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Abstract— Recently it is recognized as a very important
research topic to simulate kinetic folding of an RNA molecule
in order to understand its functionality in vivo. In this paper,
we will propose a new approach to simulating kinetic folding
of an RNA molecule based on a new idea of “enumerating
secondary structures by a graph.” Although most of the pre-
vious works try to reduce the conformation space of a given
RNA molecule in order to escape from the combinatorial ex-
plosion problem, the present paper gives us an efficient and
approximate simulation methodology for hairpin formation
with keeping the conformation space completely. As far as
the authors’ knowledge, this is the first polynomial update
time simulation algorithm for kinetic folding analysis of an
RNA molecule which has a nice theoretical property that the
convergence point of its simulation always exactly coincides
with the equilibrium distribution of secondary structures of
the RNA molecule. We evaluated the time efficiency and
the accuracy of the proposed method against the exhaustive
method which numerically simulates the master equation by
completely generating all secondary structures. The results
show that the proposed method is much faster than the
exhaustive method and that the proposed method gives us
well approximated simulation results.
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1. Introduction
RNA secondary structure plays important role in the

biological function of many RNAs. Thus, the prediction of
RNA structure is an important research topic in bioinfor-
matics. One of the most effective method for such pre-
diction is to use dynamic programming (DP) to obtain
a minimum free energy (MFE, for short) structure ([15]
[28] [21]). DP method is extendedly applied also to the
calculation of equilibrium structure ensembles of RNA
secondary structures([11]). These algorithms, however, can
deal with only thermodynamical equilibrium, and not with
kinetic effects on secondary structures (for instance, during
the synthesis of RNA molecules). Furthermore, although
stacking free energy of 5 base pairs is around 10 kcal/mol
at 300 K, thermal energy kT is only 0.6 kcal/mol at 300
K, which implies that a native RNA may easily be trapped

into a suboptimal structure. Thus, the analysis of kinetic
folding process of RNA molecules is very important for
understanding their biological functions([13]).

A kinetical approach to RNA secondary structure predic-
tion was introduced by Martinez ([10]), where folding kinet-
ics is modeled by a Monte Carlo construction of secondary
structures based on rate constants for iterative addition of
complete helical regions, called helices, to some already
existing structure. Modeling structure change by addition or
deletion of helices is effective in reducing the conformation
space of the RNA, thus, there are many works on RNA
folding kinetics based on this formulation ( [12], [1], [5],
[13], [4], [7], [25] ). However, the physical relevance of
such moves seems debatable, because they cause large struc-
tural change per time step([3]). Furthermore, for a longer
RNA sequence, we can not escape from the combinatorial
explosion of conformation space even if we use helix based
formulation.

Schmitz and Steger proposed a simulation method for ki-
netic folding of RNA secondary structures by using a Monte
Carlo method based on rate constants for adding or removing
a single base pair to some already existing structure([16]).
The proposed move set is much more accurate than the
helix based move set and was supported by many researchers
([3], [26], [18], [23], [14]), but, the combinatorial explosion
problem of conformation space is more severe than the helix
based approach.

In this paper, we will give a novel approach to simulating
kinetic folding of an RNA molecule based on an elegant
new idea of “enumerating secondary structures by a graph.”
Although most of the previous works try to reduce the
conformation space of a given RNA molecule in order to es-
cape from the combinatorial explosion problem, the present
paper will provide us with an efficient and approximate
simulation methodology for hairpin formation with keeping
the conformation space completely.

As far as the authors’ knowledge, this is the first poly-
nomial update time approximate simulation algorithm for
kinetic folding of an RNA molecule which has a nice theo-
retical property that the convergence point of its simulation
always exactly coincides with the equilibrium distribution
of secondary structures of the RNA molecule. Although we
focus on secondary structures which are pseudoknot-free and



multiloop-free, the developed system is of great importance
since the folding of complex RNA tertiary structures often
involves the conformational change of hairpin structures ([2]
[20] [24] [19] [17] [22] ) and the detailed kinetical analysis
of hairpin formation still have many research topics to be
studied([27]).

2. Problem Definition
2.1 Secondary Structures

Let X = x1x2 · · ·xn be an RNA sequence with each
letter xi being an element of Σ = {A,C,G,U}, ordered
from 5′ to 3′ direction. It is known that every pair of bases
in WC = {(A,U), (U,A), (C,G), (G,C), (G,U), (U,G)}
may form a hydrogen bond, resulting in a stable structure,
called secondary structure. A secondary structure of X is a
finite set S of pairs (i, j) of integers such that 1 ≤ i < j ≤ n
and (xi, xj) ∈ WC hold and for any bp1 = (i1, j1)
and bp2 = (i2, j2) in S either i1 = i2 or j1 = j2
implies bp1 = bp2. A secondary structure S is said to be
pseudoknotted if there exist base pairs (i, j) and (k, l) such
that i < k < j < l (Figure 1 (a)). A secondary structure
S is said to be pseudoknot-free if it is not pseudoknotted.
Although there are some experimental reports on structural
roles of pseudoknotted structures in biological functions,
the computational analysis of secondary structures including
them is time consuming ([21]) and thus it is often the case
that we focus on pseudoknot-free structures. Furthermore,
from the view point of RNA folding kinetics theory, the
detailed study and analysis on the hairpin formation is still
of great importance([26], [27]). Thus, in this paper, we
will focus on the class of secondary structures which are
pseudoknot-free and multiloop-free, where a structure is said
to contain a multiloop if there exist base pairs (i, j), (i1, j1)
and (i2, j2) such that i < i1 < j1 < i2 < j2 < j (Figure 1
(b)). A typical example of pseudoknot-free and multiloop-
free structures are given in Figure 1 (c). As is shown in
Figure 1 (c), such a structure can be explained as a sequence
of linear structures concatenated in parallel, where by a
linear structure, we mean a secondary structure consisting
of a sequence of base pairs (i1, j1), ..., (ik, jk) such that
ip < ip+1 < jp+1 < jp holds for every p = 1, ..., k − 1.

2.2 Move Set
Let C(X) = {S1, ..., Sm} be the set of all secondary

structures of X , i.e., a conformation space of X . As a first
step of a novel efficient simulation methodology of kinetic
folding of an RNA molecule, we do restrict our attention
to multiloop-free and pseudoknot-free structures. Structures
of C(X) are related by a relation, called a “move”, which
defines a transition path of kinetic folding of the RNA
sequence X . Two kinds of moves, Add and Delete are
considered in this paper. The former modifies a secondary
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Fig. 1: Secondary Structures

structure by adding a new base pair in compliance with no-
multiple-loop and no-pseudoknot restrictions(Figure 2 (a)),
and the latter removes a base pair in the structure (Figure
2 (b)). At every moment, a structure Si ∈ C(X) will
change its structure to another one by choosing a move
according to some probability distribution from a pool of
acceptable moves. Successive choices of such elementary
moves generates a folding process(Figure 2 (c)). For a
structure Si, by Nbr(Si), we denote the set of structures
which can be obtained by applying an elementary move,
Add or Delete, to Si.
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2.3 Folding Kinetics
By G0

i , we denote the Gibbs free energy change when the
sequence folds into the structure Si from its random chain
structure. Then, the rate constant ki,j of the transition from
Si to Sj is given by the following Metropolis rule:

ki,j =


e−

G0
j−G0

i
RT if G0

j −G0
i > 0 and Sj ∈ Nbr(Si)

1 if G0
j −G0

i ≤ 0 and Sj ∈ Nbr(Si)
0 if Sj 6∈ Nbr(Si).

Let Pi(t) be the fraction (or probability) of the structure
Si at time t. Then, the population dynamics of the folding
process of an RNA sequence follows the master equation:

dPi(t)

dt
= kcal

m∑
j=1

(Pj(t)kj,i − Pi(t)ki,j), (1)



where kcal is a calibration constant for adjusting simulation
results with experimental results. We use the value kcal =
3.34× 106, which was used in [16].

Most of the previous works have tried to reduce the
conformation space in order to escape from its combinatorial
explosion problem. In this work, however, we completely
keep the space C(X) and try to numerically simulate
the master equation efficiently and approximately with the
theoretical guarantee that the results will always reach to
the exact equilibria. In order to achieve this goal, we will
apply our previous theoretical work on the equilibrium
analysis of chemical reaction systems in which molecules
are interacting in various ways to generate tremendously
many structures([8], [9]). Although the present paper deals
with unimolecular reaction, the theory applies since the
unimolecular reaction can be treated as a special case of the
framework. In the next section, we will review the theory
specialized to unimolecular reaction systems.

3. Enumeration Approach to Equilibria
Analysis

Let X be a molecule and C(X) be the conformation
space, i.e., the set of structures, of X . Free energy of a
conformation S of X is given by F (S).

Assume that we have a directed graph G = (V,Eg) with a
finite set V of vertices and a finite set Eg of directed edges.
For a vertex v ∈ V , by vin and vout, we denote the set
of edges coming into v and going out from v, respectively.
A vertex v with vin = ∅ (with vout = ∅, respectively) is
called an initial vertex (a final vertex, respectively). By V0
and Vf , we denote the set of initial and final vertices of G,
respectively. A simple path of G is a path with each vertex
appearing at most once. By PT (G), we denote the set of
simple paths starting from some vertex in V0 and reaching
to some vertex in Vf .

The essential part of the theory depends on the exis-
tence of a special one-to-one mapping ψ from PT (G)
to C(X) satisfying the conditions explained bellow. After
constructing such a mapping, the theory reduces the problem
of computing equilibrium state to a convex optimization
problem with respect to a set unknown variables whose
size is |Eg|. Note that the cardinality of PT (G) could be
exponential with respect to |Eg|. Thus, the theory enables
us to escape from the combinatorial explosion problem of
the conformation space C(X).

The requirement for the mapping ψ is very simple as
follows. We ask the existence of a weight function ε on
the edge set Eg such that for every path γ ∈ PT (G),
F (ψ(γ)) =

∑
e∈Eg s.t. e∈γ ε(e) holds. This condition means

that for every γ ∈ PT (G), the sum of weight of edges
appearing in γ equals to the free energy of the corresponding
structure ψ(γ) of the path γ. Intuitively speaking, every
edge in the graph G corresponds to some local structure

of conformation space, and its weight is just the free energy
of the corresponding local structure. In case of equilibrium
analysis of an RNA molecule at the secondary structure
level, it would be expected that we can construct a graph
whose edge would correspond to local structures, such as
hairpin loops, bulge loops, internal loops, etc. An example
of such enumeration graphs will be given in the next section
4.

4. Enumerating Secondary Structures of
an RNA

We will give an example of graphs by which we can enu-
merate all linear secondary structures of an RNA sequence.

Let X = x1 · · ·xn be an RNA sequence. Then, we prepare
a set of vertices corresponding to base pairs which may
form in the sequence X . Moreover, we use two additional
special vertices: an initial vertex s and a final vertex f . The
construction of edge set is as follows. We draw an edge
from a base pair (i, j) to a base pair (k, l) if and only if
i < k < l < j holds. Furthermore, for every base pair
bp, we put an edge from s to bp and an edge from bp to
f . Formally, we can define a graph G = (V,Eg) for the
sequence X:

BP = {(i, j) | 1 ≤ i < j ≤ n, (xi, xj) ∈WC },
V = {s, f} ∪BP,
Eg = {(s, bp) | bp ∈ BP } ∪ {(bp, f) | bp ∈ BP } ∪

{((i, j), (k, l)) | (i, j), (k, l) ∈ BP, i < k < l < j }.

A path in PT (G) for G defined above naturally corresponds
to a linear secondary structure consisting of base pairs
contained in it. An example of graphs for enumerating
secondary structures of the sequence X = GGAAACUU
is given in Figure 3.
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Fig. 3: An Example of Enumeration Graphs

Figure 3 (a) illustrates all possible base pairs of the
sequence X . Figure 3 (c) shows an enumeration graph for the
sequence X . A path s → (1, 7) → (2, 6) → f corresponds
to the upper secondary structure in Figure 3 (b). A path s→



(1, 8) → (3, 7) → f corresponds to the lower secondary
structure in Figure 3 (b). In this way, we can enumerate all
linear secondary structures of X . The mapping from a path
to its corresponding secondary structure is denoted by ψ.

As is clear from the above example, an edge between the
base pairs (i, j) and (k, l) in the graph corresponds to a
local loop structure (either of stacked base pairs, a bulge, or
an internal loop) surrounded by (i, j) and (k, l). An edge
between s (f ) and a base pair (i, j) corresponds to a free
end loop outside (a hairpin loop closed by) the base pair
(i, j). Thus, the weight ε(e) of an edge e is defined as the
free energy of the corresponding local secondary structure
of e. For instance, the free energy values of local secondary
structures are given as real values in Figure 3 (c). Thus, the
weight of edges s → (1, 7), (1, 7) → (2, 6), (2, 6) → f ,
s → (1, 8), (1, 8) → (3, 7), (3, 7) → f are given by +0.4,
−2.1, +5, 7, +0.5, +2.5, +6.2, respectively.

5. Efficiently Computing Equilibria by
Convex Programming

Let X be a molecule and C(X) be a conformation space
of X . An equilibrium distribution of C(X) is a probability
distribution [ ] over C(X) such that for any conformations S1

and S2 in C(X), the following equilibrium equation holds:

[S2]

[S1]
= e−

F (S2)−F (S1)
RT .

When we succeed in constructing an enumeration graph G
for a conformation space C(X) of a molecule X satisfying
the conditions explained in section 3, following a general
theory developed by the second author of this paper([8], [9]),
we can efficiently compute an equilibrium distribution by
solving a minimization problem explained bellow.

First, we will introduce an unknown variable we for
each edge e of the graph G. The variable we takes a real
value between 0 and 1, and represents a probability of the
local substructure corresponding to e existing in the current
probability distribution over C(X).

For convenience, for every v ∈ V − V0 − Vf , we define
wv =

∑
e∈vout

we. Consider the following minimization
problem:

Minimization Problem P1
minimize :

FE((we | e ∈ Eg))
def
≡

∑
e∈Eg

ε(e)

RT
· we +∑

e∈Eg
we(logwe − 1)−

∑
v∈V−V0−Vf

wv(logwv − 1)

subject to :∑
v∈V0

∑
e∈vout

we = 1,∑
e∈vin

we =
∑
e∈vout

we, (∀v ∈ V − V0 − Vf})

we ≥ 0, (∀e ∈ Eg)

where unknown variables are we’s (e ∈ Eg) and recall that
wv’s are sums of variables we’s.

Then, the following theorem was proved in [8]:
Theorem 1: Consider a minimizer (we | e ∈ Eg) of

the above minimization problem P1. Then, an equilibrium
distribution is given by: for any S ∈ C(X),

[S] =

∏
e∈Eg s.t. e∈ψ−1(S)

we∏
v∈V−V0−Vf s.t. v∈ψ−1(S)

wv
, (2)

In order to obtain an equilibrium distribution of an RNA
molecule at the secondary structure level, we should first
obtain a minimizer of the optimization problem P1 based on
the graph G given in section 4. This is achieved efficiently
since the objective function of the problem P1 is convex as
shown in [8], and thus, we can apply a convex programming
method to obtain a minimizer. Equilibrium distribution is
then obtained by the expression (2).

6. The Objective of This Work
In this way, we will be able to efficiently compute an

equilibrium distribution of an RNA molecule. This is not,
however, the main purpose of this paper. In this work, we aim
at efficiently simulating kinetic folding process specified by
the master equation (1). Thus, applying convex programming
method might not lead us to the goal of this paper. We need
to carefully choose a decending direction of the objective
function of the optimization problem P1. Such a careful
choice of the direction will be proposed in section 7, and the
validity of the choice will be shown theoretically in section
8. This theoretical argument guarantees that the proposed
simulation algorithm will always converge to an equilibrium
distribution. Our method is distinguished from the others in
the convergence property to equilibria.

7. Algorithm
In this sectin, we will give an algorithm for efficiently

and approximately simulating the kinetic folding process
of an RNA molecule at the secondary structure level. The
algorithm is presented with intuitive explanation of the
reason why we will obtain the algorithm. The key idea
behind the algorithm is to locally interpret in the graph
representation the kinetic moves of Add and Delete.

We first explain how to interpret the move Add in view
of enumeration graph (Figure 4). The move Add inserts a
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new base pair to the current conformation. Consider an Add
move which inserts a base pair (p, q) between two base pairs
(i, j) and (k, l). Note that i < p < k < l < q < j
holds. This move can be interpreted in the enumeration
graph representation as a move from a path containing the
edge (i, j) → (k, l) to another path containing the edges
(i, j) → (p, q) and (p, q) → (k, l) keeping the probabilities
of the other edges unchanged (See Figure 4). Based on this
observation, it is very natural to interpret the Add operation
locally as the change of probabilities of the three edges,
(i, j) → (k, l), (i, j) → (p, q), and (p, q) → (k, l), as
follows:

∆we1 = −kadd(e1, e2, e3) · we1∆t, (3)
∆we2 = kadd(e1, e2, e3) · we1∆t, (4)
∆we3 = kadd(e1, e2, e3) · we1∆t, (5)

where kadd(e1, e2, e3) is a rate constant for this local reac-
tion which causes the change of probabilities of the edges
e1, e2 and e3, which is defined by:

kadd(e1, e2, e3) ={
e−

ε(e2)+ε(e3)−ε(e1)
RT if ε(e2) + ε(e3)− ε(e1) ≥ 0

1 otherwise
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Next we consider the case of the move Delete. The move
Delete removes a base pair from the current conformation.
Consider a Delete move which removes a base pair (p, q)
from between two base pairs (i, j) and (k, l). Note that i <
p < k < l < q < j holds also in this case. This move can
be interpreted in the enumeration graph representation as a

move from a path containing the edges (i, j) → (p, q) and
(p, q) → (k, l) to another path containing the edge (i, j) →
(k, l) keeping the probabilities of the other edges unchanged
(See Figure 5). Thus, it is natural to interpret the Delete
operation locally as the change of probabilities of the three
edges, (i, j) → (k, l), (i, j) → (p, q), and (p, q) → (k, l), as
follows:

∆we1 = kdel(e1, e2, e3) · w(e2, e3)∆t, (6)
∆we2 = −kdel(e1, e2, e3) · w(e2, e3)∆t, (7)
∆we3 = −kdel(e1, e2, e3) · w(e2, e3)∆t, (8)

where w(e2, e3) is the probability of the paths passing
through both of the edges e2 and e3, and kdel(e1, e2, e3)
is a rate constant for this local reaction which causes the
change of probabilities of the edges e1, e2 and e3, which is
defined by:

kdel(e1, e2, e3) ={
e−

ε(e1)−ε(e2)−ε(e3)
RT if ε(e1)− ε(e2)− ε(e3) ≥ 0

1 otherwise

Note that we still have difficulty in this local interpretation
of the move Delete, because we do not have any information
about the probability w(e2, e3). We only know about proba-
bilities of edges e2 and e3 as we2 and we3 , respectively. So,
we should approximately guess the probability w(e2, e3) of
paths passing through both of edges e2 and e3. We will
propose to use the following estimate:

w(e2, e3) =

{
we2 ·we3

wv3
, if wv3 > 0

0 otherwise

where v3 is the vertex corresponding to the base pair (p, q).
This expression intuitively means that every path coming
to the vertex v3 is splitted into all directions from v3
proportionally to the probability distribution of edges going
out from v3. This estimate theoretically guarantees that
the proposed method will always reach to an equilibrium
distribution at the convergence point, as will be shown in
the next section 8.

The proposed method will apply the above rule of local
probability change to every triple of edges located in a
triangular form as illustrated in Figure 4 and Figure 5. It is
clear that the time complexity of the update of probabilities
of all we’s (e ∈ Eg) is bounded by a polynomial function
with respect to the length of the sequence X .

8. Theoretical Analysis of the Algorithm
Theorem 2: The direction specified by the expressions

(3)-(8) is a decending direction of the optimization prob-
lem P1. Proof: For every triangle consisting of edges
e1, e2, e3 and vertices v1, v2, v3 as illustrated in Figure 4 and



5, we have:

∂FE((we | e ∈ Eg))

∂we1
=

ε(e1)

RT
+ logwe1 − logwv1 ,

∂FE((we | e ∈ Eg))

∂we2
=

ε(e2)

RT
+ logwe2 − logwv1 ,

∂FE((we | e ∈ Eg))

∂we3
=

ε(e3)

RT
+ logwe3 − logwv3 ,

and the sum of the moves Add and Delete, denoted by
(d1, d2, d3), is given by:

d1 = −kadd(e1, e2, e3)we1 + kdel(e1, e2, e3)
we2we3
wv1

,

d2 = kadd(e1, e2, e3)we1 − kdel(e1, e2, e3)
we2we3
wv1

,

d3 = kadd(e1, e2, e3)we1 − kdel(e1, e2, e3)
we2we3
wv1

.

Then, we have:
3∑
i=1

∂FE((we | e ∈ Eg))

∂wei
· di =

kadd(e1, e2, e3)we1(1−
kdel(e1, e2, e3)we2we3
kadd(e1, e2, e3)we1wv3

)×

(log
we2we3
we1wv3

e
ε(e2)+ε(e3)−ε(e1)

RT ) =

kadd(e1, e2, e3)we1(1−
we2we3
we1wv3

e
ε(e2)+ε(e3)−ε(e1)

RT )×

(log
we2we3
we1wv3

e
ε(e2)+ε(e3)−ε(e1)

RT ) ≤ 0,

where we use:
kdel(e1, e2, e3)

kadd(e1, e2, e3)
= e

ε(e2)+ε(e3)−ε(e1)
RT ,

completing the proof.
Since the objective function of P1 is convex, by Theorem

2, we can conclude that the simulation by the proposed
method will reach to an equilibrium distribution.

9. Simulation Results
We have done two kinds of computational experiments.

The first one is for evaluating the time efficiency of the
proposed method against the exhaustive method, in which
for an input sequence X , we generated all the secondary
structures in C(X), and simulated the folding kinetics of
X based on the master equation (1). Simulations of both
methods start from a random chain structure.

The other experiment is for showing that the proposed
method gives us a well approximated simulation result for
structures which are dominant at equilibrium.

In this section, we will give some computational experi-
mental results which will show that the proposed method is
very time efficient compared to the exhaustive method and
it gives us a fairly well approximated kinetic folding pahts.
The tested sequences are listed in Table 1.

No. length Sequence
1 10 AGCCGUUUCC
2 12 AACCCUACCCUU
3 14 GGGCGAAACGCCCU
4 16 GCCGCGAAACGCGGCC
5 18 CGGGCCGAAAUGGGCCCU
6 20 CGGGCGCGAAAUUCGCGCCC

Table 1: RNA Sequences

No. Nstr TE TP

1 15 0.27s 0.09s
2 14 0.27s 0.08s
3 200 7.34s 0.84s
4 322 12.99s 1.13s
5 832 38.57s 2.98s
6 3293 2m58.29s 9.40s

Table 2: Time Efficiency Result

For a given sequence X , we did kinetic simulations start-
ing from a random chain structure by using the exhaustive
method and the proposed method up to 1, 000 time steps,
where we use ∆t = 1.0× 10−8 sec. The time for executing
1, 000 step simulation is given in Table 2, where TE is for
the exhaustive method and TP for the proposed method. The
number of structures in C(X) is given in the column Nstr.

In Fig.6 and Fig.7, we simulated dominant structures of
the sequence ACGUGCACAAAAGUGCACGU of length
20. The optimal strcuture is ((((((((....)))))))) (-12.0
kcal/mol) and its simulation result is shown in Fig.6.
Suboptimal structures are St1= (((((((......))))))) (-10.0
kcal/mol) and St2= ..((((((....)))))).. (-9.9 kcal/mol), and
their simulation results are shown in Fig.7. In both of
the figures, the lines specified by “E” and “P” represent
the simulation results by the Exhaustive and the Proposed
methods, respectively. Simulations by the proposed method
give us well approximated results compared to the exhaustive
(i.e., exact) simulations.

Concerning rare structures, the time step ∆t should be
carefully chosen as small values enough, since concentra-
tions of rare structures are very sensitive to large ∆t, which
result in incorrect simulations in both of the exhaustive and
the proposed methods. The topic on the choice of appropriate
∆t would be a future research topic.

10. Conclusion
We proposed a novel method for efficiently and ap-

proximately numerically simulating kinetic folding process
of an RNA molecule based on the idea of “enumerating
conformations by a graph.” The proposed method has a
very nice theoretical property that the convergence point
of simulation results exactly coincides with the equilibrium.
Time efficiency, the accuracy and the effectiveness of the
method were shown by computational experiments.
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Fig. 7: Simulations of Suboptimal Structures

The current implementation is restricted only to the class
of linear secondary structures, i.e. structures which do not
contain branches. But, the proposed method can be extended
to a more broader class of secondary structures if we prepare
an appropriate enumeration graph for the extended structure
class. Thus, it is an important future research topic to find
such an enumeration scheme for a broader class of secondary
structures.

In this paper, we evaluated the accuracy of the proposed
simulation method only by computational experiments. The-
oretical analysis of the accuracy of the method is also an
important open problem. Furthermore, based on this kind of
theoretical analysis, it might be interesting to improve the
method in order to achieve a better accuracy.
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