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Abstract – ICAI - This work proposes a mathematical proof 

for the use of orthogonal bipolar vectors (OBV) rather than 

conventional target vectors in artificial neural network MLP 

learning. A larger Euclidean distance provided by new target 

vectors is explored to improve the learning and generalization 

abilities of MLPs. The proposed proof compares the MLP 

performances by using different target vectors such as 

conventional binary and bipolar and orthogonal bipolar 

vectors. The evidence for performance improvement is shown 

by the study of updating process for the weights through the 

backpropagation algorithm. We have concluded that the use 

of orthogonal bipolar vectors as targets can provide a better 

keep of each pattern feature and reduce the interference of 

noises from a training pattern to the other one.  
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1 Introduction 

  Computational intelligence is a science field that has 

emerged as a set of powerful tools capable of solving 

problems that previously could not be solved. In this context, 

we have the Artificial Neural Networks (ANN) receiving 

important contributions from researchers since 80’s. It is quite 

difficult to list all the ANN applications. Some applications 

are pattern recognition [1], sound signal processing [2], and 

biomedical signal processing [3]. 

Related works are presented in Section 2. Section 3 presents a 

motivation for the work. Hypothesis to be solved by this work 

is described in Section 4. The different types of target vectors 

are defined in Section 5. In Section 6, we can verify the 

mathematical evidence for affecting the MLP performance 

according to different target vector types. Some results are 

discussed in Section 7. Section 8 presents the conclusion of 

this work.   

J. R. G. Manzan is with the Faculty of Electrical Engineering, Federal 

University of Uberlândia, MG 38400-902. Phone: +51 34 3319-6000, e-

mail: josericardo@iftm.edu.br (corresponding author) 

S. Nomura is with the Faculty of Electrical Engineering, Federal University 

of Uberlândia, MG 38400-902. Phone: +51 34 3239-4704, e-mail: 

shigueonomura@feelt.ufu.br  

K. Yamanaka is with the Faculty of Electrical Engineering, Federal 

University of Uberlândia, MG 38400-902. Phone: +51 34 3239-4704, e-

mail: keiji@ufu.br  

2 Related works 

 Researches on pattern recognition mainly description 

and classification have been considered important in the 

computer field. Several techniques such as statistical 

approach, theoretical decision and syntactic approach have 

been adopted [11]. Currently, the ANN techniques have been 

widely used because of promising results. One of the 

advantages of using ANN is the ability for training in a 

supervised or unsupervised form. 

It is known that traditional approaches on artificial 

intelligence use the sequential processing. On the other hand, 

ANN techniques use a learning mode with parallel and 

distributed processing. Their training methodology is based 

on biological neuron activity to learn through examples. Trial 

and error strategies contribute to the ability to differentiate 

patterns. ANN has a similar behavior when a large number of 

neurons send excitatory or inhibitory signals to other neurons 

composing the network. 

Several researchers [4] [5] [6] [7] have focused on improving 

ANN performances. Some proposed strategies are regarded to 

input pattern improvement, ANN architecture optimization, 

learning algorithm enhancement and others.  

Experimental results related to this work have been presented 

in [7] [8] [9] [10] showing the performance improvements. 

3 Motivation 

 The biological cognition has abilities to recognize and 

distinguish patterns, even if they have a high degree of 

degradation an their features [12] [13] [14]. In case of ANN, 

an appropriate adjustment of parameters allows a learning 

with high degree of generalization. This is good for 

constructing a model with high flexibility to properly 

recognize very degraded patterns. However, if the training 

time is over then, the model becomes too rigid preventing the 

recognition of degraded patterns. 

Several proposals in order to improve the ability to recognize 

degraded patterns have been carried out. In most cases they 

have focused on how to treat input vectors [15]. However, 

studies for the treatment of target vectors are still rare. This 

work shows effects of adopting orthogonal bipolar vectors as 

targets on improving the MLP performance to recognize 



 

 

degraded patterns. The previous works [7] [8] [9] [10] show 

satisfactory results in using orthogonal bipolar vectors as 

expectation values for MLP learning. 

4 Hypothesis 

 In case of conventional bipolar vectors (CBV), the inner 

product between two of them is not null. On the other hand, 

orthogonal bipolar vectors (OBV) always have null inner 

product between them. Also, the similarity between two 

OBVs is lower than that corresponding similarity between two 

CBVs. Furthermore, the orthogonality between two OBVs 

leads to the largest Euclidean distance as well as possible. We 

believe that larger Euclidean distance and lower similarity of 

OBVs can affect on the MLP performance improvement to 

recognize degraded patterns. 

However, we have realized that there is no investigation 

studying the influence of target vector type on the MLP 

learning. This paper proposes a new methodology for the 

learning. Our hypothesis is on the fact that a target vector type 

can significantly improve the ability of MLPs in recognized 

degraded patterns.   

This paper presents a mathematical evidence for explaining 

the performance improvement of MLPs. 

5 Representation of vectors 

5.1 Orthogonal Bipolar Vector (OBV) 

 Equations (1) and (2) represent two possible target 

vectors, the equation (3) represents the inner product and 

equation (4) the Euclidean distance.  

  (1) 

 ( )1 2, ,..., nW w w w=
���

 (2) 

 
1 1 2 2 3 3 ...

T

n nV W v w v w v w v w⋅ = ⋅ + ⋅ + ⋅ + + ⋅
�� ���

 (3) 

  (4) 

Consider the case where V
��

 and W
���

 are orthogonal with size 

n. There will be n/2 components whose product is positive 

and n/2 components whose product is negative. Positive 

product components is correspond to the ones which the terms 

have the same signal. These terms do not affect on the result 

of the Euclidean distance given by equation (4). On the other 

hand, for the terms with opposite signals, the square of their 

difference is 4. The squares of differences contribute into the 

Euclidean distance resolution. Therefore, if we have larger 

number (n) of components then we have larger Euclidean 

distances. Equations (5) and (6) represent examples of OBVs. 

The inner product of those OBVs is given by equation (7). 

The OBVs can de generated by implementing the algorithm as 

described in [16]. 

  (5) 

  (6) 

  (7) 

 

5.2 Conventional Bipolar Vector (CBV) 

 In case of conventional bipolar vector (CBV), one of its 

components values 1 at the position i corresponding to the 

pattern i represented by vector V
��

. All the other components 

value – 1 as represented by equation (8).  

 ( )1, 1,...,1,..., 1
def

V = − − −
��

 (8) 

If V
��

 and W
���

 are conventional then the terms equation (4) are 

null except for two terms corresponding to the positive 

component of the vector V
��

 given by equation (8). So, the 

Euclidean distance for CBVs is smaller than the distance for 

OBVs. 

5.3 Conventional Binary Vector (BV) 

 The binary vector (BV) is constituted by a unitary 

component at the position “i” to represent the i
th
 pattern and 

other null components as given by equation (9). 

 ( )0,0,...,1,...,0,0
def

V =
��

 (9)  

The BVs are orthogonal between them but their Euclidean 

distance is always equal to 2 .  

6 Improving the weights between the 

hidden layer and output layer 

6.1 Updating the weights between the hidden 

layer and output layer 

 We have considered the backpropagation algorithm 

foundation [16] to develop the mathematical evidence of our 
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proposal. A pattern of order q is propagated through the error 

backpropagation 
( )kδ  is given by equation (10).  

 `
q q q q

k k k kt y f yinδ    = − ⋅   
   

 (10) 

Where: 

• 

q

kt  Represents the target vector corresponding to the q
th
  

pattern that propagates through the network. 

• 
q

ky  Represents the network output for the q
th
 pattern 

propagating through the network. 

• `
q

kf yin
 
 
 

 denotes the differential value for the activation 

function of the net output considering the qth pattern. 

The vectorial form of equation (10) is given by equation 

(11). 
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Where: 

• .* is the symbol for an unusual multiplication of two 

matrices with the same sizes. In this operation, each 

component of the first matrix, corresponding to the row i 

and the column j is multiplied with the corresponding 

component of the second matrix located at the row i and  

column j. The result from the operation is a matrix with the 

same size as the initial matrices. 

In case of using BV as target vector we can verity that the k
th
 

component of this vector is 0. So, the difference (ti - yi) from 

equation (11) is between - 1 and 0. On the other hand when 

the value of k
th
 of target vector element is 1, the difference (ti 

- yi) from equation (11) is between 0 and 1. These differences 

are always multiplied by the differential result for the 

activation function in yi. The differential results will be 

positive since the activation function is assintotically non-

decreasing. Therefore, kδ  will be negative for null 

components of BV and kδ  will be positive for the component 

of BV that is not null. 

In case of using CBV as target vector we can note that the 

difference (ti - yi) from equation (11) will be from 0 to 2 for + 

1 component of this vector. On the other hand, the difference     

(ti - yi) will be from – 2 to 0 for – 1 component of CBV. 

Therefore, kδ  will be negative for – 1 component of CBV 

and it will be positive for +1 components. 

In case of using OBV as target vector, we can construct the 

first vector composed by only +1 components. So, kδ  will be 

positive for all the components of OBV. The second vector 

and others are composed by +1 and – 1 components in an 

equal number. Therefore, a OBV with n components will 

provide at least n/2 negative results and n/2 positive results of 

kδ
. kδ

 is used for calculating jkw∆
 in equation (12) and 

0kw∆
 in equation (13) as follows:  

 
q q q

jk k jw zα δ∆ = ⋅ ⋅  (12) 

 0
q q

k kw α δ∆ = ⋅  (13) 

In case of using CBV or BV as target vector, we can represent 

equation (12) as follows: 

...

...
.

. . . .
. .

. . . .
.

...

T
Tq

q

q q q

jk k jw zα δ α α

 
+  

+ + − + −   + +      − − + − +     −      ∆ = ⋅ ⋅ = ⋅ ⋅ = ⋅         −   − − + − +   − +       − − + − +   −  
    (14) 

In case of using OBV as target vector, equation (12) can be 

represented as follows: 

 

...

...
.

. . . . .
.

. . . . .

...

T
Tq

q

q q q

jk k jw zα δ α α

 
+  

+ + + − + −     +     + + + − + −     
     

∆ = ⋅ ⋅ = ⋅ ⋅ = ⋅     
     −
   − − − + − +  

+     − − − + − +     −  
   (15) 

The influence of a target vector type on the term 
0
k

w∆
 can 

be analyzed as follows:  



 

 

• In case of using BV or CBV as target vector we can 

note that the results for 
0kw∆

 will be negative for –
1 component of the target vector and only one will be 
positive as given by equation (16); 

• In case of using OBV as target vector, it is possible to 
get at least half number (n/2) of components from the 

target vector as positive results for 
0
k

w∆
 as given 

by equation (17). 

[ ]0 ...

Tqq q

k kw α δ α∆ = ⋅ = ⋅ + − −
            (16) 

 [ ]0 ... ...

Tqq q

k kw α δ α∆ = ⋅ = ⋅ + + − −  (17) 

From equations (14) - (17), we can verify that the use of 

OBVs as target vectors can keep more pattern feature signal 

during its propagation. So, we can have more efficient 

mapping for pattern recognition learning. 

6.2 Updating the weights between the input 

layer and hidden layer 

 A propagation of two consecutive training patterns will 

be considered: q order pattern and q + 1 order pattern. 

Equations (18), (19), and (20) are related to the q order 

pattern. Equation (21) is related to the q + 1 order pattern.  
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Replacing equations (18) and (20) with the terms kδ
 and 

jkw∆  from equation (21), we can obtain the following 

equation (22): 

 1 1 1 1

1

`
mq q q q q q

j k k k jk jk

k

in t y f yin w wδ
+ + + +

=

       = − ⋅ ⋅ + ∆              
∑  (22) 

Also, replacing equation (19) with the term of equation (22), 

we can get the following equation (23): 

 1 1 1 1 1
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mq q q q q q q q

j k k k k jk k j
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+ + + + +
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∑  (23) 

Furthermore, replacing equation (18) with the term of 

equation (23), we can obtain equation (24): 
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From equation (24), we can obtain equation (25).  
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Applying the distributive property to the matrix 

multiplication, we can obtain equation (26). 
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Converting equation (26) into a vector representation, the 

expression is given by equation (27). 



 

 

[ ] [ ]

[ ] [ ]

11 21 1

12 22 2
1 11

1 2 1 2

1 2

1 1

2 21 1

1 2 1 2 1 2

...

...

. . . .... * ` ` ... `

. . . .

...

`

`

... * ` ` ... ` . * . ...

. .

`

q

j

j
q qq

j k k

k k kj

q q

q q

k k j

k k

w w w

w w w

in t t t y y y

w w w

t y

t y

t t t y y y z z z

t y

δ

α

+ ++

+ +

 
 
 
 = ⋅ ⋅
 
 
  

   
   
   
     + ⋅ ⋅ ⋅ ⋅ ⋅    
   
      

[ ] [ ]

[ ] [ ]

1 1

2 21 1

1 2 1 2 1 2

11 21 1

12 22 21 1

1 2 1 2

1 2

1

`

`

... * ` ` ... ` . * . ...

. .

`

...

...

. . . .... * ` ` ... `

. . . .

...

q

q q

qq q

k k j

k k

q

j

jq q

k k

k k kj

y y

y y

t t t y y y z z z

y y

w w w

w w w

y y y y y y

w w w

y

α
+ +

+ +



   
   
   
     − ⋅ ⋅ ⋅ ⋅ ⋅     
   
      

 
 
 
 − ⋅ ⋅
 
 
  

−[ ] [ ]

[ ] [ ]

1 1

2 21 1

2 1 2 1 2

1 1

2 21 1

1 2 1 2 1 2

`

`

... * ` ` ... ` . * . ...

. .

`

`

`

... * ` ` ... ` . * . ...

. .

`

q q

qq q

k k j

k k

q q

q q

k k j

k k

t y

t y

y y y y y z z z

t y

y y

y y

y y y y y y z z z

y y

α

α

+ +

+ +

   
   
   
     ⋅ ⋅ ⋅ ⋅ ⋅     
   
      

   
   
   
    + ⋅ ⋅ ⋅ ⋅ ⋅    
   
      

q



 (27) 

Extracting the second term from equation (27), we have 

equation (28).  
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 In equation (28), we have a positive scalar α representing the 

learning rate and vectors represented by the following 

expressions: 
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1

1 2 ...
q

k kt a a a
+
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q
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From equations (28) – (33), we can obtain equation (34) as 

follows: 
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Solving only the especial results from multiplication element 

by element corresponding to “.*”, we can get equations (35) 

and (36): 
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From equation (36), we can get equations (37) and (38).  

 ( )1 1 1 1 2 2 2 2 1 2... ...k k k k ja m b n a m b n a m b n z z zα  ⋅ + + + ⋅  
 (37) 

 ( )1 1 1 1 2 2 2 2 1 2... ...k k k k ja b m n a b m n a b m n z z zα  ⋅ + + + ⋅  
 (38) 

Extracting the scalar term from equation (38), we can obtain 

equation (39). 

 ( )1 1 1 1 2 2 2 2 ... k k k ka bm n a b m n a b m n+ + +  (39) 

The products i im n  for 1 i k≤ ≤  are positive. These results 

are derived from the activation function that was supposed to 

be assintotically non-decreasing. The components 
ia  and 

ib  

for 1 i k≤ ≤ , depend on the target vector. They can be 0, 1 

or – 1 and cause different effects as follows: 



 

 

• In case of CBV as target vector, the product i ia b  for 

1 i k≤ ≤  will be – 1 for two terms of equation (39); 

• In case of BV as target vector, the product i ia b  for 

1 i k≤ ≤  will be null; 

• In case of OBV as target vector, the result from 
equation (39) will be smaller than for the case of using 
CBV.   

Considering the use of CBVs as target vectors with four or 

more components, the result from equation (39) will be larger 

than the case of using OBVs. 

7 Discussion 

 As illustration, we have taken CBVs with 16 

components and replace the variables of equations (29) - (32) 

with numerical values as follows: 
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Then, equation (28) can be numerically expressed by 

equations (44) and (45).  
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Also, we have taken OBVs with 16 components and replaced 

the variables of equations (29) and (31) with numerical values 

as follows:  
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T
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= − − − − − − − −    (47) 

Then, equation (28) can be numerically expressed by 

equations (48) and (49). 
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[ ] 1 2

1 2

1 1 1 1 ... 1 1 1 1 1 1 ( 1) 1 ... 1 1 ( 1) 1 ...

0 ...

q

j

q

j

z z z

z z z

α

α

 = ⋅ ⋅ ⋅ + + ⋅ ⋅ ⋅ + ⋅ ⋅ − ⋅ + + ⋅ ⋅ − ⋅ ⋅ ⋅  

 = ⋅ ⋅  

    (49) 

We can verify that the result from equation (48) is null in case 

of using OBV and the result from equation (45) is always 

larger than that case. We can consider that the term of 

equation (39) has worked as an intensification factor for the 

term represented by equation (28).  

Equation (28) is a term from equation (27) for updating 

weights during the training stage of MLPs. So, we can 

confirm the influence of target vector type on MLP learning. 

In case of using OBV as target vector, we can provide a 

reduced noise propagation contributing into an improved 

performance of MLPs on pattern recognition. 



 

 

8 Conclusion 

 This work presented a mathematical proof to 

demonstrate the MLP performance improvement by adopting 

orthogonal bipolar vectors as targets. The mathematical 

results have shown the effects on noise reduction propagating 

from layer to layer due to the use of orthogonal bipolar 

vectors rather than the use of conventional target vectors for 

MLP learning. We also have verified that the use of 

orthogonal bipolar vectors provides a better separation of 

pattern features due to larger Euclidean distance between 

these vectors. We have concluded that the results can confirm 

the hypothesis of our work suggesting orthogonal bipolar 

vectors as expectation values for MLP learning in degraded 

pattern recognition. 
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