
Software Safety Engineering Education
David J. Coe, Joshua S. Hogue, and Jeffrey H. Kulick

Department of Electrical and Computer Engineering, University of Alabama in Huntsville
Huntsville, Alabama, USA

Abstract – This paper describes the Software Safety
Engineering Process utilized by students enrolled in the
University of Alabama in Huntsville's Software Safety
Engineering course. The process consists of an industry-
standard software engineering development process
augmented to produce the safety-related artifacts as
required for certification of a safety-critical product by a
regulatory agency. The additional artifacts include
Functional Hazard Assessments, Fault Tree Analyses,
and Failure Modes and Effects Analyses. Students learn
the impact of these new artifacts on the traditional
development process as they follow our software safety
engineering process to implement a representative
safety-critical system, a model railroad controller.

Keywords: software safety, DO-178B, model railroad,
 ARP-4761, hazard analysis, fault tree analysis

1 Introduction
Despite the ever increasing dependence on software

in safety and mission critical systems, the development
processes for safety critical software are frequently
absent from the curricula of software engineering degree
programs. A recent informal review of degree programs
in the US revealed no program dedicated entirely to
software safety engineering and only a smattering of
courses addressing the topic. The reasons for this
include the lack of appropriate text books, the tight
linkage to regulatory agencies which is not normally
present in academic disciplines, and the absence of good
public domain examples (“go-bys”) for the multitude of
documents that are required for software safety
engineering projects.

While safety engineering is a well established
discipline with significant support in the form of
textbooks, process definitions and professional societies,
no such support network exists for software safety
engineering. That is not to say there are not emerging
standards related to constructing safe software. In fact
the multiplicity of different standards is part of the
problem of software safety engineering education.

The University of Alabama in Huntsville has begun
development of a graduate degree program in software
safety engineering within the Department of Electrical
and Computer Engineering. Huntsville is well located

for such a program with the abundance of organizations
such as Redstone Arsenal, NASA, and aerospace
companies that develop safety-critical products. This
paper outlines the first course in the program, Software
Safety Engineering. The course utilizes a software safety
engineering process derived from industry-standard
software engineering and safety engineering processes as
well as a representative safety-critical project, a model
railroad control system that must be developed to the
highest level of design assurance since a train accident
would be potentially fatal to humans.

2 Standard software processes
 For over forty years, organizations have utilized
Waterfall processes for developing large scale software
systems [1]. These processes begin by identifying
system-level requirements for the product and allocating
those requirements to hardware or software components.
Once the high-level requirements for the software
components have been identified, a Software
Development Plan (SDP) is constructed that identifies
the artifacts that will be produced along with the
development standards, supporting processes, and tools
that will be used to produce those artifacts. The
standard artifacts include the Software Requirements
Specification (SRS), the Software Design Description
(SDD), the Software Test Plan (STP), and the Software
Test Description (STD) documents. The SDP also lays
out a series of milestones for review of these artifacts
prior to delivery to ensure that defects are identified and
removed as early as possible to reduce cost and improve
the quality of the product. Examples of these standard
milestones include the Software Requirements Review
(SWRR) and the Preliminary and Critical Design
Reviews (PDR and CDR). A key component of the SDP
are the rough, order-of-magnitude estimates of cost and
effort required for development of the product because
these estimates dictate staffing decisions and the
scheduling of delivery milestones.
 Standard Waterfall software development processes,
however, are inadequate for the development of safety-
critical systems. Systems whose failures pose a danger
to life, property, or the environment often require
certification by regulatory agencies who examine
evidence that the system was developed with a degree of
due diligence commensurate with the consequences of

system failure. An integral part of this evidence is the
safety analysis that identifies potential hazards associated
with various system functions and examines the
consequences of potential system failures.

The safety analysis is used to determine the degree
of due diligence required during development which is
called the Design Assurance Level or DAL. For
example, in the RTCA DO-178B standard used by the
Federal Aviation Administration, a system is designated
as DAL A if a software fault may result in a catastrophic
failure (i.e., a crash, multiple deaths) [2]. DALs B
through D are reserved for systems whose failures result
in less severe consequences. For instance, a system is
designated as DAL B if software faults may result in a
hazardous failure (i.e. significant reduction on
performance or safety of system), and a system is
designated DAL D if a software fault results only in a
minor failure (noticeable failure with little to no safety
impact).

The DAL assessment has a major impact on system
cost and delivery schedule because of the additional
supporting evidence that may be required by the
certification agency. For each assurance level, DO-178B
requires evidence that specific sets of process objectives
have been completed with the number of objectives
required increasing with each increase in the design
assurance level. For a system assessed at DAL C, one
must supply evidence that 57 objectives have been
satisfied while a system assessed at DAL A must satisfy
66 objectives [2]. Furthermore, the rigor with which a
given objective must be addressed varies from DAL A to
DAL E. For example, there are DO178-B objectives
(A7.5 – A7.7) that address structural coverage testing
requirements. Modified condition-decision coverage
(MC/DC) testing is mandated for DAL A systems while
only statement and decision test coverage are required
for DAL B and DAL C systems. Consequently, a
software safety engineering process produces more
documentation, at significant additional cost, than
traditional software engineering processes.

The safety analysis, however, cannot be a one-time
input to a traditional software engineering process since
subsequent design and implementation choices can
increase the likelihood of system failure. For example,
in the systems requirements process, safety analysis may
only be performed on the system functions that have
been identified at that time whereas safety analysis of the
design cannot occur until a design has been produced
later in the development cycle. Thus, safety analysis
must be an iterative activity that is integrated throughout
the development process which is one fundamental
difference between a traditional software engineering

process and a software safety engineering process. In the
following section we begin by discussing a standard
safety analysis process and then describe how we have
integrated safety analysis into our software safety
engineering process as illustrated in Figure 1 below.

3 Software safety engineering process
 The SAE ARP 4761 standard defines the requirements
for system and software safety analysis that must be
completed including an initial Functional Hazard
Assessment (FHA) of the system before starting
hardware/software development [3]. The FHA identifies
system functions and the failure effects and conditions if
the system functions were to fail. The FHA also
determines the severity for the failure of each system
function. For example, if the system requirement were
“the system shall schedule low priority trains onto the
sidings”, then a failure to perform that function is a
hazard that may result in a crash.
 A Fault Tree Analysis (FTA) is then performed on the
top-level functions identified in the FHA, breaking them
down into a boolean tree of lower-level events with the
lowest level named the basic events. Consider the
previous example of a system hazard – failing to
schedule a low priority train onto a siding. Mechanical
switch failure is one example of a low-level basic event
that could be the source of that hazard.
 The failure effects, severity, and modes of these basic
events are described within the Failure Modes and
Effects Analysis (FMEA). After the completion of the
FHA and FTA, the system functions are allocated to
hardware or software. Depending upon the severity of
those functions, independent design assurance levels
(DALs) are determined for hardware and software via
System Safety Analysis (SSA). For developers to
accurately identify the design assurance level and
subsequently conform to the objectives associated with
that level, a rigorous, planned process is required since
the DO-178B only provides guidance on objectives to be
completed without imposing specific activities required
to meet those objectives [4].
 Figure 1 below shows our approach for safety-critical
software development which consists of DO-178B for
software development integrated with ARP-4761 for
system safety. The lists of artifacts indicate when within
the life cycle the artifacts were generated. Those
artifacts specific to safety analysis have also been
identified. End-to-end traceability is a key requirement
of DO-178B.

Figure 1 – Software safety engineering process with safety artifacts identified.

Table 1 – Safety and software engineering artifacts

Safety Artifacts (ARP-4761)
Functional Hazard Assessment (3.2)
Fault Tree Analysis (4.1)
Failure Modes and Effects Analysis (4.2)

Integral Process Artifacts (DO-178B)
Verification Artifacts (11.13, 11.14, 11.17)
Configuration Management Artifacts (11.15, 11.16, 11.18)
Quality Assurance Artifacts (11.19, 11.20)

S/w Engineering Artifacts (DO-178B)
Planning Artifacts (11.1 – 11.5)
Development Standards (11.6 – 11.8)
Development Artifacts (11.9 – 11.12)

Figure 2 – Software/safety engineering process flow

The primary artifacts of interest in our Software
Safety Engineering course come from several different
categories, as shown in Table 1. The safety artifacts
developed are based upon the SAE ARP 4761 standard,
which provides guidance for FHAs, FTAs, and FMEAs
in the sections shown in parentheses. DO-178B was used
for development of the integral process artifacts and
software engineering artifacts. The applicable DO-178B
sections for the artifacts are given in parentheses.
 The software engineering/safety engineering hybrid
process flow integrates safety analyses in the initial
determination of a DO-178B DAL through the FHA and
preliminary FTA. The FMEAs are then developed
simultaneously with the software requirements, design,
and coding artifacts. By conducting FMEAs in the
development phases, the safety analyses cover all levels
of the software design and are relevant to the real
system’s behavior and hazards [5]. The FMEAs also
provide for an indirect check on the correctness of the
original software requirements, since faulty design and
code are derived from faulty requirements [6]. By
incorporating safety analysis throughout every phase of
the software life cycle, the design team substantiates

their initial DAL selection. The flow of this process is
shown in Figure 2, based upon a modified hybrid of DO-
178B processes and ARP-4761 diagrams for the safety
assessment flow. The overview shows how the course
process guarantees the software safety and software
engineering activities are coalesced into a single efficient
development process.

4 Model railroad system project
 To fully appreciate the differences between a standard
software engineering process and a software safety
engineering process targeted at system certification,
students must follow our software safety engineering
process as they develop a safety-critical product,
producing the artifacts required for certification as the
project evolves. The teaching platform of choice for our
Software Safety Engineering course is a model railroad
project. As shown in Figure 3, the model railroad layout
consists of an oval track with two sidings for passing
locomotives and two dead-end spurs. A safety system is
required since multiple trains traveling around the oval at
different speeds and in different directions may collide.

(A) (B)
Figure 3 – Model railroad setup (A) Control logic and (B) Track layout

 The primary safety system for the model railroad is a
scheduling system managed by the off-the-shelf
TrainController Bronze Scheduling Software from
Freiwald Software [7]. The track layout is divided into
twenty four, individually powered segments. Digitrax
logic boards monitor conductive detectors within each
segment to determine the segment where each train is
located, and this position information is forwarded from
the logic boards via USB cable to the PC-based
scheduling software [8]. Similarly, commands from the
scheduling software are passed via the logic boards to
specific locomotives and railway switches.
 Before a train may travel from one segment to another,
it must reserve the next segment of track. If the next
segment is available, the scheduling software sets the
appropriate railway switches and allows the train to
continue traveling onto the next track segment towards
its destination. If the next segment is currently occupied,
then the train must either stop and wait for the segment
to become available or the scheduler must set a switch
that diverts the train onto a siding or spur so that an on-
coming train may pass.
 From a teaching perspective, the model railroad project
has a number of advantages. First, the baseline system is
relatively low cost (approximately $5000) which is
advantageous to universities. The model railroad system
can also be reconfigured at modest cost to increase or
decrease complexity as needed. Another important
factor is that the safety hazards associated with the model
railroad are easily understood and can be safely
illustrated using the model railroad system. Such
hazards include head-on-collisions or derailments due to
incorrect railway switch settings.

5 Software safety engineering tools
A critical educational aspect of the course is the

hands-on experience that students gain as they apply
commercial-grade software engineering tools to generate

and manage the artifacts required for safety certification.
Safety certification requires the development of and strict
adherence to Software Quality Assurance (SQA) and
Configuration Management (CM) plans that span the
entire development life cycle. These plans must address
end-to-end requirements traceability, document and
coding standards, structural coverage testing, and
configuration and change management.
 Students enrolled in the Software Safety Engineering
course make use of LDRA’s Testbed and TBrun for
extensive static and dynamic analysis of their own code
[9]. As part of the static analysis procedure, the code is
audited for compliance with industry-standard, best-
practice coding standards such as MISRA-C, CERT C,
and JSF C++ AV standards. The LDRA tool also
performs additional static analyses including code
complexity analysis, reachability analysis, and data-flow
analyses. Dynamic analysis of the code allows students
to execute and test their code to determine the degree of
structural coverage achieved -- a key feature since
different design assurance levels require different levels
of structural coverage such as statement coverage,
branch coverage, or modified condition/decision
coverage (MC/DC).
 Students also utilize a combination Wind River’s
Simics and VxWorks tools for early on-target testing
[10]. Simics is used to simulate the target platform itself.
VxWorks is a real-time operating system (RTOS) used
on the actual target. With student software running under
VxWorks on the Simics simulator, the students gain early
insight on the performance of their software on the target
platform but in a simulated environment where it is fully
accessible for analysis.

6 Results
 As of this writing, the students have completed the
system requirements process and software planning
process, and they are currently working on the software

Table 2 – Functional hazard assessment results [12]
Function Failure Effect Severity (ARP 4761)
Locate train on track Train location is unknown and trains may collide Catastrophic
Power down on emergency stop Trains cannot be stopped and may collide Catastrophic
Accept/Verify track configuration Trains cannot be ran on track Minor
Accept/Verify train configuration Trains cannot be ran on track Minor
Control turnouts on plant Trains cannot be safety directed and may collide Catastrophic
Accept/Verify train schedules Trains cannot be ran on track Minor
Control trains according to schedule Trains operate with limited or no control and may collide Catastrophic

Figure 4 – Fault tree analysis for “Locate Train on Track” function [12]

requirements process artifacts. Since they have not
completed the development of the full model railroad
system, only initial results are available. However, even
the initial results provide an insight into the advantages
of our software safety engineering process.
 The students set out to design the complete train
scheduling system around the off-the-shelf Scheduling
Software. The students’ initial system requirements
specification and FHA identified seven system-level
functions of the Scheduling Software and also identified
the failure effects of those functions and the severity
classification of the failure effects. The system
functions, failure effects, and severities are shown in
Table 2.
 Using the FHA analysis, the students ascertained that
the Scheduling Software must meet DO-178B level A,
since the worst case failure of the Scheduling Software
would lead to the catastrophic event of two trains
colliding. After evaluating the requirements for DO-
178B level A, the students decided that developing the

model railroad system to satisfy DAL A would be
extremely difficult due to the complexity of the
Scheduling Software and the lack of source code for that
software. As a result of their safety analysis, students
devised an amelioration plan in which they would
develop a Safety Monitor system to handle the safety-
critical aspects of the system independently of the
Scheduling Software.
 The Safety Monitor is responsible for continuously
monitoring train position and cutting power to the tracks
to prevent catastrophic events such as collisions from
occurring. The Safety Monitor system consists of CTI
Electronics optical sensors for track segment entry/exit
detection [11], power control modules, and a single
monitoring software procedure. Unlike the Scheduling
Software which may be thousands of lines of code, the
Safety Monitor only has to observe adjacent track
segments and shut off power if a collision is eminent. As
a result of this simplicity, students determined that it
would be easier to develop the Safety Monitor to satisfy

DO-178B DAL A standard than to demonstrate that the
more complex, off-the-shelf Scheduling Software
satisfies DAL A.
 Students demonstrated the efficacy of this Safety
Monitor approach through the FTA of the system
functions. As illustrated in Figure 4, a catastrophic
severity function (level A) is comprised of the “active
system” (Scheduling Software) providing the function
capability at DO-178B level C and a Safety Monitor
providing the safety-critical protection of the system at
DO-178B level A. A failure will only occur through the
failure of both the Scheduling Software and the Safety
Monitor. By introducing the Safety Monitor system, the
Scheduling Software’s required assurance level was
dropped from A to C, drastically reducing the number of
DO-178B objectives and activities that must be
completed with independence.

7 Conclusions
As software continues to become an integral

component of more and more products whose failures
may prove catastrophic, the demand for instruction in
software safety engineering processes will increase. One
of the challenges in offering our software safety
engineering course has been the general lack of
understanding among software developers regarding
safety analysis and how a software safety engineering
process differs from standard software development
processes. It has become clear that while there are
numerous software engineering courses and texts that
discuss standard software processes and specific
development activities such as requirements elicitation
and testing, there are few texts that discuss the
integration of safety analysis into the software
development process and how safety certification
requirements impact the artifacts that must be delivered.
Our use of the model railroad project in our Software
Safety Engineering course has proven to be a very
effective means of conveying the nuances of software
safety engineering to our students when there are few
other resources readily available.

8 Acknowledgements
The authors would like to acknowledge the

following contributions. George Petznick for assistance
with wiring. James Norris of Redstone Arsenal Model
Railway Club for model railway discussions. LDRA and
WindRiver for software donations. Todd White from
FAA Consultants for document templates. Steve Hosner
for guest lecture on Fault Tree Analysis.

The authors are especially grateful to Elise Haley,
Joshua Hogue, Michael Gallaher, and Hunter Stinson for

granting us permission to include a portion of their FHA
and FTA in this manuscript.

9 References
[1] W. R. Royce, “Managing the Development of Large
 Software Systems,” Proc., IEEE WESCON, 26,
 1970, pp. 1-9.

[2] RTCA DO-178B, Internet: http://www.rtca.org/

[3] SAE ARP-4761, Internet: http://www.sae.org/

[4] C. Bertrand, C. Fuhrman. “Towards defining
 software development processes in DO-178B with
 openup.” Canadian Conference on Computer and
 Electrical Engineering, 2008.

[5] K. Allenby, T. Kelly. “Deriving Safety Requirements
 Using Scenarios.” Fifth IEEE International
 Symposium on Requirements Engineering, 2001.

[6] A. Arkusinski. “A Method to Increase the Design
 Assurance Level of Software by Means of FMEA.”
 The 24th Digital Avionics Systems Conference, 2005.

[7] “Friewald Software.”
 Internet: http://www.friewald.com.

[8] “Digitrax.” Internet: http://www.digitrax.com

[9] “LDRA Software Technology Homepage.”
 Internet: http://www.ldra.com.

[10] “Wind River Simics.” Internet:
 http://www.windriver.com/products/simics/.

[11] “CTI Electronics.”
 Internet: http://www.cti-electronics.com.

[12] E. Haley, J. Hogue, M. Gallaher, and H. Stinson,
 Safe Train Project Documentation, unpublished.

