

CUDA BASED MULTI OBJECTIVE PARALLEL GENETIC

ALGORITHMS:

ADAPTING EVOLUTIONARY ALGORITHMS FOR DOCUMENT SEARCHES

Jason P. Duran, Sathish AP Kumar

Computer Science and Information Systems Department

National University, San Diego, CA 92123

Email: Jason_Duran@acm.org, sathish.ap@gmail.com

ABSTRACT:

This paper introduces a Multi Objective Parallel

Genetic Algorithm (MOPGA) using the Compute Unified

Device Architecture (CUDA) hardware for parallel

processing. The algorithm demonstrates significant speed

gains using affordable, scalable and commercially available

hardware. The algorithm implements a document search using

techniques such as Term Frequency Inverse Document

Frequency (TF-IDF), Latent Semantic Analysis (LSA), Multi

Objective Algorithms (MOA), Genetic Algorithm (GA), and

Quad Tree Pareto Dominance techniques.

 The objective of the proposed algorithm is to

assemble an adaptable and scalable search mechanism to

efficiently retrieve highly relevant document for a given

search query. TFIDF and LSA vector space searches are two

of the more common approaches to text mining. We have

demonstrated that by combining results from both operations

the number and quality of results could be improved.

Evolutionary algorithms, specifically Genetic Algorithms have

long been used to efficiently optimize multi-objective

problems and so provide a natural starting point for our

approach.

Keywords: Multi-Objective Parallel Genetic Algorithms,

CUDA, TF-IDF, LSA, Pareto Quad Tree, Text Mining.

1 INTRODUCTION

The proposed algorithm searches through multiple

documents looking for relevant matches to a given search

string. The algorithm begins by converting the search string

to a query vector in the TF-IDF, and LSA document search

spaces. Chromosomes in this algorithm are composed of ten

alleles that are each a direct encoding of a term. Using TFIDF

domain knowledge a heap is constructed for each search term

and any document that the term is relevant to. The algorithm

exploits this domain knowledge to select unevaluated

documents that have the strongest relation to the term.

Iterative generations benefit from the principle of survival of

the fittest in an attempt to discover the documents that are

most closely related to the search query. The algorithm

allocates parallel processes to CUDA enabled graphics devices

to distribute the work across multiple processors, dramatically

reducing the processes run time. Tabularized results for

various search keys are presented along with corresponding

execution times.

Multi-Objective Algorithms require ranking systems

to properly evaluate tradeoffs between the search domains.

Pareto Dominance ranking provides the ability to objectively

analyze tradeoffs between both the different domain results

that originate from different input. Genetic Algorithms

represent an efficient heuristic search of some data set that can

often retrieve near optimal results in fewer operations when

compared to linear ranking methods. To further improve

performance problems associated with the TFIDF and LSA

search space models, the algorithm has been adapted to utilize

massively parallel processors. The final result is a Multi-

Objective Parallel Genetic (MOPGA) Algorithm that utilizes

TFIDF, and LSA vector searches, implemented on the

Compute Unified Device Architecture (CUDA) framework.

1.1 ALGORITHM ORGANIZATION

This algorithm runs on both the Linux PC host and on

available CUDA devices. On the PC Side, some initial loading

and search parameters are done in parallel where possible.

This preloaded data is stored in a Read-Only database called

data space. Before the search begins, data space is divided

amongst the MOPGA Agents that are to be run. While running

mailto:Jason_Duran@acm.org
mailto:sathish.ap@gmail.com

each MOPGA Agent has its own, database local PKnown

where Pareto Quad Tree and final document evaluations are

stored. Mathematical operations take advantage of CUDA

acceleration where possible. Finally, once a predetermined

time or a number of cycles have elapsed the results are merged

and sorted for display.

2.0 DOMAIN SEARCH SPACES

This implementation of MOPGA uses two vector

search spaces for its Domain. The relevance of a given search

vector is the angular difference between a search vector and a

document vector. The two-domain spaces are “TFIDF” and

“LSA” . The actual data that composes the matrices are book

synopsis taken from user comments on Amazon.com. The

mathematical explanations are as follows.

2.1.0 TERM FREQUENCY - INVERSE DOCUMENT

FREQUENCY (TF-IDF)

 Term Frequency – Inverse Document Frequency

provides the MOPGA a statistical method of determining how

important a term is within a document with respect to a

collection of documents. The MOPGA constructs a matrix

where rows represent terms, columns represent documents,

and individual cells record the number of occurrences of a

given term in a document. Within this matrix often repeated

terms are considered important terms in the document. This is

not entirely true, as some words with such highly repeated

frequency do not convey uniquely searchable concepts. Words

such as “The” are an example. It will appear with high

frequency in all documents and as such, it is not a relevant

search term. Extending this concept if we have a set of

documents all on a single subject such as databases, because

all documents in the collection contain this word, a search for

documents with that term would return the whole collection.

For this reason, TF-IDF does not consider it a relevant search

term. TF-IDF itself is a combination of two ratios, Term

Frequency (TF), and Inverse Document Frequency (IDF).

2.1.1 TERM FREQUENCY (TF)

 Term Frequency is the statistical process of

determining how important a term is in the context of a

document. It does this by counting the occurrences of a

particular term in the document, which divided by the overall

count of terms in the document, which establishes a ratio of

the terms statistical importance to the document [1].

2.1.2 INVERSE DOCUMENT FREQUENCY (IDF)

 Inverse Document Frequency is used to determine

how unique a given term is within a collection of documents.

By taking the ratio of the total number of document with

respect to the number of documents a term appears in, the

relative importance of a term as a unique identifier can be

determined. By taking the log of this ratio, a dampened value

that is suitable for combination with TF is derived [1].

2.1.3 WEIGHTED SEARCH VECTORS

 The MOPGA searches for documents in the TF-IDF

search space by creating a query vector. A query vector is

similar to a standard document vector in the search space,

however, the TF portion is calculated slightly different. The

MOPGA replaces the raw frequency of the term within the

query with a user provided bias weight. In this manner, the

MOPGA can create bias in favor of a particular term within a

query. The MOPGA scores query vector to document vector

comparisons by performing the following mathematical

operations:

 (1)

 (2)

 (3)

 (4)

2.1.4 ADVANTAGES AND LIMITATIONS

 TF-IDF search vectoring will never assign scores to

documents that the exact search terms do not appear in,

regardless of how informative a particular term may be.

TFIDF does not connect words with their synonyms [2].

Further TF-IDF does not equate words to their conjugated

forms, as an example a search for database would be unrelated

to a search for databases. This lack of knowledge to make

these connections makes the requirement of a strong lexical

analyzer to process the information highly desirable, adding to

the complexity of the task. The main advantage TFIDF gives

is that it is simple to compute and easily parallelized.

2.2.0 LATENT SEMANTIC ANALYSIS

 Latent Semantic Analysis provides the MPOGA with

the ability to find documents based on the relationship of

words as they appear in context to one another. The MOPGA

LSA function utilizes the same matrix of term relations to

documents that are constructed for TF-IDF vector searches

[3]. The MOPGA LSA function decomposes these

relationships into different matrices that represent relations of

terms and documents. Finally, the MOPGA LSA function

filters noise in these relations to find better matches. These

filtered relations do a good job at finding synonyms and other

related words. As an example if a user was searching for “dog

training” it would recognize that terms like leash, pet, and

treat are related and possibly return documents with these

terms in them. The individual steps used in the MOPGA LSA

functions are presented next.

2.2.1 SVD DECOMPOSITION AND K REDUCTION

 LSA depends on constructing a term by document

rectangular matrix M x N, where cell values contain weighted

TF-IDF values. This matrix is then decomposed via a Singular

Value Decomposition into three different matrices where

A=USVT. Where U is decomposed into an M x N matrix and

S is an N x N diagonal matrix containing the ranked singular

values, and V is an N x N matrix. Both U and V are unitary so

that

U∙UT=I (5)

V∙VT=I (6)

 K reduction is performed by selecting a K x K

portion of the S matrix, M x K of the U matrix, and M x K of

the V matrix such that [4].

 (7)

2.2.2 PSEUDO DOCUMENTS

With these, K reduced matrices the MOPGA LSA

function can compare two terms to one another, or documents

to documents. To compare a chromosome to a query the

MOPGA LSA function first projects the query into the K

dimensional space and treats it as if it were any other

document in the collection. Because chromosomes themselves

are M x 1 matrix representations of their contained terms they

are easily converted into these pseudo documents. The

MOPGA LSA function accomplished these projections into

the K reduced space via the equation [4].

 (8)

2.2.3 SIMILARITY

Given the resulting two pseudo documents, the

MOPGA LSA function then compares the level of similarity

between them by examining the angles between their vector

representations with the following well-known equation

 (4)

This comparative process gives a range between 1 and -1

where 1 would be a very similar document and -1 as dissimilar

as possible [2].

2.2.4 ADVANTAGES AND LIMITATIONS

 “Folding in” pseudo documents in this manner does

not affect the underlying relationships, a new SVD

decomposition is required to incorporate new relations into the

process. LSA does not perform well with words that have

different meanings based on their contextual usage. LSA is

also conducted under the assumption that words and

documents follow a Gaussian distribution when it is possible

that a Poisson distribution exists [8]. Despite these limitations,

the MOPGA LSA function is able to perform the SVD

decompositions on the same underlying data that is

constructed for the TF-IDF vector search. The ability to

recognize relations of the terms to other terms is also crucial

to returning relevant information. The actual generation of

pseudo documents by the MOPGA requires only a few matrix

multiplications once the SVD decompositions are complete.

3 MULTI OBJECTIVE ALGORITHMS

 A Multi Objective algorithm seeks to

maximize/minimize two or more distinct functions. As is often

the case one set of input may increase the desirable results

from one function while degrading the results from the other

functions. To accomplish the goal of returning relevant

information quickly the MOPGA must know how to balance

trade offs between one resulting function score with respect to

the other function. To accomplish this task the MOPGA uses

Pareto Dominance [5].

3.1 QUAD TREE PARETO DOMINANCE BASED

RANKING

A Quad Tree is a tree based data structure that stores

different chromosomes. Each chromosomal node is a vector

with two elements that reflect the TFIDF and LSA scores. All

nodes residing in the tree are non-dominated. This is

accomplished by assigning scores to the TFIDF and LSA

values of particular candidate. A 0 indicates that this

chromosomes score is worse than the comparison node. A

score of 1 indicates that the candidate's score is superior to the

comparison's node. Each candidate thus scores one of four

possible values. 0/0 indicates that it is completely dominated

by the comparison node and thus subsequently discarded. A

0/1 or 1/0 indicates that one of the search values scores better

than the comparison node and thus is not considered

dominated by it. In this case if a child node exists further

comparisons will be evaluated against that node. If there are

no child nodes then the candidate is inserted into the tree at the

appropriate position. In the final case 1/1 indicates that the

candidate dominates the existing node. In this case the

candidate will take the place of the existing node, and all child

nodes of the existing node to be discarded will be evaluated

for insertion. The Quad tree is thus guaranteed to contain only

non-dominated nodes, and new candidates can be efficiently

compared for insertion [6].

4 GENETIC ALGORITHMS

 GAs has been successfully applied to a wide variety

of problems. In particular, GAs excels at optimization

problems where optimal solution execution times are

exponentially dependent on the size of the data search space.

GA's encode, directly or indirectly different input values for a

chromosome. These chromosomes undergo genetic processes

where the current best-known chromosomes contained in

PKnown are used to generate new chromosomes, PCurrent.

The best of these new PCurrent chromosomes replace less fit

chromosomes in PKnown. Over many generations,

chromosomes converge to optimal solutions [7]. MOPGAs

offer a wide number of solutions to overcome problems

associated with premature convergence.

4.1 ENCODING DOCUMENTS

 Encoding is the process of mapping a problem and its

possible solutions to a chromosome. These chromosomes can

be a direct encoding of values, it can represent different states

of a state machine, or even an order arrangement of items.

Because of the number of possible terms that can be included

in a relatively small set of documents it is not possible to

represent all terms in a single chromosome. The MOPGA

presented here uses a direct encoding scheme to limit the

number of alleles in a chromosome to ten. Each individual

allele is a unique term identifier that is assigned to terms as

they are read into the dictionary.

 The dictionary is an M x N matrix, where M is the

number of searchable terms in all documents. The actual

position number of a term in this dictionary is the real encoded

value. As each document is read into, the dictionary the

number of time a term appears in the document is recorded in

the matrix. Once all documents are read into the dictionary the

matrix is used to generate TFIDF values. This domain

information is exploited later to intelligently select strong

candidates for evaluation. This is accomplished by

constructing a series of term heaps for each MOPGA Agent

that include only documents within an agents assigned search

space.

4.2 Selection

 Each generation of the MOPGA generates a

predefined number of chromosomes called PCurrent to

evaluate for insertion into the Quad tree based set called

PKnown. To generate the PCurrent set two PKnown nodes are

selected for crossover, which generates four new

chromosomes. The selection phase is the process of randomly

picking two parents for the crossover phase. In terms of this

process, the selected parent nodes represent the local space

that will be further explored.

4.3 SINGLE POINT CROSSOVER

The process by which the MOPGA generates new

chromosomes from the Pknown set is called Single Point

Crossover. Using two chromosomes A, and B from the

Pknown set both chromosomes are split in halves resulting in

A1,A2 and B1,B2. The second halves are then exchanged

resulting in A1 B2, A1 B1, A2 B1, A2 B2, B1 A1, B1 A2, and

B2 A1, B2 A2. The order of the alleles in the resulting

chromosomes affects the local search space that is evaluated

during the subsequent evaluation phase.

4.4 RANDOM MUTATION

 One drawback to this type of search occurs when the

MOPGA continually selects the same parents to generate the

same results. When the MOPGA finds a series of solutions

that are strong candidates many very similar results begin to

be found in PKnown. From an evolutionary standpoint, these

chromosomes represent the fit possibilities found so far, but

they may in fact represent only local optima.

 To force the MOPGA to explore chromosome that

cannot be formed by the combination of PCurrent solutions, a

pre-known percentage is used to determine if a random

mutation occurs in the PCurrent chromosomes generated by

the MOPGA. A mutation is accomplished by selecting a

random allele and then generating a random term value to

encode. This mutation is similar to annealing concepts used in

other algorithms. It forces the algorithm to explore other

possible locations in the search space [8].

4.4 EVALUATION

 Evaluation is the process the MOPGA uses to

determine if a given chromosome is fit for insertions into

Pknown and ultimately presented to the user. The MOPGA

selects a document and generates TFIDF and LSA vector

similarity scores by comparing the appropriate document

vectors to the search vectors. These scores are then used by

the Pareto quad tree ranking mechanism to determine if the

chromosome should be retained in the PKnown set.

 The nature of a document search implies it is a finite

search of available documents that are contained in a library.

The MOPGA conforms to this constraint by selecting an allele

in a chromosome and then using the term heaps to select a

document. This process ensures that processing time can never

exceed the processing time of a straight linear search of the

same library. As documents are evaluated, they are inserted

into a hash map that stores the evaluations and enable the

evaluation to rapidly determine if an evaluation has already

been performed against the selected document.

5 PARALLELIZATION

Many of the mathematical operations involved in TF-

IDF and LSA lend themselves to parallelization, and in

particular to CUDA based implementations [9]. When the

algorithm first begins computing TF-IDF scores, it is

beneficial to use reduction techniques when summing term

counts. When computing a singular value decomposition there

are several parallel techniques to apply. Beyond the

mathematical applications, there is the process of exploring a

Pareto front. By dividing the data space among the MOPGA

Agents, different parts of the whole can be run in different

threads. This organization conforms too many of the common

parallel patterns in use today [10].

5.1 DATABASES

 This MOPGA implementation uses two types of

databases, data space and PKnown. Data space contains all of

the “static” data that does not change while a search is

underway. It contains all of the TFIDF and LSA domain

information as well as document excerpts and indexed terms

lists. This data space also contains a series of heaps for each

MOPGA Agent that is scheduled to run. These heaps represent

the assigned search area each MOPGA Agent will concern

itself with. These heaps are copied into each MOPGA Agents

PKnow database. There is only one copy of data space and it

is read only once a search begins.

The second type of database is called PKnown. Each

MOPGA Agent that is tasked to run has its own PKnown

database that initially contains its assigned term heaps and an

empty Pareto quad tree. As chromosomes are evaluated, they

are translated into a document via the term heaps and the

results are stored. Using these evaluation results a

chromosome is then considered for insertion into the Pareto

quad tree.

5.2 MOPGA AGENT

The MOPGA Agent is tasked with attempting to find

non-dominated chromosomes to insert into its own Pknown.

When there are insufficient chromosomes in the Pareto quad

tree the MOPGA Agent will generate random chromosome to

help explore the Pareto front. After two chromosomes are

generated or selected, single point crossover and mutations are

finished a random allele is selected. Using the term heaps

assigned to this agent a document in its assigned sections of

data space is then evaluated. In the case that a chromosome

has an allele that has no more documents in its heap then the

allele is mutated and a different existing allele is selected. If

the resulting document evaluation is non-dominated then the

chromosome is inserted into Pknown for the MOPGA Agent

to exploit.

5.3 LIMITATIONS

 While the CUDA devices have the ability to greatly

speed up some of the more complex mathematical operations,

there are only a limited number of these devices on a given

machine. This limitation means that access to the devices has

to be shared with semaphore type locks. This algorithm has

the ability to find the Maximum optima for a given search

there is no guarantee that it will be found if the search

constrained by time or cycles.

6 ALGORITHMS

6.1 MOPGA ALGORITHM (STEPS 2 – 5 IN ARE IN

PARALLEL AND AGENTS RUN IN PARALLEL)

1. Read in Data, build term dictionary and document

library matrices.

2. Perform TFIDF / LSA

3. Divide Search Spaces

4. Build term heaps per MOPGA Agent

5. Gather search terms

6. Launch MOPGA agents.

7. Wait for time, cycle, or generation end condition

8. Present results from agent PKnown.

6.2 MOPGA AGENT

1. Select parent chromosomes from Pknown or generate

random chromosome if insufficient chromosomes.

2. Perform single point crossover.

3. Mutate chromosomes

4. Determine document – term heaps.

5. Evaluate – perform TFIDF/LSA.

6. Insert chromosomes into Pknown.

7 EXPERIMENTS

A series of experiments were conducted to

demonstrate that combined TFIDF/LSA ranking returns both

more and superior results than using either of the technique

alone would generate. Experimentations also includes

execution times of the different techniques. All experiments

were conducted on a intel i7-970 and 12 GB of ram and 4 cpu

cores. Additionally the test machine has two GTX480 Nvidia

video cards, each having 1.5 GB of memory and 480 CUDA

cores. The code was written in C++ and C for CUDA version

2.5. Mathematical libraries provided by NVIDA and EM

Photonics CULA were used were possible. Serial tests relied

on TNT JAMA linear algebra libraries and templates.

7.2 EXPERIMENT 1

 The first experiment was conducted to gather data

that could be used to determine if combining TFIDF and LSA

would yield better results. The MOPGA algorithm was

allowed to iterate over all data as well as by cyclic restriction.

The data set size was also altered. LSA K reductions were held

constant at 100 for both the MOPGA and the LSA serial

version. It should be noted that the TNT JAMA linear algebra

libraries could not process a matrix larger than 10,000 X 300

so the final two runs have no results recorded.

Fig 1.

 Figure 1 shown here demonstrates that both the LSA

and the MOPGA algorithm returned only highly relevant data,

while TFIDF seemed to return some items that were not truly

related to the search but contained a term in the search vector.

Both the MOPGA algorithm and the TFIDF returned more

results than did the LSA. The MOPGA algorithm did return

the most relevant documents.

7.2 EXPERIMENT 2

 The second experiment is very similar to the first

experiment, except that execution times recorded in an attempt

to show how well the proposed MOPGA algorithm performed

against the other serial implementations. The time shown in

these charts is both the initial time spent processing a data set

before a query and the search time spent finding the results. It

should be noted that while the data set size was increased from

8860 X 150 to 11882 X 400 for the two serial versions, only

the larger dataset was used for the recorded MOPGA time

shown here.

Fig 2.

Figure 2 shows that as data is added, the serial linear

algebra libraries in the LSA Algorithm scales very poorly and

even fails to execute with matrices that exceed some 10,000

0
2
4
6
8

10
12

M
O

P
G

A
1

5
0

M
O

P
G

A
2

0
0

M
O

P
G

A
2

5
0

M
O

P
G

A
3

0
0

M
O

P
G

A
3

5
0

M
O

P
G

A
4

0
0

TF
ID

FS
er

3
0

0

TF
ID

FS
er

3
5

0

TF
ID

FS
er

4
0

0

LS
A

Se
r2

5
0

LS
A

Se
r3

0
0

Results

Valid Results

0
10
20
30
40
50
60

DOC
150

DOC
200

DOC
250

DOC
300

DOC
350

DOC
400

MOPGA400

LSA Serial

TFIDF Serial

X 300 cells. The MOPGA algorithm also has some initial load

time due to the SVD decomposition in LSA but scales more

like the TFIDF algorithm as the number of cycles increases.

Fig 3.

Taking into consideration the total processing time

and breaking up the processing times into pre-search and

vector similarity computations demonstrate that LSA pre-

compute times are several orders of magnitude greater than

the search times so those values do not appear..

8 CONCLUSION

 By combining TFIDF and LSA the MOPGA

algorithm demonstrates that both the relevance and number of

results returned to a user submitted search are improved and

the scaling implications are much more favorable for the

MOPGA algorithm in comparison to the LAS and TFIDF. The

greatly reduced SVD decomposition time means that if

necessary MOPGA could be re-indexed frequently lending

itself to much more volatile databases. The MOPGA shows

promise with much larger datasets where iterating over all

possible results may not be possible. The Pareto Quad Tree is

easily adapted to include other search domains lending itself

to further refinement and experimentation.

 Throughout the testing of this algorithm a constant K

dimensional reduction of 100 was applied to the results. Many

experiments show that altering this value can have a great

effect on the quality and quantity of LSA searched. Some

experimentation should also be conducted with the frequency

with which genetic mutations are introduced for evaluation.

Currently this is a constant 5% and this may not be optimal.

When the initial data set size grows beyond what fits

on a single CUDA device, the data dpace database will need to

be split before genetic operations are conducted. MOPGA

Agents currently deal with an assigned piece of the data space

database so further scaling experiments should be conducted

to determine what the scaling limits are.

REFERENCES

[1] Manning, C. D., Raghavan, P., & Schutze, H. (2008). Term

frequency and weighting. from http://nlp.stanford.edu/IR-

book/html/htmledition/tf-idf-weighting-1.html

Retrieved March 23, 2010.

[2] Ramos, J. Using TF-IDF to Determine Word Relevance in

Document Queries. Piscataway, NJ: Rutgers University, 2001.

[3] Landauer, T., Foltz, P., & Laham, D. An Introduction to

Latent Semantic Analysis. Discourse Processes , 25 (2 & 3),

pp. 259 – 284, 1998.

[4] Papdimitriou, C., Tamaki, H., Raghavan, P., & Vempala, S.

“Latent semantic Indexing: a probabilistic analysis”, In

Proceedings of the seventeenth ACM SIGACT-SIGMOD-

SIGART symposium on Principles of database systems (pp.

159-168). Seattle, Washington, United States: ACM, 1998.

[5] Coello, C. A., Lamont, G. B., & Van Veldhuizen, D. A.

“Evolutionary Algorithms for Solving Multi-Objective

Problems 2nd Ed. New York: Springer Science + Buisness

Media., 2007.

[6] Mostaghim, S., Teich, J., & Tyagi, A., “Comparison of

Data Structures for Storing Pareto-sets in MOEAs” In

Proceedings of the 2002 World on Congress on Computational

Intelligence. 1, pp. 843-848. Honolulu, HI, USA: WCCI,

2002.

[7] Bhattacharya, M “Exploiting Landscape Information to

Avoid Premature Convergence in Evolutionary Search” In

Proceedings of the 2006 IEE Congress on Evolutionary

Computation (pp. 560 - 564). Vancouver, BC: IEEE, 2006.

[8] Xu, Y., Deli, Y., & Yu, L., “Efficient Annealing - Inspired

Genetic Algorithm for Information Retrieval from Web-

Document”, In Proceedings of the first ACM/SIGEVO

Summit on Genetic and Evolutionary Computation, 2009.

[9] Mattson, T. G., Sanders, B. A., & Massingill, B. L. Patters

for Parallel Programming. Boston: Addison-Wesley, 2005.

 [10] NVIDIA Corporation. CUDA Zone - Documentation.

Retrieved November 24, 2009, from CUDA Zone:

http://developer.download.nvidia.com/compute/cuda/2_3/tool

kit/docs/NVIDIA_CUDA_Programming_Guide_2.3.pdf,

accessed 2009, August 26.

0

0.1

0.2

0.3

0.4

0.5

200 250 300 350 400

MOPGA-
Search

TFIDF-Pre

TFIDF-
Search

http://nlp.stanford.edu/IR-book/html/htmledition/tf-idf-weighting-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/tf-idf-weighting-1.html
http://developer.download.nvidia.com/compute/cuda/2_3/toolkit/docs/NVIDIA_CUDA_Programming_Guide_2.3.pdf
http://developer.download.nvidia.com/compute/cuda/2_3/toolkit/docs/NVIDIA_CUDA_Programming_Guide_2.3.pdf

