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Abstract - In recent years, graphics processing units have 

made parallel processing affordable with the price of personal 

desktop computers. This report investigates the computational 

aspects of calculating simple moving average and exponential 

moving average operations, two of the most popular financial 

indicators. In this report, we also investigate the usage of 

GPU to run artificial neural network as a mean of predicting 

stock market pricing. Feedforward and Backpropagation 

artificial neural network was used for this study. Financial 

data including  major stock indices, volumes, pricing, and 

moving average of stocks were used as input. The future stock 

prices can be predicted as the output. The speedup factor by 

adopting GPU and CPU together over traditional CPU alone 

implementation was not significant. The computation of 

compute moving averages on GPU was also discussed. 

Keywords: artificial neural network, stock prediction, GPU 

computing, parallel processing, high performance computing. 

 

1 Introduction 

  Graphic processing unit (GPU) has transformed a 

regular PC into a personal supercomputer. For example, in 

[5], the GeForce GTX 580 can perform single precision 

operation that reaches more than 1500 GFlops. These 

computing powers significantly speed up the computational 

intensive applications with a price of a PC. Many tools have 

been developed to make the GPU computing much easier than 

ever before. Personal supercomputing is now a reality to us. 

 Artificial neural networks are used for pattern 

recognition, clustering, and optimization.  Neural networks 

can also be used to solve problems which are not easily solved 

by traditional calculation methods, particularly if there is no 

strong underlying theory to explain the data.  Neural networks 

have been developed as generalizations of mathematical 

methods of neural biology, based on the assumption that the 

information processing occurs at many simple elements called 

neurons. Signals are passed between neurons over connection 

links. Each connection link has an associated weight which 

multiplies the signal transmitted. Each neuron applies an 

activation function to its net input to determine its output 

signal.   

 There are researchers using neural network in financial 

and economic computations. For example, in [3], Li and Liu 

used LM BP algorithm to predict the Shanghai stock market. 

In [9], Wang developed a HLP method that gets stock high 

low points with different frequencies and amplitudes. The 

extracted data is then fed into a neural network to forecast the 

stock direction and price. In [8] Tirados and Jenq used neural 

networks to predict GDP with ten leading economic indicators 

as the input. In [4] Lin and Feng combined neural network 

and pattern matching techniques to analyze and forecast oil 

stock prices. In [10], Zhou and Zhang used financial 

indicators such as moving averages, volumes, relative strength 

index, etc. on neural network to predict future stock prices. 

 In the past, CPU clusters have been used to achieve high 

performance computation. GPU computing uses GPU as a co-

processor to accelerate CPUs for general purpose scientific 

and engineering computing. It shifts computation intensive 

program segments into GPU while keeping the rest of the 

program segments, which are serial in nature, on the CPU. 

This kind of hybrid computing improves the performance of 

many computer applications.   

 The GPU computation can be used on financial 

computations as well. Researchers in the financial world find 

the benefits of using GPU in financial computation. In [6], 

Peng, et. al., compute option pricing on GPU with backward 

stochastic differential equation. in [1], Lee, et. al., did 

financial derivative modeling using GPUs. In [7] Solomon et. 

al., used trinomial lattice strategy to implement the pricing of 

European option and American lookback option pricing using 

GPU. In [2], Lee, et. al., investigated random number 

generation and the Monte-Carlo simulation to predict future 

stock prices. They also discussed the out of core case when 

graphics DRAM is not big enough to hold all the application 

data. 

  The rest of the paper is organized as the following. 

Section 2 discusses methodologies and implementation of an 

artificial neural network. Parallel implementation of simple 

moving average and exponential moving average will be 

discussed as well. Section 3 discusses and analyzes the 

experimental results. Section 4 gives conclusion remarks. 

 



2 Methodologies and implementations 

 Three-layer neural network was chosen to implement our 

prediction system. The inputs are major industrial stock 

indices and stock indicators. The goal is to forecast future 

stock prices. Feedforward and backpropagation neural 

network was used. Backpropagation is a gradient descent 

neural network method used to minimize the total squared 

error of the output calculated by the network.  The network is 

developed to achieve a balance between the ability to respond 

to the input patterns that are used for training and the ability 

to give good responses to input that is similar, but not 

identical, to that used in training.  Like with multiple 

regression, backpropagation was used to develop a correlation 

between the input of stock market data in order to determine 

the future stock price. 

 

 The training of a network by backpropagation involves 

three stages:  the feedforward of the input training pattern, the 

calculation and backpropagation of the associated error, and 

the adjustment of the weights.  After training, application of 

the network involves the computations of the feedforward 

phase only. 

 

 To prevent the larger data from dominating the outcome, 

the raw data will be processed before being fed into the neural 

network.  The raw data has been modified. In the following 

discussion, B represents the raw form of the original data, and 

C is the normalized version of B.   

 

 

   

 

  

 This transformation map our data to between -1 and 1. 

The activation function selected is the bipolar sigmoid 

function, which has a range of    (-1, 1), and is defined as 

 

 

 

 

   

   

 

2.1 Feedforward Backpropagation Neural 

Network 

 

 The traditional Neural Network algorithm can be 

simplified as below 

while (cycle < maxCycle  && averageError > toleranceEerr) 

{ 

 for (int i= 0; i < totalRecords;  i++) 

 { 

  forwardPropagation(); 

  backwardPropagation(); 

  accumulateError(); 

  updateWeights(learningRate); 

 } 

 compute averageError; 

} 

 

 To simplify the discussion, let's denote the connection 

weights between the input layer and hidden layer to be w. 

Also let's denote the connection weights between the hidden 

layer and output layer as v. Note that both w and v are vectors. 

To parallelize the code in order to fit into GPU computing, 

some modifications will be made. Instead of performing 

backpropagate operation for each pattern to update weights, 

we will compute the dw (the update of weight w), dv(update 

of weights v) and then do the update of the weights at the end 

of each cycle. It means that we move the 

updateWeights(learningRate) function out of the traditional 

algorithm above. Instead of performing these operations for 

each record for each cycle, we reduce them to once per cycle.  

Therefore the total weights to be updated would be the 

summation of dw and dv, which are calculated by an 

individual pattern during the process. Note that the dws are 

the weights to be added to the w, the weights between input 

layer and hidden layer. And dvs are the weights to be added to 

v, the weights between hidden layer and output layer. Here we 

assume there is one output neuron although more output 

neurons are possible. The updateWeights function  can be 

done by binary reduction which can be performed in logN 

steps using N threads. Although the backwardPropagation  

and updateWeights functions may be parallelized, the gain of 

speedup may be limited. This setup allows us to assign one 

pattern to each thread in order to speed up the process.  

 Because the binary reduction operation may slow down 

the whole system performance, it is interesting to find out if 

assigning more than one pattern to a thread for processing will 

improve the performance. Once again, it depends on how 

many clock cycles will be used to synchronize the threads. If 

more threads are to be synchronized, then we would expect 

more time for the reduction operation. An interesting aspect is 

to find out how to organize operations so that we can get the 

best possible performance. 

2.2 Moving Average  

  Moving averages can be used as financial indicators. 

There are various types of moving averages, of which two of 

the most popular are simple moving average and exponential 

moving average. 

 

2.2.1 Simple Moving Average 

  Assume the daily closing price for day t is . The n-day 

simple moving average can be defined as  , 

where  is the closing price at day i. So simple moving 

average can be computed by taking the average closing price 

of a stock, over the last N periods. Popular simple moving 
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averages are 5, 10, 20, 40, and 200. Let's assume that the last 

five periods for a stock are 1,3,5,7, and 9. Then, the 5 day 

simple moving average can be computed as (1+3+5+7+9)/5 = 

5. While simple moving average giving all past n-day closing 

prices are weighted equally, the n-day exponential moving 

average assigns more weight to the most recent price, which 

will be discussed in the next subsection.  

 

  Simple moving average on a parallel computer can be 

done by using Prefix Sum operation. It also known as Scan 

operation. A Prefix Sum can be defined as the following. 

Given a set of N values ,…,  and an associative 

operation @, the Prefix Sums operation will compute the N 

quantities ( , , ,..., ). 

By using the Prefix Sum operation, the N-day Simple moving 

average of day "i" can be calculate as  

 

 SMA[i] = (prefixSum[i] – prefixSum[i-N])/N 

 

 

  where SMA[i]  is the N day moving average at day i. 

Table 1 gives an example that uses Prefix Sum to compute 3-

day moving averages. Assume the missing period (period -1, 

and -2 in our example) values are 0. 

 

   
Period 1 2 3 4 5 6 7 

Value 1 3 5 7 9 10 12 

prefixSum 1 4 9 16 25 35 47 

Total of 

subsequence 
1 4 9 

15(= 

16-1) 

21(= 

25-4) 

26(= 

35-9) 

31(= 

47-16) 

Simple 

Moving 

Average 

1 2.5 3 5 7 8.67 10.33 

 

Table 1 Example of calculation of SMA using prefixsum 

 

2.2.2 Exponential Moving Average 

   Exponential moving average can be defined as 

, where  

is the closing price at day t. The  is weighting factor and can 

be defined as , where n is the number of time 

periods involved in the computation. For example, for 10-day 

period , , while 20-day 

, . One can rewrite the 

above  definition using past n-day closing prices and  as 

follows. Note that weights are decayed exponentially and the 

most recent prices carry more weights in the computation. 

 

 
 

  Even though EMA can be easily computed by using the 

method as mentioned in the previous paragraph, however it 

has serial nature in the computation. In order to deliver a  

parallel algorithm, let's define  where  is the 

multiplier that we define from the previous discussion. The 

formula to compute exponential moving average then becomes 

the following 

 

 
 

  We will partition the whole data array into segments with 

lengths of powers of 2. Assume the leftmost data is the most 

recent data(the lowest index) and rightmost one (the highest 

index) is the oldest timing data. By using  memory to 

store the comupted information, we can therefore compute 

exponential moving average of  period in  time. 

Here,  is the number of records. Actually one can reduce the 

total memory to  as we will discuss shortly. 

 

  The computation of EMA involves two phases. In the first 

phase, we will generate the required data through iterations. In 

the first iteration, two pieces of data that are adjacent to each 

other will be processed to create a combined length-2 

information. In the second iteration, combined length-4 

segment information can be generated from the combined 

length-2 information.  To simplify, let's assume p is power of 

two. In  iterations, one can create  which is 

a total of pieces of data information for each segment of 

length P. This information will be used in the second phase of 

our EMA computation. Table 2 gives an illustration of the first 

phase EMA computation. Note that .  

 

 

Table 2 Phase one of EMA Computation: data store scheme 

 

  For a segment of P periods of data on a N data array, 

where P < N, our job is to find the EMA for all the data on the 

data array with N data. Our approach is to partition any 

segment from index a to index b, where (b-a+1) is the period 

P, into at most two segments. It is possible that there is only 

one segment if the segment starts with index of power of 2 and 

ends with a power of 2 minus 1. In that case, we can compute 

the EMA value. It is just the value in the array of index  

. For example, if a is 56, b is 63, and P is 8, 

then index 60 holds the EMA value. Refer to Table 2 above to 

see how the combined values are stored. Note that  this is the 
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best case since there is only one segment. For other P-1 cases, 

out of every segment of length P, there are two segments. Let's 

assume these two segments are  and . First of all, we have 

to find out the cutline index. The first segment  starts with 

index a and ends with an index which is to the power of 2 

minus 1. Let's call this index cutindex. It can be computed as 

ppb /  . Consider a segment from index 53 to 60: the 

resulting cutline index is 56. Note 5688/60  . The second 

segment  starts with an index 56, which is to the power of 2, 

and ends with b, which is 60 in this case. Note that segment  

and  can be formed by elements with lengths of  power of 

two. For example, if segment is of length 11, then it can be 

formed as a sum of segments of lengths 1, 2, and 8. Note here 

that the lengths of the segments from left to right are in 

increasing order.  can be processed similarly, however the 

size of the component segments are decreasing. Distinguishing  

the order of increasing and descreasing of these components is 

important. For example, if  is a segment of length 14, then 

the component sub-segments will have lengths of 8, 4, and 2. 

This is the order to retrieve the information. Note also that 

these component segments never carry the same length as 

other component segments in its combination. We can use a 

loop to mark the partioned segments if they are not zero and 

then add them up to get the resultant EMA. Note that during 

the loop computation, different power of  need to be applied 

to the retrieved value so the power of  shall be correctly 

applied to faithfully reflect the weights assigned to these 

segments. For the above example, a segment from 53 to 60 is 

considered. After computing the value of , the resultant 

computing value from  needs to be multiplied by 3 before  

we add the resultant value from the computation of . It is 

cubed because the segment 53 to 55 has length of 3. The 

multiplication by the power of  applies to the process of 

computing the values of  and  with the same reason. 

Details are omitted. 

 

3 Conclusions 

  The experiments were conducted on a Intel i7 with Nvidia 

GeForce 550M. The parallelized moving average and neural 

network version was constructed using CUDA C. Due to the 

small size of records and the nature of the neural network, the 

speedup wasn't observed. The main reason is due to the 

requirement of synchronization of these threads. It is apparent 

that the expensive cost of synchronization makes the CPU 

implement more appealing. We expect that when the number 

of neurons and number of data increases, we shall get better 

results. We trust Nvidia will come up with a better solution to 

deal with the synchronization of threads.  

 

  For moving average computation, GPU computing does 

not provide advantages over CPU computing when there is a 

small amount of data. If the amount of data by simulation is 

increased, some improvement can be achieved. We understand 

that different machines with different models of CPU and 

GPU can create different results. 

4 Conclusions 

  The parallel versions of moving average computation 

used in the financial industry and back propagation neural 

network computation were developed to run on Nvidia GPU 

using CUDA C. The GPU version of moving average does not 

give significant speedup over traditional CPU version using 

prefix sum operation. For neural network training process, 

GPU computation does not provide significant performance 

over traditional CPU implementation due to the requirement 

of thread synchronization. Even if we tried to minimize the 

number of synchronization by using device kernel calls, then 

speed up over the traditional CPU approach wouldn't be 

significant. Actually, in some situations when the number of 

records are small,  the CPU implementation is superior. The 

implementation of real time predicting system over a huge 

data set in the financial industry is an interesting and 

challenging problem for future investigation. 
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