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Abstract – In recent years, the number of Electronic Control 

Units (ECU) steadily increases which require higher 

communication bandwidth. Switched fabric has become an 

active area of research because of its wide uses in industry. 

In fact, its uses can be a fast and reliable hardware solution 

for existing CAN-Bus problems like limited bandwidths and 

throughput. 

In this paper, we proposed and modeled a switched fabric 

CAN network Architecture based on CAN Controllers and 

switched fabric by the use of timed colored Petri nets 

(CPNTools). 

Keywords: Higher communication bandwidth, CAN Bus, 

Switched fabric, Switched fabric CAN Network, timed 

colored Petri nets, CPNTools. 

 

1 Current bussed Network problem 

and Switched Fabric CAN Network 

benefit 

During last decades, the demand for sophisticated 

embedded systems requires the use of many connected 

equipments. A dedicated network bus [1] is used for 

connecting sensors, actuators in vehicles, robots and 

industries. Many serial buses were developed by car makers 

like MOST, J1850, SAE J1708, Byteflight, LIN... and 

CAN(controller Area Network). Most of them are specific 

to manufactures and not standardized.CAN is one of the 

most popular fieldbuses [2,3,4]. More than 400 million 

nodes were sold worldwide. It is used in those applications 

that require fast and reliable communication [5]. Nowadays, 

more sophisticated buses are concurrent to CAN networks 

like FlexRay [6], recently appeared, and RTethernet. They 

offer higher speed to satisfy the high bandwidth required for 

modern vehicles, suitable for x-by-wire application. In 

contrast the usage of FlexRay [7] is not widely used due to 

its complex specification and high cost. 

Current parallel bus-based [8] solutions present some 

problems. In fact, it’s well known that the physical 

separation of cards is limited to usually less than 3 feet. 

There are also limited bandwidths, high protocol overhead 

and no deterministic performance. 

The limitations of a bussed network [2] are eliminated 

with crossbar switch network. A switched-fabric bus is 

unique in that it allows all CAN Controllers on a bus to 

logically interconnect with all CAN Controllers on the bus. 

The switching fabric is the physical connection within a 

switch between the input and output ports; it can be proved 

that all switches need a crossbar inside their switching 

fabric which allow them to operate at very high speed. 

Crossbar switches are widely used because of their 

simplicity and their high-performances [9] which promise to 

greatly simplify efforts and to add better capability and 

availability. Crossbar switch [8] can support simultaneously 

multiple messages. This greatly increases the aggregate 

bandwidth of the system. Because of the broadcast nature of 

the CAN protocol (ie: messages are not sent to a specific 

destination address, but rather as a broadcast), the chosen 

crossbar switch (as it is shown in Figure 1) is configured by 

closing all its crosspoints to ensure that the CAN message 

will be sent at the same time [3,4] for all outputs nodes as it 

is defined in CAN protocol [5].  

 

 
Fig. 1: NxN crossbar Switched Fabric CAN Network 

supporting broadcast 

 

Each Electronic Control Unit (CAN Controller Node) 

produces a class priority of messages. For example, ECU_0 

produces high level of priority and ECU_n (n in our model 

is equal 3) produce low level of priority. In fact, Produced 

CAN messages will be queued in the input queue of the 

incoming interface (If the input queue is full, the packet is 

dropped.). Therefore, to respect the CAN protocol 

philosophy, CAN messages will be broadcasted for all 

output port through crossbar Switched Fabric [10]. 

Furthermore, to reduce congested output port and to respect 



 

the priority policy, each CAN message will be queued in the 

suitable output queue of each outgoing interface according 

to his level priority. (If the output queue is full, the packet is 

dropped). Then, each output port scheduler will select the 

message to be sent among the existing CAN message in 

accordance with his priority.  

In our work, we modeled the switched fabric CAN Network 

using stochastic colored Petri. Our major contribution is to 

raise the lack of the bus solutions by proposing switched 

Fabric CAN. In fact, CAN based Networks using crossbar 

Switched fabric [11] have yet a well period before its 

replacement and it can compete the new sophisticated buses. 

Our paper is organized as follow: 

• The section 2 gives a short overview of Stochastic and 

Colored Petri Net SCPN [12].  

• Based on the proposed architecture and CPNTools 

software, we model, in the last section, the most important 

Switched fabric CAN Network modules. 

In the fourth section we give some conclusions of our work. 

 

2 Short Recall of Coloured Petri Net 

Coloured Petri Nets have been developed by K. Jensen in 

course of his PhD thesis (Jensen, 1980) to expand the 

modeling possibilities of classical Petri Nets. Like other 

forms of Petri Nets a CPN consists of places, tokens, 

transitions and arcs.  

The primary feature unique to CPNs is the inclusion of 

evolved data structures into tokens [13,14]. These data 

structures are called coloursets and resemble data structures 

in high level programming languages; they can range from 

simple data types such as integers to complex structures like 

structs or unions in C/C++. Similar to programming 

languages it is possible to define variables associated with 

these coloursets such as linked list and queue. 

Some examples of colourset and variable definitions are 

shown in Fig.2. Tokens as well as places of a CPN are 

always associated with a colourset and a place may only 

contain tokens of the same colourset as its own. To well 

understand the SCPN models of our Switched CAN 

controller, we give a short recall of CPN concepts. 

 

 
 

Fig. 2: Coloured and variable definitions 

The places in a CPN are depicted as ellipses (Fig.3) with the 

name of the place written into it and the associated colourset 

(Id) below. A token in a CPN is represented by a small circle 

(Fig. 3). Its value (the data stored in the token) is shown in a 

rectangle attached to the circle. A number in the circle 

denotes the number of tokens with the same value. Figure 3 

for example shows a place called Buffer_Node_1 associated 

with the colourset CAN_Messages and holding one token 

with a value of{ {ID=[Dom,Res,Dom,Dom,Res,Dom,Dom, 

Dom,Res,Res,Dom,Dom,Dom,Res,Dom,Res,Dom,Dom,Do

m,Res,Res,Dom,Res,Res,Res,Res,Res,Dom,Res],DATA=[b

yte(4),byte(6),byte(5),byte(1),byte(5),byte(6),byte(6),byte(1

)],TS=0}]. 

Buffer_node_1I/O

[length CAN_msgs1>0]

CAN_msg1::CAN_msgs1

Liberate

CAN_msgs1

CAN_messages

I/O

1

1`[{ID=[Dom,Res,Dom,Dom,Res,Dom,
Dom,Dom,Res,Res,Dom,Dom,Dom,Res
,Dom,Res,Dom,Dom,Dom,Res,Res,Do

m,Res,Res,Res,Res,Res,Dom,Res],DAT
A=[byte(4),byte(6),byte(5),byte(1),by
te(5),byte(6),byte(6),byte(1)],TS=0}]

 

Fig. 3: Graphical representation of a place in CPN 

 

Transitions in a CPN are represented by rectangles (Fig. 4) 

and can access the data stored in tokens by mapping tokens 

to variables. There are two possibilities to access this data: 

-Guard conditions: The transition is enabled only if a 

specific condition – called a guard condition – regarding 

one or more variables is met. Guard conditions are encased 

in brackets and written above the transition (Fig.4). 

-Transfer function: The transition reads and writes 

variables according to a specified function that can range 

from simple addition of values to complex conditional 

commands. 

-Transfer functions consist of the definition of input () 

variables, output () variables and the commands to be 

carried out (action ()) and are attached below the transition 

(Fig.4).The example depicted in Figure 4 shows a transition 

that only fires if the length of variable CAN_msgs is less 

than the value FIFO_length and generates an output 

variable CAN_msg without taking any input variables (Fig. 

4), the variable CAN_msg is filled with the return value of 

the function defined in the action part, new_MSG_0, which 

in this case is defined in the CPNtools area Declarations. 

 

FIFO_FULL

[length CAN_msgs2=FIFO_length]

[length CAN_msgs<FIFO_length]

input ();
output (CAN_msg);
action new_MSG_()

Buffer_2

I/O

1`[]

CAN_messages
I/O

Generate

CAN_msgs2
1

1`[]

 
 

Fig. 4: Transition Generate with guard condition and 

transfer function 

 

Places and transitions in a CPN are linked by arcs. Arcs in a 

CPN can be unidirectional or bidirectional. Unidirectional 

arcs transfer tokens from a place to a transition or vice 

versa. 

Bidirectional arcs transfer the same token from a place to a 

transition and back. Arc inscriptions define the mapping of 

tokens to variables. An inscription can either be a constant 

value or a variable of the colourset that is associated to the 

place the arc is connected to. If all places connected to a 

transition by unidirectional input arcs or by bidirectional 

arcs hold tokens and its (optional) guard condition is met, 

the transition is said to be enabled. In case of more than one 

enabled transition in a CPN the one to fire is chosen 

randomly. Later on, we will add more places to our 

controller models to avoid arbitrary transitions.  

For an analysis of clocked systems it is possible to define 

timed colourset, defined by the keyword timed and transition 

or arc delays marked by the characters @+.  

If a colourset is defined as timed, a timestamp is added to 

the tokens of this colourset. The timestamp cannot be 

accessed by guard conditions or transfer functions. When 



 

using timed colourset the firing of transitions depends on a 

global clock counter. Transitions can only fire if the clock 

value is the same as the largest timestamp of its input 

tokens. When a transition fires with a timed arc, the 

timestamp of its output token is the sum of the current clock 

value and the arc delay, in the example in Figure 5 this 

delay is Time_sched_delay clock cycles. 
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Fig. 5: Timed arc inscription. 

 

3 SCPN Based Switched Fabric CAN 

Network model 

 
In order to facilitate modeling of Switched CAN 

Controller, a modular approach was taken making use of 

hierarchical CPN models. The model of the Switched 

Controller is built following a hierarchical and modular 

architecture.  

The root of the hierarchical representation of the model is 

shown in the figure 6.  

Apply the Evaluate ML tool the text below 
to run 5 simulations of the CP-net.

CPN'Replications.nreplications 5

Switched Fabric 
     

CAN 3X3

Switched_Fabric

OUT_2OUT_1

CAN_message

OUT_0

1`()

UNIT

1`()

UNIT

1`()

UNIT

CAN_messageCAN_message

IN_1

IN_2

IN_0
Switched_Fabric

1

1

1

 
 

Fig. 6: Root level of the model 

 

The Switched Fabric CAN 3x3 whose activity is modeled 

by the transition Switched_Fabric transmits the CAN 

message via the Switch Fabric. The places IN_i and OUT_i 

(i can be a value between 0:2) play the role of inputs/outputs 

for sub-models. 

Nodes in CAN are identified by their identifier (in this 

model, colourset Id is a list of 29 bits). The coloursets and 

variables used in this model are shown in Figure 7. 

Messages sent through the Switched Fabric CAN are 

represented by tokens of the colourset CAN_message. This 

colourset is a record of the colourset Id that designates the 

message priority and the colourset Data which represent the 

data field to be transmitted and the colourset TS for saving 

the time stamp for the birth of the message. 

 
 

Fig. 7:  Coloursets for CAN Network model 

 

The variables (CAN_msg, CAN_msg1 and CAN_msg2) are 

of type of the colorset CAN_message. This variable models 

the messages which cross the different sub-models of Figure 

8 (Node_i, Broadcast_i, FiFo_i_j and Scheduler_i). 

The Switched CAN network model in Figure 8 is composed 

of three nodes.  Each node is represented by a transition and 

two places. The transition called Node_i (i can be a value 

between0:2) is a hierarchical transition which describes the 

messages generation within the node, how the messages are 

stored in buffer. The place Buffer_Node_i is used to store 

the messages already generated.  

This place is configured with colourset CAN_messages 

which is a list of colourset CAN_message. When a token is 

present on this place (Length CAN_msgs >0) a message is 

ready for sending. This last fires the hierarchical transition 

Broadcast_i. The originated message is duplicated in three 

places, one for each output port of the Switch fabric. 

According to the priority which is associated to the 

messages (defined by their ID), the messages are stored in 

the FIFO queue (there is as many queue as of priorities). In 

this model, three levels of priority are defined: 0: high level 

of priority; 1: medium priority and 2: low priority. 

FiFo_i_j is a substitution transition which presents the 

queue of input_i for the output_j. Finally, the scheduler 

processes the different messages according to its scheduling 

policy. 

 

 



 

 

Fig. 8: SCPN Switched CAN Networks model with three nodes having three different priority classes 

 

3.1 Generating CAN Messages (Node_i 

Transition) 

As shown in Figure 9, the load source is modeled by the 

place Next and the transition Generate. Initially the place 

Next contain one token and is connected via two arcs to 

the transition Generate, the arc from Generate to Next is 

timed using the exponential random function. Thuswe can 

have a random message with parameterized inter arrival 

period using the value lambda_i (lambda_0 for node 0: 

Figure 9).  

The place Buffer_node_i is used as messages buffer, sized 

of 4 in our case, to decouple the source message from the 

Switched CAN controller. When the load source increases 

and no room is available in the buffer, an overflow occurs 

and the transition FIFO_FULL fires leading to lose the 

last generated message (due to a congestion or excessive 

load). 

 

 

()

()@+expTime(lambda_0)

()

CAN_msgs

CAN_msgs^ [̂CAN_msg]

CAN_msgs()@+expTime(lambda_0)

FIFO_FULL

[length CAN_msgs=FIFO_length]

Generate

[length CAN_msgs<FIFO_length]

input ();

output (CAN_msg);

action new_MSG_0();

NextI/O

UNIT

Buffer_0

I/O

CAN_messages

I/O 1`[]

I/O

1

1`()@0

1

1`[]

 
Fig. 9: Generation of CAN Message (Node_0) 

 

3.2 Broadcasting of CAN Message 

(Broadcast_i Transition) 

The set of broadcasting message is represented by the 

model described in the figure 10. Transition Liberate 

models a message coming from Buffer_node_i. 

The Buffer_node_i place is a list of CAN_Message. When 

the list length is not null (i.e there is at least a message to 

send), the liberate Transition can be fired if the line is free 

(there is a token in Line_Free place). Otherwise, message 

coming from Node_i has to be delayed 

Transfer_Data_Delay until the previous message will be 

liberated. If the message is liberated, the Server token will 

be moved from the place Line_Free to Line_Busy. Then the 

messages will be duplicated in the right place (queues) 

CAN_msg1CAN_msg1 CAN_msg1
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according to their priorities. For example, message of 

medium priority (CAN_msg1) will be routed to the places 

m1_0, m1_1 and m1_2. The CAN message m1_i will be 

queued in the queue 1 of the output port i (OUT_i). 

CAN_msg1::CAN_msgs1

server

server

CAN_msg1

CAN_msg1
CAN_msg1

(server,CAN_msg1)

(server,CAN_msg1)@+Transfer_Data_Delay

CAN_msgs1

Diffuse

Liberate[length CAN_msgs1>0]

Line_Free

1`server

Server
Line_Busy

ServerxCAN_message

m1_0

Out

CAN_message

m1_2

Out

CAN_message

m1_1

Out

CAN_message

Buffer_node_1

I/O CAN_messagesI/O

Out OutOut

1 1`server@0

1

1`[]

 
 

Fig. 10: Broadcasting CAN Messages generated by Node1 

3.3  Storing CAN Messages (FiFo_i_j) 

FIFO model is represented in the figure 11. It processes the 

messages in the order of their arrival. The function of the 

transition Arrive is to concatenate incoming message 

(CAN_msgi) to the Buffer_i_j.  Buffer_i_j is a place having 

CAN_messages as colourset: i indicates the level of the 

message as it was explained previously and j indicates the 

output port of the model. Thus Buffer_i_j is the queue of 

Message i of the output port j (OUT_j). When the buffer is 

full (in our model FiFo_length= 4), the transition 

Fifo_i_j_Full is fired and the incoming message will be 

rejected. 
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 Fig. 11: Storing CAN Messages generated by Node 2 in the queue 2 of output 2 

 

3.4 Scheduling CAN Messages (Scheduler_i) 

The model of the figure 12 describes the behavior of a 

static priority scheduling. The type of messages is 

classified in three groups: 

- High priority messages: These messages are generated by 

Node_0 and are modeled in the place Buffer_i_0 as a list of 

CAN_Message (CAN_msgs) in the Scheduler of the output 

port i (OUT_i). 

- Medium priority message: Those are generated by 

Node_1 and are modeled in the place Buffer_i_1 as a list of 

CAN_Message (CAN_msgs1) in the Scheduler_i. 

- Low priority message; those are generated by Node_2 and 

are modeled in the place Buffer_i_2 as a list of 

CAN_Message (CAN_msgs2) in the Scheduler_i. 
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Fig. 12: Scheduling CAN Messages at the Scheduler of Output 0 

 

A message with lowest priorities can be delayed by the 

other packets due to the non-preemptive characteristics of 

this kind of message scheduling algorithms [15].  

For example, in the case of Scheduler_0, the messages of 

Buffer_0_2 (low priority messages) has to wait until the 

messages of Buffer_0_0 and Buffer_0_1 (high and medium 

priority messages) are fully transmitted. Then, the 

messages of Buffer_0_1 (medium priority messages) has to 

wait until the messages of Buffer_0_0 (high priority 

messages) are fully transmitted. 

 

This scheduling policy is modeled using bidirectional arcs 

between buffers places and the transitions T1 and T2. These 

arcs are inhibitor arcs. The method of usage of inhibitor arc 

is described in more details in [13]. 

When there is at least a message to transmit, the Ti 

transition can be fired if the server is free what it means 

that there is a token in Free_server place. Otherwise, the 

following message (according to the algorithm described 

above) have to be delayed Time_Sched_Delay until the 

previous message is fully transmitted. After the 

transmission of the message, the Server token will be 

moved from the place Busy_sereri to Free_server. The 

interest of the static priority algorithms is that it is easy to 

implement. Other Scheduling algorithms can be studied in 

future works. 

 

4 Conclusion 

In this paper, Switched Fabric CAN architecture is 

presented and modeled by CPNTools. The SCPN model of 

the Switched Fabric Controller is presented with three 

nodes at transmitter side using a switch fabric (3x3). For 

that, three message priority classes were treated with a 

clear representation on ID field (high, medium and low 

priority messages).  

The model focuses on queueing, broadcasting and 

scheduling mechanisms which are the keys factor for the 

proposed architecture. 

The evaluation of throughput, latency and loss probability 

of the proposed architecture and a comparison with Bussed 

CAN controller [2] will be studied in the future works to 

demonstrate that CAN with a crossbar switched fabric has 

yet a well period before its replacement. 
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