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Abstract - In the recent years, there has been a growing 
interest in self-adaptive embedded systems. Compared to 
the conventional approach, they require a control loop based 
on a three-step process: (1) observation, handled by a set of 
sensors/monitors, (2) diagnosis, which analyzes observed data 
to adapt and optimize the system, and (3) action, 
which tunes system parameters accordingly. Putting an 
additional intelligence into the circuit so that it is capable 
of modifying itself a set of parameters is not a new idea. But 
today, it seems that the conditions have been met to build such 
circuits. Firstly, self-observation has been made feasible with 
different kind of monitors, like activity counters, temperature 
sensors, critical path-monitors, etc. Secondly, it is possible to 
tune the voltage/frequency pairs, to migrate the code of a 
given task from one processing element to another, to adapt 
the routing of data in the interconnection network, etc. So 
what is the real challenge today? Achieving a complex but 
realistic unified self-adaptation mechanism, which strikes the 
balance between the introduced overhead, 
power consumption, performance and area. Given the 
increasing complexity of embedded systems, our approach is 
to consider a regular distributed architecture, with a set of 
identical Processing Elements, interconnected with a network 
on chip. Thus, all the hardware/software building blocks 
required for self-adaptation, are the same for each PE, which 
simplifies the scalability for future technologies. During this 
talk, we will present an open experimental platform and 
original approaches for the control loop based on the three-
step adaptation process; we will analyze the cost of their 
implementation and will draw the perspectives offered by such 
techniques. 
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1 Introduction 
  For many years, the evolution of silicon technologies 
has pushed the emergence of new high-tech products, leading 
to new applications and new uses. Today, the application 
needs seem to clearly lead the technological developments. 
The ever-increasing performance and low-power 
requirements continuously brings new challenges in the 
semiconductor research and industry communities.  In the 
2011 edition of the ITRS [1], it was reported that in the next 

10 years, the processing power will increase by 1000x for 
SOC Consumer Portable devices. As depicted in figure 1, the 
number of processing engines, logic and memory size will 
exponentially grow. Due to the short time-to-market and 
reduced lifecycles, the design efforts cannot be increased:  it 
is assumed that in 2020, 90% of a SOC will be a reused 
design (58% in 2012). 

 

Fig. 1. SOC Consumer Portable Design Complexity Trends 
from ITRS 

 

Fig. 2. SOC Consumer Portable Power Consumption Trends 
from ITRS  

 In this context, energy is also a critical issue. The power 
budget for a portable device ranges from 0.5 to 2W. It is clear 
from figure 2, that the current trend will not be acceptable for 



future circuits. The reduction of the power consumption of 
electronic products must be addressed at all the stages: 
technology, design and applications. 

 From a technological point of view, variability has 
become a major issue. While process variations impact 
process, supply voltage and internal temperature [2], chip 
performances are also dependent on environmental and on 
applicative changes that may further influence chips behavior 
[3]. 

  Performance, energy efficiency, technological 
variability and application versatility motivate the need of 
self-adaptability. The objective is to develop a system able to 
adapt itself to new applicative requirements as well as 
changes in the chip itself, or in its environment. As an 
example, the available energy for a telecom application is 
strongly reduced under weak battery conditions on mobile 
terminals, while real-time constraints depend on the telecom 
configuration. Compared to the classical approach, a self-
adaptive system requires a control loop based on a three-
step process: (1) observation, handled by a set of 
sensors/monitors, (2) diagnosis, which analyzes observed data 
to adapt and optimize the system, and (3) action, 
which tunes system parameters accordingly. The real 
challenge is to achieve a complex but realistic unified self-
adaptation mechanism, which strikes the balance between the 
introduced overhead, power consumption, performance and 
area. Given the increasing complexity of embedded systems, 
our approach is to consider a regular distributed architecture, 
with a set of identical Processing Elements, interconnected 
with a network on chip. Since 2005, we develop our own 
MPSOC platform and investigate different distributed 
strategies for the monitoring and the optimization at run-time. 

 The paper is structured as follows. In the next section, 
we will give a definition of a distributed self-adaptive system. 
Then, we will present the platform developed at LIRMM 
called Open-Scale. In section 4, we will summarize our 
research works on monitoring techniques. Optimization 
techniques handled by distributed controllers will be reported 
and analyzed in section 5. Finally, we will conclude this 
article and give some future research directions. 

2 A definition of a distributed self-
adaptive system 

 The objective of this work is to find coherent solutions 
for the design of integrated systems that are efficient, low 
power, insensitive to technological process variations, 
reliable, scalable, with capabilities enabling them to adapt to 
their environment, and to the various applications they must 
support. We believe that simplicity and regularity of the 
system architecture are two key aspects that should guide the 
design choices. We present in this section on the one hand the 
concept of self-adaptability applied to embedded systems, and 
on the other hand, the specifications of the target architecture 
and the means to implement this system to make it adaptive. 

2.1 Self-adaptability concept 
 Self-adaptability is the faculty attributed to an entity that 
can be self-sufficient and act within its environment to 
optimise its functions. Self-adaptability also describes a 
system that can manage itself using its own rules.  

 In order to apply this concept to the reality of 
technological systems, this study will start with the abstract 
view of a system architecture while applying the notion of 
self-adaptability. Figure 3 gives a synthetic view of self-
adaptability: the activator creates the physical state of the 
system and the diagnosis motivates it. Self-adaptability can be 
used to lower energy consumption in microelectronics. In 
robotics, the challenge is to increase performance in different 
environments. In the artificial intelligence domain, self-
adaptability is the consequence of a life cycle where the 
sensors observe the system, the diagnosis gives the direction, 
the language of command orders (decisions) and actuators 
act.  

 

Fig. 3. Self-adaptability 

2.2 System Specifications 
 When referring to current integrated systems, it is often 
about MPSOC or multi-core system. This is in fact for both 
integrated systems consisting of several processing units. 
When these ones are identical programmable general-purpose 
processors, MPSOC are said to be homogeneous. When 
dealing with heterogeneous architectures, there are different 
kinds of computing resources: general-purpose processors to 
support the system management, but also DSP, dedicated 
accelerators, etc. The current trend is finally the same for over 
40 years: the integration density doubles approximately every 
2 years, we then expect in the longer term Many Core 
systems, or MP2SOC (Massively Parallel MPSOC), i.e. 
systems with hundreds or thousands of processing units. 
Obviously, this complexity poses a number of questions about 
the evolution of design methods, verification, manufacturing, 
test, programming, debugging, etc. 
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Figure 1.1: MPSoC.

Interconnection

The PEs previously described are interconnected by a Network-on-Chip (NoC)

[9, 10, 11, 12]. A NoC is composed of Network Interfaces (NI), routing nodes and

links. The NI implements the interface between the interconnection environment

and the PE domain. It decouples computation from communication functions.

Routing Nodes are in charge of routing the data between the source and des-

tination PEs through the links. Several network topologies have been studied

[13, 14]. Figure 1.1 represents a 2D mesh interconnect. We consider that the

offered communication throughput is enough for the targeted application set.

The NoC fulfills the Globally Asynchronous Locally Synchronous (GALS)

property by implementing asynchronous nodes and asynchronous-synchronous

interfaces in the NIs [15, 16]. As in [17], the GALS property allows partitioning

the MPSoC into several voltage/frequency islands (VFI). Each VFI contains a

PE clocked at a given frequency and voltage. This approach allows fine-grain

power management.

Power Management

Dividing the circuit into different power domains by using GALS has facilitated

the emerging of more efficient designs taking advantage of fine-grain power man-

agement [18]. As in [19, 20], the considered MPSoC incorporates distributed

Dynamic Voltage and Frequency Scaling (DVFS): each PE represents a VFI and

includes a DVFS device. It consists in adapting the voltage and frequency of

each PE in order to manage the power consumption and performance. A set

of sensors integrated within each PE provides information about consumption,

temperature, performance or any other metric needed to manage the DVFS.

 

Fig. 4. System overview. 

 Given the huge design space due to the increasing 
number of transistors, it is not possible to build a 10 billion-
transistor circuit from scratch, for each new product. During 
the 2000s, IP reuse and platform based design appeared as 
new methodologies to accelerate the Time To Market for 
SOCs. Due to the ever-increasing complexity, we start 
hearing about (Sub-) System IPs Reuse to build the future 
many core systems.  

 By observing these changes, we decided in 2005 to 
devote our research efforts on designing a regular and 
homogeneous MPSOC architecture. The basic idea is to have 
a simple subsystem, composed of a programmable processing 
element, memory, and a generic interconnection module, that 
we can instantiate theoretically to infinity. The primary 
version of our architecture called HS-Scale was first 
published in [4]. The thrust of this project is to define a 
generic and regular software and hardware support, to 
facilitate scaling. This very flexible model is originally not 
designed for specific applications, but with the addition of 
programmable and/or dedicated accelerators to the building 
block, one can think advantageously taking advantage of the 
same principle of regularity for specific products. 

 The regular architecture of our MPSOC is described in 
Figure 4. The PEs are interconnected by a Network-on-Chip 
(NOC) [5-8]. A NOC is composed of Network Interfaces 
(NI), routing nodes and links. NI implements the interface 
between the interconnection environment and the PE domain. 
It decouples computation from communication functions. 
Routing Nodes are in charge of routing the data between the 
source and destination PEs through links. Several network 
topologies have been studied in the literature [9, 10]. Our 
approach is based on a 2D mesh interconnect. We consider 
that the offered communication throughput is enough for a 
general purpose application set. Our NOC fulfills the 
“Globally Asynchronous Locally Synchronous” (GALS) 
concept, by implementing asynchronous nodes and 
asynchronous-synchronous interfaces in NIs [11, 12]. As in 
[13], GALS properties allow MPSOC partitioning into 
several Voltage Frequency Islands (VFI). Each VFI contains 
a PE clocked at a given frequency and voltage. This approach 
allows real fine-grain power management.  

 Dividing the circuit into different power domains using 
GALS must facilitate the emergence of more efficient designs 
that take advantage of fine-grain power management [14]. As 
in [15, 16], the considered MPSOC incorporates distributed 
Dynamic Voltage and Frequency Scaling (DVFS): each PE 
represents a VFI and includes a DVFS device. It consists of 
adapting the voltage and frequency of each PE in order to 
manage power consumption and performance. A set of 
sensors integrated within each PE must provide information 
about the power consumed, the local temperature, the 
performance or any other metric needed to manage the 
DVFS. 

3 Open-Scale Prototyping Platform 
 Since 2005, we develop an MPSOC architecture based 
on the principles described in the previous section, i.e. a 
regular and distributed architecture for the implementation 
and the evaluation of self-adaptability principles. This 
architecture published for the first time in [4] has undergone a 
number of developments and changes. The current version of 
this architecture is called Open-Scale: it is therefore an 
MPSoC governed by the basic principles outlined above. We 
have different models of the architecture: a version based on 
ISS (Instruction Set Simulator) and SystemC, and a second 
based on the fully synthesizable RTL code. The first one 
allowed making high level explorations, and the development 
of the RTOS. Although the architecture is the same for a 
system standpoint, we are interested especially here in the 
RTL version, validated on multiple FPGA prototypes, as the 
one depicted in figure 5. In this section we describe the 
hardware and software building elements of the Open-Scale 
platform. 

 

 

Fig. 5. MPSOC prototype 

 
3.1 NPU, the Network Processing Unit 
 The Open-Scale system is an architecture that employs a 
distributed memory/message passing approach and a 2D-



mesh NOC for connecting different PEs. As the PEs are 
connected through a network, they are called Network 
Processing Units (NPUs) [4].  
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Fig. 6. NPU architecture overview 

 The figure 6 depicts the internal architecture of the 
NPU, which includes: (i) a general purpose processor, the 
SecretBlaze [17,18], (ii) an embedded RAM, (iii) an interrupt 
controller, (iv) a timer, a UART, (v) a NI, a (vi) HERMES-
based router [19] and a (vii) Wishbone v4 bus [20]. 

 Originally designed with the Plasma processor [21], the 
NPU is now based on the SecretBlaze [17,18], which is a 
highly configurable open-source RISC soft-core processor 
developed by our research group. It implements the 
MicroBlaze instruction set architecture with a MIPS five-
stage pipeline, where most of the instructions require one 
clock cycle to be executed. As reported in [17], it achieves the 
same performance level as the MicroBlaze for FPGA 
implementations. This processor was developed with a 
modular approach, not only to ensure reliability and 
efficiency across the whole design, but also to provide better 
design reuse opportunities in various research and educational 
projects. It is available as a single open-source processor at 
http://www.lirmm.fr/openscale 

 The flexibility is one of the driving aspects of the 
Secret- Blaze design. On the one hand, the core provides 
several optional logical and integer instructions such as 
multiplication, division, and pattern operations, which 
balances computing performance and area cost to meet 
embedded system requirements. On the other hand, the 
SecretBlaze is a MMU less processor with a simplified 
memory sub-system that offers optional configurable data and 
instruction caches. It implements the pipelined Wishbone 
protocol for memory interfaces. However, no global cache 
coherency between NPU is provided. 

 The SecretBlaze uses an embedded RAM as local 
memory. The interrupt controller can handle up to 8 interrupts 

with masking, arming, and poling mechanisms. The timer is a 
32-bit counter that can generate an interrupt according to a 
configurable time window. Besides, a UART interface, which 
is adjustable via software, can be used for debugging 
purposes. These components are interconnected by a 
Wishbone v4, which is a standard and an open-source bus 
[20]. The communication between the NPU and the NOC 
router is implemented in the NI (Network Interface), which 
defines HW/SW integration (e.g. bus width, bandwidth), as 
well as packing/unpacking the packets from/to the NOC.  

 The adopted NOC router is a small XY router based on 
HERMES [19]. The NOC employs packet switching of 
wormhole type: the incoming and outgoing ports used to 
route a packet are locked during the entire packet’s transfer. 
The routing algorithm is an XY engine that allows 
deterministic routing. Each router processes one incoming 
FIFO per port. The size of FIFOs can be chosen regarding the 
desired communication performance. 

3.2 Open-Scale RTOS 
 Open-Scale is a set of programmable Network 
Processing Units. Programming (and debugging) complex 
applications tp make an efficient use of multiple computing 
units is a real challenge. It is necessary to provide a coherent 
middleware layer to simplify these two fundamental aspects 
of embedded systems. In order to keep a distributed memory 
structure and to preserve the scalability of the system, each 
NPU operates asynchronously and communicates with each 
other by means of a Messaging Passing Interface (MPI) 
protocol. The global operation is performed in a distributed 
fashion and no global shared-memory is used.  

 Each NPU runs a tiny preemptive RTOS that was 
further extended from the Plasma RTOS [21]. The global 
structure of the operating system is depicted in figure 7. The 
RTOS provides a multi-threaded preemptive execution, using 
a scheduler based on thread priorities that is executed 
periodically according to a fixed timeslot. A round robin 
scheduling algorithm is executed when all tasks have the 
same priority. The structure of this system is divided into 4 
categories: (i) services that provide the basic operating system 
requirements, (ii) communication, (iii) drivers, and (iv) 
libraries. The RTOS allows the use of semaphores and 
mutexes, communication between local and remote tasks, and 
dynamic memory allocation, as well. Further, it also provides 
the standard C library together with a compact math library 
that allows floating point operations as well as software 
multiplications/divisions. Different kind of drivers, e.g. timer, 
UART, etc., are also available. 

 Due to the distributed memory characteristic of the sys- 
tem, the applications are described using Kahn Process 
Network (KPN) formalism [22]. 
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Fig. 7. Structure of the Open-Scale RTOS 

 MPI provides a comprehensive number of primitives 
that relate to general-purpose distributed computing; a 
number of works have devised lightweight implementations 
supporting only a subset of MPI mechanisms for embedded 
processors and systems. This makes sense since KPN 
formalism offers a sufficient support that requires only 
blocking read operations, which are necessary to model, for 
instance, data flow (e.g. video and audio) applications. Some 
MPI implementations are layered, and advanced 
communication synchronization primitives (e.g. collective) 
found in the upper layers make use of the simple point-to-
point primitives such as MPI Send() and MPI Receive(). This 
enables using these collective mechanisms in an application-
specific basis in case they prove necessary. The KPN 
computation model allows deterministic behavior of the 
application in an asynchronous way. Furthermore, tasks 
placement can be optimized depending on the user 
requirements (e.g. computation time, energy consumption). 

 The Open-Scale RTOS was implemented in such a way 
that users can easily choose which features are needed in their 
implementation in order to either save memory or meet 
performance requirements. In this scenario, new services and 
features were implemented in order to be compliant with the 
SecretBlaze architecture, while providing more efficiency in 
terms of management and QoS support (Table 1).  

 Table 1 summarizes some services that were included in 
the Open-Scale RTOS. As mentioned before, one of the goals 
of Open-Scale is to explore adaptive mechanisms (e.g. 
monitoring techniques, distributed control, dynamic voltage 
and frequency scaling, task migration, etc.). For instance, to 
enable dynamic load balancing, the system has to be able to 
move running tasks from one NPU to another. For that 
reason, a run-time loading mechanism was included to allow 
compiled separately applications from the RTOS being 
dynamically uploaded at run-time.  

Table 1. Services Included into the Open-Scale RTOS  

Plasma RTOS Services Open-Scale Services 

1- generation of a single object file; 

2- preemptive round-robin sheduler 
based on thread priorities; 

3- intra-NPU communication based 
on local FIFOs; 

4- Extra-NPU communication (e.g 
CP protocol) through ethernet; 

5- interrupt and exception handling; 

6- dynamic memory allocation and 
deallocation; 

7- queues, semaphores, mutexes. 

1- run-time dynamic applications 
loading; 

2- preemptive round-robin scheduler 
based on thread credits; 

3- intra-NPU communication based 
on messages exchanged by software 
FIFOs; 

4- Extra-NPU communication 
(RAW protocol was included), as 
well as MPI_Send and 
MPI_Receive; 

5- run-time monitoring support; 

6- decision-making mechanisms; 

7- a run-time control system used for 
regulating NPU frequency; 

8- API with new primitives, etc; 

9 – development of new drives; 

10- dynamic mapping heuristics. 

 

 Besides, a preemptive round-robin scheduler based on 
thread credits has been implemented, avoiding task execution 
starvation. Moreover, intra/extra-NPU communications were 
extended to provide more flexibility and system performance. 
For example, the RAW protocol was implemented in order to 
achieve better performance when compared to TCP/UDP (as 
shown in [23]). Further, online system-monitoring 
mechanisms were included, in order to access hardware 
monitors available, or software defined monitors (CPU load, 
(ii) FIFO load, etc.). Once monitored information is provided, 
online decisions can be taken by decision-making 
mechanisms, like a run-time control system used for 
regulating NPU frequency. All the middleware support for 
self-adaptation (e.g. local DVFS control, optimization, etc.) 
was included to provide a complete infrastructure for self-
adaptation strategies investigations. 

4 Distributed Monitors 
 We have defined a set of software and hardware 
components, based on distributed resources and a principle of 
regularity of the architecture that has led us to the design of 
the Open-Scale platform. In this section, we will focus on the 
monitoring aspect. To achieve a self-adaptive system, it is 
necessary to provide a set of sensors allowing the system to 
observe both its internal behavior and its environment. We 
focus here on internal monitoring. 



 We seek solutions to evaluate strategies of self-
adaptation that are also compatible with an FPGA prototyping 
environment. We therefore propose in this section to explore 
several types of approaches to monitoring in this context, by 
focusing on hardware sensors, such as PVT sensors or 
activity counters, on software monitors directly integrated 
into the middleware of Open -Scale, and finally an integrated 
database enabling a coherent organization for a subsequent 
operation for system optimization. 

4.1 PVT sensors 
 Monitoring with trustable and valuable information 
systems made of a billion transistors at a reasonable area and 
performance cost is a real challenge, because of the increasing 
random nature of some process parameters, the spatial 
dependence of process (including aging), voltage and 
temperature variations, but also the broad range of time 
constants characterizing variations in these physical 
quantities.  

 There is a vast literature on this topic, and different kind 
of approaches. Several PVT sensors commonly used for post 
fabrication binning have been investigated [24-29] for global 
variability compensation. They are based on specific 
structures like Ring Oscillators or Replica Paths to measure, 
at runtime, the physical and electrical parameters required to 
dynamically adapting the system, e.g. operating frequency, 
the supply voltage, threshold voltage, substrate biasing, etc. 
Another approach is to directly monitor sampling elements of 
the chip (Latches or D-type Flip Flop) to detect delay faults. 
This can be achieved by inserting specific structures or using 
ad-hoc sampling elements [28-29] to detect a timing violation 
by performing a delayed comparison or by detecting a signal 
transition within a given time window. 

 In the Open-Scale platform, one objective is to design a 
set of sensors in order to monitor locally the Temperature, 
Voltage, and Process. The basic idea is to use digital 
hardware sensors designed with internal resources of the 
FPGA, i.e. configurable logic blocks and switch matrices. In 
this context, we proposed, designed and compared two 
structures: a Ring Oscillator and a Path Delay sensor. 

 

Fig. 8. Ring Oscillator sensor  

 The Ring Oscillator sensor is based on the measurement 
of the oscillator frequency. For instance in [30], this structure 

was used as an internal temperature sensor for FPGA. The 
frequency of a ring oscillator is measured and converted into 
temperature. We have developed a new version of this kind of 
sensor in Open-Scale. Its structure is depicted in Figure 8. 
The main part of the sensor is a 2p+1 inverter chain. The 
oscillation frequency directly depends on the FPGA process 
performance capabilities, for a given voltage and temperature. 
The first logic stage enables the oscillator to run for a fix 
number of periods of the main clock. The ending flip-flop is 
used as a frequency divider and allows filtering glitches from 
the oscillator. The final logic stage counts the number of 
transitions in the oscillator and transmits the count result. 
Then, the count result is used to calculate the oscillator 
frequency as follows: 

         

where F is the ring oscillator frequency, count is the 14-bit 
value of the counter, f is the operating frequency of the clock 
and p is the number of enabled clock periods for which the 
sensor is active. 

 In order to use this sensor for resource monitoring in 
FPGA, a three-inverter ring oscillator was implemented. With 
this configuration, the core of the sensor (ring oscillator + 
first flip-flop) only consumes 4 LUTs. A Hardware Macro 
was designed so that the very same sensor structure can be 
mapped at each FPGA location (Fig. 9(a)). It possibly allows 
characterizing separately each CLB of an FPGA. 

 

Fig. 9. Hard-Macro implementation of both PVT sensors 

 It exists a lot of techniques [31] to manage Critical Path 
but very few are used in FPGAs as PVT sensors. The Path 
Delay Sensor proposed here is directly inspired by CPM. Its 
structure is depicted in Figure 10. The idea of the Path Delay 
Sensor is to adapt CPM to FPGA. Indeed, the regularity of the 
FPGA structure enables to create more easily a critical path 
replica in FPGA than in ASIC. 

 The Path Delay Sensor is composed of n LUTs and n 
flip- flops (FF). The LUTs are chained together and a FF is 
set at the output of each LUT. A clock signal is applied to the 



chain and is propagated into the LUT. At each rising edge, a 
n-bits thermometer code is available at the output of FFs. This 
thermometer code is representative of LUTs and 
interconnects performances. 

 

Fig. 10. Path Delay sensor 

 When the sensor is running, a thermometer code is 
stored in the FF, and then analyzed. Assuming the code is 
”11111111111111000000000000001111”, then the position 
Nz of the last 0 is identified. The time T required to go 
through one LUT and the associated interconnect is 
approximated as follows: 

          

where f is the frequency of the clock signal applied to the 
sensor. In order to obtain relevant information, the size of this 
sensor must take into account the FPGA family in which it 
operates. For example, for a Spartan-3 device, this sensor is 
composed of 32 stages. It allows propagating a complete 
period of the Spartan-3 reference frequency clock (50MHz). 
The figure 9(b) shows the Hard Macro integration of this 
sensor. 

 Our study in [32] has proved that both structures were 
efficient for fast PVT local monitoring in FPGA devices. The 
ring oscillator is an interesting structure for fine grain 
monitoring, whereas the Path Delay Sensor will be a 
preferred structure to allow rapid performances estimations 
with a minimal area overhead.  

4.2 Activity Counters 
 In some cases, PVT sensors might be not enough 
accurate and fast to reflect the exact load of the core, 
especially to estimate the power consumed locally by the 
Processing Elements. In-situ events counters have been 
proved to be efficient solutions for monitoring at real-time the 
activity of a core. They were first developed to better 
understand application behavior, facilitate debugging and so 
to improve high-end processors execution flow at run-time. 
For this usage, they are also called performance counters. 
These probes are a set of in-situ registers used to record the 
activity (i.e. number of events on some selected signals) in 
the processor. Significant events having an architectural 
meaning are typically used, such as instruction execution, 
floating point operation, memory transactions, pipeline stalls, 

etc. For instance, the super processor BlueGene/P from IBM 
is providing 52 counters [33], which can be configured and 
read through a dedicated API. The ARM processor 
architecture contains two event counters with an extending 
instruction set to configure their inputs. Moreover, a 
dedicated monitoring co-processor can be added through this 
interface. As the required precision becomes more and more 
important, the number of events tends to increase. Temporal 
multiplexing has been proposed to reduce the hardware 
overhead when applications show periodic execution time 
[34]. However, gathering information is problematic and may 
penalize applications with hard performance constraints. As a 
result, the number of monitors as well as the size of their 
associated counters must be reduced. 

 The use of activity counters was extended to embedded 
system run-time management in [35,36]. In such systems, 
area constraints hardly limit the possible number of monitors 
compared to general-purpose processors. Activity counters 
were generally selected manually and their usage was quite 
limited. Moreover, assuming that the NPU of Open-Scale is 
composed of different kind of resources (the processor, 
memory, peripherals, network interface) that could also be 
further augmented with accelerators or specialized DSP, it is 
necessary to provide other activity counters to estimate at run-
time the power consumed by the different blocks. In such a 
context, the selection process of the signals to monitor might 
become a difficult and time-consuming work. 

 We tackled this issue by proposing an automated 
selection of events to be monitored starting from a power 
model, and usable for any IP. Moreover, our selection process 
allows striking the balance between the area taken by the 
monitors and the precision of the model. 

 Power consumption PT can be approximated, over the 
period T, by a linear function of the following form:  

  

where : 

• {ei}i=1:n denotes events to which counters will be 
connected;  

• Nei is the number of occurrences of event ei during the 
sampling period T;  

• αi is the regression coefficient describing power 
contribution of event ei;  

• c is a constant term representing static consumption;  

• n measures the power model complexity.   

 Our goal is to minimize the cardinal of the set {ei}i=1:n of 
events, so that we can limit the model complexity. We 



propose to use a step-by-step selection technique to detect 
influential events on power.  

 Fig. 11 depicts an overview of the proposed modeling 
flow based on four steps: instrumentation, data processing, 
model extraction and physical placement of monitors. Our 
flow starts with a post-synthesis simulation to generate a 
VCD (Value Change Dump) file containing the transitions at 
each net over time. At this stage, we try to track highly power 
consuming blocks, so for the synthesis process we preserve 
the hierarchical structure of the design. The VCD is used as 
input to the Xpower tool from Xilinx to extract instantaneous 
power values. In parallel to this, the RTL model of the design 
is simulated. Events occurring on each controlling signal are 
time-stamped and then reported, this can be easily done with 
some options in Modelsim. 

 Our method based on stepwise process was evaluated to 
select events able to estimate the power consumption. This 
approach helps to explore cost and accuracy trade-offs when 
designing such probes. Sampling impact can be easily 
analyzed along with the number of counters that should be 
deployed. A control unit extracted from a dedicated VLIW 
accelerator for Open-Scale was used as a case study. The 
model was validated with less than 5% error. The 
implementation results show a reading latency around 500 
clock cycles, at a very cost (only 12 monitored signal) 
regarding the accelerator area. 

 

Fig. 11. Events profiling methodology flow 

4.3 Software monitors and distributed 
database 

 Another complimentary approach to observe the system 
behavior is to use software monitors. As reported in section 
II, monitoring services are implemented into the Open-Scale 
RTOS to measure performance at the software level. The 
software threads implemented into the microkernel allow 

measuring the processor load, the communication load, 
application throughput, etc.  

 Applications suited to be run on Open-Scale are based 
on the traditional KPN (Kahn Process Network) paradigm. 
The application can be described as a finite set of tasks 
interconnected by software FIFOs. A given task can either be 
performed in hardware (with a coprocessor) or in software, in 
which case it becomes a thread executed by a processor on-
chip. The performance of the system is directly related to the 
quality of the application mapping, i.e. the placement of 
threads on processors and the placement of software FIFOs 
on on-chip memories. 

 The processor load is simply calculated as the ratio 
between the number of cycles the PE is executing a set of 
threads, and the total number of cycles on a given time 
period. Indeed, due to local and remote thread dependencies, 
thread priorities, data availability, NOC traffic, etc., the 
processor may be more or less idled during the considered 
time period. This kind of information is very important to 
evaluate the efficiency of the application mapping for 
instance. For the same reasons, the software FIFOs may be 
filled more or less during application execution. 
Consequently, a specific service is implemented to measure 
the filling rate of the FIFOs.  

 It is mandatory for self-adaptive MPSOC architectures 
to be as reactive as possible to critical events, and to keep an 
accurate vision of the system behavior. A memory containing 
collected values from the different sensors is therefore 
needed, as well as appropriate and low cost means to store, 
handle, and retrieve these accumulated data. For this purpose, 
we have developed an in-memory database engine that fulfills 
these needs, as well as its associated API. 

 The DRET (Distributed Raw Events Table) is a 
distributed in memory database that is physically located in a 
specific part of the RAM memory of each NPU. Its purpose is 
to contain the monitoring data extracted from both hardware 
and software. The DRET of a tile may contain several tables 
like traditional database systems and each table contains 
several formatted events retrieved from the HW/SW sensors. 
The database has been designed to be an efficient data 
structure that can be used to store and retrieve information 
easily from the monitoring process. The used structure and 
the API are designed to keep the memory footprint and 
performance overhead as small as possible. The DRET can be 
seen as a uniform repository for the events whatever their 
origin (hardware sensor, software probe, local or external to a 
given processing element). While a DRET is mainly related 
to a given NPU, it can also be used to store a synthetic view 
of the state of neighboring NPU. In order to prevent the 
DRET from occupying too much memory space, a maximum 
size is associated to each table created in a DRET. A DRET 
table can also be cyclic. In that case, it behaves like a fixed-
size cyclic buffer: inserting a new event in a full table 
discards the oldest one. The DRET and its API were 



evaluated in [37]. Although there is a slight memory overhead 
in the system imposed by the usage of the DRET, the overall 
gain can be very beneficial for the system. It allows the 
system to handle some decisions through the analysis and 
diagnosis of such stored events. This brings to the system the 
possibility to better decide the application mapping tuning it 
according to the requirements, and thus to reach the objective 
of chip self- adaptability. 

5 Distributed Controllers 
 Prior works addressing system optimization 
(performance, power consumption, temperature, etc.) are 
generally based on centralized schemes. Application 
mapping, task placement and scheduling, voltage and 
frequency are tuned to adapt the design dynamic settings to 
its runtime constraints, according to a solution provided by a 
centralized algorithm. For instance, authors of [38] present a 
method to select the frequencies and voltages based on non-
linear Lagrange optimization. The work presented in [39] 
proposes a centralized system inspired by Kirchhoff’s current 
law to decide on the optimal power/performance 
configurations. Conventional centralized approaches become 
problematic when the number of cores increases. First, the 
complexity of the optimization problem explodes as the 
dimension of the system increases. Secondly, communication 
latencies induced after collecting on-line information have to 
be considered; in [40], authors use a time-stamped monitoring 
mechanism to ensure the reliability of their system, but this 
solution leads to overload the network traffic for designs 
connecting more than a few units. Some recent proposals 
focus on distributed techniques to optimize embedded 
systems subject to online information. In [41], the problem of 
multi-core systems thermal control is posed as a convex 
optimization problem and solved in a distributed manner 
using dual decomposition technique. Stochastic methods are 
introduced in [42] to manage power consumption over the 
chip lifetime. The complexity of the used Markov model 
increases with the number of possible power/performance 
configurations, making this technique inconvenient for 
designs embedding hundreds of cores. 

 In this work, we study a new approach in order to 
minimize the energy consumption of MPSOC at run-time 
taking into account different application constraints. As 
depicted in figure 12, we assume that each core is able to 
monitor its resources as described in the previous section (i.e. 
sensors to measure the system performance, and energy 
consumption), and a DVFS engine to tune the 
Voltage/Frequency couples. We propose to achieve 
Power/Performance tradeoff by distributed schemes based on 
3 different approaches: PID based controllers, Game Theory 
inspired controllers, and Consensus Theory inspired 
controllers. 
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1.4 Distributed Optimization

We have seen that existing methods, even if they operate at run time, they are not

based on distributed models. An alternative solution to centralized approaches

is to consider distributed algorithms. Our proposal is to conceive the architec-

ture illustrated in figure 1.12: each processing element of an MPSoC embeds an

optimization subsystem based on a distributed algorithm. This subsystem man-

ages the local actuators (DVFS in the figure) taking into account the operating

conditions. In other words, our goal is to conceive a distributed and dynamic

optimization algorithm.

Figure 1.12: Distributed dynamic optimization on MPSoC.

A distributed algorithm is an algorithm optimized to run on a distributed

hardware such as telecommunication networks, wireless sensor networks or mul-

tiprocessors systems. This kind of algorithm is executed concurrently, with sepa-

rated parts being calculated simultaneously on independent processors and having

limited information about what other parts are doing. For a given optimization

problem, the choice of an appropriate distributed model is driven by the problem

complexity and the system characteristics. From our knowledge, there has been

no work proposing a solution to build the architecture of figure 1.12.

It is necessary to study existing models and algorithms in order to define

the distributed optimization subsystem. In the following sections, we survey

pertinent approaches.

 

Fig. 12. Distributed Control overview 

5.1 PID based Controllers 
 Due to the dynamic variations in the workload of 
MPSOC and its impact on energy consumption, adaptation 
techniques such as PID (Proportional-Integral-Derivative)-
based control have been used to dynamically scale the voltage 
and the frequency of processors [43][44], and recently, of 
networks- on-chip [45][46]. These techniques differ in terms 
of adopted control parameters (e.g. task deadline, 
temperature) and response times (period necessary to stabilize 
a new voltage/frequency). 

In [47], we have presented the following contributions: (i) 
power and energy consumption considered when tuning 
processor frequency; (ii) a PI-only controller proposed and 
compared to a PID-controller; and (iii) three perturbation 
scenarios with different application performance impact 
factors. The figure 13 illustrates an overview of the proposed 
approach. As it can be observed, one PID controller is 
devoted to each task in the system that must ensure soft-real 
time constraints. In this example, there is one task per NPU, 
so one PID controller for each processor is required. In the 
case where multiple tasks are executed in the same NPU, a 
system with multiple PID controllers in the same NPU could 
be proposed. The PID controller is implemented as a service 
in the Open-Scale RTOS. It only represents an overhead of 
less than 1% in terms of total memory required by the OS.  

 

Fig. 13. MPSOC platform with PID controller 



 Monitoring information such as application throughput 
is fed into the PID controller module. It will match the actual 
throughput with the desired throughput (setpoint) and will 
then calculate an error value (e). This e value is used for 
calculating P, I and D parameters and as result, the PID 
controller will indicate a frequency in which the processor 
can reach a given setpoint according to reactiveness factor 
initially set. It is important to observe that the PID 
management and calculation are performed dynamically at 
run-time. In cases where current throughput is lower than the 
setpoint, the PID controller will select a frequency greater 
than the current one in order to reach the setpoint and to 
satisfy application performance constraints. On the other 
hand, when the current throughput is much higher than the 
expected one, the controller will sign to a lower frequency in 
order to reduce the power consumed by the NPU. 

The proposed strategy consists in deciding controller 
parameters on a task basis. To this purpose, a SystemC/TLM- 
based Open-Scale simulation is executed in order to obtain 
the step-response. In this scenario, processor frequency is 
changed from 55MHz to 1005MHz and application 
throughput is monitored. The system is linear, that means the 
system’s behavior remains the same under such frequency 
changes. Based on the high-level model, a number of 
different configurations of controllers can be explored. Each 
one exhibits different features such as speed, overshoot and 
static error. Once the process is modeled, PID parameters are 
fine tuned by using Simulink and the values of P, I and D are 
fed as input to the Open-Scale platform.  

 The PID strategy does not rely only on preventing 
application deadline-misses, but it also attempts to save 
energy, once the processor frequency is adjusted at real-time 
according to application requirements. Our approach can be 
easily integrated to linear systems and, platform resources 
utilization can therefore be optimized. By using PID 
controllers, we have shown in our simulation scenario that it 
was possible to save up to 32%, in terms of energy by tuning 
processor frequency according to application needs. As it can 
be noticed in [47], PID-controllers are intended to react faster 
under disturbing conditions compared to PI-only controllers. 
However its power consumption is higher. The good choice 
of which controller to use in multiprocessor system-on-chip 
platforms will be a trade-off between power consumption and 
the desired system’s reactiveness.  

5.2 Game-Theory based Controllers 
 Game theory involves a set of mathematical tools that 
describe interactions among rational agents. The basic 
hypothesis is that agents pursue well-defined objectives and 
take their knowledge and behaviors of other agents in the 
system into account to make their choices. In other words, it 
describes interactions of players in competitive games. 
Players are said to be rational since they always try to 
improve their score or advance in the game by making the 
best move or action. Game theory is based on a distributed 

model: players are considered as individual decision makers. 
For these reasons, game theory provides a promising set of 
tools to model distributed optimization on MPSOC and, 
moreover, this is an original approach in this context.  

 The second dynamic optimization proposed for Open-
Scale is therefore inspired by game theory, where a non-
cooperative game is a scenario with several players 
interacting by actions and consequences [48]. Basically, 
players individually choose an action within a defined set, 
resulting in consequences. Each player tries to maximize its 
outcome according to its preferences, leading to global 
optimization. If this sequence is repeated, under certain 
conditions, the game finds a solution formalized as Nash 
Equilibrium. These principles provide strong concepts to 
model the behavior of reactive systems where decisions are 
taken in a distributed and dynamic way, justifying the choice 
of the game theory for our approach. 

 We model the NPUs as players, the application latency 
and power consumption as a local objective function that 
depends on the global state of other NPUs. Then, a distributed 
algorithm selects the best solution. The objective functions 
are built by using different terms: the energy contribution of 
each PE to the whole energy consumption, the applicative 
latency contribution to the total latency and penalty functions 
modeling energy and latency constraints. We consider a 
MPSOC, composed of n NPUs interconnected by an 
asynchronous Network-on-Chip, such as Open-Scale. Each 
NPU integrates a DVFS engine that regulates the local 
voltage and frequency couple among a finite number of 
solutions. We denote Ti the clock period corresponding to 
NPUi and Ti− = (T1,...,Ti−1,Ti+1,...,Tn) the periods of all other 
NPUs in the MPSOC. We assume that an external mechanism 
has mapped the application on the MPSOC, each NPU 
handling a unique task. The task assigned to NPUi takes Ni 
cycles of Ti to be processed. We denote as Lmax the application 
latency constraint and we consider that each task is scheduled 
every T0 seconds. Energy, latency contributions and energy 
and latency constraints are modeled with this formalism. 
Then, two objective functions are built according to the 
formulated scenarios, i.e. energy or latency minimization 
under conditions. 

 The proposed method, based on Game Theory, 
optimizes the system while fulfilling dynamic constraints. A 
telecom test-case has been studied in [49,50] to demonstrate 
the effectiveness of this approach. For the evaluated case, the 
proposed technique has obtained up to 20% of latency gain 
under energy constraints, and 40% of energy gain under 
latency constraints. 

 Our studies have also shown in [51,52] that our method 
scales with the number of processors without excessive 
convergence times. For a 100-processor platform, our 
technique has required an average of 20 game cycles to reach 
the solution. A game cycle requires around 2500 cycles to 
collect monitoring data from other NPUs, minimize the 



objective function, and transmit its data to other NPUs [53]. 
The few calculation cycles needed to converge make this 
technique a feasible approach to optimize consumption and 
performance at run time. Furthermore, we have demonstrated 
that the achieved optimization is about 89% in average 
compared to a global offline method, which proves the 
quality of the results obtained with this method.  

5.3 Consensus Theory based Controllers 
 Although the Game Theory approach is easy to 
implement, it may lead sometimes to local unstable minima, 
which necessitates extra resources to detect oscillations in the 
algorithm execution. Besides, application constraints are 
modeled as a penalty function, so real-time deadlines are not 
always guaranteed. Finally, global information must be 
shared between many NPUs, which could lead to undesired 
traffic in the interconnection network. To overcome these 
limitations, we attempt to apply gradient methods with 
consensus concepts in order to implement a cooperative and 
dynamic approach for Open-Scale. 

Consensus is derived from the research on cooperative 
control theory. It was developed mainly for data processing in 
sensor networks and for multi-agents coordination. Consensus 
is defined as an iterative process utilizing a predefined 
message-passing protocol, leading a set of communicating 
elements to an agreement on a value or a common behavior 
[54]. Similarly to [55], we intend using the consensus to reach 
an agreement on one state optimizing a global interest in 
networked system. 

 A mathematical framework has been proposed for 
distributed optimization using hybrid approaches. This 
framework is a combination of subgradient methods with the 
consensus formalism to handle distributed optimization. In 
this section we summarize the key aspects of this theoretical 
framework before reporting afterwards its benefits. 

 In the context of consensus/subgradient optimization, 
each NPU is considered as an agent. The interconnection 
graph G is built with respect to the NPUs’ NOC connections, 
and the state vector of the system is proportional to operating 
frequencies in each PE. Distributed models and algorithms 
such as Consensus are naturally adapted to Open-Scale.  

 Within a distributed cooperative scheme, each unit 
adjusts its local frequency, so that power consumption of the 
whole system is reduced without degrading performance. 
Considering our benchmark application, the proposed 
technique provides up to 45% energy gain under latency 
constraint changes, and up to 80% when different standards 
are applied. Our experiments have also shown in [56] that our 
distributed model is scalable, and can handle energy 
efficiency in future many core platforms; the number of 
communicating units can be sized to increase convergence 
speed and optimization quality. Indeed, for a 100-processor 
platform, our technique has required an average of 270 

consensus cycles to reach the solution. One consensus cycle 
requires 500 cycles to collect monitoring data from other 
NPUs, compute an iteration of the consensus, and transmit its 
data to neighboring NPUs. We have estimated that the 
achieved optimization is about 82% in average compared to a 
global offline method. 

6 Conclusion and Research Perspectives 
 After having exposed our vision of future self-adaptive 
embedded systems, we have presented our open-source 
MPSOC called Open-Scale. It is based on a building-block, a 
Network Processing Unit, mainly composed of a RISC 
processor, its local memory, peripherals, a network interface, 
and a set local sensors and actuators. The Open-Scale RTOS 
provides classical scheduling services, task, memory and 
interrupt management, but also a Message Passing Interface 
and dedicated services to support self-adaptability. This 
distributed prototyping platform has been used to investigate 
self-adaptation mechanisms. We have reported our researches 
in the design of distributed monitors, PVT sensors in FPGAs, 
activity counters, software monitors and a distributed 
embedded database to collect monitored data and its API. 
High-level distributed control approaches based on PID, 
Game Theory and Consensus Theory have been implemented 
and simulated. Our experimental results have shown that they 
are able provide 40% energy savings in average under 
application performance constraints (throughput or latency) in 
a distributed manner, at run-time. The induced overhead is 
low and scales well thanks, to their inherent distributed 
nature. 

 There are still several research challenges to reach the 
goal of self-adaptability. First, an intelligent management of 
monitored data from hardware and software is necessary, in 
order to correlate and select the most relevant approaches. 
The fine-tuning of mixed software and hardware actuators is a 
second research topic, since there are many ways to adapt the 
system to strike the balance between performance and energy 
consumption. Finally, the learning capabilities of such 
distributed systems must be explored, in order to achieve 
certainly in a near future, real autonomous chips. 
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