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ABSTRACT: 
      

This paper introduces a Multi Objective Parallel 

Genetic Algorithm (MOPGA) using the Compute Unified 

Device Architecture (CUDA) hardware for parallel 

processing. The algorithm demonstrates significant speed 

gains using affordable, scalable and commercially available 

hardware. The algorithm implements a document search using 

techniques such as Term Frequency Inverse Document 

Frequency (TF-IDF), Latent Semantic Analysis (LSA), Multi 

Objective Algorithms (MOA), Genetic Algorithm (GA), and 

Quad Tree Pareto Dominance techniques. 

 The objective of the proposed algorithm is to 

assemble an adaptable and scalable search mechanism to 

efficiently retrieve highly relevant document for a given 

search query. TFIDF and LSA vector space searches are two 

of the more common approaches to text mining. We have 

demonstrated that by combining results from both operations 

the number and quality of results could be improved. 

Evolutionary algorithms, specifically Genetic Algorithms have 

long been used to efficiently optimize multi-objective 

problems and so provide a natural starting point for our 

approach. 

Keywords:  Multi-Objective Parallel Genetic Algorithms, 

CUDA, TF-IDF, LSA, Pareto Quad Tree, Text Mining. 

1 INTRODUCTION 

The proposed algorithm searches through multiple 

documents looking for relevant matches to a given search 

string.  The algorithm begins by converting the search string 

to a query vector in the TF-IDF, and LSA document search 

spaces. Chromosomes in this algorithm are composed of ten 

alleles that are each a direct encoding of a term. Using TFIDF 

domain knowledge a heap is constructed for each search term 

and any document that the term is relevant to. The algorithm 

exploits this domain knowledge to select unevaluated 

documents that have the strongest relation to the term. 

Iterative generations benefit from the principle of survival of 

the fittest in an attempt to discover the documents that are 

most closely related to the search query. The algorithm 

allocates parallel processes to CUDA enabled graphics devices 

to distribute the work across multiple processors, dramatically 

reducing the processes run time. Tabularized results for 

various search keys are presented along with corresponding 

execution times. 

Multi-Objective Algorithms require ranking systems 

to properly evaluate tradeoffs between the search domains. 

Pareto Dominance ranking provides the ability to objectively 

analyze tradeoffs between both the different domain results 

that originate from different input. Genetic Algorithms 

represent an efficient heuristic search of some data set that can 

often retrieve near optimal results in fewer operations when 

compared to linear ranking methods. To further improve 

performance problems associated with the TFIDF and LSA 

search space models, the algorithm has been adapted to utilize 

massively parallel processors. The final result is a Multi-

Objective Parallel Genetic  (MOPGA) Algorithm that utilizes 

TFIDF, and LSA vector searches, implemented on the 

Compute Unified Device Architecture (CUDA) framework. 

1.1 ALGORITHM ORGANIZATION 

This algorithm runs on both the Linux PC host and on 

available CUDA devices. On the PC Side, some initial loading 

and search parameters are done in parallel where possible. 

This preloaded data is stored in a Read-Only database called 

data space. Before the search begins, data space is divided 

amongst the MOPGA Agents that are to be run. While running 
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each MOPGA Agent has its own, database local PKnown 

where Pareto Quad Tree and final document evaluations are 

stored. Mathematical operations take advantage of CUDA 

acceleration where possible. Finally, once a predetermined 

time or a number of cycles have elapsed the results are merged 

and sorted for display. 

2.0 DOMAIN SEARCH SPACES 

This implementation of MOPGA uses two vector 

search spaces for its Domain. The relevance of a given search 

vector is the angular difference between a search vector and a 

document vector. The two-domain spaces are “TFIDF” and 

“LSA” . The actual data that composes the matrices are book 

synopsis taken from user comments on Amazon.com. The 

mathematical explanations are as follows. 

2.1.0 TERM FREQUENCY - INVERSE DOCUMENT 

FREQUENCY (TF-IDF) 

 Term Frequency – Inverse Document Frequency 

provides the MOPGA a statistical method of determining how 

important a term is within a document with respect to a 

collection of documents. The MOPGA constructs a matrix 

where rows represent terms, columns represent documents, 

and individual cells record the number of occurrences of a 

given term in a document. Within this matrix often repeated 

terms are considered important terms in the document. This is 

not entirely true, as some words with such highly repeated 

frequency do not convey uniquely searchable concepts. Words 

such as “The” are an example. It will appear with high 

frequency in all documents and as such, it is not a relevant 

search term. Extending this concept if we have a set of 

documents all on a single subject such as databases, because 

all documents in the collection contain this word, a search for 

documents with that term would return the whole collection. 

For this reason, TF-IDF does not consider it a relevant search 

term. TF-IDF itself is a combination of two ratios, Term 

Frequency (TF), and Inverse Document Frequency (IDF). 

2.1.1 TERM FREQUENCY (TF) 

 Term Frequency is the statistical process of 

determining how important a term is in the context of a 

document. It does this by counting the occurrences of a 

particular term in the document, which divided by the overall 

count of terms in the document, which establishes a ratio of 

the terms statistical importance to the document [1]. 

 

 

2.1.2 INVERSE DOCUMENT FREQUENCY (IDF) 

 Inverse Document Frequency is used to determine 

how unique a given term is within a collection of documents. 

By taking the ratio of the total number of document with 

respect to the number of documents a term appears in, the 

relative importance of a term as a unique identifier can be 

determined. By taking the log of this ratio, a dampened value 

that is suitable for combination with TF is derived [1].   

2.1.3 WEIGHTED SEARCH VECTORS 

 The MOPGA searches for documents in the TF-IDF 

search space by creating a query vector. A query vector is 

similar to a standard document vector in the search space, 

however, the TF portion is calculated slightly different. The 

MOPGA replaces the raw frequency of the term within the 

query with a user provided bias weight. In this manner, the 

MOPGA can create bias in favor of a particular term within a 

query.  The MOPGA scores query vector to document vector 

comparisons by performing the following mathematical 

operations: 
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2.1.4 ADVANTAGES AND LIMITATIONS 

 TF-IDF search vectoring will never assign scores to 

documents that the exact search terms do not appear in, 

regardless of how informative a particular term may be. 

TFIDF does not connect words with their synonyms [2]. 

Further TF-IDF does not equate words to their conjugated 

forms, as an example a search for database would be unrelated 

to a search for databases. This lack of knowledge to make 

these connections makes the requirement of a strong lexical 

analyzer to process the information highly desirable, adding to 

the complexity of the task. The main advantage TFIDF gives 

is that it is simple to compute and easily parallelized. 

2.2.0 LATENT SEMANTIC ANALYSIS 



  

 

 Latent Semantic Analysis provides the MPOGA with 

the ability to find documents based on the relationship of 

words as they appear in context to one another.  The MOPGA 

LSA function utilizes the same matrix of term relations to 

documents that are constructed for TF-IDF vector searches 

[3].  The MOPGA LSA function decomposes these 

relationships into different matrices that represent relations of 

terms and documents. Finally, the MOPGA LSA function 

filters noise in these relations to find better matches. These 

filtered relations do a good job at finding synonyms and other 

related words. As an example if a user was searching for “dog 

training” it would recognize that terms like leash, pet, and 

treat are related and possibly return documents with these 

terms in them. The individual steps used in the MOPGA LSA 

functions are presented next. 

2.2.1 SVD DECOMPOSITION AND K REDUCTION 

 LSA depends on constructing a term by document 

rectangular matrix M x N, where cell values contain weighted 

TF-IDF values. This matrix is then decomposed via a Singular 

Value Decomposition into three different matrices where 

A=USVT. Where U is decomposed into an M x N matrix and 

S is an N x N diagonal matrix containing the ranked singular 

values, and V is an N x N matrix. Both U and V are unitary so 

that 

U∙UT=I                      (5)       

V∙VT=I                     (6) 

 K reduction is performed by selecting a K x K 

portion of the S matrix, M x K of the U matrix, and M x K of 

the V matrix such that [4].   

         
            (7) 

2.2.2 PSEUDO DOCUMENTS 

With these, K reduced matrices the MOPGA LSA 

function can compare two terms to one another, or documents 

to documents. To compare a chromosome to a query the 

MOPGA LSA function first projects the query into the K 

dimensional space and treats it as if it were any other 

document in the collection. Because chromosomes themselves 

are M x 1 matrix representations of their contained terms they 

are easily converted into these pseudo documents.  The 

MOPGA LSA function accomplished these projections into 

the K reduced space via the equation [4]. 

         
      (8) 

 

2.2.3 SIMILARITY 

Given the resulting two pseudo documents, the 

MOPGA LSA function then compares the level of similarity 

between them by examining the angles between their vector 

representations with the following well-known equation 

             
    

      
      (4) 

This comparative process gives a range between 1 and   -1 

where 1 would be a very similar document and -1 as dissimilar 

as possible [2].  

2.2.4 ADVANTAGES AND LIMITATIONS 

 “Folding in” pseudo documents in this manner does 

not affect the underlying relationships, a new SVD 

decomposition is required to incorporate new relations into the 

process.  LSA does not perform well with words that have 

different meanings based on their contextual usage. LSA is 

also conducted under the assumption that words and 

documents follow a Gaussian distribution when it is possible 

that a Poisson distribution exists [8]. Despite these limitations, 

the MOPGA LSA function is able to perform the SVD 

decompositions on the same underlying data that is 

constructed for the TF-IDF vector search.  The ability to 

recognize relations of the terms to other terms is also crucial 

to returning relevant information. The actual generation of 

pseudo documents by the MOPGA requires only a few matrix 

multiplications once the SVD decompositions are complete. 

3 MULTI OBJECTIVE ALGORITHMS 

 A Multi Objective algorithm seeks to 

maximize/minimize two or more distinct functions. As is often 

the case one set of input may increase the desirable results 

from one function while degrading the results from the other 

functions. To accomplish the goal of returning relevant 

information quickly the MOPGA must know how to balance 

trade offs between one resulting function score with respect to 

the other function. To accomplish this task the MOPGA uses 

Pareto Dominance [5]. 

3.1 QUAD TREE PARETO DOMINANCE BASED 

RANKING 

A Quad Tree is a tree based data structure that stores 

different chromosomes. Each chromosomal node is a vector 

with two elements that reflect the TFIDF and LSA scores. All 

nodes residing in the tree are non-dominated. This is 

accomplished by assigning scores to the TFIDF and LSA 



  

 

values of particular candidate. A 0 indicates that this 

chromosomes score is worse than the comparison node. A 

score of 1 indicates that the candidate's score is superior to the 

comparison's node. Each candidate thus scores one of four 

possible values. 0/0 indicates that it is completely dominated 

by the comparison node and thus subsequently discarded. A 

0/1 or 1/0 indicates that one of the search values scores better 

than the comparison node and thus is not considered 

dominated by it. In this case if a child node exists further 

comparisons will be evaluated against that node. If there are 

no child nodes then the candidate is inserted into the tree at the 

appropriate position. In the final case  1/1 indicates that the 

candidate dominates the existing node. In this case  the 

candidate will take the place of the existing node, and all child 

nodes of the existing node to be discarded will be evaluated 

for insertion. The Quad tree is thus guaranteed to contain only 

non-dominated nodes, and new candidates can be efficiently 

compared for insertion [6].  

4 GENETIC ALGORITHMS 

 GAs has been successfully applied to a wide variety 

of problems.  In particular, GAs excels at optimization 

problems where optimal solution execution times are 

exponentially dependent on the size of the data search space. 

GA's encode, directly or indirectly different input values for a 

chromosome. These chromosomes undergo genetic processes 

where the current best-known chromosomes contained in 

PKnown are used to generate new chromosomes, PCurrent.  

The best of these new PCurrent chromosomes replace less fit 

chromosomes in PKnown. Over many generations, 

chromosomes converge to optimal solutions [7].  MOPGAs 

offer a wide number of solutions to overcome problems 

associated with premature convergence. 

4.1 ENCODING DOCUMENTS 

 Encoding is the process of mapping a problem and its 

possible solutions to a chromosome. These chromosomes can 

be a direct encoding of values, it can represent different states 

of a state machine, or even an order arrangement of items. 

Because of the number of possible terms that can be included 

in a relatively small set of documents it is not possible to 

represent all terms in a single chromosome. The MOPGA 

presented here uses a direct encoding scheme to limit the 

number of alleles in a chromosome to ten. Each individual 

allele is   a unique term identifier that is assigned to terms as 

they are read into the dictionary.   

 The dictionary is an M x N matrix, where M is the 

number of searchable terms in all documents. The actual 

position number of a term in this dictionary is the real encoded 

value. As each document is read into, the dictionary the 

number of time a term appears in the document is recorded in 

the matrix. Once all documents are read into the dictionary the 

matrix is used to generate TFIDF values. This domain 

information is exploited later to intelligently select strong 

candidates for evaluation. This is accomplished by 

constructing a series of term heaps for each MOPGA Agent 

that include only documents within an agents assigned search 

space.  

4.2 Selection 

  Each generation of the MOPGA generates a 

predefined number of chromosomes called PCurrent to 

evaluate for insertion into the Quad tree based set called 

PKnown. To generate the PCurrent set two PKnown nodes are 

selected for crossover, which generates four new 

chromosomes. The selection phase is the process of randomly 

picking two parents for the crossover phase. In terms of this 

process, the selected parent nodes represent the local space 

that will be further explored. 

4.3 SINGLE POINT CROSSOVER 

The process by which the MOPGA generates new 

chromosomes from the Pknown set is called Single Point 

Crossover.  Using two chromosomes A, and B from the 

Pknown set both chromosomes are split in halves resulting in 

A1,A2 and B1,B2. The second halves are then exchanged 

resulting in A1 B2, A1 B1, A2 B1,  A2 B2, B1 A1, B1 A2, and 

B2 A1, B2 A2.  The order of the alleles in the resulting 

chromosomes affects the local search space that is evaluated 

during the subsequent evaluation phase. 

4.4 RANDOM MUTATION 

 One drawback to this type of search occurs when the 

MOPGA continually selects the same parents to generate the 

same results. When the MOPGA finds a series of solutions 

that are strong candidates many very similar results begin to 

be found in PKnown. From an evolutionary standpoint, these 

chromosomes represent the fit possibilities found so far, but 

they may in fact represent only local optima. 

 To force the MOPGA to explore chromosome that 

cannot be formed by the combination of PCurrent solutions, a 

pre-known percentage is used to determine if a random 



  

 

mutation occurs in the PCurrent chromosomes generated by 

the MOPGA. A mutation is accomplished by selecting a 

random allele and then generating a random term value to 

encode. This mutation is similar to annealing concepts used in 

other algorithms. It forces the algorithm to explore other 

possible locations in the search space [8]. 

4.4 EVALUATION 

 Evaluation is the process the MOPGA uses to 

determine if a given chromosome is fit for insertions into 

Pknown and ultimately presented to the user. The MOPGA 

selects a document and generates TFIDF and LSA vector 

similarity scores by comparing the appropriate document 

vectors to the search vectors. These scores are then used by 

the Pareto quad tree ranking mechanism to determine if the 

chromosome should be retained in the PKnown set. 

 The nature of a document search implies it is a finite 

search of available documents that are contained in a library. 

The MOPGA conforms to this constraint by selecting an allele 

in a chromosome and then using the term heaps to select a 

document. This process ensures that processing time can never 

exceed the processing time of a straight linear search of the 

same library. As documents are evaluated, they are inserted 

into a hash map that stores the evaluations and enable the 

evaluation to rapidly determine if an evaluation has already 

been performed against the selected document. 

5 PARALLELIZATION 

Many of the mathematical operations involved in TF-

IDF and LSA lend themselves to parallelization, and in 

particular to CUDA based implementations [9]. When the 

algorithm first begins computing TF-IDF scores, it is 

beneficial to use reduction techniques when summing term 

counts. When computing a singular value decomposition there 

are several parallel techniques to apply. Beyond the 

mathematical applications, there is the process of exploring a 

Pareto front.  By dividing the data space among the MOPGA 

Agents, different parts of the whole can be run in different 

threads.  This organization conforms too many of the common 

parallel patterns in use today [10].  

5.1 DATABASES 

 This MOPGA implementation uses two types of 

databases, data space and PKnown. Data space contains all of 

the “static” data that does not change while a search is 

underway. It contains all of the TFIDF and LSA domain 

information as well as document excerpts and indexed terms 

lists. This data space also contains a series of heaps for each 

MOPGA Agent that is scheduled to run. These heaps represent 

the assigned search area each MOPGA Agent will concern 

itself with. These heaps are copied into each MOPGA Agents 

PKnow database. There is only one copy of data space  and it 

is read only once a search begins.  

The second type of database is called PKnown. Each 

MOPGA Agent that is tasked to run has its own PKnown 

database that initially contains its assigned term heaps and an 

empty Pareto quad tree. As chromosomes are evaluated, they 

are translated into a document via the term heaps and the 

results are stored. Using these evaluation results a 

chromosome is then considered for insertion into the Pareto 

quad tree.  

5.2 MOPGA AGENT 

The MOPGA Agent is tasked with attempting to find 

non-dominated chromosomes to insert into its own Pknown.  

When there are insufficient chromosomes in the Pareto quad 

tree the MOPGA Agent will generate random chromosome to 

help explore the Pareto front. After two chromosomes are 

generated or selected, single point crossover and mutations are 

finished a random allele is selected. Using the term heaps 

assigned to this agent a document in its assigned sections of 

data space is then evaluated.  In the case that a chromosome 

has an allele that has no more documents in its heap then the 

allele is mutated and a different existing allele is selected. If 

the resulting document evaluation is non-dominated then the 

chromosome is inserted into Pknown for the MOPGA Agent 

to exploit.   

5.3 LIMITATIONS 

 While the CUDA devices have the ability to greatly 

speed up some of the more complex mathematical operations, 

there are only a limited number of these devices on a given 

machine. This limitation means that access to the devices has 

to be shared with semaphore type locks. This algorithm has 

the ability to find the Maximum optima for a given search 

there is no guarantee that it will be found if the search 

constrained by time or cycles. 

6 ALGORITHMS 

6.1 MOPGA ALGORITHM (STEPS 2 – 5 IN ARE IN 

PARALLEL AND AGENTS RUN IN PARALLEL) 



  

 

1. Read in Data, build term dictionary and document 

library matrices. 

2. Perform TFIDF / LSA 

3. Divide Search Spaces 

4. Build term heaps per MOPGA Agent 

5. Gather search terms 

6. Launch MOPGA agents. 

7. Wait for time, cycle, or generation end condition 

8. Present results from agent PKnown. 

6.2 MOPGA AGENT 

1. Select parent chromosomes from Pknown or generate 

random chromosome if insufficient chromosomes. 

2. Perform single point crossover. 

3. Mutate chromosomes 

4. Determine document – term heaps. 

5. Evaluate – perform TFIDF/LSA. 

6. Insert chromosomes into Pknown. 

7 EXPERIMENTS 

A series of experiments were conducted to 

demonstrate that combined TFIDF/LSA ranking returns both 

more and superior results than using either of the  technique 

alone would generate. Experimentations also includes 

execution times of the different techniques.  All experiments 

were conducted on a intel i7-970 and 12 GB of ram and 4 cpu 

cores. Additionally the test machine has two GTX480 Nvidia 

video cards, each having 1.5 GB of memory and 480 CUDA 

cores. The code was written in C++ and C for CUDA version 

2.5. Mathematical libraries provided by NVIDA and EM 

Photonics CULA were used were possible. Serial tests relied 

on TNT JAMA linear algebra libraries and templates. 

7.2 EXPERIMENT 1 

 The first experiment was conducted to gather data 

that could be used to determine if combining TFIDF and LSA 

would yield better results. The MOPGA algorithm was 

allowed to iterate over all data as well as by cyclic restriction. 

The data set size was also altered. LSA K reductions were held 

constant at 100 for both the MOPGA and the LSA serial 

version. It should be noted that the TNT JAMA linear algebra 

libraries could not process a matrix larger than 10,000 X 300 

so the final two runs have no results recorded. 

Fig 1. 

 Figure 1 shown here demonstrates that both the LSA 

and the MOPGA algorithm returned only highly relevant data, 

while TFIDF seemed to return some items that were not truly 

related to the search but contained a term in the search vector. 

Both the MOPGA algorithm and the TFIDF returned more 

results than did the LSA. The MOPGA algorithm did return 

the most relevant documents. 

7.2 EXPERIMENT 2 

 The second experiment is very similar to the first 

experiment, except that execution times recorded in an attempt 

to show how well the proposed MOPGA algorithm performed 

against the other serial implementations. The time shown in 

these charts is both the initial time spent processing a data set 

before a query and the search time spent finding the results. It 

should be noted that while the data set size was increased from 

8860 X 150 to 11882 X 400 for the two serial versions, only 

the larger dataset was used for the recorded MOPGA time 

shown here. 

 

Fig 2. 

Figure 2 shows that as data is added, the serial linear 

algebra libraries in the LSA Algorithm scales very poorly and 

even fails to execute with matrices that exceed  some 10,000 
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X 300 cells. The MOPGA algorithm also has some initial load 

time due to the SVD decomposition in LSA but scales more 

like the TFIDF algorithm as the number of cycles increases.  

 

Fig 3. 

Taking into consideration the total processing time 

and breaking up the processing times into pre-search and 

vector similarity computations demonstrate that LSA pre-

compute times are several orders of magnitude greater than 

the search times so those values do not appear.. 

8 CONCLUSION 

 By combining TFIDF and LSA the MOPGA 

algorithm demonstrates that both the relevance and number of 

results returned to a user submitted search are improved and 

the scaling implications are much more favorable for the 

MOPGA algorithm in comparison to the LAS and TFIDF. The 

greatly reduced SVD decomposition time means that if 

necessary MOPGA could be re-indexed frequently lending 

itself to much more volatile databases. The MOPGA shows 

promise with much larger datasets where iterating over all 

possible results may not be possible. The Pareto Quad Tree is 

easily adapted to include other search domains lending itself 

to further refinement and experimentation. 

 Throughout the testing of this algorithm a constant K 

dimensional reduction of 100 was applied to the results. Many 

experiments show that altering this value can have a great 

effect on the quality and quantity of LSA searched.  Some 

experimentation should also be conducted with the frequency 

with which genetic mutations are introduced for evaluation. 

Currently this is a constant 5% and this may not be optimal.  

When the initial data set size grows beyond what fits 

on a single CUDA device, the data dpace database will need to 

be split before genetic operations are conducted. MOPGA 

Agents currently deal with an assigned piece of the data space 

database so further scaling experiments should be conducted 

to determine what the scaling limits are. 
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