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Abstract— The potential of GPU computing used in general
purpose parallel programming has been amply shown. These
massively parallel many-core multiprocessors are available
to any users in every PCs, notebook, game console or
workstation. In this work, we present the parallel version
of a mesh-generating algorithm and its execution time
reduction by using off-the-shelf GPU technology. We use
commodities GPUs as a useful CPU co-processor to improve
this kind of applications, characterized by a high level of
data parallelism. Compared to the sequential algorithm, our
techniques achieve 6X overall performance for GPU-CPU
implementation; furthermore we achieve 50X speedup when
implementing core operations of the algorithm. Results show
that GPU provides a helpful platform for high performance
computing to improve the execution time of these applica-
tions.
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processing units.

1. Introduction
In the past few years, Graphics Processing Units Com-

puting (GPUs) has demonstrated to provide an increased
performance computing architecture for applications which
can be written to take advantage of many core GPUs. The
idea to use the GPU for general purpose computations starts
about 2003. However, it was reserved only for specialist
developers in graphic rendering. It was possible since 2007,
when NVIDIA released the software technology called Com-
pute Unified Device Architecture (CUDA) simultaneously
with its TESLA Architecture [1] [2]. Since then, GPUs have
increased in capability and programmability and have gained
wide popularity among research community [3]. Owens et
al. widely explain why GPUs increased faster than CPUs.
Furthermore, this technology is available, inexpensive and
can be found in off-the-shelf graphics cards for PCs. CUDA
is designed for extended standard C/C++ code with GPUs
parallel features and it provides a unified computing platform
to take advantage of the GPUs power and to leverage general
purpose parallel applications [4].

In this paper, we present as we used cutting-edge com-
puting resources, such as GPUs multicores and CUDA,
to accelerate the execution time of a finite element mesh
generator algorithm, achieving a significant parallel speedup.

Mesh generation is a key step in many scientific com-
putations and computer graphics. It had its origin in the
50’s with structural analysis problems. Finite element is a
numerical method used to solve partial differential equations
approximately; whose first step is mesh generation.

We use GPUs as a floating point parallel CPU coprocessor
to improve the mesh generation algorithm Distmesh, created
by P. Persson and G. Strang. Distmesh authors wrote an
efficient Matlab algorithm to provide a simple code to
produce high quality meshes. We wrote a parallel version
for this algorithm to introduce an interesting general
purpose application for GPU computing.

Organization: The paper is structured as follows. In
section 2 we present a general view of Persson-Strang mesh
generator algorithm and an overview of architectural features
of GPUs. In section 3 we present our sequential version
of Distmesh algorithm and highlight its features. Section 4
describes the design and implementation of our GPU version
of mesh generator algorithm. Section 5 gives experimental
results. In section 6 we briefly introduce related works and
section 7 gives conclusions.

2. Background
In this section we present important background concepts,

relevant to this paper. First, we present a briefly description
of Persson-Strang Algorithm. Then, we outline some impor-
tant issues for using GPU.

2.1 Persson-Strang Algorithm
Per-Olof Persson and Gilbert Strang developed a simple

and public mesh generator code for Matlab, called Distmesh
[5]. They offer an iterative technique based on a physical
analogy between a simple mesh and a trust structure, com-
bining a signed distance function and forces movement at
each node. The results obtained are high quality meshes.

Many problems are defined on irregularly shaped domains,
so unstructured meshes, far better than structured meshes,
can be flexibly tailored to the physics of these problems. The
problem that arises is the complex, and nearly inaccessible,
meshing software code. We have chosen Persson and Strang
algorithm because of its simplicity and accuracy. We present
below a brief description of the algorithm.



Initial nodes position may be chosen by equally spaced
distribution, and this works well for simple geometries. The
user can define a function h to set mesh resolution. This
function h(x,y), in 2D, is used to refine complex geometry
mesh and thus achieve geometrical adaptivity; it needs to be
resolved by small elements. The meshpoints define the truss
structure and a Delaunay triangulation algorithm determines
the topology. Delaunay method set triangles in 2D, or
tetrahedra in 3D, to fill the convex hull of the input domain
mesh points [6]. In response to the mechanical analogy,
triangle edges correspond to bars (or springs) and mesh
points correspond to truss joints. The numerical method
assumes that a displacement force is exerted on the bars.
In every iteration, the new location of the points is obtained
by calculating a force of static equilibrium. Delaunay tri-
angulation is needed whenever the points are separated far;
thus adjust the topology. For a very detailed explanation on
the Persson method, the interested reader should consult [7].

2.2 GPU and CUDA overview
GPU is a massively multi-threaded multiprocessor archi-

tecture and its data level concurrency stand out. The threads
are organized in two-level hierarchy. The lower level is a
block, which contains a large number of threads. The higher
level is a grid, which consists of a group of blocks. The
maximum dimension of blocks and grids is determined by
the GPU architecture. Parallel threads share memory and
synchronize using barriers [8], [9].

The key to effectively using GPU is to understand its
memory hierarchy, which consists of three levels of memory.
Programmers can explicitly manage data stored in them. De-
vice memory is the global GPU memory which is accessible
from all the threads. Shared memory is an on-chip memory.
It’s a low latency memory shared by all the threads within
a block. Texture and constant memory are used to store
explicitly declared read only data.[10].

NVIDIA’s CUDA enables to divide the parallel program
execution in tasks that can run across thousands of con-
current threads, over hundreds of processor cores. This
programming model is known as a Single-Program Multiple-
Data (SPMD) and it allows to program GPUs for general
purpose. Tesla GPU, the NVIDIA device used for our expe-
riences, manage efficiently a huge sum of threads employing
a Single-Instruction Multiple-Thread (SIMT) parallel pro-
gramming architecture. The task performed by every thread
is managed writing special functions, called kernels. The
kernel task is mapped over a set of threads, representing
the work to be done at a simple point in the domain. We
wrote the kernels using C and CUDA, an extended version
of C; in this way, we mapped the kernels on the GPU
manycore processors. For a more detailed description of
CUDA, GPU architecture and Tesla architecture, you can
refer to [10][11][12].

3. General features of sequential version
We first implemented a C++ sequential code of Distmesh

algorithm. We took into account some important items in
the original version of the mesh generator algorithm, as we
describe below.

• A distance function d determines the domain geometry
by means of a signed distance, which is negative inside
the region. It was an essential decision, as authors
remark. This function is calculated at a meshpoint set
and also for calculating nodes distance to the closest
boundary point.

• This implementation uses a linear function for repulsive
forces, but it does not allow attractive forces.

f(l, l0) =

{
k(l − l0) if l < l0

0 if l ≥ l0

• The resultant force FTot is the sum of all force vectors
meeting at a mesh node. Each bar exerts a force f(l, l0)
depending on its actual length l and its relax length l0.

• The relax length l0 is constant for uniform meshes and
it’s required f = 0 for l = l0. Distmesh authors choose
l0 slightly larger than the length desired -20% is a good
rate- This calculation depends on the total sum of bars
length.

• The time step for Euler method is ∆t parameter. The
parameter geps is used to calculate the tolerance in
geometry evaluations, and it’s used to decide whether
a point is outside.

• All points going outside the domain during the update,
pn to pn+1, are projected back to the boundary. The
numerical gradient of d gives the direction of the point
movement.

The following are the key steps of our sequential code. In
general terms, these steps correspond to those of Distmesh.
Although, we modify the original data structures for better
performance of the sequential algorithm. We will refer to
this later.

Data Input: As a first step, we create a uniform distribu-
tion of mesh points within the input desired geometry. These
points are the mesh-nodes. The resulting mesh points are
regularly placed at a distance h0 from their closest neighbors.

Triangulation: An important step in this algorithm is
Delaunay triangulation. At every iteration, we compare the
actual points positions with that of the previous triangu-
lation. When the maximum displacement is greater than a
predefined tolerance, a Delaunay retriangulation determines
the new meshpoints set replacing the old ones, in order to
guarantee Delaunay properties.

Update: The bars lengths are used to calculate the bar
forces components. The resultant node force is the sum of
the force vectors, from all bars meeting at a node. This result
contributes to update node positions.

Projection: The update process may place some points
outside the geometry. Once these points are found, they are



projected back to the boundary, in response to a normal
force. We use the numerical gradient of the distance function
to calculate their move direction to the closest boundary
point.

Our first CPU sequential code was a translation of Matlab
Distmesh algorithm. Distmesh is an efficient algorithm for
Matlab, it’s completely vectorized to avoid loops. The au-
thors use a sparse matrix to compute mesh-nodes movement.
The sparse matrix dimension is determined by total points
(n) and bars (m) of the mesh. Distmesh code uses a Delau-
nay Matlab function in order to determine truss topology.
We selected the Delaunay C-code written by Geoff Leach
for triangulation step, an open-source program. The author
improved the divide and conquer Guibas-Stolfi algorithm
and he got a factor of 4-5 speedup. This is a O(nlog(n))
algorithm [13].

The update step move the points to the new position, using
the scalar force calculated for each bar. This is the main
action taken by the algorithm and this is carried out using
a large matrix of movements. Every matrix element (Mi,j)
stores the movement of the ith point which is one end of the
kth bar. The total move for ni node is Pi =

∑j=n−1
j=0 (Mi,j).

However, only a few bars converge at each mesh point.
This serial version is an easily implemented way to

guarantee a correct execution and to facilitate the writing
of a correct parallel version.

4. Our GPU-based Algorithm
As argued, Distmesh algorithm is highly suitable for

GPUs architectures. Most of the operations, performed by
the sequential mesh algorithm, were easily mapped on
GPUs multiprocessors. The parallelism in Distmesh code
is exploited by dividing the vector operations among the
threads. Distmesh loop iterations are distributed to kernel
blocks, so each data is fetched by a thread and every thread
executes the same kernel.

Figure 1 presents a high-level overview of our parallel
GPU-version of Distmesh algorithm. It outlines where the
GPU acts as a parallel CPU co-processor in a collaborative
way. The initial phase is executed on the CPU. CPU gener-
ates the first triangulation and copies points and bars from
host (RAM) to device (GPU global memory). CPU launches
the GPU kernels function to start the GPU mesh generation
process. When GPU concludes, only final positions of points
are copied from device to host. Data transference between
host and device is performed at initial and final steps of
the algorithm. During core operations, data remain at device
memory. During kernels execution, bars length and data
movements array remain resident in GPU device memory.
We implemented our parallel mesh generator in this way,
to exploit GPU threads concurrency. In next section, we
describe the different steps we designed to run our parallel
algorithm of Distmesh on a GPU.
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Fig. 1: Mesh Generator Algorithm in CPU-GPU.

4.1 GPU kernels
As a first step in writing the parallel CUDA program, we

had to identify those code blocks we could separate from
sequential program as a CUDA kernel. Here we explain
each kernel written to exploit both data parallelism of the
algorithm itself and the GPU architecture. Once written,
data on the GPU is persistent unless it is deallocated or
overwritten, remaining available for subsequent kernels.

Every node location remains fixed during its total force
computing, that’s why this task may be parallelized. Fig-
ure 2 shows data structures, kernels and the relationship
between them. Data structures were selected to avoid the
branch instructions in kernels code. This was possible by
increasing the compute over the array elements, in order
to minimize the use of if-then-else control instruction. The
general description of each kernel is expressed bellow.

Bar length: We mapped a thread per bar, making every
thread compute its corresponding bar length. Threads read
every data stored in Bars array and store their results in
Length Bar array. This was a suitable condition for thread
computing. Subsequently, we had to do a sum over all
elements of the lengths array, and so calculate relax length
l0. This was not a suitable condition for thread computing,
we will refer to this later.

Scalar Forces: This kernel launch a thread per length bar.
Data are supplied by length array, at global device memory.
Every thread applies the same operation to every data, to
calculate the resultant scalar force applied to each bar. Then
stores the results in a new data structure, Move. Move array
dimension is in correspondence with the number of bars.

Points Movements: This kernel reads data movement -



Fig. 2: Data Structures created by the kernels in GPU.

which was calculated with Scalar Forces kernel- in every
bar. Each bar contributes to the total movement of all the
meshpoints, affecting their extreme points. The final position
of each point is obtained by summing all these movements,
as shown in Figure 2.

Boundary Projection: Some points go outside the ge-
ometry after updating process. This kernel is in charge of
projecting the points moved out from the domain, by relo-
cating them to the nearest point in the border. This relocation
is performed by calculating the numerical gradient.

The next step in writing a CUDA program, was to manage
data transfer between RAM memory and the GPU global
memory.

4.2 GPU kernels optimization
As we explained before, the data transfer from host to

device is made only twice, before launching the kernels
and when GPU process ends. We don’t have the bottleneck
memory transfer problem during GPU computation [14]. As
shown in Figure 3, the data transfer time is 5.7% of GPU
time, for the entire process. This graphic was obtained with
CUDA Profiler tool. The kernels outlined above are limited
by the rate at which the GPU can issue instructions; they are
compute bound. To improve the performance, we optimized
memory access using shared memory. CUDA uses share

Fig. 3: Kernels and data transference.

memory to help reducing overfetch [15]. To avoid multiple
simultaneous accesses to memory, we could efficiently load
data arrays from global to share device memory, thus ensur-
ing coalesced readings [16]. CUDA Atomic Add functions
are the core arithmetic operations to sum array elements and
to calculate forces and points movement. These functions en-
sures that the readings will be done without any interference
from other threads. Synchronization is guaranteed by CUDA
if multiple threads, in different blocks, access to the same
variable to perform read-modify-write operations [10][11].

Bars length kernel optimization: In a first version,
relax length l0 was performed by one thread. The other
threads remain idle in the meantime. The run time was
improved copying lengths bar structure to a new array in
share memory and using atomic functions to sum lengths
bar. Figure 3 shows its little kernel runtime compared to
the total kernels execution time. This kernel uses a CUDA
Atomic-Add function on share memory to sum bar lengths.

Points movements kernel optimization: We modified
this kernel to avoid using a huge data array. It was possible
performing atomic operations. This kernel reads movements
stored in move array, as shown in Figure 2, launching a
thread per row. Each row represents the scalar force at a bar
and it contains x and y component of points movement, then
each thread modify the position of two points. This action
was optimized by using the CUDA ATOMIC_FLOAT_ADD
function, obtaining a significant improvement in perfor-
mance.

We present the experimental results in next section.

5. Experimental Results
In this section we evaluate the computational performance

of our GPU parallel version of Distmesh on a platform
consisting of a Intel Xeon dual-core processor with 4GB of
main memory running at 3.2 GHz, connected to a NVIDIA
Tesla C2070 with CUDA driver and runtime version 4.0.
This GPU is comprised of 14 streaming multiprocessors
(SMs) of 32 streaming processors (SPs) for a total of 448
SPs CUDA cores and its CUDA capability is 2.0.

Table 1 shows CPU and GPU execution time. These
measurements of time consider the complete execution of
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Table 1: GPU Version: Execution Time (sg.)
Node CPU GPU GPU Speedup

Points T ime V ersion1 V ersion2 Complete

1452 0.035 0.130 0.037 0.95
2267 0.290 0.320 0.112 2.59
5809 0.687 0.580 0.183 3.75
9062 1.689 1.820 0.425 3.97

16114 3.388 2.510 0.666 5.09
20109 7.786 4.860 1.239 6.28

the algorithm, including both the executed phase by the
CPU and the GPU, including memory transfer overhead. The
maximum speedup achieved is: 6.28. GPU execution time
was measured performing atomic add operations in Version
1, and performing atomic add operations at shared memory
in Version2. We obtain a significant improvement in the
second case. The execution time evolution, for a complete
run, is presented in Figure 4.

To ensure consistent results when computing our se-
quential(CPU) and parallel(CPU+GPU) algorithms, we com-
pared the number of iterations done and how many of
those invoked to Delaunay. In Table 2, we present the
relationship between Delaunay and Persson iteration, with
the aim of showing consistency between CPU and GPU
implementation. Rate values are close enough in both cases,
allowing ensure satisfactory results, in accordance with
original Distmesh results in Matlab. Moreover, we achieve a
substantial improvement by measuring only core operations
in the GPU version of mesh generator. The speedup reached
53X. We call core operations to GPU kernels outlined in
section 4.

6. Related works
In this section we give a brief overview on mesh genera-

tor algorithms on GPU. Démian Nave et al. present their
approach to parallelizing the Delaunay mesh generation,
which can be parallelized in a natural way. This is a similar

Table 2: GPU-CPU execution: Delaunay and Persson itera-
tions.

Node CPU GPU Speedup

Points Delaunay Persson Delaunay Persson Kernels

1261 25 265 23 253 4.77
2827 39 365 30 313 6.81
5025 45 381 35 381 4.94
7851 49 487 38 487 5.09
11313 65 658 44 616 12.08
15395 150 1056 134 983 12.10
20109 231 2083 212 2405 17.35
31409 728 7764 719 6980 53.38

situation to our work. They emphasize the importance of
mesh generation algorithm and of Delaunay method in
particular [17]. In 2008, Rong et al. present their approach to
GPU computing. They enhance Delaunay triangulation using
GPUs as a parallel co-processor in charge of the triangulation
on a given set points in 2D. The best results are obtained
for a large number of points, when they achieve a 53% im-
provement compared to Triangle Delaunay algorithm [18].
An interesting GPU mesh generator algorithm is presented in
[19]. The authors propose a two-phase iterative GPU based
method, that transforms any 2D planar triangulations and
3D triangular surface meshes into their respective Delaunay
form. They used this algorithm to simulate sten deformation,
where the geometry of triangulation changes dynamically
and requires restore Delaunay conditions to interactive real
time levels. This situation is similar to points retriangulation
needed in our work, where we use Delaunay triangulation
too. We are working on Delaunay parallelization to improve
our work, and we are interested in the previous papers.

7. Conclusions
We wish to highlight the GPUs technology suitability to

improve performance of mesh generators algorithms. We
showed how the efficient Matlab Distmesh algorithm can
be parallelized by processing its mesh nodes concurrently
and taking advantage of its data structures. Our results
gives us an idea of the computing power offered by GPUs
and the virtual machine defined by CUDA, which exhibit
scalability to programmers. We initially ran our application
in a NVIDIA G80 series card; despite being old devices,
we obtained good results. Then, we could run the CUDA
program in a TESLA card making minimal changes to the
kernels code. This architecture enabled us to use Atomic
functions in floating point.

We presented in this paper a developmental stage of our
work and it shows our initial experiences, which resulted
in a significant decrease of algorithm execution time. The
Persson method generates high-quality meshes, which were
perfectly reproduced for domains in 2D with our parallel



algorithm. This approach requires improving the manage-
ment of large amount of data when dealing with complex
geometries and non-uniform meshes. Anyway, we intended
to provide a contribution to this topic development, in the
search of high performance in GPUs computing.
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