
Parallel Implementation of Moving Averages and Stock

Market Prediction

John Jenq

Computer Science Department, Montclair State University, Montclair, New Jersey, USA

Abstract - In recent years, graphics processing units have

made parallel processing affordable with the price of personal

desktop computers. This report investigates the computational

aspects of calculating simple moving average and exponential

moving average operations, two of the most popular financial

indicators. In this report, we also investigate the usage of

GPU to run artificial neural network as a mean of predicting

stock market pricing. Feedforward and Backpropagation

artificial neural network was used for this study. Financial

data including major stock indices, volumes, pricing, and

moving average of stocks were used as input. The future stock

prices can be predicted as the output. The speedup factor by

adopting GPU and CPU together over traditional CPU alone

implementation was not significant. The computation of

compute moving averages on GPU was also discussed.

Keywords: artificial neural network, stock prediction, GPU

computing, parallel processing, high performance computing.

1 Introduction

 Graphic processing unit (GPU) has transformed a

regular PC into a personal supercomputer. For example, in

[5], the GeForce GTX 580 can perform single precision

operation that reaches more than 1500 GFlops. These

computing powers significantly speed up the computational

intensive applications with a price of a PC. Many tools have

been developed to make the GPU computing much easier than

ever before. Personal supercomputing is now a reality to us.

 Artificial neural networks are used for pattern

recognition, clustering, and optimization. Neural networks

can also be used to solve problems which are not easily solved

by traditional calculation methods, particularly if there is no

strong underlying theory to explain the data. Neural networks

have been developed as generalizations of mathematical

methods of neural biology, based on the assumption that the

information processing occurs at many simple elements called

neurons. Signals are passed between neurons over connection

links. Each connection link has an associated weight which

multiplies the signal transmitted. Each neuron applies an

activation function to its net input to determine its output

signal.

 There are researchers using neural network in financial

and economic computations. For example, in [3], Li and Liu

used LM BP algorithm to predict the Shanghai stock market.

In [9], Wang developed a HLP method that gets stock high

low points with different frequencies and amplitudes. The

extracted data is then fed into a neural network to forecast the

stock direction and price. In [8] Tirados and Jenq used neural

networks to predict GDP with ten leading economic indicators

as the input. In [4] Lin and Feng combined neural network

and pattern matching techniques to analyze and forecast oil

stock prices. In [10], Zhou and Zhang used financial

indicators such as moving averages, volumes, relative strength

index, etc. on neural network to predict future stock prices.

 In the past, CPU clusters have been used to achieve high

performance computation. GPU computing uses GPU as a co-

processor to accelerate CPUs for general purpose scientific

and engineering computing. It shifts computation intensive

program segments into GPU while keeping the rest of the

program segments, which are serial in nature, on the CPU.

This kind of hybrid computing improves the performance of

many computer applications.

 The GPU computation can be used on financial

computations as well. Researchers in the financial world find

the benefits of using GPU in financial computation. In [6],

Peng, et. al., compute option pricing on GPU with backward

stochastic differential equation. in [1], Lee, et. al., did

financial derivative modeling using GPUs. In [7] Solomon et.

al., used trinomial lattice strategy to implement the pricing of

European option and American lookback option pricing using

GPU. In [2], Lee, et. al., investigated random number

generation and the Monte-Carlo simulation to predict future

stock prices. They also discussed the out of core case when

graphics DRAM is not big enough to hold all the application

data.

 The rest of the paper is organized as the following.

Section 2 discusses methodologies and implementation of an

artificial neural network. Parallel implementation of simple

moving average and exponential moving average will be

discussed as well. Section 3 discusses and analyzes the

experimental results. Section 4 gives conclusion remarks.

2 Methodologies and implementations

 Three-layer neural network was chosen to implement our

prediction system. The inputs are major industrial stock

indices and stock indicators. The goal is to forecast future

stock prices. Feedforward and backpropagation neural

network was used. Backpropagation is a gradient descent

neural network method used to minimize the total squared

error of the output calculated by the network. The network is

developed to achieve a balance between the ability to respond

to the input patterns that are used for training and the ability

to give good responses to input that is similar, but not

identical, to that used in training. Like with multiple

regression, backpropagation was used to develop a correlation

between the input of stock market data in order to determine

the future stock price.

 The training of a network by backpropagation involves

three stages: the feedforward of the input training pattern, the

calculation and backpropagation of the associated error, and

the adjustment of the weights. After training, application of

the network involves the computations of the feedforward

phase only.

 To prevent the larger data from dominating the outcome,

the raw data will be processed before being fed into the neural

network. The raw data has been modified. In the following

discussion, B represents the raw form of the original data, and

C is the normalized version of B.

 This transformation map our data to between -1 and 1.

The activation function selected is the bipolar sigmoid

function, which has a range of (-1, 1), and is defined as

2.1 Feedforward Backpropagation Neural

Network

 The traditional Neural Network algorithm can be

simplified as below

while (cycle < maxCycle && averageError > toleranceEerr)

{

 for (int i= 0; i < totalRecords; i++)

 {

 forwardPropagation();

 backwardPropagation();

 accumulateError();

 updateWeights(learningRate);

 }

 compute averageError;

}

 To simplify the discussion, let's denote the connection

weights between the input layer and hidden layer to be w.

Also let's denote the connection weights between the hidden

layer and output layer as v. Note that both w and v are vectors.

To parallelize the code in order to fit into GPU computing,

some modifications will be made. Instead of performing

backpropagate operation for each pattern to update weights,

we will compute the dw (the update of weight w), dv(update

of weights v) and then do the update of the weights at the end

of each cycle. It means that we move the

updateWeights(learningRate) function out of the traditional

algorithm above. Instead of performing these operations for

each record for each cycle, we reduce them to once per cycle.

Therefore the total weights to be updated would be the

summation of dw and dv, which are calculated by an

individual pattern during the process. Note that the dws are

the weights to be added to the w, the weights between input

layer and hidden layer. And dvs are the weights to be added to

v, the weights between hidden layer and output layer. Here we

assume there is one output neuron although more output

neurons are possible. The updateWeights function can be

done by binary reduction which can be performed in logN

steps using N threads. Although the backwardPropagation

and updateWeights functions may be parallelized, the gain of

speedup may be limited. This setup allows us to assign one

pattern to each thread in order to speed up the process.

 Because the binary reduction operation may slow down

the whole system performance, it is interesting to find out if

assigning more than one pattern to a thread for processing will

improve the performance. Once again, it depends on how

many clock cycles will be used to synchronize the threads. If

more threads are to be synchronized, then we would expect

more time for the reduction operation. An interesting aspect is

to find out how to organize operations so that we can get the

best possible performance.

2.2 Moving Average

 Moving averages can be used as financial indicators.

There are various types of moving averages, of which two of

the most popular are simple moving average and exponential

moving average.

2.2.1 Simple Moving Average

 Assume the daily closing price for day t is . The n-day

simple moving average can be defined as ,

where is the closing price at day i. So simple moving

average can be computed by taking the average closing price

of a stock, over the last N periods. Popular simple moving

12
minmax

min 















BB

BB
C t

t (1)

 
 

 
     afaf

da

adf

axpe
af








11
2

1

1
1

2

(2)

(3)

averages are 5, 10, 20, 40, and 200. Let's assume that the last

five periods for a stock are 1,3,5,7, and 9. Then, the 5 day

simple moving average can be computed as (1+3+5+7+9)/5 =

5. While simple moving average giving all past n-day closing

prices are weighted equally, the n-day exponential moving

average assigns more weight to the most recent price, which

will be discussed in the next subsection.

 Simple moving average on a parallel computer can be

done by using Prefix Sum operation. It also known as Scan

operation. A Prefix Sum can be defined as the following.

Given a set of N values ,…, and an associative

operation @, the Prefix Sums operation will compute the N

quantities (, , ,...,).

By using the Prefix Sum operation, the N-day Simple moving

average of day "i" can be calculate as

 SMA[i] = (prefixSum[i] – prefixSum[i-N])/N

 where SMA[i] is the N day moving average at day i.

Table 1 gives an example that uses Prefix Sum to compute 3-

day moving averages. Assume the missing period (period -1,

and -2 in our example) values are 0.

Period 1 2 3 4 5 6 7

Value 1 3 5 7 9 10 12

prefixSum 1 4 9 16 25 35 47

Total of

subsequence
1 4 9

15(=

16-1)

21(=

25-4)

26(=

35-9)

31(=

47-16)

Simple

Moving

Average

1 2.5 3 5 7 8.67 10.33

Table 1 Example of calculation of SMA using prefixsum

2.2.2 Exponential Moving Average

 Exponential moving average can be defined as

, where

is the closing price at day t. The is weighting factor and can

be defined as , where n is the number of time

periods involved in the computation. For example, for 10-day

period , , while 20-day

, . One can rewrite the

above definition using past n-day closing prices and as

follows. Note that weights are decayed exponentially and the

most recent prices carry more weights in the computation.

 Even though EMA can be easily computed by using the

method as mentioned in the previous paragraph, however it

has serial nature in the computation. In order to deliver a

parallel algorithm, let's define where is the

multiplier that we define from the previous discussion. The

formula to compute exponential moving average then becomes

the following

 We will partition the whole data array into segments with

lengths of powers of 2. Assume the leftmost data is the most

recent data(the lowest index) and rightmost one (the highest

index) is the oldest timing data. By using memory to

store the comupted information, we can therefore compute

exponential moving average of period in time.

Here, is the number of records. Actually one can reduce the

total memory to as we will discuss shortly.

 The computation of EMA involves two phases. In the first

phase, we will generate the required data through iterations. In

the first iteration, two pieces of data that are adjacent to each

other will be processed to create a combined length-2

information. In the second iteration, combined length-4

segment information can be generated from the combined

length-2 information. To simplify, let's assume p is power of

two. In iterations, one can create which is

a total of pieces of data information for each segment of

length P. This information will be used in the second phase of

our EMA computation. Table 2 gives an illustration of the first

phase EMA computation. Note that .

Table 2 Phase one of EMA Computation: data store scheme

 For a segment of P periods of data on a N data array,

where P < N, our job is to find the EMA for all the data on the

data array with N data. Our approach is to partition any

segment from index a to index b, where (b-a+1) is the period

P, into at most two segments. It is possible that there is only

one segment if the segment starts with index of power of 2 and

ends with a power of 2 minus 1. In that case, we can compute

the EMA value. It is just the value in the array of index

. For example, if a is 56, b is 63, and P is 8,

then index 60 holds the EMA value. Refer to Table 2 above to

see how the combined values are stored. Note that this is the

0 1 2 3 4 5 6 7

 (01) (23) (45) (67)

 (0123) (4567)

 (1->7)

 +

 +

+

+

 +

(4)

best case since there is only one segment. For other P-1 cases,

out of every segment of length P, there are two segments. Let's

assume these two segments are and . First of all, we have

to find out the cutline index. The first segment starts with

index a and ends with an index which is to the power of 2

minus 1. Let's call this index cutindex. It can be computed as

ppb / . Consider a segment from index 53 to 60: the

resulting cutline index is 56. Note 5688/60  . The second

segment starts with an index 56, which is to the power of 2,

and ends with b, which is 60 in this case. Note that segment

and can be formed by elements with lengths of power of

two. For example, if segment is of length 11, then it can be

formed as a sum of segments of lengths 1, 2, and 8. Note here

that the lengths of the segments from left to right are in

increasing order. can be processed similarly, however the

size of the component segments are decreasing. Distinguishing

the order of increasing and descreasing of these components is

important. For example, if is a segment of length 14, then

the component sub-segments will have lengths of 8, 4, and 2.

This is the order to retrieve the information. Note also that

these component segments never carry the same length as

other component segments in its combination. We can use a

loop to mark the partioned segments if they are not zero and

then add them up to get the resultant EMA. Note that during

the loop computation, different power of need to be applied

to the retrieved value so the power of shall be correctly

applied to faithfully reflect the weights assigned to these

segments. For the above example, a segment from 53 to 60 is

considered. After computing the value of , the resultant

computing value from needs to be multiplied by 3 before

we add the resultant value from the computation of . It is

cubed because the segment 53 to 55 has length of 3. The

multiplication by the power of applies to the process of

computing the values of and with the same reason.

Details are omitted.

3 Conclusions

 The experiments were conducted on a Intel i7 with Nvidia

GeForce 550M. The parallelized moving average and neural

network version was constructed using CUDA C. Due to the

small size of records and the nature of the neural network, the

speedup wasn't observed. The main reason is due to the

requirement of synchronization of these threads. It is apparent

that the expensive cost of synchronization makes the CPU

implement more appealing. We expect that when the number

of neurons and number of data increases, we shall get better

results. We trust Nvidia will come up with a better solution to

deal with the synchronization of threads.

 For moving average computation, GPU computing does

not provide advantages over CPU computing when there is a

small amount of data. If the amount of data by simulation is

increased, some improvement can be achieved. We understand

that different machines with different models of CPU and

GPU can create different results.

4 Conclusions

 The parallel versions of moving average computation

used in the financial industry and back propagation neural

network computation were developed to run on Nvidia GPU

using CUDA C. The GPU version of moving average does not

give significant speedup over traditional CPU version using

prefix sum operation. For neural network training process,

GPU computation does not provide significant performance

over traditional CPU implementation due to the requirement

of thread synchronization. Even if we tried to minimize the

number of synchronization by using device kernel calls, then

speed up over the traditional CPU approach wouldn't be

significant. Actually, in some situations when the number of

records are small, the CPU implementation is superior. The

implementation of real time predicting system over a huge

data set in the financial industry is an interesting and

challenging problem for future investigation.

5 References

[1] Myungho Lee, Chin Hong Chun, and Sugwon Hong, "

Financial Derivatives Modeling Using GPU's", International

Conference on Scalable Computing and Communications;

The Eighth International Conference on Embedded

Computing, pp 440 - 445

[2] Myungho Lee, Jin-hong Jeon*, Joonsuk Kim, and

Joonhyun Song, " Scalable and Parallel Implementation of a

Financial Application on a GPU: with focus on out-of-core

case", 2010 10th IEEE International Conference on Computer

and Information Technology, pp 1323 - 1327

[3] Feng Li, and Cheng Liu, " Application Study of BP

Neural Network on Stock Market Prediction", 2009 Ninth

International Conference on Hybrid Intelligent Systems, pp

174 - 178

[4] QianYu Lin, and ShaoRong Feng, " Stock market

forecasting research based on Neural Network and Pattern

Matching", 2010 International Conference on E-Business and

E-Government, pp 1940 - 1943

[5] Nvidia, "Nvidia Cuda C Programming Guide", version

4.0, May 6, 2011,

[6] Ying Peng, Bin Gong, Hui Liu, and Bin Dai, "Option

Pricing on the GPU with Backward Stochastic Differential

Equation", 2011 Fourth International Symposium on Parallel

Architectures, Algorithms and Programming, pp 19 - 23

[7] Steven Solomon, Ruppa K. Thulasiram and Parimala

Thulasiraman, " Option Pricing on the GPU", 2010 12th IEEE

International Conference on High Performance Computing

and Communications, pp 289 - 296

[8] Edward Tirados and John Jenq, "Analysis of Leading

Economic Indicator Data and Gross Domestic Product Data

Using Neural Network Methods", Journal of Systemics,

Cybernetics and Informatics, vol 7, no 4, 2009, pp 51-56

[9] Lei Wang, and Qiang Wang, " Stock market prediction

using artificial neural networks based on HLP", 2011 Third

International Conference on Intelligent Human-Machine

Systems and Cybernetics, pp 116 - 119

[10] Yixin Zhou, and Jie Zhang, "Stock data analysis based

on BP neural network", 2010 Second International

Conference on Communication Software and Networks, pp

396 - 399

