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Abstract - The influence of anisotropy of both electron
density and external magnetic field fluctuations on the
spatial power spectrum (SPS) of scattered electromagnetic
waves is considered in this paper. Stochastic differential
equation is obtained for the phase fluctuations using smooth
perturbation method taking into account diffraction effects.
Second order statistical moments are calculated for arbitrary
correlation functions of electron density and external
magnetic field fluctuations. Numerical calculations were
carried out for anisotropic Gaussian correlation function
containing nondimensional anisotropic parameter and the
angle of inclination of prolate irregularities with respect to
the external magnetic field. SPS of scattered radiation has a
pronounced gap caused by electron density fluctuations. The
influence of an external magnetic field on a double-peaked
shape has been analytically and numerically.
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1 Introduction
Peculiarities of the electromagnetic waves propagation

in randomly inhomogeneous media have been intensively
studied [1,2]. However, the large-scale irregularities were
considered to be statistically isotropic. In many cases
irregularities are anisotropic. Particularly, they are observed
in lyotropic crystals with a hexagonal structure [3], in the
Earth’s ionosphere random plasma inhomogeneities are
aligned with the geomagnetic fields [4]. The evolution of the
angular distribution of the intensity at light propagation in a
randomly unhomogeneous medium with strongly prolated
anisotropic irregularities of dielectric permittivity has been
investigated in [5,6]. Using the smooth perturbation method
it has been shown that the spatial power spectrum (SPS) of
multiply scattered waves at oblique illumination of a
boundary of a randomly inhomogeneous medium with
prolate irregularities by mono-directed incident radiation has
a double-peaked shape. Numerical simulation has been
carried out by Monte-Carlo method. Second order statistical
moments of the SPS in magnetized anisotropic plasma have

been investigated in the complex geometrical optics
approximation and perturbation method [7-10].

The features of the SPS of multiply scattered radiation
in a randomly inhomogeneous anisotropic ionospheric
plasma are investigated analytically and numerically taking
into account diffraction effects caused by both electron
density and external magnetic field fluctuations. The
expressions for phase fluctuations of scattered
electromagnetic waves in the principle   (wave vector of
mono-directed incident radiation and external magnetic field
are located in this plane) and perpendicular planes are
derived using the smooth perturbation method. Correlation
functions of the phase fluctuations are calculated for arbitrary
correlation functions of fluctuating magnetized plasma
parameters. The influence of an external magnetic field on a
gap caused due to electron density fluctuations in the
ionospheric plasma is considered for the first time in this
paper. Numerical calculations are carried out using satellite
and remote sensing data.

2 Formulation of the problem
Let us consider the features of the SPS of scattered

electromagnetic waves in the anisotropic ionospheric
magnetized plasma with both electron density and external
magnetic field fluctuations. Initial is the following wave
equation:
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Wave field we introduce as 0 1 2( ) exp(j jE E j j= + +r .

0 )i k y i k z^+ + ( 0k k^ << ). If electromagnetic wave
propagates along z axis and the vector of an external
magnetic field lies in the coordinate plane ( zk P ,

yz< >Î0H ), components of the second-rank tensor   of
collisionless magnetized plasma have the following form
[11]:
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where a  is the angle between the vectors k  and 0H ;

xy xyie e= % , xz xzie e= - % , 2
0( / )u e H mcw= , 2 2v /pw w=

are the magneto-ionic parameters, 2 1/2(4 / )p N e mw p= is

the plasma frequency, 0 /H e H mcW =  is the electron
gyrofrequency. Dielectric permittivity of a turbulent
magnetized plasma is a second rank tensor, which is random

function of a spatial coordinates (0) (1)( ) ( )ij ij ije e e= +r r ,
(1)| ( ) | 1ije <<r . First component represents zero-order

approximation, second one containes fluctuations of both
electron density and external magnetic field fluctuations of
the ionospheric plasma which are random functions of the
spatial coordinates: 0 1v( ) v [1 ( )]n= +r r , 0( ) [1u u= +r

12 ( )]h+ r .
In a zero-order approximation we have the following

wave equation

2
2 2 2 (0)0 0 0

0 0 0( ) 0ij ij j
i j i j

k k k E
x x x x
j j j

d e^

é ù¶ ¶ ¶
+ + + - =ê ú

¶ ¶ ¶ ¶ê úë û
,

(3)
containing the set of three algebraic equations for the 0 jE
regular field components:
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Solution of determinant imposes the restriction on the
parameter 0/k km ^= :
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Taking into account that fluctuations of the complex phase
are of the order (1)

1 ~ ijj e , (1) 2
2 ~ ijj e and the well known

conditions characterizing the smooth perturbation method:
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in the first approximation we obtain:
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where 2 2 2 2
1 1( / ) ( / )x yj j^D = ¶ ¶ + ¶ ¶  is the transversal

Laplasian.
     Two-dimensional Fourier transformation for the phase
fluctuations is

1( , , ) ( , , ) exp( )x y x y x yx y z d k d k k k z i k x i k yj y
¥ ¥
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For i x=  component from equation (6) we obtain
differential equation for two-dimensioanl spectral
component:
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The relations of the mean electric field components are
determined by the well-known formulae [11]

0 0( / )y x jE E i= R , 0 0( / )z x jE E i= G , minus sign and index

1j = correspond to the extraordinary wave, plus sign and
index 2j =  - to the ordinary wave; the polarization
coefficients are [11]:
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In general, ordinary and extraordinary waves in collisionless
magnetized plasma are elliptically polarized.

Transverse correlation function of a scattered field has
the following form [6] ( ) ( ) ( )EEW E E*

*=< + >ρ r r ρ
taking into account that the observation points are spaced
apart at a small distance { , }x yr r=ρ :
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where 2
0E  is the intensity of an incident radiation.

     SPS of a scattered field in case of incident plane wave
( , )W k k^¢  is easily calculated by Fourier transform of the

transversal correlation function [1,2].
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2.1 Second order statistical moments of the

phase fluctuations
In these notations two-dimensional spectral component

of the phase fluctuation of scattered electromagnetic field (7)
in the first approximation satisfies the stochastic differential
equation:
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where: 1 0( )x y j x jd k k k k k^= + R + G , 2 ( 2 )y yd k k k^= + .
The solution of this equation satisfying the boundary
condition   has the following form
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Taking into account that: ( , ) ( , )z zab gd¢ ¢ ¢¢< T T > =κ κ

, ( , ) ( )W z zab gd d¢ ¢¢ ¢= - +κ κ κ   and changing the variables:

zz z r¢ ¢¢- = , 2z z h¢ ¢¢+ = , second order statistical
moments of phase fluctuations of scattered electromagnetic
waves for arbitrary correlation function of electron density
fluctuations are finally expressed as:
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For i x=  component from equation (1) we obtain stochastic
differential equation in the second approximation
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By Fourier transform first term of the right part of equation
(16) can be written as:
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Solution of equation (16) is expressed as:
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In the absence of an external magnetic field ( 0 0H = ,

0 0u = ), from equation (8) follows: 0j jP = G = , 1 0d = ,

and (12)-(15) coincide with [6].

2.2 Numerical calculations
In analytical and numerical calculations we will use

anisotropic Gaussian correlation function of electron density
fluctuation [12] for investigation of the influence of electron
density and external magnetic field fluctuations on evolution
of the SPS
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This function is characterized by anisotropy factor of
irregularities /l lc ^=

P
(ratio of longitudinal and transverse

linear scales of plasma irregularities with respect to the
external magnetic field) and the inclination angle of prolate

irregularities with respect to the external magnetic field 0g .
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we have: 1 2 1p p= = , 3 0p = ; at 0
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2 1p = , 3 0p = .

      We investigate the influence of electron density
fluctuations on the SPS of scattered radiation in turbulent
magnetized plasma 0( 0)H ¹ . At 0 1T k l= >>

P
 using the

saddle point method, we obtain:
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       Numerical calculations were carried out for 0.1 MHz and
40 MHz at 015a = . The solution of the dispersion equation
(5) yields the roots: 0.395m = ,  for  0.1  MHz  and

0.114m = , for 40 MHz.
       The curves in Figure 1 illustrate the dependence of
normalized correlation function of scattered electromagnetic
field versus non-dimensional parameter h  for 200T =  and
are normalized on their maximum value. Second maxima on
the solid and dotted lines correspond 52h =  and 16h = ,
respectively. Next maxima at 0.1 MHz appear at h = 32, 48,
64 (periodical oscillations). Increasing parameter h
normalized correlation functions rapidly attenuates.
        Figure 2 presents the dependence of the SPS of scattered
field versus nondimensional parameter k . Numerical
calculations show that for 0.1 MHz (left figure), at 0 0H = ,
the gap arises due to electron density fluctuations. First and
second maxima correspond 0.355k = and 0.1k = ,
respectively; gap appears at 0.194k = . In magnetized
turbulent plasma ( 0 0H ¹ )  two pronounces maxima arise at

0.38k = and 0.14k = ; and two gaps at 0.37k = and
0.42k = . For 40 MHz (right figure) at 0 0H = first

maximum arise at 0.11k = ,  and  next  two  maxima  at
0.033k =  and 0.189k = . First two gaps appear at
0.072k = and 0.163k = ; next two gaps at 0.007k =

and 0.228k = .

At 0 0H ¹  first and other two maxima arise at 0.06k =
and 0.02k = , 0.08k = ,  respectively.  First  gap  appears  at

0.03k = , second one at 0.795k = .

       It should be emphases that “double-hump” shape of the
SPS caused by electron density fluctuations in turbulent
plasma without external magnetic field are more pronounced
than in magnetized plasma at 0 0H ¹ . Numerical analyses
show that neglecting diffraction effects, i.e. neglecting the
term 2 2

0/ 2yk k  in the arguments of 2D spectrum (13)-(15) or

in set of equations (20), “double-humping” effect in the SPS
disappears.

Figure 1. Dependence of normalized correlation function
of scattered field ( , )EEW h m*  versus distance between

two observation points 0 ykh r=  at different values of

the parameter m . Dotted line corresponds 0.1 MHz, solid
line 40 MHz.

Figure 2. Dependence of SPS (10) versus k . Left figure
corresponds to 0.1 MHz at: 2500T = , 0.395m = ,

130c = , 0
0 15g = , 1x = , 0 2.8k = 1km- , 0 6B = .

Right figure corresponds 40 MHz at: 500T = ,
0.114m = , 150c = , 0

0 5g = , 1x = , 0 840k = 1km- ,

0 4B = . Dotted line denotes 0 0H = , solid line 0 0H ¹ .



3 Conclusions
       Numerical calculations show that for anisotropic
Gaussian correlation function second-order statistical
moments are nonlinear functions of wave vectors. For
electron density fluctuations spatial power spectrum has a
pronounced gap along a direction of wave propagation and a
double-peaked shape. However, external magnetic field
fluctuations can lead to the generation of different nonlinear
effects. On the basis of the proposed theory some observable
nonlinear effects of the ionospheric plasma can be interpreted
and (or) predicted using different correlation functions of
fluctuating magnetized plasma parameters taking into
account satellite and remote sensing data.
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