

Using SCPN for Modelling a Crossbar Switched Fabric

CAN Network

Mohamed Mazouzi

1
, Ihsen Ben Mbarek

2
, Oussama Kallel

 3
, Mohamed Abid

4

1
Computer and Embedded Systems Laboratory, ENIS, Sfax, Tunisia

2
 Communication Systems Research Laboratory, ENIT, Tunis, Tunisia

3
 Communication Systems Research Laboratory, ENIT, Tunis, Tunisia
4
Computer and Embedded Systems Laboratory, ENIS, Sfax, Tunisia

Abstract – In recent years, the number of Electronic Control

Units (ECU) steadily increases which require higher

communication bandwidth. Switched fabric has become an

active area of research because of its wide uses in industry.

In fact, its uses can be a fast and reliable hardware solution

for existing CAN-Bus problems like limited bandwidths and

throughput.

In this paper, we proposed and modeled a switched fabric

CAN network Architecture based on CAN Controllers and

switched fabric by the use of timed colored Petri nets

(CPNTools).

Keywords: Higher communication bandwidth, CAN Bus,

Switched fabric, Switched fabric CAN Network, timed

colored Petri nets, CPNTools.

1 Current bussed Network problem

and Switched Fabric CAN Network

benefit

During last decades, the demand for sophisticated

embedded systems requires the use of many connected

equipments. A dedicated network bus [1] is used for

connecting sensors, actuators in vehicles, robots and

industries. Many serial buses were developed by car makers

like MOST, J1850, SAE J1708, Byteflight, LIN... and

CAN(controller Area Network). Most of them are specific

to manufactures and not standardized.CAN is one of the

most popular fieldbuses [2,3,4]. More than 400 million

nodes were sold worldwide. It is used in those applications

that require fast and reliable communication [5]. Nowadays,

more sophisticated buses are concurrent to CAN networks

like FlexRay [6], recently appeared, and RTethernet. They

offer higher speed to satisfy the high bandwidth required for

modern vehicles, suitable for x-by-wire application. In

contrast the usage of FlexRay [7] is not widely used due to

its complex specification and high cost.

Current parallel bus-based [8] solutions present some

problems. In fact, it’s well known that the physical

separation of cards is limited to usually less than 3 feet.

There are also limited bandwidths, high protocol overhead

and no deterministic performance.

The limitations of a bussed network [2] are eliminated

with crossbar switch network. A switched-fabric bus is

unique in that it allows all CAN Controllers on a bus to

logically interconnect with all CAN Controllers on the bus.

The switching fabric is the physical connection within a

switch between the input and output ports; it can be proved

that all switches need a crossbar inside their switching

fabric which allow them to operate at very high speed.

Crossbar switches are widely used because of their

simplicity and their high-performances [9] which promise to

greatly simplify efforts and to add better capability and

availability. Crossbar switch [8] can support simultaneously

multiple messages. This greatly increases the aggregate

bandwidth of the system. Because of the broadcast nature of

the CAN protocol (ie: messages are not sent to a specific

destination address, but rather as a broadcast), the chosen

crossbar switch (as it is shown in Figure 1) is configured by

closing all its crosspoints to ensure that the CAN message

will be sent at the same time [3,4] for all outputs nodes as it

is defined in CAN protocol [5].

Fig. 1: NxN crossbar Switched Fabric CAN Network

supporting broadcast

Each Electronic Control Unit (CAN Controller Node)

produces a class priority of messages. For example, ECU_0

produces high level of priority and ECU_n (n in our model

is equal 3) produce low level of priority. In fact, Produced

CAN messages will be queued in the input queue of the

incoming interface (If the input queue is full, the packet is

dropped.). Therefore, to respect the CAN protocol

philosophy, CAN messages will be broadcasted for all

output port through crossbar Switched Fabric [10].

Furthermore, to reduce congested output port and to respect

the priority policy, each CAN message will be queued in the

suitable output queue of each outgoing interface according

to his level priority. (If the output queue is full, the packet is

dropped). Then, each output port scheduler will select the

message to be sent among the existing CAN message in

accordance with his priority.

In our work, we modeled the switched fabric CAN Network

using stochastic colored Petri. Our major contribution is to

raise the lack of the bus solutions by proposing switched

Fabric CAN. In fact, CAN based Networks using crossbar

Switched fabric [11] have yet a well period before its

replacement and it can compete the new sophisticated buses.

Our paper is organized as follow:

• The section 2 gives a short overview of Stochastic and

Colored Petri Net SCPN [12].

• Based on the proposed architecture and CPNTools

software, we model, in the last section, the most important

Switched fabric CAN Network modules.

In the fourth section we give some conclusions of our work.

2 Short Recall of Coloured Petri Net

Coloured Petri Nets have been developed by K. Jensen in

course of his PhD thesis (Jensen, 1980) to expand the

modeling possibilities of classical Petri Nets. Like other

forms of Petri Nets a CPN consists of places, tokens,

transitions and arcs.

The primary feature unique to CPNs is the inclusion of

evolved data structures into tokens [13,14]. These data

structures are called coloursets and resemble data structures

in high level programming languages; they can range from

simple data types such as integers to complex structures like

structs or unions in C/C++. Similar to programming

languages it is possible to define variables associated with

these coloursets such as linked list and queue.

Some examples of colourset and variable definitions are

shown in Fig.2. Tokens as well as places of a CPN are

always associated with a colourset and a place may only

contain tokens of the same colourset as its own. To well

understand the SCPN models of our Switched CAN

controller, we give a short recall of CPN concepts.

Fig. 2: Coloured and variable definitions

The places in a CPN are depicted as ellipses (Fig.3) with the

name of the place written into it and the associated colourset

(Id) below. A token in a CPN is represented by a small circle

(Fig. 3). Its value (the data stored in the token) is shown in a

rectangle attached to the circle. A number in the circle

denotes the number of tokens with the same value. Figure 3

for example shows a place called Buffer_Node_1 associated

with the colourset CAN_Messages and holding one token

with a value of{ {ID=[Dom,Res,Dom,Dom,Res,Dom,Dom,

Dom,Res,Res,Dom,Dom,Dom,Res,Dom,Res,Dom,Dom,Do

m,Res,Res,Dom,Res,Res,Res,Res,Res,Dom,Res],DATA=[b

yte(4),byte(6),byte(5),byte(1),byte(5),byte(6),byte(6),byte(1

)],TS=0}].

Buffer_node_1I/O

[length CAN_msgs1>0]

CAN_msg1::CAN_msgs1

Liberate

CAN_msgs1

CAN_messages

I/O

1

1`[{ID=[Dom,Res,Dom,Dom,Res,Dom,
Dom,Dom,Res,Res,Dom,Dom,Dom,Res
,Dom,Res,Dom,Dom,Dom,Res,Res,Do

m,Res,Res,Res,Res,Res,Dom,Res],DAT
A=[byte(4),byte(6),byte(5),byte(1),by
te(5),byte(6),byte(6),byte(1)],TS=0}]

Fig. 3: Graphical representation of a place in CPN

Transitions in a CPN are represented by rectangles (Fig. 4)

and can access the data stored in tokens by mapping tokens

to variables. There are two possibilities to access this data:

-Guard conditions: The transition is enabled only if a

specific condition – called a guard condition – regarding

one or more variables is met. Guard conditions are encased

in brackets and written above the transition (Fig.4).

-Transfer function: The transition reads and writes

variables according to a specified function that can range

from simple addition of values to complex conditional

commands.

-Transfer functions consist of the definition of input ()

variables, output () variables and the commands to be

carried out (action ()) and are attached below the transition

(Fig.4).The example depicted in Figure 4 shows a transition

that only fires if the length of variable CAN_msgs is less

than the value FIFO_length and generates an output

variable CAN_msg without taking any input variables (Fig.

4), the variable CAN_msg is filled with the return value of

the function defined in the action part, new_MSG_0, which

in this case is defined in the CPNtools area Declarations.

FIFO_FULL

[length CAN_msgs2=FIFO_length]

[length CAN_msgs<FIFO_length]

input ();
output (CAN_msg);
action new_MSG_()

Buffer_2

I/O

1`[]

CAN_messages
I/O

Generate

CAN_msgs2
1

1`[]

Fig. 4: Transition Generate with guard condition and

transfer function

Places and transitions in a CPN are linked by arcs. Arcs in a

CPN can be unidirectional or bidirectional. Unidirectional

arcs transfer tokens from a place to a transition or vice

versa.

Bidirectional arcs transfer the same token from a place to a

transition and back. Arc inscriptions define the mapping of

tokens to variables. An inscription can either be a constant

value or a variable of the colourset that is associated to the

place the arc is connected to. If all places connected to a

transition by unidirectional input arcs or by bidirectional

arcs hold tokens and its (optional) guard condition is met,

the transition is said to be enabled. In case of more than one

enabled transition in a CPN the one to fire is chosen

randomly. Later on, we will add more places to our

controller models to avoid arbitrary transitions.

For an analysis of clocked systems it is possible to define

timed colourset, defined by the keyword timed and transition

or arc delays marked by the characters @+.

If a colourset is defined as timed, a timestamp is added to

the tokens of this colourset. The timestamp cannot be

accessed by guard conditions or transfer functions. When

using timed colourset the firing of transitions depends on a

global clock counter. Transitions can only fire if the clock

value is the same as the largest timestamp of its input

tokens. When a transition fires with a timed arc, the

timestamp of its output token is the sum of the current clock

value and the arc delay, in the example in Figure 5 this

delay is Time_sched_delay clock cycles.

ts

CAN_msg2::CAN_msgs2

CAN_msg2
CAN_msg1

(server,CAN_msg2)

(server,CAN_msg2)@+Time_sched_Delay

(server,CAN_msg1)

(server,CAN_msg1)@+Time_sched_Delay

CAN_msgs2

Delay_to_Send_msg0

Transmitted_0_2Transmitted_0_1

T2

TS

INT

Busy_server2

ServerxCAN_message

Busy_server1

ServerxCAN_message

Buffer_0_2I/O

CAN_messages

out_0

Out
CAN_message

Out

I/O

T1

Busy_server

ServerxCAN_message

T0
(server,CAN_msg)@+Time_sched_Delay

1

Fig. 5: Timed arc inscription.

3 SCPN Based Switched Fabric CAN

Network model

In order to facilitate modeling of Switched CAN

Controller, a modular approach was taken making use of

hierarchical CPN models. The model of the Switched

Controller is built following a hierarchical and modular

architecture.

The root of the hierarchical representation of the model is

shown in the figure 6.

Apply the Evaluate ML tool the text below
to run 5 simulations of the CP-net.

CPN'Replications.nreplications 5

Switched Fabric

CAN 3X3

Switched_Fabric

OUT_2OUT_1

CAN_message

OUT_0

1`()

UNIT

1`()

UNIT

1`()

UNIT

CAN_messageCAN_message

IN_1

IN_2

IN_0
Switched_Fabric

1

1

1

Fig. 6: Root level of the model

The Switched Fabric CAN 3x3 whose activity is modeled

by the transition Switched_Fabric transmits the CAN

message via the Switch Fabric. The places IN_i and OUT_i

(i can be a value between 0:2) play the role of inputs/outputs

for sub-models.

Nodes in CAN are identified by their identifier (in this

model, colourset Id is a list of 29 bits). The coloursets and

variables used in this model are shown in Figure 7.

Messages sent through the Switched Fabric CAN are

represented by tokens of the colourset CAN_message. This

colourset is a record of the colourset Id that designates the

message priority and the colourset Data which represent the

data field to be transmitted and the colourset TS for saving

the time stamp for the birth of the message.

Fig. 7: Coloursets for CAN Network model

The variables (CAN_msg, CAN_msg1 and CAN_msg2) are

of type of the colorset CAN_message. This variable models

the messages which cross the different sub-models of Figure

8 (Node_i, Broadcast_i, FiFo_i_j and Scheduler_i).

The Switched CAN network model in Figure 8 is composed

of three nodes. Each node is represented by a transition and

two places. The transition called Node_i (i can be a value

between0:2) is a hierarchical transition which describes the

messages generation within the node, how the messages are

stored in buffer. The place Buffer_Node_i is used to store

the messages already generated.

This place is configured with colourset CAN_messages

which is a list of colourset CAN_message. When a token is

present on this place (Length CAN_msgs >0) a message is

ready for sending. This last fires the hierarchical transition

Broadcast_i. The originated message is duplicated in three

places, one for each output port of the Switch fabric.

According to the priority which is associated to the

messages (defined by their ID), the messages are stored in

the FIFO queue (there is as many queue as of priorities). In

this model, three levels of priority are defined: 0: high level

of priority; 1: medium priority and 2: low priority.

FiFo_i_j is a substitution transition which presents the

queue of input_i for the output_j. Finally, the scheduler

processes the different messages according to its scheduling

policy.

Fig. 8: SCPN Switched CAN Networks model with three nodes having three different priority classes

3.1 Generating CAN Messages (Node_i

Transition)

As shown in Figure 9, the load source is modeled by the

place Next and the transition Generate. Initially the place

Next contain one token and is connected via two arcs to

the transition Generate, the arc from Generate to Next is

timed using the exponential random function. Thuswe can

have a random message with parameterized inter arrival

period using the value lambda_i (lambda_0 for node 0:

Figure 9).

The place Buffer_node_i is used as messages buffer, sized

of 4 in our case, to decouple the source message from the

Switched CAN controller. When the load source increases

and no room is available in the buffer, an overflow occurs

and the transition FIFO_FULL fires leading to lose the

last generated message (due to a congestion or excessive

load).

()

()@+expTime(lambda_0)

()

CAN_msgs

CAN_msgs^ [̂CAN_msg]

CAN_msgs()@+expTime(lambda_0)

FIFO_FULL

[length CAN_msgs=FIFO_length]

Generate

[length CAN_msgs<FIFO_length]

input ();

output (CAN_msg);

action new_MSG_0();

NextI/O

UNIT

Buffer_0

I/O

CAN_messages

I/O 1`[]

I/O

1

1`()@0

1

1`[]

Fig. 9: Generation of CAN Message (Node_0)

3.2 Broadcasting of CAN Message

(Broadcast_i Transition)

The set of broadcasting message is represented by the

model described in the figure 10. Transition Liberate

models a message coming from Buffer_node_i.

The Buffer_node_i place is a list of CAN_Message. When

the list length is not null (i.e there is at least a message to

send), the liberate Transition can be fired if the line is free

(there is a token in Line_Free place). Otherwise, message

coming from Node_i has to be delayed

Transfer_Data_Delay until the previous message will be

liberated. If the message is liberated, the Server token will

be moved from the place Line_Free to Line_Busy. Then the

messages will be duplicated in the right place (queues)

CAN_msg1CAN_msg1 CAN_msg1

()()@+expTime(lambda_2)()()@+expTime(lambda_1)

CAN_msg2
CAN_msg2

CAN_msg2

()@+expTime(lambda_0) ()

CAN_msg

CAN_msg

CAN_msg

CAN_msgs2
CAN_msgs1CAN_msgs

Broadcast_1

Broadcast_1

Scheduler_2

Sched_2

FiFo_2_2

Fifo_2_2

FiFo_2_1

Fifo_2_1

FiFo_2_0

Fifo_2_0

FiFo_1_2

Fifo_1_2

FiFo_1_1

Fifo_1_1

FiFo_1_0

Fifo_1_0

Broadcast_2
Broadcast_2

FiFo_0_2

Fifo_0_2

Scheduler_0

Sched_0

Scheduler_1

Sched_1

FiFo_0_1

Fifo_0_1

FiFo_0_0

Fifo_0_0

Broadcast_0

Broadcast_0

Node_2
Node_2Node_1

Node_1
Node_0

Node_0

Buffer_1_2

1`[]

CAN_messages

Buffer_1_1

1`[]

CAN_messages

out_0

Out

CAN_message

out_1

Out

CAN_message

out_2

Out

CAN_message

Buffer_2_2

1`[]

CAN_messages

Buffer_2_1

1`[]

CAN_messages

Buffer_2_0

1`[]

CAN_messages

Buffer_1_0

1`[]

CAN_messages

Buffer_0_2

1`[]

CAN_messages

Buffer_0_1

1`[]

CAN_messages

Buffer_0_0

1`[]

CAN_messages

m2_1

CAN_message

m1_1

CAN_message

m2_2

CAN_message

m1_2

CAN_message

m0_2

CAN_message

m0_1

CAN_message

m2_0

CAN_message

m1_0

CAN_message

m0_0

CAN_message

IN_2 I/O
1`()

UNIT
IN_1 I/O

1`()

UNIT

IN_0 I/O

1`()

UNIT

Buffer_node_2

1`[]

CAN_messages
Buffer_node_1

1`[]

CAN_messages

Buffer_node_0

1`[]

CAN_messages

I/O I/O
I/O

OutOutOut

Node_0 Node_1
Node_2

Broadcast_0

Fifo_0_0 Fifo_0_1

Sched_0

Fifo_0_2

Broadcast_2

Fifo_1_0 Fifo_1_1 Fifo_1_2 Fifo_2_0 Fifo_2_1 Fifo_2_2

Sched_2

Broadcast_1

Sched_1

11 1111111

1
11

1
11

according to their priorities. For example, message of

medium priority (CAN_msg1) will be routed to the places

m1_0, m1_1 and m1_2. The CAN message m1_i will be

queued in the queue 1 of the output port i (OUT_i).

CAN_msg1::CAN_msgs1

server

server

CAN_msg1

CAN_msg1
CAN_msg1

(server,CAN_msg1)

(server,CAN_msg1)@+Transfer_Data_Delay

CAN_msgs1

Diffuse

Liberate[length CAN_msgs1>0]

Line_Free

1`server

Server
Line_Busy

ServerxCAN_message

m1_0

Out

CAN_message

m1_2

Out

CAN_message

m1_1

Out

CAN_message

Buffer_node_1

I/O CAN_messagesI/O

Out OutOut

1 1`server@0

1

1`[]

Fig. 10: Broadcasting CAN Messages generated by Node1

3.3 Storing CAN Messages (FiFo_i_j)

FIFO model is represented in the figure 11. It processes the

messages in the order of their arrival. The function of the

transition Arrive is to concatenate incoming message

(CAN_msgi) to the Buffer_i_j. Buffer_i_j is a place having

CAN_messages as colourset: i indicates the level of the

message as it was explained previously and j indicates the

output port of the model. Thus Buffer_i_j is the queue of

Message i of the output port j (OUT_j). When the buffer is

full (in our model FiFo_length= 4), the transition

Fifo_i_j_Full is fired and the incoming message will be

rejected.

ts

#TS CAN_msg2

CAN_msg2

CAN_msgs2

CAN_msg2

CAN_msg2
Delay_to_lost_msg2

Fifo_2_2_Full

Arrive

TS

INT

Reject

CAN_message

Buffer_2_2

I/O
CAN_messages

m2

In

CAN_message

In

I/O

[length CAN_msgs2<FIFO_length]

CAN_msgs2^ [̂CAN_msg2]

CAN_msgs2

[length CAN_msgs2=FIFO_length]

1
1`[]

 Fig. 11: Storing CAN Messages generated by Node 2 in the queue 2 of output 2

3.4 Scheduling CAN Messages (Scheduler_i)

The model of the figure 12 describes the behavior of a

static priority scheduling. The type of messages is

classified in three groups:

- High priority messages: These messages are generated by

Node_0 and are modeled in the place Buffer_i_0 as a list of

CAN_Message (CAN_msgs) in the Scheduler of the output

port i (OUT_i).

- Medium priority message: Those are generated by

Node_1 and are modeled in the place Buffer_i_1 as a list of

CAN_Message (CAN_msgs1) in the Scheduler_i.

- Low priority message; those are generated by Node_2 and

are modeled in the place Buffer_i_2 as a list of

CAN_Message (CAN_msgs2) in the Scheduler_i.

ts

#TS CAN_msg

[]

[]

CAN_msg2::CAN_msgs2

CAN_msg1::CAN_msgs1
CAN_msg::CAN_msgs

CAN_msgs1

server
server

server

server
server

server

CAN_msg2
CAN_msg1

(server,CAN_msg2)@+Time_sched_Delay

(server,CAN_msg1)

CAN_msg

(server,CAN_msg)

(server,CAN_msg)@+Time_sched_Delay

[]

CAN_msgs2
CAN_msgs

Delay_to_Send_msg0

Transmitted_0_2Transmitted_0_1Transmitted_0_0

T2T1T0

TS

INT

Busy_server2

ServerxCAN_message

Busy_server1

ServerxCAN_message

Busy_server

ServerxCAN_message

Free_server

1`server

Server

Buffer_0_2I/O

CAN_messages

Buffer_0_0
I/O

CAN_messages

out_0

Out
CAN_message

Buffer_0_1I/O

CAN_messages

I/O

Out

I/O
I/O

(server,CAN_msg2)

(server,CAN_msg1)@+Time_sched_Delay

1

1`server@0

11 1

Fig. 12: Scheduling CAN Messages at the Scheduler of Output 0

A message with lowest priorities can be delayed by the

other packets due to the non-preemptive characteristics of

this kind of message scheduling algorithms [15].

For example, in the case of Scheduler_0, the messages of

Buffer_0_2 (low priority messages) has to wait until the

messages of Buffer_0_0 and Buffer_0_1 (high and medium

priority messages) are fully transmitted. Then, the

messages of Buffer_0_1 (medium priority messages) has to

wait until the messages of Buffer_0_0 (high priority

messages) are fully transmitted.

This scheduling policy is modeled using bidirectional arcs

between buffers places and the transitions T1 and T2. These

arcs are inhibitor arcs. The method of usage of inhibitor arc

is described in more details in [13].

When there is at least a message to transmit, the Ti

transition can be fired if the server is free what it means

that there is a token in Free_server place. Otherwise, the

following message (according to the algorithm described

above) have to be delayed Time_Sched_Delay until the

previous message is fully transmitted. After the

transmission of the message, the Server token will be

moved from the place Busy_sereri to Free_server. The

interest of the static priority algorithms is that it is easy to

implement. Other Scheduling algorithms can be studied in

future works.

4 Conclusion

In this paper, Switched Fabric CAN architecture is

presented and modeled by CPNTools. The SCPN model of

the Switched Fabric Controller is presented with three

nodes at transmitter side using a switch fabric (3x3). For

that, three message priority classes were treated with a

clear representation on ID field (high, medium and low

priority messages).

The model focuses on queueing, broadcasting and

scheduling mechanisms which are the keys factor for the

proposed architecture.

The evaluation of throughput, latency and loss probability

of the proposed architecture and a comparison with Bussed

CAN controller [2] will be studied in the future works to

demonstrate that CAN with a crossbar switched fabric has

yet a well period before its replacement.

5 References

[1] Salem Hasnaoui, Oussema Kallel "A proof-of-concept

Implementation of Modified CAN Protocol on CAN

Fieldbus Controller Component"; Accepted oct. 2004,

Revised Jan. 2005; AMI. Journal, Ref 03/08.

[2] Oussama KALLEL, Sofiene DRIDI, Salem Hasnaoui

“Modeling and Evaluating a CAN Controller Components

Using Stochastic and Colored Petri Nets” IRECOS

International Review on Computers and Software, Vol.4

N.1, pp 142-151; January 2009.

[3] Marko Bago, Siniša Marijan, Nedjeljko Perić; Modeling

Controller Area Network Communication, proceedings of

the Ninth Workshop on Practical Use of Coloured Petri

Nets and the CPN Tools, October 20-22, 2008

[4] CUI Lian-cheng, ZHAO Zheng-fang, XU Xiao-ju2,

WU Fang-ming, SHAN Wei-zhen “Real Time Performance

Analysis

of CAN Bus Based on TimeNET” The 3rd International

Conference on Innovative Computing Information and

Control (ICICIC'08), 2008.

[5] Prodanov, W.; Valle, M.; Buzas, R.; Pierscinski, H.”A

Mixed-Mode behavioral model of a Controller-Area-

Network bus transceiver: a case study” Behavioral

Modeling and Simulation Workshop, 2007. BMAS 2007.

IEEE International

Volume, Issue , 20-21 Sept. 2007 Page(s):67–72

[6] Heller, C. Reichel, R. “Enabling FlexRay for avionic

data buses” Digital Avionics Systems Conference DASC

'09,Oct 2009.

[7] FlexRay Communication System. [Online]. available:

http://www.flexray.com

[8] Brett Murphy, Emmanuel Eriksson. “Fabrics and

Publish-Subscribe Schemes: A Net-Centric Blend” COTS

Journal Oct. 2009

<http://www.cotsjournalonline.com/articles/print_article/10

0148>

 [9] Rojdi Rekik, Tarek Guesmi, Salem Hasnaoui

"Challenges in the Implementation, the Configuration and

the Evaluation of a QoS-enabled Middleware for Real-

Time Embedded Systems";

IRECOS International Review on Computer and Software

vol. 3, n°3, May 2008.

[10] Arshad, Nauman, Stewart Dewar, and Ian Stalker.

“Serial Switched Fabrics Enable New Military System

Architectures.” COTS Journal Dec. 2005

<www.cotsjournalonline.com/home/article.php?id=10043>

[11] Dr. Rajive Joshi,” Using Switched Fabrics and Data

Distribution Service to Develop High Performance

Distributed Data-Critical Systems” The Journal of Defense

Software Engineering. April 2007.

[12] K. Jensen , “Coloured Petri Nets. Basic Concepts,

Analysis Methods and Practical Use. Volume 1, Basic

Concepts” (Monographs in Theoretical Computer Science,

Springer-Verlag, 1997).

 [13] A.V. Ratzer, L.Wells, H.M.Larsen, M.Laursen,

J.F.Qvortrup, M.S.Stissing, M. Westergaard, S.

Christensen, K.Jensen. CPN Tools for editing, simulating,

and analysing Coloured Petri Net. LNC, 2679:450-462,

2003.

[14] Design/CPN Manuals. Meta Software Corporation and

Department of Computer Science, University of

Aarhus,Denmark. On-line version: http://www.

daimi.aau.dk/designCPN/.

[15] John D. Pape, “Implementation of an On-chip

Interconnect Using the i-SLIP Scheduling Algorithm”.

(The University of Texas at Austin Chap 3 pp 11-15:

December 2006)

