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Abstract - Conventionally, human instructions to a robot are 

often given by previously designed signals such as voices and 

images. In this study, one’s own “shapes of a hand” is 

suggested to be instructions in the human-machine interaction 

system. We proposed a Self-Organizing Map (SOM) with a 

memory layer named Transient-SOM (T-SOM) and adopted it 

to a hand image instruction learning system. In this study, 

instead of T-SOM, an improved SOM, Parameter-Less 

Growing Self-Organizing Map (PL-G-SOM) is used to 

improve the hand image instruction learning system. In order 

to verify the performance of the proposed system, comparison 

experiments were executed and the results showed the 

priorities of the new system. 

Keywords: Human-machine interaction, Self-Organizing Map 

(SOM), Parameter-Less Growing SOM, Hand image 

instruction, Pattern recognition 

1 Introduction 

     Hand gesture has been introduced to human-machine 

interaction since the end of last century (Pavlovic et al., 1997). 

Static images of hand shapes and dynamical videos of hand 

gestures are recognized by different mathematical models such 

as Multi-Layer Perceptron (MLP) (Rumelhart et al., 1986), 

Self-Organizing Map (SOM) (Kohonen, 1982, 1995, 1998), 

Hidden Markov Model (HMM) (Baum & Petrie, 1966) and so 

on.  

Kohonen’s SOM, as a well-known pattern recognition 

neural network, is a powerful tool to categorize high 

dimension data to one or two dimension space. In our previous 

studies, we proposed two kinds of improved SOMs, i.e., 

Transient SOM (T-SOM) (Kuremoto et al., 2006) which 

introduced a memory layer to reserve the matured “best much 

unit” (BMU), and Parameter-Less Growing SOM (PL-G-

SOM) which combined the concepts of Berglund & Sitte’s 

Parameter-Less SOM (PLSOM) (Berglund & Sitte, 2006) and 

Growing SOM (GSOM) (Bauer & Villmann, 1997; Villmann 

& Bauer, 1998; Dittenbach et al., 2000) to overcome the 

limitation of the size of map, the collapse of map’ topology 

due to the unlearned data, and reduced the load of 

computation.  

T-SOM has been applied to a hand image instruction 

learning system for a pet robot “AIBO” (Sony Ltd. Product 

2003) successfully (Kuremoto et al., 2006; Hano et al., 2007) 

and PL-G-SOM succeeded as a voice instruction learning 

system for the robot (Kuremoto et al., 2010, 2011). In this 

research, we adopt PL-G-SOM into the hand image instruction 

learning system instead of T-SOM.  

  

2 The structure of hand image instruction 

learning systems 

 The hand image instruction learning systems for partner 

robots, which are intelligent robots with the abilities of 

human-machine interaction, have a similar architecture as 

shown as in Figure 1. Hand images are preprocessed to yield 

their feature vectors as the input of systems. Three kinds of 

maps which are Feature Map, Action Map and Feeling Map 

are combined to realize input data classification, action 

selection and success rate expression respectively. Feature 

Map is a layer of T-SOM or PL-G-SOM, it clustering high 

dimension input data on 2-dimension spaces of maps. The 

input data of hand image instruction are feature vectors of 

hand shapes obtained by preprocessed images. 

 

 

 

 

 

 

(a)   T-SOM 



                                            

 

 

 

 

 

 

 

 

 

 

 

(b)   PL-G-SOM 

Figure 1: Structures of instruction learning 

systems: (a) T-SOM (Kuremoto et al., 2006, 

Hano et al., 2007) for hand image instructions; 

(b) PL-G-SOM for voice instructions (Kuremoto 

et al., 2010, 2011), and used in this study for 

hand image instructions.  

2.1 Feature Vector Space of Hand Image Data 

2.1.1 Image Processing for hand Extraction  

 The hand image instruction system is designed for a 

partner robot learning to select different designed actions 

according to the different shape of a hand of its instructor. 

Hand area, i.e., skin area in the image captured by a CCD 

camera needs to be extracted and regularized at first. For a 

frame of image in RGB format, it is transformed to HSV 

format at first, then, using the threshold values of Hue (H), 

and Saturation (S) (Sherrah & Gong, 2001) and Red (R) 

threshold in RGB, skin area is extracted as a binary image. 

Noise elimination and holes filling are also effective to 

segment a hand area from the binary image. The thresholds 

for skin of a yellow race people in the room of fluorescent 

lights (around 500lx) are given as follows as we investigated: 

 1) When H, S [0, 360] degree,  

         If 10 ≤ S < 15, then H > 350; 

        If 15 ≤ S < 20, then H > 330; 

If 20 ≤ S < 30, then H > 300 or H < 40; 

If 30 ≤ S < 50, then H > 250 or H < 30; 

If 50 ≤ S < 70, then H > 230 or H < 30; 

If 70 ≤ S < 150, then H > 220 or H < 40; 

If S < 10 or 150 ≤ S ≤ 360, then H > 300 or H < 

40; 

2) When R, G, B [0, 255],  

                  30 < R <250. 

2.1.2 Feature Space of Hand Shape  

 The instructions given by the instructor of robot 

are supposed as the different shapes of a hand. To 

distinguish the type of a hand shape, feature space 

definition is important to result high rate of pattern 

recognition. We discussed the methods of feature space 

construction in our previous works (Kuremoto et al., 

2006; Hano et al., 2009) and proposed a useful feature 

vector space of hand shapes. The input images are 

analyzed by an 80-dimension vector space (See Fig. 2). 

From the origin of the space to the end of the hand area, 

the lengths in axes each 1.8-degree increased (80 axes) 

are the values of the feature vector, i.e., (x1, x2, …, x80). 

 

 

 

Figure 2: Input space of T-SOM and PL-G-SOM, 

constructed by an 80-dimension feature vector 

space of a hand instruction as a binary image. Left: 

a regularized image; Right: feature (input) space for 

Feature Map where horizontal axis is the dimension 

of vectors vertical axis is the value of vectors. 
 

2.2 Action Map 

     The instructor presents his/her instructions with the 

different shapes of his/her hand to a robot, and in the view of 

the robot, hand shapes which are observed mean a state of the 

environment st, the robot intends to select a valuable action at 

(i) adapting to the state, i =1, 2, …, A, according to a 

stochastic action policy π, which is according to Gibbs 

distribution (Boltzmann distribution) as shown by Eq. (1). 
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where T is a parameter named “temperature” which comes 

from the physical state description of a system (higher 

temperature lower possibility), t is the iteration time of 

learning, A is the number of available actions. When an action 

is selected according to Eq. (1) and performed by the robot, its 



instructor evaluates the action by giving a reward/punishment 

r to robot. The reward is accepted and used to modify the 

value of Qt by Eq. (2), where Qt is called “state-action value 

function” in reinforcement learning (RL) (Sutton & Barto, 

1998). 
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Where s means the state of environment observed by the robot, 

a is the action selected by the learner, r is the reward (scalar) 

given by the instructor. 

2.3 Feeling Map  

 To express the degree of how an instruction is learned by 

robot, a Feeling Map which has the same number of units with 

Action Map is designed as shown in Figure 1. Feeling Map 

expresses instruction recognition rate, i.e., the feeling of robot: 

more successful, happier it is. Feelings of partner robots, such 

as pet robots, entertainment robots, caring robots and so on, 

are important for human-machine interaction (HMI) when they 

are able to express vividly by their face expressions or the 

gestures (Kuremoto et al., 2007). The distance between input 

pattern and units on Feature Map and the reward from 

instructor are used to calculate feeling values which is 

normalized in [-1.0, 1.0] where high positive value means 

happiness and 0.0 is the initial value of each unit here. The 

calculation of Feeling Map is given by Eq. (3). 
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where F(i) notes the feeling value of unit i on the Feeling Map 

(zero initially), C notes the continue times of reward or 

punishment, Di is the Euclidean distance (squared error) 

between the unit i on Feature Map  and the input data, 

ba, are constants, and .10  ,10  ba  

 

3 T-SOM 

The algorithm of T-SOM (Kuremoto et al., 2006, Hano et 

al., 2007) and whole system processing is shown as follows: 

–Step 1: Initialization. Choose random values (0.0, 1.0) for 

unit mi of a 2-dimension map corresponding to an n-

dimension input space. ),...,2,1( MNi       

– Step 2: Input data. Present a training sample x(x1, x2 …, xn) 

to the Input Layer.  

– Step 3: Find BMU, i.e., the best match unit of Memory 

Layer or Feature Map. A BMU c is decided by using 

minimum Euclidean distance criterion Eq. (4). 

 

c  =  arg min( || x – mi || ),              (4) 

                                             
i 

where x is input feature vector (x1, x2, … , xn). If 

BMU c is found from Memory Layer, then Feature 

Map (Step 4) is skipped. 

– Step 4: Competitive learning. Using a learning rule given by 

Eq. (5) to update the value of mi. 

 

△mi  =  αhci ( x – mi ),                     (5) 

 

where α is a learning rate and hci is a neighborhood 

function given by Eq. (6).  
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Here, cci ,  denotes the positions of an arbitrary 

unit on the output map and BMU, respectively, i = 

1, 2, …, k  ≤  NM, σ is a constant. Obviously, 

0)( xhci , 1)0( cih , 0)( cih . 

– Step 5: Vector quantization (labeling). After sufficient 

iterations of Step 3 and Step 4, i.e., if the distance 

from a BMU to the input is less than a threshold 

value, the input pattern is classified to be a unit of 

Action Map. This process is as same as LVQ-I 

(Kohonen, 1995), but labeling those units of Action 

Map is executed by a reinforcement learning 

algorithm described in Step 6.  

– Step 6 Action learning. Using a reinforcement learning 

algorithm described in next subsection, robot select 

“correct actions” according to the reward or 

punishment from its instructor. The details are 

described in section 2.2. 

– Step 7:  Feeling formation. Units on Feeling Map are the 

levels of learning for actions on Action Map. The 

details are described in section 2.3. 

– Step 8: Additional learning. For new instruction learning, T-

SOM stores the succeeded unit weights into 

Memory Layer, and reset the units of Feature Map 

into random value. Additional learning or refresh 

learning then is able to repeat from Step 1. 

 

T-SOM overcomes the limitation of a size fixed map of 

classic SOM and showed its efficiency as a real robot internal 

model to learn hand image instruction (Kuremoto et al., 2006; 

Hano et al., 2009), however, after a matured “BMU” is stored 

in the Memory Layer and the unit on Feature Map is refreshed 

with random weights of connections to the input, the distance 

between units of trained map and untrained input pattern (new 

data) shows disordered as indicated by Berglund & Sitte 

(Berglund & Sitte, 2006). 

 

 

4 PL-G-SOM 

Combine the idea of Growing SOMs (GSOM) (Bauer & 

Villmann, 1997, Dittenbach, Merkl & Rauber 2000) and the 

Parameter-Less SOM (Berglund and Sitte, 2006) together, we 

proposed a novel SOM named PL-G-SOM (Kuremoto et al., 

2010, 2011) to realize additional learning, optimal 



neighborhood preservation, and automatic tuning of 

parameters and applied it to a voice instruction learning 

system. 

 
Figure 3: Insert a row/column into the feature map. 

Unit c is a BMU and f is the farthest unit among the 

neighbors of c, r the inserted row/column (Kuremoto 

et al., 2010).  

 

Instead of the Memory Layer in T-SOM, Parameter-Less 

Growing Self-Organizing Map (PL-G-SOM) sets a small size 

of the feature map initially, and when a new input is not able 

to find a BMU from the initial map, that is, the distance 

between the input and the BMU (|| x – mi || ) is larger than a 

threshold, a new row/column is inserted in to enlarge the 

feature map. For example, in Fig. 3, a new node r in the new 

row/column is inserted into the middle of node c and node f, 

where c is the nearest node to the new input and f is the 

neighbor of c. The weight of connection between the input and 

the new node has an average value of c and f, 

 

      )mm(5.0m fcr   ,                 (7) 

 

for nodes which are r’s neighbors in the new row/column: 

 

   )mm(5.0m lflclr    ,         (8) 

where l=1, 2, …, N or M. Unit f is chosen which has a largest 

Euclidean distance from the BMU-like c among the neighbors 

of c, and after this process, the map size changes to N(M+1), 

or (N+1)M.  

    Following adaptive learning rate and neighborhood function 

are used in PL-G-SOM: 
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Here, )(t is an adaptive learning rate, and )(thci
  is a 

neighborhood function, σ(t) is the neighborhood size. All of 

them are calculated by the distance between input and the 

BMU. minmax , are positive parameters, for example, the 

value may be the size of the map and 1.0, respectively. cci ,  

denotes the positions of an arbitrary unit on the output map 

and BMU, respectively, i=1, 2, …, k  ≤  NM. Obviously, 

0)(xhci , 10 )(cih , 0)(cih .  

 

 

5 The Experiment and Results 

5.1 Hand Image Instruction Learning Systems 

Using T-SOM and PL-G-SOM 

Eight kinds of hand shapes meaning 8 instructions of 

actions available for a robot are shown in Fig. 4 (a)-(g). 

Regularized binary images of hand shape showed the 

effectiveness of the preprocessing of images, meanwhile, 

feature data showed the availability of pattern recognition for 

their distinguished apparentness. The parameters used in T-

SOM and PL-G-SOM are listed in Table 1. The number of 

units of SOM, T-SOM and PL-G-SOM was 5x5=25 initially. 

800 iterations were executed during the learning process 

because the convergence of Squared Error (SE: distance 

between input and weights of connections, see Eq. (4)) and 

Table 1: Parameters used in the experiments of SOM, T-

SOM and PL-G-SOM. 
 

Description Symbol  Quantity 

Size of image 

 

Height

Width



 

208 

x156 

Size of initial T-SOM and PL-G-

SOM 
MN   5x5 

Iteration times  t 800 

Temperature  T 1.0 

Number of 

instructions 

(actions) 

)(ia  8 

Maximum/Minimum 

neighborhood in PL-G-SOM min

max ,




 7.0

,2/MN 

 

Reward for one action selected r 10.0 

Parameters of Feeling Map ba,  
0.1, 

0.0001 

 



Feeling value (see Eq. (3)). 

     
(a) “fist” 

 

     
(b) “one finger” 

 

     
(c) “two fingers” 

 

     
(d) “three fingers”  

 

     
(e) “four fingers” 

 

     
(e) “five fingers” 

 

     
(f) “another two-fingers” 

 

     
(g) “another three-fingers” 

 

Figure 4: Hand image instructions used in the 

experiments: (left) Original images of 8 kinds of 

gestures; (center) hand shapes obtained by the 

image processing; (c) Features in the input space 

(80-dimension on horizontal axis).    

5.2    The Results and Analyses 

To confirm the efficiency of learning methods, learning 

curves which are depicted by the graph of training time versus 

errors or performance of the models are commonly used. We 

investigated the change of distance between input feature data 

and units weights  and the change of Feeling value  according 

to the training time, and show them by Fig. (5) and Fig. (6). 

PL-G-SOM showed the furthest convergence in both 

evaluation figures. The value of Feelings of T-SOM and PL-

G-SOM reached their highest altitude 1.0, which means that 

100% success rate was achieved as hand image instruction 

recognition/execution. Classic SOM showed unstable 

performance for the learning process had not realized 

convergent result. The reason may be considered that the 

training time for SOM was not enough, and suitable 

parameters such as Temperature, learning rate, and 

neighborhood function were not used, usually they are decided 

by empirical values.  

 

 
Figure 5: Comparison of different SOMs: the 

distances (or squared errors: SE) between BMU 

and input vectors (totally 8 kinds of gestures) 

decreased by training time, PL-G-SOM showed the 

best performance of learning convergence. 

 

 
 

Figure 6: Comparison of different SOMs: the feeling 

value (totally 8 kinds of gestures) increased according 

to training time, PL-G-SOM showed the highest 

performance of learning convergence. 

SOM 



 

 

5 0 0 2 4 1 1 

4 0 2 2 2 2 2 

2 0 6 3 4 7 0 

0 3 3 3 3 1 5 

0 2 1 7 3 3 3 

2 2 3 0 0 0 0 

 
Figure 7: Action Map obtained by PL-G-SOM after 

training. 42 (6x7) units corresponding to 8 kinds of 

hand image instructions (0-7) are showed. 

 

Fig. 7 shows the state of Action Map of PL-G-SOM 

after training. The number of units had grown from 

5x5=25 to 6x7=42. Later input training data such as 4, 5, 

6, 7 occurred fewer units meanwhile earlier data had 

more units for the more input times during the training. 

A method to avoid this situation is that training each 

instruction for certain times (until it converges) 

previously, then input all of data to find the global 

solution.  

Fig. 8 shows the growth of the number of units on 

Feature Map (and Memory Layer) of T-SOM and PL-G-

SOM. The speed and the quantity of PL-G-SOM were 

larger than T-SOM as the same hand image instruction 

learning systems. 

 
Figure 8: The number of units (neurons) on different 

maps grew differently during the learning process. 

The initial sizes of T-SOM and PL-G-SOM were 

same as 25, and the final sizes were 36 for T-SOM 

and 42 for PL-G-SOM respectively. 

 

Furthermore, we used untrained samples with 

different changed variations of the eight shapes of hand, 

and confirmed the robustness of the trained system 

using T-SOM and PL-G-SOM. The limitation degree of 

tilt was about 30, and 45 degree for pan rotation.  

From the comparisons of learning performance, it is 

able to conclude that PL-G-SOM proposed in this study 

showed more effective than the conventional T-SOM as 

the hand image instruction learning system. 
 

6 Conclusions 

A hand image instruction learning system for partner 

robot using PL-G-SOM was proposed. Comparing with 

the conventional system using T-SOM, PL-G-SOM 

showed better learning performance than T-SOM. 

Experiments using real robot are expected to confirm 

the online learning ability of the proposed system in the 

future. 
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