
Distributed Approaches for Self-Adaptive Embedded
Systems

ERSA’12 Academic Invited Paper

Pascal BENOIT
LIRMM, UMR 5506, CNRS University of Montpellier, 161 rue Ada, 34095 Montpellier Cedex 5, France

Abstract - In the recent years, there has been a growing
interest in self-adaptive embedded systems. Compared to
the conventional approach, they require a control loop based
on a three-step process: (1) observation, handled by a set of
sensors/monitors, (2) diagnosis, which analyzes observed data
to adapt and optimize the system, and (3) action,
which tunes system parameters accordingly. Putting an
additional intelligence into the circuit so that it is capable
of modifying itself a set of parameters is not a new idea. But
today, it seems that the conditions have been met to build such
circuits. Firstly, self-observation has been made feasible with
different kind of monitors, like activity counters, temperature
sensors, critical path-monitors, etc. Secondly, it is possible to
tune the voltage/frequency pairs, to migrate the code of a
given task from one processing element to another, to adapt
the routing of data in the interconnection network, etc. So
what is the real challenge today? Achieving a complex but
realistic unified self-adaptation mechanism, which strikes the
balance between the introduced overhead,
power consumption, performance and area. Given the
increasing complexity of embedded systems, our approach is
to consider a regular distributed architecture, with a set of
identical Processing Elements, interconnected with a network
on chip. Thus, all the hardware/software building blocks
required for self-adaptation, are the same for each PE, which
simplifies the scalability for future technologies. During this
talk, we will present an open experimental platform and
original approaches for the control loop based on the three-
step adaptation process; we will analyze the cost of their
implementation and will draw the perspectives offered by such
techniques.

Keywords: MPSOC, Distributed Architectures, Self-
Adaptability, Game Theory, Consensus Theory

1 Introduction
 For many years, the evolution of silicon technologies
has pushed the emergence of new high-tech products, leading
to new applications and new uses. Today, the application
needs seem to clearly lead the technological developments.
The ever-increasing performance and low-power
requirements continuously brings new challenges in the
semiconductor research and industry communities. In the
2011 edition of the ITRS [1], it was reported that in the next

10 years, the processing power will increase by 1000x for
SOC Consumer Portable devices. As depicted in figure 1, the
number of processing engines, logic and memory size will
exponentially grow. Due to the short time-to-market and
reduced lifecycles, the design efforts cannot be increased: it
is assumed that in 2020, 90% of a SOC will be a reused
design (58% in 2012).

Fig. 1. SOC Consumer Portable Design Complexity Trends
from ITRS

Fig. 2. SOC Consumer Portable Power Consumption Trends
from ITRS

 In this context, energy is also a critical issue. The power
budget for a portable device ranges from 0.5 to 2W. It is clear
from figure 2, that the current trend will not be acceptable for

future circuits. The reduction of the power consumption of
electronic products must be addressed at all the stages:
technology, design and applications.

 From a technological point of view, variability has
become a major issue. While process variations impact
process, supply voltage and internal temperature [2], chip
performances are also dependent on environmental and on
applicative changes that may further influence chips behavior
[3].

 Performance, energy efficiency, technological
variability and application versatility motivate the need of
self-adaptability. The objective is to develop a system able to
adapt itself to new applicative requirements as well as
changes in the chip itself, or in its environment. As an
example, the available energy for a telecom application is
strongly reduced under weak battery conditions on mobile
terminals, while real-time constraints depend on the telecom
configuration. Compared to the classical approach, a self-
adaptive system requires a control loop based on a three-
step process: (1) observation, handled by a set of
sensors/monitors, (2) diagnosis, which analyzes observed data
to adapt and optimize the system, and (3) action,
which tunes system parameters accordingly. The real
challenge is to achieve a complex but realistic unified self-
adaptation mechanism, which strikes the balance between the
introduced overhead, power consumption, performance and
area. Given the increasing complexity of embedded systems,
our approach is to consider a regular distributed architecture,
with a set of identical Processing Elements, interconnected
with a network on chip. Since 2005, we develop our own
MPSOC platform and investigate different distributed
strategies for the monitoring and the optimization at run-time.

 The paper is structured as follows. In the next section,
we will give a definition of a distributed self-adaptive system.
Then, we will present the platform developed at LIRMM
called Open-Scale. In section 4, we will summarize our
research works on monitoring techniques. Optimization
techniques handled by distributed controllers will be reported
and analyzed in section 5. Finally, we will conclude this
article and give some future research directions.

2 A definition of a distributed self-
adaptive system

 The objective of this work is to find coherent solutions
for the design of integrated systems that are efficient, low
power, insensitive to technological process variations,
reliable, scalable, with capabilities enabling them to adapt to
their environment, and to the various applications they must
support. We believe that simplicity and regularity of the
system architecture are two key aspects that should guide the
design choices. We present in this section on the one hand the
concept of self-adaptability applied to embedded systems, and
on the other hand, the specifications of the target architecture
and the means to implement this system to make it adaptive.

2.1 Self-adaptability concept
 Self-adaptability is the faculty attributed to an entity that
can be self-sufficient and act within its environment to
optimise its functions. Self-adaptability also describes a
system that can manage itself using its own rules.

 In order to apply this concept to the reality of
technological systems, this study will start with the abstract
view of a system architecture while applying the notion of
self-adaptability. Figure 3 gives a synthetic view of self-
adaptability: the activator creates the physical state of the
system and the diagnosis motivates it. Self-adaptability can be
used to lower energy consumption in microelectronics. In
robotics, the challenge is to increase performance in different
environments. In the artificial intelligence domain, self-
adaptability is the consequence of a life cycle where the
sensors observe the system, the diagnosis gives the direction,
the language of command orders (decisions) and actuators
act.

Fig. 3. Self-adaptability

2.2 System Specifications
 When referring to current integrated systems, it is often
about MPSOC or multi-core system. This is in fact for both
integrated systems consisting of several processing units.
When these ones are identical programmable general-purpose
processors, MPSOC are said to be homogeneous. When
dealing with heterogeneous architectures, there are different
kinds of computing resources: general-purpose processors to
support the system management, but also DSP, dedicated
accelerators, etc. The current trend is finally the same for over
40 years: the integration density doubles approximately every
2 years, we then expect in the longer term Many Core
systems, or MP2SOC (Massively Parallel MPSOC), i.e.
systems with hundreds or thousands of processing units.
Obviously, this complexity poses a number of questions about
the evolution of design methods, verification, manufacturing,
test, programming, debugging, etc.

1.1. MPSOC INTRODUCTION 3

Figure 1.1: MPSoC.

Interconnection

The PEs previously described are interconnected by a Network-on-Chip (NoC)

[9, 10, 11, 12]. A NoC is composed of Network Interfaces (NI), routing nodes and

links. The NI implements the interface between the interconnection environment

and the PE domain. It decouples computation from communication functions.

Routing Nodes are in charge of routing the data between the source and des-

tination PEs through the links. Several network topologies have been studied

[13, 14]. Figure 1.1 represents a 2D mesh interconnect. We consider that the

offered communication throughput is enough for the targeted application set.

The NoC fulfills the Globally Asynchronous Locally Synchronous (GALS)

property by implementing asynchronous nodes and asynchronous-synchronous

interfaces in the NIs [15, 16]. As in [17], the GALS property allows partitioning

the MPSoC into several voltage/frequency islands (VFI). Each VFI contains a

PE clocked at a given frequency and voltage. This approach allows fine-grain

power management.

Power Management

Dividing the circuit into different power domains by using GALS has facilitated

the emerging of more efficient designs taking advantage of fine-grain power man-

agement [18]. As in [19, 20], the considered MPSoC incorporates distributed

Dynamic Voltage and Frequency Scaling (DVFS): each PE represents a VFI and

includes a DVFS device. It consists in adapting the voltage and frequency of

each PE in order to manage the power consumption and performance. A set

of sensors integrated within each PE provides information about consumption,

temperature, performance or any other metric needed to manage the DVFS.

Fig. 4. System overview.

 Given the huge design space due to the increasing
number of transistors, it is not possible to build a 10 billion-
transistor circuit from scratch, for each new product. During
the 2000s, IP reuse and platform based design appeared as
new methodologies to accelerate the Time To Market for
SOCs. Due to the ever-increasing complexity, we start
hearing about (Sub-) System IPs Reuse to build the future
many core systems.

 By observing these changes, we decided in 2005 to
devote our research efforts on designing a regular and
homogeneous MPSOC architecture. The basic idea is to have
a simple subsystem, composed of a programmable processing
element, memory, and a generic interconnection module, that
we can instantiate theoretically to infinity. The primary
version of our architecture called HS-Scale was first
published in [4]. The thrust of this project is to define a
generic and regular software and hardware support, to
facilitate scaling. This very flexible model is originally not
designed for specific applications, but with the addition of
programmable and/or dedicated accelerators to the building
block, one can think advantageously taking advantage of the
same principle of regularity for specific products.

 The regular architecture of our MPSOC is described in
Figure 4. The PEs are interconnected by a Network-on-Chip
(NOC) [5-8]. A NOC is composed of Network Interfaces
(NI), routing nodes and links. NI implements the interface
between the interconnection environment and the PE domain.
It decouples computation from communication functions.
Routing Nodes are in charge of routing the data between the
source and destination PEs through links. Several network
topologies have been studied in the literature [9, 10]. Our
approach is based on a 2D mesh interconnect. We consider
that the offered communication throughput is enough for a
general purpose application set. Our NOC fulfills the
“Globally Asynchronous Locally Synchronous” (GALS)
concept, by implementing asynchronous nodes and
asynchronous-synchronous interfaces in NIs [11, 12]. As in
[13], GALS properties allow MPSOC partitioning into
several Voltage Frequency Islands (VFI). Each VFI contains
a PE clocked at a given frequency and voltage. This approach
allows real fine-grain power management.

 Dividing the circuit into different power domains using
GALS must facilitate the emergence of more efficient designs
that take advantage of fine-grain power management [14]. As
in [15, 16], the considered MPSOC incorporates distributed
Dynamic Voltage and Frequency Scaling (DVFS): each PE
represents a VFI and includes a DVFS device. It consists of
adapting the voltage and frequency of each PE in order to
manage power consumption and performance. A set of
sensors integrated within each PE must provide information
about the power consumed, the local temperature, the
performance or any other metric needed to manage the
DVFS.

3 Open-Scale Prototyping Platform
 Since 2005, we develop an MPSOC architecture based
on the principles described in the previous section, i.e. a
regular and distributed architecture for the implementation
and the evaluation of self-adaptability principles. This
architecture published for the first time in [4] has undergone a
number of developments and changes. The current version of
this architecture is called Open-Scale: it is therefore an
MPSoC governed by the basic principles outlined above. We
have different models of the architecture: a version based on
ISS (Instruction Set Simulator) and SystemC, and a second
based on the fully synthesizable RTL code. The first one
allowed making high level explorations, and the development
of the RTOS. Although the architecture is the same for a
system standpoint, we are interested especially here in the
RTL version, validated on multiple FPGA prototypes, as the
one depicted in figure 5. In this section we describe the
hardware and software building elements of the Open-Scale
platform.

Fig. 5. MPSOC prototype

3.1 NPU, the Network Processing Unit
 The Open-Scale system is an architecture that employs a
distributed memory/message passing approach and a 2D-

mesh NOC for connecting different PEs. As the PEs are
connected through a network, they are called Network
Processing Units (NPUs) [4].

SECRETBLAZE
(MICROBLAZE CPU)

HERMES
NOC

NPU

INTERRUPT
CONTROLLER TIMERL1 ICACHE L1 DCACHE

NOC
INTERFACERAM

WISHBONE BUS

UART

Fig. 6. NPU architecture overview

 The figure 6 depicts the internal architecture of the
NPU, which includes: (i) a general purpose processor, the
SecretBlaze [17,18], (ii) an embedded RAM, (iii) an interrupt
controller, (iv) a timer, a UART, (v) a NI, a (vi) HERMES-
based router [19] and a (vii) Wishbone v4 bus [20].

 Originally designed with the Plasma processor [21], the
NPU is now based on the SecretBlaze [17,18], which is a
highly configurable open-source RISC soft-core processor
developed by our research group. It implements the
MicroBlaze instruction set architecture with a MIPS five-
stage pipeline, where most of the instructions require one
clock cycle to be executed. As reported in [17], it achieves the
same performance level as the MicroBlaze for FPGA
implementations. This processor was developed with a
modular approach, not only to ensure reliability and
efficiency across the whole design, but also to provide better
design reuse opportunities in various research and educational
projects. It is available as a single open-source processor at
http://www.lirmm.fr/openscale

 The flexibility is one of the driving aspects of the
Secret- Blaze design. On the one hand, the core provides
several optional logical and integer instructions such as
multiplication, division, and pattern operations, which
balances computing performance and area cost to meet
embedded system requirements. On the other hand, the
SecretBlaze is a MMU less processor with a simplified
memory sub-system that offers optional configurable data and
instruction caches. It implements the pipelined Wishbone
protocol for memory interfaces. However, no global cache
coherency between NPU is provided.

 The SecretBlaze uses an embedded RAM as local
memory. The interrupt controller can handle up to 8 interrupts

with masking, arming, and poling mechanisms. The timer is a
32-bit counter that can generate an interrupt according to a
configurable time window. Besides, a UART interface, which
is adjustable via software, can be used for debugging
purposes. These components are interconnected by a
Wishbone v4, which is a standard and an open-source bus
[20]. The communication between the NPU and the NOC
router is implemented in the NI (Network Interface), which
defines HW/SW integration (e.g. bus width, bandwidth), as
well as packing/unpacking the packets from/to the NOC.

 The adopted NOC router is a small XY router based on
HERMES [19]. The NOC employs packet switching of
wormhole type: the incoming and outgoing ports used to
route a packet are locked during the entire packet’s transfer.
The routing algorithm is an XY engine that allows
deterministic routing. Each router processes one incoming
FIFO per port. The size of FIFOs can be chosen regarding the
desired communication performance.

3.2 Open-Scale RTOS
 Open-Scale is a set of programmable Network
Processing Units. Programming (and debugging) complex
applications tp make an efficient use of multiple computing
units is a real challenge. It is necessary to provide a coherent
middleware layer to simplify these two fundamental aspects
of embedded systems. In order to keep a distributed memory
structure and to preserve the scalability of the system, each
NPU operates asynchronously and communicates with each
other by means of a Messaging Passing Interface (MPI)
protocol. The global operation is performed in a distributed
fashion and no global shared-memory is used.

 Each NPU runs a tiny preemptive RTOS that was
further extended from the Plasma RTOS [21]. The global
structure of the operating system is depicted in figure 7. The
RTOS provides a multi-threaded preemptive execution, using
a scheduler based on thread priorities that is executed
periodically according to a fixed timeslot. A round robin
scheduling algorithm is executed when all tasks have the
same priority. The structure of this system is divided into 4
categories: (i) services that provide the basic operating system
requirements, (ii) communication, (iii) drivers, and (iv)
libraries. The RTOS allows the use of semaphores and
mutexes, communication between local and remote tasks, and
dynamic memory allocation, as well. Further, it also provides
the standard C library together with a compact math library
that allows floating point operations as well as software
multiplications/divisions. Different kind of drivers, e.g. timer,
UART, etc., are also available.

 Due to the distributed memory characteristic of the sys-
tem, the applications are described using Kahn Process
Network (KPN) formalism [22].

t1
t2

t3 t4
Application
tasks

Kernel

Scheduler

Dynamic
Task

Loader

Routing
Table

Adaptation

MP API

Exception Manager

Memory
Management

Task
Management

API I/O

Interrupt Manager

Hardware UART

t1
t2

FIFOTimerRAM

t1
t2
t3

Fig. 7. Structure of the Open-Scale RTOS

 MPI provides a comprehensive number of primitives
that relate to general-purpose distributed computing; a
number of works have devised lightweight implementations
supporting only a subset of MPI mechanisms for embedded
processors and systems. This makes sense since KPN
formalism offers a sufficient support that requires only
blocking read operations, which are necessary to model, for
instance, data flow (e.g. video and audio) applications. Some
MPI implementations are layered, and advanced
communication synchronization primitives (e.g. collective)
found in the upper layers make use of the simple point-to-
point primitives such as MPI Send() and MPI Receive(). This
enables using these collective mechanisms in an application-
specific basis in case they prove necessary. The KPN
computation model allows deterministic behavior of the
application in an asynchronous way. Furthermore, tasks
placement can be optimized depending on the user
requirements (e.g. computation time, energy consumption).

 The Open-Scale RTOS was implemented in such a way
that users can easily choose which features are needed in their
implementation in order to either save memory or meet
performance requirements. In this scenario, new services and
features were implemented in order to be compliant with the
SecretBlaze architecture, while providing more efficiency in
terms of management and QoS support (Table 1).

 Table 1 summarizes some services that were included in
the Open-Scale RTOS. As mentioned before, one of the goals
of Open-Scale is to explore adaptive mechanisms (e.g.
monitoring techniques, distributed control, dynamic voltage
and frequency scaling, task migration, etc.). For instance, to
enable dynamic load balancing, the system has to be able to
move running tasks from one NPU to another. For that
reason, a run-time loading mechanism was included to allow
compiled separately applications from the RTOS being
dynamically uploaded at run-time.

Table 1. Services Included into the Open-Scale RTOS

Plasma RTOS Services Open-Scale Services

1- generation of a single object file;

2- preemptive round-robin sheduler
based on thread priorities;

3- intra-NPU communication based
on local FIFOs;

4- Extra-NPU communication (e.g
CP protocol) through ethernet;

5- interrupt and exception handling;

6- dynamic memory allocation and
deallocation;

7- queues, semaphores, mutexes.

1- run-time dynamic applications
loading;

2- preemptive round-robin scheduler
based on thread credits;

3- intra-NPU communication based
on messages exchanged by software
FIFOs;

4- Extra-NPU communication
(RAW protocol was included), as
well as MPI_Send and
MPI_Receive;

5- run-time monitoring support;

6- decision-making mechanisms;

7- a run-time control system used for
regulating NPU frequency;

8- API with new primitives, etc;

9 – development of new drives;

10- dynamic mapping heuristics.

 Besides, a preemptive round-robin scheduler based on
thread credits has been implemented, avoiding task execution
starvation. Moreover, intra/extra-NPU communications were
extended to provide more flexibility and system performance.
For example, the RAW protocol was implemented in order to
achieve better performance when compared to TCP/UDP (as
shown in [23]). Further, online system-monitoring
mechanisms were included, in order to access hardware
monitors available, or software defined monitors (CPU load,
(ii) FIFO load, etc.). Once monitored information is provided,
online decisions can be taken by decision-making
mechanisms, like a run-time control system used for
regulating NPU frequency. All the middleware support for
self-adaptation (e.g. local DVFS control, optimization, etc.)
was included to provide a complete infrastructure for self-
adaptation strategies investigations.

4 Distributed Monitors
 We have defined a set of software and hardware
components, based on distributed resources and a principle of
regularity of the architecture that has led us to the design of
the Open-Scale platform. In this section, we will focus on the
monitoring aspect. To achieve a self-adaptive system, it is
necessary to provide a set of sensors allowing the system to
observe both its internal behavior and its environment. We
focus here on internal monitoring.

 We seek solutions to evaluate strategies of self-
adaptation that are also compatible with an FPGA prototyping
environment. We therefore propose in this section to explore
several types of approaches to monitoring in this context, by
focusing on hardware sensors, such as PVT sensors or
activity counters, on software monitors directly integrated
into the middleware of Open -Scale, and finally an integrated
database enabling a coherent organization for a subsequent
operation for system optimization.

4.1 PVT sensors
 Monitoring with trustable and valuable information
systems made of a billion transistors at a reasonable area and
performance cost is a real challenge, because of the increasing
random nature of some process parameters, the spatial
dependence of process (including aging), voltage and
temperature variations, but also the broad range of time
constants characterizing variations in these physical
quantities.

 There is a vast literature on this topic, and different kind
of approaches. Several PVT sensors commonly used for post
fabrication binning have been investigated [24-29] for global
variability compensation. They are based on specific
structures like Ring Oscillators or Replica Paths to measure,
at runtime, the physical and electrical parameters required to
dynamically adapting the system, e.g. operating frequency,
the supply voltage, threshold voltage, substrate biasing, etc.
Another approach is to directly monitor sampling elements of
the chip (Latches or D-type Flip Flop) to detect delay faults.
This can be achieved by inserting specific structures or using
ad-hoc sampling elements [28-29] to detect a timing violation
by performing a delayed comparison or by detecting a signal
transition within a given time window.

 In the Open-Scale platform, one objective is to design a
set of sensors in order to monitor locally the Temperature,
Voltage, and Process. The basic idea is to use digital
hardware sensors designed with internal resources of the
FPGA, i.e. configurable logic blocks and switch matrices. In
this context, we proposed, designed and compared two
structures: a Ring Oscillator and a Path Delay sensor.

Fig. 8. Ring Oscillator sensor

 The Ring Oscillator sensor is based on the measurement
of the oscillator frequency. For instance in [30], this structure

was used as an internal temperature sensor for FPGA. The
frequency of a ring oscillator is measured and converted into
temperature. We have developed a new version of this kind of
sensor in Open-Scale. Its structure is depicted in Figure 8.
The main part of the sensor is a 2p+1 inverter chain. The
oscillation frequency directly depends on the FPGA process
performance capabilities, for a given voltage and temperature.
The first logic stage enables the oscillator to run for a fix
number of periods of the main clock. The ending flip-flop is
used as a frequency divider and allows filtering glitches from
the oscillator. The final logic stage counts the number of
transitions in the oscillator and transmits the count result.
Then, the count result is used to calculate the oscillator
frequency as follows:

where F is the ring oscillator frequency, count is the 14-bit
value of the counter, f is the operating frequency of the clock
and p is the number of enabled clock periods for which the
sensor is active.

 In order to use this sensor for resource monitoring in
FPGA, a three-inverter ring oscillator was implemented. With
this configuration, the core of the sensor (ring oscillator +
first flip-flop) only consumes 4 LUTs. A Hardware Macro
was designed so that the very same sensor structure can be
mapped at each FPGA location (Fig. 9(a)). It possibly allows
characterizing separately each CLB of an FPGA.

Fig. 9. Hard-Macro implementation of both PVT sensors

 It exists a lot of techniques [31] to manage Critical Path
but very few are used in FPGAs as PVT sensors. The Path
Delay Sensor proposed here is directly inspired by CPM. Its
structure is depicted in Figure 10. The idea of the Path Delay
Sensor is to adapt CPM to FPGA. Indeed, the regularity of the
FPGA structure enables to create more easily a critical path
replica in FPGA than in ASIC.

 The Path Delay Sensor is composed of n LUTs and n
flip- flops (FF). The LUTs are chained together and a FF is
set at the output of each LUT. A clock signal is applied to the

chain and is propagated into the LUT. At each rising edge, a
n-bits thermometer code is available at the output of FFs. This
thermometer code is representative of LUTs and
interconnects performances.

Fig. 10. Path Delay sensor

 When the sensor is running, a thermometer code is
stored in the FF, and then analyzed. Assuming the code is
”11111111111111000000000000001111”, then the position
Nz of the last 0 is identified. The time T required to go
through one LUT and the associated interconnect is
approximated as follows:

where f is the frequency of the clock signal applied to the
sensor. In order to obtain relevant information, the size of this
sensor must take into account the FPGA family in which it
operates. For example, for a Spartan-3 device, this sensor is
composed of 32 stages. It allows propagating a complete
period of the Spartan-3 reference frequency clock (50MHz).
The figure 9(b) shows the Hard Macro integration of this
sensor.

 Our study in [32] has proved that both structures were
efficient for fast PVT local monitoring in FPGA devices. The
ring oscillator is an interesting structure for fine grain
monitoring, whereas the Path Delay Sensor will be a
preferred structure to allow rapid performances estimations
with a minimal area overhead.

4.2 Activity Counters
 In some cases, PVT sensors might be not enough
accurate and fast to reflect the exact load of the core,
especially to estimate the power consumed locally by the
Processing Elements. In-situ events counters have been
proved to be efficient solutions for monitoring at real-time the
activity of a core. They were first developed to better
understand application behavior, facilitate debugging and so
to improve high-end processors execution flow at run-time.
For this usage, they are also called performance counters.
These probes are a set of in-situ registers used to record the
activity (i.e. number of events on some selected signals) in
the processor. Significant events having an architectural
meaning are typically used, such as instruction execution,
floating point operation, memory transactions, pipeline stalls,

etc. For instance, the super processor BlueGene/P from IBM
is providing 52 counters [33], which can be configured and
read through a dedicated API. The ARM processor
architecture contains two event counters with an extending
instruction set to configure their inputs. Moreover, a
dedicated monitoring co-processor can be added through this
interface. As the required precision becomes more and more
important, the number of events tends to increase. Temporal
multiplexing has been proposed to reduce the hardware
overhead when applications show periodic execution time
[34]. However, gathering information is problematic and may
penalize applications with hard performance constraints. As a
result, the number of monitors as well as the size of their
associated counters must be reduced.

 The use of activity counters was extended to embedded
system run-time management in [35,36]. In such systems,
area constraints hardly limit the possible number of monitors
compared to general-purpose processors. Activity counters
were generally selected manually and their usage was quite
limited. Moreover, assuming that the NPU of Open-Scale is
composed of different kind of resources (the processor,
memory, peripherals, network interface) that could also be
further augmented with accelerators or specialized DSP, it is
necessary to provide other activity counters to estimate at run-
time the power consumed by the different blocks. In such a
context, the selection process of the signals to monitor might
become a difficult and time-consuming work.

 We tackled this issue by proposing an automated
selection of events to be monitored starting from a power
model, and usable for any IP. Moreover, our selection process
allows striking the balance between the area taken by the
monitors and the precision of the model.

 Power consumption PT can be approximated, over the
period T, by a linear function of the following form:

where :

• {ei}i=1:n denotes events to which counters will be
connected;

• Nei is the number of occurrences of event ei during the
sampling period T;

• αi is the regression coefficient describing power
contribution of event ei;

• c is a constant term representing static consumption;

• n measures the power model complexity.

 Our goal is to minimize the cardinal of the set {ei}i=1:n of
events, so that we can limit the model complexity. We

propose to use a step-by-step selection technique to detect
influential events on power.

 Fig. 11 depicts an overview of the proposed modeling
flow based on four steps: instrumentation, data processing,
model extraction and physical placement of monitors. Our
flow starts with a post-synthesis simulation to generate a
VCD (Value Change Dump) file containing the transitions at
each net over time. At this stage, we try to track highly power
consuming blocks, so for the synthesis process we preserve
the hierarchical structure of the design. The VCD is used as
input to the Xpower tool from Xilinx to extract instantaneous
power values. In parallel to this, the RTL model of the design
is simulated. Events occurring on each controlling signal are
time-stamped and then reported, this can be easily done with
some options in Modelsim.

 Our method based on stepwise process was evaluated to
select events able to estimate the power consumption. This
approach helps to explore cost and accuracy trade-offs when
designing such probes. Sampling impact can be easily
analyzed along with the number of counters that should be
deployed. A control unit extracted from a dedicated VLIW
accelerator for Open-Scale was used as a case study. The
model was validated with less than 5% error. The
implementation results show a reading latency around 500
clock cycles, at a very cost (only 12 monitored signal)
regarding the accelerator area.

Fig. 11. Events profiling methodology flow

4.3 Software monitors and distributed
database

 Another complimentary approach to observe the system
behavior is to use software monitors. As reported in section
II, monitoring services are implemented into the Open-Scale
RTOS to measure performance at the software level. The
software threads implemented into the microkernel allow

measuring the processor load, the communication load,
application throughput, etc.

 Applications suited to be run on Open-Scale are based
on the traditional KPN (Kahn Process Network) paradigm.
The application can be described as a finite set of tasks
interconnected by software FIFOs. A given task can either be
performed in hardware (with a coprocessor) or in software, in
which case it becomes a thread executed by a processor on-
chip. The performance of the system is directly related to the
quality of the application mapping, i.e. the placement of
threads on processors and the placement of software FIFOs
on on-chip memories.

 The processor load is simply calculated as the ratio
between the number of cycles the PE is executing a set of
threads, and the total number of cycles on a given time
period. Indeed, due to local and remote thread dependencies,
thread priorities, data availability, NOC traffic, etc., the
processor may be more or less idled during the considered
time period. This kind of information is very important to
evaluate the efficiency of the application mapping for
instance. For the same reasons, the software FIFOs may be
filled more or less during application execution.
Consequently, a specific service is implemented to measure
the filling rate of the FIFOs.

 It is mandatory for self-adaptive MPSOC architectures
to be as reactive as possible to critical events, and to keep an
accurate vision of the system behavior. A memory containing
collected values from the different sensors is therefore
needed, as well as appropriate and low cost means to store,
handle, and retrieve these accumulated data. For this purpose,
we have developed an in-memory database engine that fulfills
these needs, as well as its associated API.

 The DRET (Distributed Raw Events Table) is a
distributed in memory database that is physically located in a
specific part of the RAM memory of each NPU. Its purpose is
to contain the monitoring data extracted from both hardware
and software. The DRET of a tile may contain several tables
like traditional database systems and each table contains
several formatted events retrieved from the HW/SW sensors.
The database has been designed to be an efficient data
structure that can be used to store and retrieve information
easily from the monitoring process. The used structure and
the API are designed to keep the memory footprint and
performance overhead as small as possible. The DRET can be
seen as a uniform repository for the events whatever their
origin (hardware sensor, software probe, local or external to a
given processing element). While a DRET is mainly related
to a given NPU, it can also be used to store a synthetic view
of the state of neighboring NPU. In order to prevent the
DRET from occupying too much memory space, a maximum
size is associated to each table created in a DRET. A DRET
table can also be cyclic. In that case, it behaves like a fixed-
size cyclic buffer: inserting a new event in a full table
discards the oldest one. The DRET and its API were

evaluated in [37]. Although there is a slight memory overhead
in the system imposed by the usage of the DRET, the overall
gain can be very beneficial for the system. It allows the
system to handle some decisions through the analysis and
diagnosis of such stored events. This brings to the system the
possibility to better decide the application mapping tuning it
according to the requirements, and thus to reach the objective
of chip self- adaptability.

5 Distributed Controllers
 Prior works addressing system optimization
(performance, power consumption, temperature, etc.) are
generally based on centralized schemes. Application
mapping, task placement and scheduling, voltage and
frequency are tuned to adapt the design dynamic settings to
its runtime constraints, according to a solution provided by a
centralized algorithm. For instance, authors of [38] present a
method to select the frequencies and voltages based on non-
linear Lagrange optimization. The work presented in [39]
proposes a centralized system inspired by Kirchhoff’s current
law to decide on the optimal power/performance
configurations. Conventional centralized approaches become
problematic when the number of cores increases. First, the
complexity of the optimization problem explodes as the
dimension of the system increases. Secondly, communication
latencies induced after collecting on-line information have to
be considered; in [40], authors use a time-stamped monitoring
mechanism to ensure the reliability of their system, but this
solution leads to overload the network traffic for designs
connecting more than a few units. Some recent proposals
focus on distributed techniques to optimize embedded
systems subject to online information. In [41], the problem of
multi-core systems thermal control is posed as a convex
optimization problem and solved in a distributed manner
using dual decomposition technique. Stochastic methods are
introduced in [42] to manage power consumption over the
chip lifetime. The complexity of the used Markov model
increases with the number of possible power/performance
configurations, making this technique inconvenient for
designs embedding hundreds of cores.

 In this work, we study a new approach in order to
minimize the energy consumption of MPSOC at run-time
taking into account different application constraints. As
depicted in figure 12, we assume that each core is able to
monitor its resources as described in the previous section (i.e.
sensors to measure the system performance, and energy
consumption), and a DVFS engine to tune the
Voltage/Frequency couples. We propose to achieve
Power/Performance tradeoff by distributed schemes based on
3 different approaches: PID based controllers, Game Theory
inspired controllers, and Consensus Theory inspired
controllers.

16 CHAPTER 1. INTRODUCTION TO MPSOC OPTIMIZATION

1.4 Distributed Optimization

We have seen that existing methods, even if they operate at run time, they are not

based on distributed models. An alternative solution to centralized approaches

is to consider distributed algorithms. Our proposal is to conceive the architec-

ture illustrated in figure 1.12: each processing element of an MPSoC embeds an

optimization subsystem based on a distributed algorithm. This subsystem man-

ages the local actuators (DVFS in the figure) taking into account the operating

conditions. In other words, our goal is to conceive a distributed and dynamic

optimization algorithm.

Figure 1.12: Distributed dynamic optimization on MPSoC.

A distributed algorithm is an algorithm optimized to run on a distributed

hardware such as telecommunication networks, wireless sensor networks or mul-

tiprocessors systems. This kind of algorithm is executed concurrently, with sepa-

rated parts being calculated simultaneously on independent processors and having

limited information about what other parts are doing. For a given optimization

problem, the choice of an appropriate distributed model is driven by the problem

complexity and the system characteristics. From our knowledge, there has been

no work proposing a solution to build the architecture of figure 1.12.

It is necessary to study existing models and algorithms in order to define

the distributed optimization subsystem. In the following sections, we survey

pertinent approaches.

Fig. 12. Distributed Control overview

5.1 PID based Controllers
 Due to the dynamic variations in the workload of
MPSOC and its impact on energy consumption, adaptation
techniques such as PID (Proportional-Integral-Derivative)-
based control have been used to dynamically scale the voltage
and the frequency of processors [43][44], and recently, of
networks- on-chip [45][46]. These techniques differ in terms
of adopted control parameters (e.g. task deadline,
temperature) and response times (period necessary to stabilize
a new voltage/frequency).

In [47], we have presented the following contributions: (i)
power and energy consumption considered when tuning
processor frequency; (ii) a PI-only controller proposed and
compared to a PID-controller; and (iii) three perturbation
scenarios with different application performance impact
factors. The figure 13 illustrates an overview of the proposed
approach. As it can be observed, one PID controller is
devoted to each task in the system that must ensure soft-real
time constraints. In this example, there is one task per NPU,
so one PID controller for each processor is required. In the
case where multiple tasks are executed in the same NPU, a
system with multiple PID controllers in the same NPU could
be proposed. The PID controller is implemented as a service
in the Open-Scale RTOS. It only represents an overhead of
less than 1% in terms of total memory required by the OS.

Fig. 13. MPSOC platform with PID controller

 Monitoring information such as application throughput
is fed into the PID controller module. It will match the actual
throughput with the desired throughput (setpoint) and will
then calculate an error value (e). This e value is used for
calculating P, I and D parameters and as result, the PID
controller will indicate a frequency in which the processor
can reach a given setpoint according to reactiveness factor
initially set. It is important to observe that the PID
management and calculation are performed dynamically at
run-time. In cases where current throughput is lower than the
setpoint, the PID controller will select a frequency greater
than the current one in order to reach the setpoint and to
satisfy application performance constraints. On the other
hand, when the current throughput is much higher than the
expected one, the controller will sign to a lower frequency in
order to reduce the power consumed by the NPU.

The proposed strategy consists in deciding controller
parameters on a task basis. To this purpose, a SystemC/TLM-
based Open-Scale simulation is executed in order to obtain
the step-response. In this scenario, processor frequency is
changed from 55MHz to 1005MHz and application
throughput is monitored. The system is linear, that means the
system’s behavior remains the same under such frequency
changes. Based on the high-level model, a number of
different configurations of controllers can be explored. Each
one exhibits different features such as speed, overshoot and
static error. Once the process is modeled, PID parameters are
fine tuned by using Simulink and the values of P, I and D are
fed as input to the Open-Scale platform.

 The PID strategy does not rely only on preventing
application deadline-misses, but it also attempts to save
energy, once the processor frequency is adjusted at real-time
according to application requirements. Our approach can be
easily integrated to linear systems and, platform resources
utilization can therefore be optimized. By using PID
controllers, we have shown in our simulation scenario that it
was possible to save up to 32%, in terms of energy by tuning
processor frequency according to application needs. As it can
be noticed in [47], PID-controllers are intended to react faster
under disturbing conditions compared to PI-only controllers.
However its power consumption is higher. The good choice
of which controller to use in multiprocessor system-on-chip
platforms will be a trade-off between power consumption and
the desired system’s reactiveness.

5.2 Game-Theory based Controllers
 Game theory involves a set of mathematical tools that
describe interactions among rational agents. The basic
hypothesis is that agents pursue well-defined objectives and
take their knowledge and behaviors of other agents in the
system into account to make their choices. In other words, it
describes interactions of players in competitive games.
Players are said to be rational since they always try to
improve their score or advance in the game by making the
best move or action. Game theory is based on a distributed

model: players are considered as individual decision makers.
For these reasons, game theory provides a promising set of
tools to model distributed optimization on MPSOC and,
moreover, this is an original approach in this context.

 The second dynamic optimization proposed for Open-
Scale is therefore inspired by game theory, where a non-
cooperative game is a scenario with several players
interacting by actions and consequences [48]. Basically,
players individually choose an action within a defined set,
resulting in consequences. Each player tries to maximize its
outcome according to its preferences, leading to global
optimization. If this sequence is repeated, under certain
conditions, the game finds a solution formalized as Nash
Equilibrium. These principles provide strong concepts to
model the behavior of reactive systems where decisions are
taken in a distributed and dynamic way, justifying the choice
of the game theory for our approach.

 We model the NPUs as players, the application latency
and power consumption as a local objective function that
depends on the global state of other NPUs. Then, a distributed
algorithm selects the best solution. The objective functions
are built by using different terms: the energy contribution of
each PE to the whole energy consumption, the applicative
latency contribution to the total latency and penalty functions
modeling energy and latency constraints. We consider a
MPSOC, composed of n NPUs interconnected by an
asynchronous Network-on-Chip, such as Open-Scale. Each
NPU integrates a DVFS engine that regulates the local
voltage and frequency couple among a finite number of
solutions. We denote Ti the clock period corresponding to
NPUi and Ti− = (T1,...,Ti−1,Ti+1,...,Tn) the periods of all other
NPUs in the MPSOC. We assume that an external mechanism
has mapped the application on the MPSOC, each NPU
handling a unique task. The task assigned to NPUi takes Ni
cycles of Ti to be processed. We denote as Lmax the application
latency constraint and we consider that each task is scheduled
every T0 seconds. Energy, latency contributions and energy
and latency constraints are modeled with this formalism.
Then, two objective functions are built according to the
formulated scenarios, i.e. energy or latency minimization
under conditions.

 The proposed method, based on Game Theory,
optimizes the system while fulfilling dynamic constraints. A
telecom test-case has been studied in [49,50] to demonstrate
the effectiveness of this approach. For the evaluated case, the
proposed technique has obtained up to 20% of latency gain
under energy constraints, and 40% of energy gain under
latency constraints.

 Our studies have also shown in [51,52] that our method
scales with the number of processors without excessive
convergence times. For a 100-processor platform, our
technique has required an average of 20 game cycles to reach
the solution. A game cycle requires around 2500 cycles to
collect monitoring data from other NPUs, minimize the

objective function, and transmit its data to other NPUs [53].
The few calculation cycles needed to converge make this
technique a feasible approach to optimize consumption and
performance at run time. Furthermore, we have demonstrated
that the achieved optimization is about 89% in average
compared to a global offline method, which proves the
quality of the results obtained with this method.

5.3 Consensus Theory based Controllers
 Although the Game Theory approach is easy to
implement, it may lead sometimes to local unstable minima,
which necessitates extra resources to detect oscillations in the
algorithm execution. Besides, application constraints are
modeled as a penalty function, so real-time deadlines are not
always guaranteed. Finally, global information must be
shared between many NPUs, which could lead to undesired
traffic in the interconnection network. To overcome these
limitations, we attempt to apply gradient methods with
consensus concepts in order to implement a cooperative and
dynamic approach for Open-Scale.

Consensus is derived from the research on cooperative
control theory. It was developed mainly for data processing in
sensor networks and for multi-agents coordination. Consensus
is defined as an iterative process utilizing a predefined
message-passing protocol, leading a set of communicating
elements to an agreement on a value or a common behavior
[54]. Similarly to [55], we intend using the consensus to reach
an agreement on one state optimizing a global interest in
networked system.

 A mathematical framework has been proposed for
distributed optimization using hybrid approaches. This
framework is a combination of subgradient methods with the
consensus formalism to handle distributed optimization. In
this section we summarize the key aspects of this theoretical
framework before reporting afterwards its benefits.

 In the context of consensus/subgradient optimization,
each NPU is considered as an agent. The interconnection
graph G is built with respect to the NPUs’ NOC connections,
and the state vector of the system is proportional to operating
frequencies in each PE. Distributed models and algorithms
such as Consensus are naturally adapted to Open-Scale.

 Within a distributed cooperative scheme, each unit
adjusts its local frequency, so that power consumption of the
whole system is reduced without degrading performance.
Considering our benchmark application, the proposed
technique provides up to 45% energy gain under latency
constraint changes, and up to 80% when different standards
are applied. Our experiments have also shown in [56] that our
distributed model is scalable, and can handle energy
efficiency in future many core platforms; the number of
communicating units can be sized to increase convergence
speed and optimization quality. Indeed, for a 100-processor
platform, our technique has required an average of 270

consensus cycles to reach the solution. One consensus cycle
requires 500 cycles to collect monitoring data from other
NPUs, compute an iteration of the consensus, and transmit its
data to neighboring NPUs. We have estimated that the
achieved optimization is about 82% in average compared to a
global offline method.

6 Conclusion and Research Perspectives
 After having exposed our vision of future self-adaptive
embedded systems, we have presented our open-source
MPSOC called Open-Scale. It is based on a building-block, a
Network Processing Unit, mainly composed of a RISC
processor, its local memory, peripherals, a network interface,
and a set local sensors and actuators. The Open-Scale RTOS
provides classical scheduling services, task, memory and
interrupt management, but also a Message Passing Interface
and dedicated services to support self-adaptability. This
distributed prototyping platform has been used to investigate
self-adaptation mechanisms. We have reported our researches
in the design of distributed monitors, PVT sensors in FPGAs,
activity counters, software monitors and a distributed
embedded database to collect monitored data and its API.
High-level distributed control approaches based on PID,
Game Theory and Consensus Theory have been implemented
and simulated. Our experimental results have shown that they
are able provide 40% energy savings in average under
application performance constraints (throughput or latency) in
a distributed manner, at run-time. The induced overhead is
low and scales well thanks, to their inherent distributed
nature.

 There are still several research challenges to reach the
goal of self-adaptability. First, an intelligent management of
monitored data from hardware and software is necessary, in
order to correlate and select the most relevant approaches.
The fine-tuning of mixed software and hardware actuators is a
second research topic, since there are many ways to adapt the
system to strike the balance between performance and energy
consumption. Finally, the learning capabilities of such
distributed systems must be explored, in order to achieve
certainly in a near future, real autonomous chips.

7 Acknowledgement
 This work was supported in part by the French National
Research Agency (ANR), in collaboration with CEA LETI
and LIP6. The author gratefully acknowledges the
contributions of many people, who helped in different ways
to complete this work, the LIRMM colleagues, Lionel Torres,
Gilles Sassatelli, Michel Robert, Luciano Ost, current and
former PhD candidates, especially Gabriel Marchesan
Almeida, Diego Puschini, Imen Mansouri, Nicolas Hébert,
Nicolas Saint-Jean, Florent Bruguier, Lyonel Barthe and
Rémi Busseuil.

8 References
[1] The International Technology Roadmap for

Semiconductors, System Drivers Chapter, 2011, [online]
http://www.itrs.net/Links/2011ITRS/2011Chapters/2011
SysDrivers.pdf

[2] S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Ke-
shavarzi, and V. De, “Parameter variations and impact
on circuits and microarchitecture”, Design Automation
Conference, 2003. Proceedings, pp. 338–342.

[3] O. Unsal, J. Tschanz, K. Bowman, V. De, X. Vera, A.
Gonzalez, and O. Ergin, “Impact of Parameter
Variations on Circuits and Microarchitecture”, IEEE
Micro, vol. 26, no. 6, pp. 30–39, 2006.

[4] N. Saint-Jean, G. Sassatelli, P. Benoit, L. Torres, and M.
Robert, “HS-Scale: a Hardware-Software Scalable MP-
SOC Architecture for embedded Systems”, IEEE
Computer Society Annual Symposium on VLSI (ISVLSI
’07), IEEE, 2007, pp. 21-28

[5] P. Guerrier and A. Greiner, “A generic architecture for
on-chip packet-switched interconnections”, in DATE
’00: Proceedings of the 2000 Design, Automation and
Test in Europe Conference and Exhibition, pages 250–
256, 2000.

[6] William J. Dally and Brian Towles, “Route packets, not
wires: on-chip inteconnection networks”, In DAC ’01:
Proceedings of the 38th conference on Design
automation, pages 684–689, New York, NY, USA, 2001.
ACM.

[7] L. Benini and G. De Micheli, “Networks on chips: a new
SoC paradigm”, IEEE Computer, 35(1):70–78, Jan
2002.

[8] Tobias Bjerregaard and Shankar Mahadevan, “A survey
of research and practices of Network-on-chip”, ACM
Computing Surev, 38(1):1, 2006.

[9] Partha Pratim Pande, C. Grecu, M. Jones, A. Ivanov, and
R. Saleh, “Performance evaluation and design trade-o!s
for network-on-chip interconnect architectures”,
Computers, IEEE Transactions on, 54(8):1025–1040,
Aug. 2005.

[10] D. Bertozzi and L. Benini, “Xpipes: a network-on-chip
architecture for gigascale systems-on-chip”, Circuits
and Systems Magazine, IEEE, 4(2):18–31, 2004.

[11] E. Beigne, F. Clermidy, P. Vivet, A. Clouard, and M.
Renaudin, “An Asynchronous NOC Architecture
Providing Low Latency Service and Its Multi-Level
Design Framework”, In ASYNC ’05: Proceedings of the
11th IEEE International Symposium on Asynchronous
Circuits and Systems, pages 54–63, Washington, DC,
USA, 2005. IEEE Computer Society.

[12] J. Pontes, M. Moreira, R. Soares, and N. Calazans.
“Hermes-glp: A gals network on chip router with power
control techniques”, In Symposium on VLSI, 2008.
ISVLSI’08. IEEE Computer Society Annual, pages 347–
352, April 2008.

[13] Umit Y. Ogras, Radu Marculescu, Puru Choudhary, and
Diana Marculescu, “Voltage-frequency island
partitioning for GALS-based Networks-on-Chip”, In

DAC ’07: Proceedings of the 44th Annual Conference
on Design Automation, pages 110–115, New York, NY,
USA, 2007. ACM.

[14] James Donald and Margaret Martonosi, “Techniques for
multicore thermal management: Classification and new
exploration”, In ISCA ’06: Proceeding of the 33rd
International Symposium on Computer Architecture,
pages 78–88, 2006.

[15] Edith Beigne, Fabien Clermidy, Sylvain Miermont, and
Pascal Vivet, “Dynamic voltage and frequency scaling
architecture for units integration within a gals NOC”, In
NOCS, pages 129–138, 2008.

[16] Edith Beigne, Fabien Clermidy, Sylvain Miermont,
Alexandre Valentian, Pascal Vivet, S Barasinski, F
Blisson, N Kohli, and S Kumar, “A fully integrated
power supply unit for fine grain DVFS and leakage
control validated on low-voltage SRAMs”, In
ESSCIRC’08: Proceeding of the 34th European Solid-
State Circuits Conference, Edinburg, UK, Sept. 2008.

[17] Barthe L., Cargnini L. V., Benoit P., Torres L.,
“Optimizing an Open-Source Processor for FPGAs: A
Case Study”, IEEE FPL’11: Field Programmable Logic
and Applications (2011), Greece, pp. 551-556

[18] L. Barthe, L. V. Cargnini, P. Benoit and L. Torres, “The
SecretBlaze: A Configurable and Cost-Effective Open-
Source Soft-Core Processor”, 25th IEEE International
Parallel & Distributed Processing Symposium, May 16-
20, 2011, Anchorage (Alaska) USA, pp. 310-313

[19] F. Moraes, N. Calazans, A. Mello, L. Moller, and L. Ost,
“Hermes: an infrastructure for low area overhead
packet- switching networks on chip”, Integration VLSI
Journal, vol. 38(1), 2004, pp. 69–93.

[20] O. Richard Herveille, “Wishbone System-on-Chip (SoC)
Interconnection Architecture for Portable IP Cores“,
Revision B.4, OpenCores, 2010. [Online]. Available at:
http://www. opencores.org/

[21] S. Rhoads, “Plasma - most mips i(tm)” [Online].
Available at: http://www.opencores.org/project,plasma

[22] G. Kahn and D.B. MacQueen, “Coroutines and
networks of parallel programming”, In B. Gilchrist,
editor, Information Processing 77: Proceedings of the
IFIP Congress 77, Toronto, Canada, August 8-12, 1977,
pages 993–998. North-Holland, 1977.

[23] Busseuil R., Barthe L., Almeida G. M., Ost L., Bruguier
F., Sassatelli G., Benoit P., Robert M., Torres L., “Open-
Scale: A Scalable, Open-Source NOC-based MPSoC for
Design Space Exploration”, IEEE International
Conference on Reconfigurable Computing and FPGAs
(ReConFig), 2011, pp. 357-362

[24] M. Nourani, A. Radhakrishnan, “Testing On-Die
Process Variation in Nanometer VLSI”, IEEE Design &
Test of Computers, Volume 23, Issue 6, June 2006
Page(s):438 – 451

[25] SB Samaan, “Parameter Variation Probing Technique”
US Patent 6535013, 2003

[26] M. Persun “Method and apparatus for measuring
relative, within-die leakage current and/or providing a

temperature variation profile using a leakage inverter
and ring oscillators” US Patent 7193427 (2007)

[27] H-J Lee, “Semiconductor device with speed binning test
circuit and test method thereof “ US Patent 7260754

[28] Z. Abuhamdeh, B. Hannagan, Jeff Remmers, Alfred L.
Crouch “A Production IR-Drop Screen on a Chip”,
IEEE Design & Test of Computers, Volume: 24, Issue:
3, pp. 216-224, 2007

[29] A. Drake et al. “A Distributed Critical Path Timing
Monitor for A 65nm High Performance
Microprocessor”, ISSCC 2007, pp.398-399.

[30] S. Lopez-Buedo, J. Garrido, and E. Boemo,
“Dynamically inserting, operating, and eliminating
thermal sensors of FPGA- based systems”, IEEE
Transactions on Components and Packaging
Technologies, vol. 25, no. 4, pp. 561–566, 2002.

[31] A. Drake, “Adaptive Techniques for Dynamic Processor
Optimization”, Series on Integrated Circuits and
Systems. Boston, MA: Springer US, 2008.

[32] Bruguier F., Benoit P., Torres L., “Investigation of
Digital Sensors for Variability Characterization on
FPGAs”, ReCoSoC’10: 5th International Workshop on
Reconfigurable Communication-Centric Systems on
Chip, France, pp. 95-100

[33] Ganesan, K.; John, L.; Salapura, V.; Sexton, J.; , ”A
Performance Counter Based Workload Characterization
on Blue Gene/P”, Parallel Processing, 2008. ICPP ’08.
37th International Conference on , vol., no., pp.330-337,
9-12 Sept. 2008

[34] J.M.May, ”MPX: Software for multiplexing hardware
performance counters in multithreaded programs”, in
Parallel and Distributed Processing Symposium,
Proceedings 15th International, p. 8, April 2001

[35] K. Jihong and K. Yongmin ” Performance Analysis and
Tuning for a Single-Chip Multiprocessor DSP”, IEEE
Parallel Distrib. Technol. , vol.5 , pp. 68-79, Jan 1997 .
Los Alamitos, CA, USA.

[36] K. Hyun-min et al. ” Performance monitor unit design
for an AXI-based multi-core SoC platform”, Proceedings
of the 2007 ACM symposium on Applied computing,
SAC ’07,pp. 1565-1572, Seoul, Korea.

[37] E. Faure, G.M. Almeida, M. Benabdenbi, P. Benoit, F.
Clermidy, F. Pêcheux, G. Sassatelli, L. Torres, “An in-
memory monitoring database for self adaptive
MP2SoCs”, Design and Architectures for Signal and
Image Processing (DASIP), 2010 Conference on, 2010,
pp. 97 – 104

[38] Niyogi, K. and Marculescu. ”Speed and voltage
selection for GALS systems based on voltage/frequency
islands”, ASP-DAC ’05. ACM, New York, 292-297

[39] Deniz, Z.T.; Leblebici, Y.; Vittoz, E.A., ”On-Line
Global Energy Optimization in Multi-Core Systems
Using Principles of Analog Computation”, Solid-State
Circuits, IEEE Journal of vol.42, no.7, pp.1593-1606,
July 2007

[40] S. Madduri, et al., ”A monitor interconnect and support
subsystem for multicore processors”, in the Proc. of the

IEEE/ACM Design Automation and Test in Europe
Conference, Nice France, pp. 761-766, 2009

[41] Mutapcic, A. et al., ”Processor speed control with
thermal constraints”. Trans. Cir. Sys. Part I 56, 9 (Sep.
2009), 1994-2008.

[42] H. Jung and M. Pedram, ”Uncertainty-Aware Dynamic
Power Management in Partially Observable Domains”,
IEEE Trans. on VLSI Systems, 2009.

[43] Q.Wu,P.Juang, et al. , “Formal online methods for
voltage/frequency control in multiple clock domain
microprocessors”, SIGARCH Comput. Archit. News,
vol. 32, pp. 248–259, October 2004

[44] Y. Zhu and F. Mueller, “Feedback EDF scheduling
exploiting hardware- assisted asynchronous dynamic
voltage scaling”, SIGPLAN Not., vol. 40, pp. 203–212,
June 2005

[45] U. Y. Ogras, R. Marculescu, and et al., “Variation-
adaptive feedback control for networks-on-chip with
multiple clock domains”, Proceedings of the 45th annual
Design Automation Conference (DAC’08), pp. 614–
619, June 2008

[46] A. Sharifi, H. Zhao, and et al., “Feedback control for
providing qos in noc based multicores”, Proceedings of
the Conference on Design, Automation and Test in
Europe (DATE’10), pp. 1384–1389, March 2010

[47] G. Almeida, R. Busseuil, L. Ost, F. Bruguier, G.
Sassatelli, P. Benoit, L. Torres, M. Robert, “PI and PID
Regulation Approaches for Performance-Constrained
Adaptive Multiprocessor System-on-Chip”, Embedded
Systems Letters, IEEE, Volume: PP, Issue:99, ISSN:
1943-0663, DOI: 10.1109/LES.2011.2166373,
September 2011, pp. 1-4

[48] M.J. Osborne and A. Rubinstein, “A Course in Game
Theory”. MIT Press, 1994

[49] D. Puschini, F. Clermidy, P. Benoit, G. Sassatelli, and L.
Torres, “Adaptive energy-aware latency-constrained
DVFS policy for MPSoC”, 2009 IEEE International SOC
Conference (SOCC), IEEE, 2009, pp. 89-92

[50] D. Puschini, F. Clermidy, P. Benoit, G. Sassatelli, and L.
Torres, “Dynamic and distributed frequency assignment
for energy and latency constrained MP-SoC”, Design,
Automation & Test in Europe Conference & Exhibition,
2009. DATE ’09., 2009, pp. 1564-1567

[51] D. Puschini, P. Benoit, F. Clermidy, G. Sassatelli, “A
Game-Theoretic Approach for Run-Time Distributed
Optimization on MP-SoC”, International Journal of
Reconfigurable Computing, Volume 2008, 403086
(2008), pp. 1-10

[52] D. Puschini, F. Clermidy, P. Benoit, G. Sassatelli, and L.
Torres, “Temperature-Aware Distributed Run-Time
Optimization on MP-SoC Using Game Theory”,
Symposium on VLSI, 2008. ISVLSI ’08. IEEE
Computer Society Annual, 2008, pp. 375-380

[53] I. Mansouri, P. Benoit, D. Puschini, L. Torres, F.
Clermidy, G. Sassatelli, “Dynamic Energy Optimization
in NoC-based System-on-Chips”, Journal of Low Power
Electronics JOLPE – Vol. 6, N° 4, December 2010, pp.
564-577

[54] Olfati-Saber, J. A. Fax, and R. M. Murray. ”Consensus
and cooperation in networked multi-agent systems,”
Proceedings of the IEEE, 95(1): 215233 (2007).

[55] Johansson, B. and al.,”Subgradient methods and
consensus algorithms for solving convex optimization
problems”. Decision and Control, CDC , Dec. 2008

[56] Mansouri I., Clermidy F., Benoit P., Torres L., “A Run-
time Distributed Cooperative Approach to Optimize
Power Consumption in MPSoCs”, SOCC’10: 23th IEEE
International SOC Conference, United States, pp. 25-30

