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Abstract – This paper describes the Software Safety  
Engineering Process utilized by students enrolled in the 
University of Alabama in Huntsville's Software Safety  
Engineering course.  The process consists of an industry-
standard software engineering development process  
augmented to produce the safety-related artifacts as  
required for certification of a safety-critical product by a  
regulatory agency.  The additional artifacts include  
Functional Hazard Assessments, Fault Tree Analyses,  
and Failure Modes and Effects Analyses.  Students learn  
the impact of these new artifacts on the traditional  
development process as they follow our software safety  
engineering process to implement a representative  
safety-critical system, a model railroad controller.
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1   Introduction 
Despite the ever increasing dependence on software 

in safety and mission critical systems, the development 
processes for safety critical software are frequently 
absent from the curricula of software engineering degree 
programs.  A recent informal review of degree programs 
in the US revealed no program dedicated entirely to 
software safety engineering and only a smattering of 
courses addressing the topic.  The reasons for this 
include the lack of appropriate text books, the tight 
linkage to regulatory agencies which is not normally 
present in academic disciplines, and the absence of good 
public domain examples (“go-bys”) for the multitude of 
documents that are required for software safety 
engineering projects.

While safety engineering is a well established 
discipline with significant support in the form of 
textbooks, process definitions and professional societies, 
no such support network exists for software safety 
engineering.  That is not to say there are not emerging 
standards related to constructing safe software.  In fact 
the multiplicity of different standards is part of the 
problem of software safety engineering education.

The University of Alabama in Huntsville has begun 
development of a graduate degree program in software 
safety engineering within the Department of Electrical 
and Computer Engineering.  Huntsville is well located 

for such a program with the abundance of organizations 
such as Redstone Arsenal, NASA, and aerospace 
companies that develop safety-critical products.  This 
paper outlines the first course in the program, Software 
Safety Engineering.  The course utilizes a software safety  
engineering process derived from industry-standard 
software engineering and safety engineering processes as 
well as a representative safety-critical project, a model 
railroad control system that must be developed to the 
highest level of design assurance since a train accident 
would be potentially fatal to humans. 

2  Standard software processes 
  For over forty years, organizations have utilized 
Waterfall processes for developing large scale software 
systems [1].  These processes begin by identifying 
system-level requirements for the product and allocating 
those requirements to hardware or software components. 
Once the high-level requirements for the software 
components have been identified, a Software 
Development Plan (SDP) is constructed that identifies 
the artifacts that will be produced along with the 
development standards, supporting processes, and tools 
that will be used to produce those artifacts.   The 
standard artifacts include the Software Requirements 
Specification (SRS), the Software Design Description 
(SDD), the Software Test Plan (STP), and the Software 
Test Description (STD) documents.  The SDP also lays 
out a series of milestones for review of these artifacts 
prior to delivery to ensure that defects are identified and 
removed as early as possible to reduce cost and improve 
the quality of the product.  Examples of these standard 
milestones include the Software Requirements Review 
(SWRR) and the Preliminary and Critical Design 
Reviews (PDR and CDR).  A key component of the SDP 
are the rough, order-of-magnitude estimates of cost and 
effort required for development of the product because 
these estimates dictate staffing decisions and the 
scheduling of delivery milestones.  
   Standard Waterfall software development processes, 
however, are inadequate for the development of safety-
critical systems.  Systems whose failures pose a danger 
to life, property, or the environment often require 
certification by regulatory agencies who examine 
evidence that the system was developed with a degree of 
due diligence commensurate with the consequences of 



system failure.  An integral part of this evidence is the 
safety analysis that identifies potential hazards associated 
with various system functions and examines the 
consequences of potential system failures.  

The safety analysis is used to determine the degree 
of due diligence required during development which is 
called the Design Assurance Level or DAL.  For 
example, in the RTCA DO-178B standard used by the 
Federal Aviation Administration, a system is designated 
as DAL A if a software fault may result in a catastrophic 
failure (i.e., a crash, multiple deaths) [2].  DALs B 
through D are reserved for systems whose failures result 
in less severe consequences.  For instance,  a system is 
designated as DAL B if software faults may result in a 
hazardous failure (i.e. significant reduction on 
performance or safety of system), and a system is 
designated DAL D if a software fault results only in a 
minor failure (noticeable failure with little to no safety 
impact).

The DAL assessment has a major impact on system 
cost and delivery schedule because of the additional 
supporting evidence that may be required by the 
certification agency.  For each assurance level, DO-178B 
requires evidence that specific sets of process objectives 
have been completed with the number of objectives 
required increasing with each increase in the design 
assurance level.  For a system assessed at DAL C, one 
must supply evidence that 57 objectives have been 
satisfied while a system assessed at DAL A must satisfy 
66 objectives [2].  Furthermore, the rigor with which a 
given objective must be addressed varies from DAL A to 
DAL E.  For example, there are DO178-B objectives 
(A7.5 – A7.7) that address structural coverage testing 
requirements.   Modified condition-decision coverage 
(MC/DC) testing is mandated for DAL A systems while 
only statement and decision test coverage are required 
for DAL B and DAL C systems.  Consequently, a 
software safety engineering process produces more 
documentation, at significant additional cost, than 
traditional software engineering processes.

The safety analysis, however, cannot be a one-time 
input to a traditional software engineering process since 
subsequent design and implementation choices can 
increase the likelihood of system failure.  For example, 
in the systems requirements process, safety analysis may 
only be performed on the system functions that have 
been identified at that time whereas safety analysis of the 
design cannot occur until a design has been produced 
later in the development cycle.  Thus, safety analysis 
must be an iterative activity that is integrated throughout 
the development process which is one fundamental 
difference between a traditional software engineering 

process and a software safety engineering process.  In the 
following section we begin by discussing a standard 
safety analysis process and then describe how we have 
integrated safety analysis into our software safety  
engineering process as illustrated in Figure 1 below.

3  Software safety engineering process
   The SAE ARP 4761 standard defines the requirements 
for system and software safety analysis that must be 
completed including an initial Functional Hazard 
Assessment (FHA) of the system before starting 
hardware/software development [3].  The FHA identifies 
system functions and the failure effects and conditions if 
the system functions were to fail.  The FHA also 
determines the severity for the failure of each system 
function.  For example, if the system requirement were 
“the system shall schedule low priority trains onto the 
sidings”, then a failure to perform that function is a 
hazard that may result in a crash.
   A Fault Tree Analysis (FTA) is then performed on the 
top-level functions identified in the FHA, breaking them 
down into a boolean tree of lower-level events with the 
lowest level named the basic events.  Consider the 
previous example of a system hazard – failing to 
schedule a low priority train onto a siding.  Mechanical 
switch failure is one example of a low-level basic event 
that could be the source of that hazard.
   The failure effects, severity, and modes of these basic 
events are described within the Failure Modes and 
Effects Analysis (FMEA).  After the completion of the 
FHA and FTA, the system functions are allocated to 
hardware or software.  Depending upon the severity of 
those functions, independent design assurance levels 
(DALs) are determined for hardware and software via 
System Safety Analysis (SSA).  For developers to 
accurately identify the design assurance level and 
subsequently conform to the objectives associated with 
that level, a rigorous, planned process is required since 
the DO-178B only provides guidance on objectives to be 
completed without imposing specific activities required 
to meet those objectives [4].  
   Figure 1 below shows our approach for safety-critical 
software development which consists of DO-178B for 
software development integrated with ARP-4761 for 
system safety.  The lists of artifacts indicate when within 
the life cycle the artifacts were generated.  Those 
artifacts specific to safety analysis have also been 
identified.  End-to-end traceability is a key requirement 
of DO-178B.



Figure 1 – Software safety engineering process with safety artifacts identified.



Table 1 – Safety and software engineering artifacts

Safety Artifacts (ARP-4761)
Functional Hazard Assessment (3.2)
Fault Tree Analysis (4.1)
Failure Modes and Effects Analysis (4.2)

Integral Process Artifacts (DO-178B)
Verification Artifacts (11.13, 11.14, 11.17)
Configuration Management Artifacts (11.15, 11.16, 11.18)
Quality Assurance Artifacts (11.19, 11.20)

S/w Engineering Artifacts (DO-178B)
Planning Artifacts (11.1 – 11.5)
Development Standards (11.6 – 11.8)
Development Artifacts (11.9 – 11.12)

Figure 2 – Software/safety engineering process flow

The primary artifacts of interest in our Software 
Safety Engineering course come from several different 
categories, as shown in Table 1. The safety artifacts 
developed are based upon the SAE ARP 4761 standard, 
which provides guidance for FHAs, FTAs, and FMEAs 
in the sections shown in parentheses. DO-178B was used 
for development of the integral process artifacts and 
software engineering artifacts. The applicable DO-178B 
sections for the artifacts are given in parentheses. 
   The software engineering/safety engineering hybrid 
process flow integrates safety analyses in the initial 
determination of a DO-178B DAL through the FHA and 
preliminary FTA. The FMEAs are then developed 
simultaneously with the software requirements, design, 
and coding artifacts. By conducting FMEAs in the 
development phases, the safety analyses cover all levels 
of the software design and are relevant to the real 
system’s behavior and hazards [5]. The FMEAs also 
provide for an indirect check on the correctness of the 
original software requirements, since faulty design and 
code are derived from faulty requirements [6]. By 
incorporating safety analysis throughout every phase of 
the software life cycle, the design team substantiates 

their initial DAL selection. The flow of this process is 
shown in Figure 2, based upon a modified hybrid of DO-
178B processes and ARP-4761 diagrams for the safety 
assessment flow. The overview shows how the course 
process guarantees the software safety and software 
engineering activities are coalesced into a single efficient 
development process.

4  Model railroad system project
   To fully appreciate the differences between a standard 
software engineering process and a software safety 
engineering process targeted at system certification, 
students must follow our software safety engineering 
process as they develop a safety-critical product, 
producing the artifacts required for certification as the 
project evolves.  The teaching platform of choice for our 
Software Safety Engineering course is a model railroad 
project.  As shown in Figure 3, the model railroad layout 
consists of an oval track with two sidings for passing 
locomotives and two dead-end spurs.  A safety system is 
required since multiple trains traveling around the oval at 
different speeds and in different directions may collide.



(A) (B)
Figure 3 – Model railroad setup (A) Control logic and (B) Track layout

   The primary safety system for the model railroad is a 
scheduling system managed by the off-the-shelf 
TrainController Bronze Scheduling Software from 
Freiwald Software [7].  The track layout is divided into 
twenty four, individually powered segments.  Digitrax 
logic boards monitor conductive detectors within each 
segment to determine the segment where each train is 
located, and this position information is forwarded from 
the logic boards via USB cable to the PC-based 
scheduling software [8].  Similarly, commands from the 
scheduling software are passed via the logic boards to 
specific locomotives and railway switches. 
   Before a train may travel from one segment to another, 
it must reserve the next segment of track.  If the next 
segment is available, the scheduling software sets the 
appropriate railway switches and allows the train to 
continue traveling onto the next track segment towards 
its destination.  If the next segment is currently occupied, 
then the train must either stop and wait for the segment 
to become available or the scheduler must set a switch 
that diverts the train onto a siding or spur so that an on-
coming train may pass.  
   From a teaching perspective, the model railroad project 
has a number of advantages.  First, the baseline system is 
relatively low cost (approximately $5000) which is 
advantageous to universities.  The model railroad system 
can also be reconfigured at modest cost to increase or 
decrease complexity as needed.  Another important 
factor is that the safety hazards associated with the model 
railroad are easily understood and can be safely 
illustrated using the model railroad system.  Such 
hazards include head-on-collisions or derailments due to 
incorrect railway switch settings.

5   Software safety engineering tools
A critical educational aspect of the course is the 

hands-on experience that students gain as they apply 
commercial-grade software engineering tools to generate 

and manage the artifacts required for safety certification. 
Safety certification requires the development of and strict 
adherence to Software Quality Assurance (SQA) and 
Configuration Management (CM) plans that span the 
entire development life cycle.  These plans must address 
end-to-end requirements traceability, document and 
coding standards, structural coverage testing, and 
configuration and change management.
   Students enrolled in the Software Safety Engineering 
course make use of LDRA’s Testbed and TBrun for 
extensive static and dynamic analysis of their own code 
[9].  As part of the static analysis procedure, the code is 
audited for compliance with industry-standard, best-
practice coding standards such as MISRA-C, CERT C, 
and JSF C++ AV standards.  The LDRA tool also 
performs additional static analyses including code 
complexity analysis, reachability analysis, and data-flow 
analyses.  Dynamic analysis of the code allows students 
to execute and test their code to determine the degree of 
structural coverage achieved -- a key feature since 
different design assurance levels require different levels 
of structural coverage such as statement coverage, 
branch coverage, or modified condition/decision 
coverage (MC/DC).
   Students also utilize a combination Wind River’s 
Simics and VxWorks tools for early on-target testing 
[10].  Simics is used to simulate the target platform itself. 
VxWorks is a real-time operating system (RTOS) used 
on the actual target.  With student software running under 
VxWorks on the Simics simulator, the students gain early 
insight on the performance of their software on the target 
platform but in a simulated environment where it is fully 
accessible for analysis.

6   Results
   As of this writing, the students have completed the 
system requirements process and software planning 
process, and they are currently working on the software 



Table 2 – Functional hazard assessment results  [12]
Function Failure Effect Severity (ARP 4761)
Locate train on track Train location is unknown and trains may collide Catastrophic
Power down on emergency stop Trains cannot be stopped and may collide Catastrophic
Accept/Verify track configuration Trains cannot be ran on track Minor
Accept/Verify train configuration Trains cannot be ran on track Minor
Control turnouts on plant Trains cannot be safety directed and may collide Catastrophic
Accept/Verify train schedules Trains cannot be ran on track Minor
Control trains according to schedule Trains operate with limited or no control and may collide Catastrophic

Figure 4 – Fault tree analysis for “Locate Train on Track” function  [12]

requirements process artifacts.   Since they have not 
completed the development of the full model railroad 
system, only initial results are available.  However, even 
the initial results provide an insight into the advantages 
of our software safety engineering process.
   The students set out to design the complete train 
scheduling system around the off-the-shelf Scheduling 
Software.  The students’ initial system requirements 
specification and FHA identified seven system-level 
functions of the Scheduling Software and also identified 
the failure effects of those functions and the severity 
classification of the failure effects.  The system 
functions, failure effects, and severities are shown in 
Table 2.
   Using the FHA analysis, the students ascertained that 
the Scheduling Software must meet DO-178B level A, 
since the worst case failure of the Scheduling Software 
would lead to the catastrophic event of two trains 
colliding.  After evaluating the requirements for DO-
178B level A, the students decided that developing the 

model railroad system to satisfy DAL A would be 
extremely difficult due to the complexity of the 
Scheduling Software and the lack of source code for that 
software.  As a result of their safety analysis, students 
devised an amelioration plan in which they would 
develop a Safety Monitor system to handle the safety-
critical aspects of the system independently of the 
Scheduling Software. 
   The Safety Monitor is responsible for continuously 
monitoring train position and cutting power to the tracks 
to prevent catastrophic events such as collisions from 
occurring.   The Safety Monitor system  consists of CTI 
Electronics optical sensors for track segment entry/exit 
detection [11], power control modules, and a single 
monitoring software procedure.  Unlike the Scheduling 
Software which may be thousands of lines of code, the 
Safety Monitor only has to observe adjacent track 
segments and shut off power if a collision is eminent.  As 
a result of this simplicity, students determined that it 
would be easier to develop the Safety Monitor to satisfy 



DO-178B DAL A standard than to demonstrate that the 
more complex, off-the-shelf Scheduling Software 
satisfies DAL A.  
   Students demonstrated the efficacy of this Safety 
Monitor approach through the FTA of the system 
functions.  As illustrated in Figure 4, a catastrophic 
severity function (level A) is comprised of the “active 
system”  (Scheduling Software) providing the function 
capability at DO-178B level C and a Safety Monitor 
providing the safety-critical protection of the system at 
DO-178B level A.  A failure will only occur through the 
failure of both the Scheduling Software and the Safety 
Monitor.  By introducing the Safety Monitor system, the 
Scheduling Software’s required assurance level was 
dropped from A to C,  drastically reducing the number of 
DO-178B objectives and activities that must be 
completed with independence.

7    Conclusions
As software continues to become an integral 

component of more and more products whose failures 
may prove catastrophic, the demand for instruction in 
software safety engineering processes will increase.  One 
of the challenges in offering our software safety 
engineering course has been the general lack of 
understanding among software developers regarding 
safety analysis and how a software safety engineering 
process differs from standard software development 
processes.  It has become clear that while there are 
numerous software engineering courses and texts that 
discuss standard software processes and specific 
development activities such as requirements elicitation 
and testing, there are few texts that discuss the 
integration of safety analysis into the software 
development process and how safety certification 
requirements impact the artifacts that must be delivered. 
Our use of the model railroad project in our Software 
Safety Engineering course has proven to be a very 
effective means of conveying the nuances of software 
safety engineering to our students when there are few 
other resources readily available.
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