: a prediction function and an update procedure.
The prediction function makes a prediction (T or NT) for a
branch instruction based on information stored from
previous branches. The update procedure modifies the
recorded history of branches based on the prediction and
the actual outcome of the branch. A Branch Prediction
Buffer (BPB) maintains information of previous branches
as a table. BPB is indexed by a hash function of the branch
instruction address. BPB typically contains a set of bits
indicating whether the branch was recently taken or not [1].

 Fig. 1 describes an algorithm of a generic branch
predictor simulator, using a BPB table with 2S entries, with
S > 0. Each entry in BPB table stores history for a branch
instruction address.

 Input arrays A and O in Fig. 1 contain the branch traces
for the simulation. Variable hits stores the tally on the
correct predictions. Every branch instruction in the trace is
related with one element of the BPB table and evaluated by

the prediction function (lines 2-3) making a Boolean
decision as either taken (T) or not-taken (NT). This value is
compared with the recorded outcome (line 4), and matches
are stored in hits (line5). Finally, BPB table is updated (line
7) at the corresponding entry for the branch instruction
address.

Input:
 A ← array of addresses
 O ← array of outcomes
Output:
 hits: correct predictions

1. for i=1 to N do
2. entry ← Ai mod 2

S
3. p ← prediction(entry,BPB)
4. if (p=Oi) then
5. hits ← hits + 1
6. end if
7. update(entry,p,Oi,BPB)
8. end for
Figure 1. Pseudocode of a generic branch predictor
simulator algorithm.

2.1 Parallel formulation

 The pattern access to BPB table determines the
behaviour of the algorithm in Fig.1: each branch instruction
accesses only the entry in BPB corresponding to its
address. Therefore, data decomposition can be applied
sequentially over branch instruction addresses to classify
outcomes. This classification creates a list of arrays, where
each item in the list corresponds to outcomes for a specific
address value in BPB. Thus, each array in the list can be
processed by an independent predictor task, and all these
tasks can be executed concurrently, although every
individual task performs sequentially.

 An example of this data decomposition is shown in
Fig. 2. Arrays A and O represent the input traces. Array A
contains a set of 13 hash values of branch instruction
addresses, for a BPB table with 8 entries (entry values
between 0 and 7). Array O contains its corresponding set
of outcomes (T or NT).

i 1 2 3 4 5 6 7 8 9 10 11 12 13

A 5 6 2 4 6 1 7 1 5 3 5 3 7

O T T NT NT T T T NT NT NT T T NT

 LO

0 1 2 3 4 5 6 7

 T NT NT NT T T T

 NT T NT T NT
 T

Figure 2. Example of data decomposition of input
traces.

 The input data is arranged in a list of arrays, LO. Each
item in list LO corresponds to an entry value in BTB table,
and contains an array of outcomes ordered by appearance
in the trace. For example, for an entry value of 5, LO item
has three outcomes (T, NT, T) corresponding to the
outcomes of elements 1, 9 and 11 in the input trace.

Fig. 3 describes the parallel formulation for the algorithm
presented in Fig. 1. In this parallel formulation, outcomes
of the branch traces in array O are classified in a list of 2S
arrays (LO) according to the value of its corresponding
address (lines 1-4). Concurrent tasks process LO items.
Each task k executes sequentially the predictor algorithm
on the array elements (lines 5-13) and registers correct
predictions in lhitsk. After all tasks conclude, all lhits are
accumulated in a global tally (hits).

Input:
 A ← array of addresses
 O ← array of outcomes
Output:
 hits: correct predictions

1. for i=1 to N do
2. entry ← Ai mod 2

S
3. LOentry.append(Oi)
4. end for
5. for each k in[0..2S-1] do parallel
6. while (LOk.get(Oki)) do
7. p ← prediction(k, BPB)
8. if (p=Oki) then
9. lhitsk = lhitsk + 1
10. endif
11. update(k,p,Oki,BPB)
12. end while
13. end foreach
14. for k=0 to 2S-1 do
15. hits = hits + lhitsk
16. end for
Figure 3. Pseudocode of the parallel formulation for the
simulator of a generic branch predictor.

3 Parallel implementation
 The parallel formulation algorithm in Fig. 3 was
implemented using a shared memory model for concurrent
tasks in multiprocessor systems called multithreading [2].
Multithreading is a parallel programming model that
allows concurrent execution of multiple threads in the
same process. A thread is a sequence of instructions within
a process that can be scheduled for independent execution
with other threads. Every program has one main thread.
This thread can perform all the tasks by itself, or create
other threads with defined subtasks. These subtasks should
be designed to encapsulate functionality in order to exploit
the inherent concurrency in the algorithm. Thread
synchronization operations influence on the overall
execution time performance [3]. Two multithreading
programming platforms were used to compare performance
of parallel implementations: POSIX threads and Cilk++.

3.1 POSIX threads

 POSIX threads (pthreads) API (Application Program
Interface) is a standard approved by IEEE for thread
management. Pthreads is a portable threading library
designed to provide a consistent programming interface
across different operating systems platforms. Their main
functions focus on thread creation, destruction and
synchronization. The most common functions for thread
synchronization are the mutual exclusion (mutex) locks
and barriers. [4]

 The pthreads version for parallel simulation of the
branch predictor algorithm used in this paper encapsulates
the classification of the outcomes and the predictor
procedure. In the classification step, input arrays are
divided in sub-arrays and each thread classifies a sub-array
in a local version of LO list. After this classification is
completed, corresponding arrays from all local LO lists are
orderly merged in global arrays to create a global LO list.
Then, the predictor function is executed concurrently,
where each thread sequentially processes one item of the
global LO list at a time. Finally, every thread updates the
global tally of correct predictions with its own local tally.

 In this implementation, barrier synchronization is
used at the end of the input classification and at the end of
merging local LOs. Mutex synchronization is used for
concurrent update of the tally of correct predictions.

3.2 Cilk++

 Cilk++ is a language extension for programming
languages C/C++. Three statements make up the main part
of the extension; cilk_spawn, cilk_sync and cilk_for.
cilk_spawn and cilk_for are used to create parallel tasks,
either with complete functions or with loop iterations. The
cilk_sync statement is a local barrier, and is used to
synchronize parallel tasks created by cilk_spawn.
Aditionally, Cilk++ includes a library for mutex locks.
Locking tends to be used much less frequently than in other
parallel environments, such as pthreads, because all
protocols for control synchronization are handled by the
Cilk++ runtime system. The Cilk++ runtime system is
based on a work-stealing scheduler using threads. This is a
dynamic load-balancing scheduler and improves the
utilization rate of processing units in a system [5].

The Cilk++ version for parallel simulation of branch
predictor algorithm used in this paper implements three
stages: input array classification, merging of local LO and
prediction with verification. Every stage is implemented
with a cilk_for statement. cilk_for is a replacement for the
conventional C++ for statement and executes loop
iterations in parallel. Cilk++ compiler converts a cilk_for
loop into a divide-and-conquer recursive function

encapsulating the loop body. This strategy benefits Cilk++
scheduler performance [6]. After the three cilk_for loops,
the sum of all the partial tally of correct predictions is
performed sequentially.

4 Results
 Both parallel implementations were executed on an
Intel 12-core (dual 6-core Xeon X5690, 3.47GHz) desktop
system with Scientific Linux 6.0 (release 2.6.32-131).
Pthreads version was compiled with gcc 4.4.4 (Red Hat
4.4.4-13), and Cilk++ version was compiled with cilk++
(GCC) 4.2.4 (Cilk Arts build 8503). Branch traces were
collected from SPEC 2000 benchmark programs, with
sizes of 10 million and 30 million of traces. BPB table was
set at 4096 entries. We specifically exercised a 2-bit
branch predictor algorithm [1].

Figure 4. Speedups of the simulation of the parallel
branch predictor in a 12-core system with 10 million
traces.

Figure 5. Speedups of the simulation of the parallel
branch predictor in a 12-core system with 30 million
traces.

 Fig. 4 and Fig. 5 show the execution time speedup for
pthreads and Cilk++ versions with input traces of 10
million and 30 million of elements, respectively.

 On each parallel execution, one thread was created
for each executing core. The execution time was calculated
by the average of 50 executions of every version of the
program (sequential, pthreads parallel and Cilk++
parallel).

5 Discussion
 The Cilk++ implementation shows better performance
than the pthread implementation for both sizes of branch
traces files. Speedup in both implementations exhibits a
sustained improvement on the first group of 6-cores.
However, this improvement starts to decline with the
second group of 6-cores. This behaviour is due to both the
distribution of the data on cache memory of each processor
and a slower external buffer that interconnects processors
and memory.

 The speedup tendency is very similar for Cilk++
implementation with both sizes of input traces. However,
for pthreads implementation, with 10 million input traces,
speedup starts to decline when the number of threads
increases. With 30 million traces this tendency is not
observed. This behaviour reflects how the cost of creating
and synchronizing threads influences the execution
performance.

 The increasing speedup in performance suggests that
concurrent independent tasks have been effectively
identified from the sequential algorithm.

6 Conclusions
 A parallel formulation for the simulation of a 2-bit
branch prediction algorithm has been proposed. This
parallel formulation was implemented, based on the
multithreading model, using pthreads and Cilk++
programming platforms. Execution time performance
exhibits an improvement with an incremental tendency by
up to 7 times for a 12-core multiprocessor system. These
results suggest that the parallel formulation effectively
identifies inherent parallel tasks in the algorithm.
 Future work is aimed at using the parallel formulation
of the simulation of the 2-bit branch predictor with other
branch predictor algorithms to analyze its performance.

7 Acknowledgements
 This work was supported by PROMEP and UADY.

8 References
[1] Patterson, D.A., and J.L. Hennessy. Computer
Organization and Design: The Hardware /Software
Interface, Fourth Edition. Morgan Kaufmann Publishers,
2009.

[2] Rauber, T. and G. Runger. Parallel Programming: for
Multicore and Cluster Systems. First Edition. Springer,
2010.

[3] Akhter, S. and J. Roberts. Multi-Core Programming.
Increasing Performance through Software Multi-threading.
Intel Press, 2006.

[4] Butenhof, D. Programming with POSIX Threads.
Addison-Wesley Professional, 1997.

[5] Leiserson, C. E. The Cilk++ concurrency platform.
Proceedings of the 46th Annual Design Automation
Conference, 2009 (DAC '09), pp.522-527.

[6] Intel. Intel Cilk++ SDK Programmer’s Guide.
Document Num.: 322581-001US. Intel Corp, 2009.

