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Abstract - Future science-driven landing missions, conceived 

to collect in-situ data on regions of planetary bodies that have 

the highest potential to yield important scientific discoveries, 

will require a higher degree of autonomy. The latter includes 

the ability of the spacecraft to autonomously select the landing 

site using real-time data acquired during the descent phase. 

This paper presents the development of an Evolutionary Fuzzy 

Cognitive Map (E-FCM) model that implements an artificial 

intelligence system capable of selecting a landing site with the 

highest potential for scientific discoveries constrained by the 

requirement of soft landing on a region with safe terrain. The 

proposed E-FCM evolves its internal states and 

interconnections as function of the external data collected 

during the descent, therefore improving the decision process 

as more accurate information is available. The E-FCM is 

constructed using knowledge accumulated by experts and it is 

tested on scenarios that simulate the decision-making process 

during the descent toward the Hyndla Regio on Venus. The E-

FCM is shown to quickly reach conclusions that are consistent 

with what a planetary expert would decide if the scientist were 

presented, in real-time, with the same available information. 

The proposed methodology is fast and efficient and may be 

suitable for on-board spacecraft implementation and real-time 

decision-making during the course of any robotic exploration 

of the Solar System. 

Keywords: Planetary Exploration, Planetary Landing, 

Autonomous Systems, Fuzzy Cognitive Maps 
 

 

1 Introduction 

  Future unconstrained and science-driven NASA and 

ESA missions to explore planetary bodies in the Solar System 

will require soft landing in sites that have the potential to 

yield the highest geological and exobiological information. 

During the planning of any landing mission, scientists and 

engineers select an appropriate landing site on the planetary 

body of interest using data acquired during the 

reconnaissance of previously deployed robotic spacecrafts. 

The completeness of currently available information varies 

widely from body to body and depends critically on the 

number of missions deployed on the particular planet and/or 

natural satellite as well as on their geophysical properties (e.g. 

dense, thin or no atmosphere) which may inherently make the 

acquisition of surface data from orbiting spacecraft very 

difficult.  For example, instruments on board spacecrafts 

currently orbiting Mars (e.g. Mars Reconnaissance Orbiter 

[1], Mars Odyssey [2]) are streaming a wealth of data about 

the red planet, thus providing a large amount of information 

to the scientists that can employ the available data to make 

the best possible landing site selection. On the contrary, other 

planetary bodies of high interest such as Venus and Titan 

have less available information and subsequently, a-priori 

landing site selection becomes more problematic. Due to a 

dense and opaque atmosphere which limits the 

electromagnetic bands available to passive optical 

instruments, both Venus and Titan have been mainly mapped 

using Synthetic Aperture Radar (SAR, e.g. Magellan SAR 

and Cassini SAR [3]) which generates images using the 

backscattered signal collected by the spacecraft antenna. SAR 

images have limited spatial resolution and they are harder to 

interpret, therefore making the ground-based landing 

selection process extremely difficult. Importantly, even in the 

case of Mars, a-priori selection of a suitable landing site is a 

complex process which involves the planetary science 

community at large. For example, NASA Jet Propulsion 

Laboratory has been organizing a series of workshops to 

actively engage Mars scientists to reach a consensus for the 

selection of the upcoming Mars Science Laboratory (MSL) 

landing site [4].  

Whereas ground-based pre-planning and landing site 

selection is an important activity for any space mission 

comprising a lander, the final and best landing site selection 

may be possibly executed in real-time during the Entry, 

Descent and Landing (EDL) phase. Here, we define “best” as 

the landing site that has the potential to yield the highest 

potential for scientific discoveries and that satisfies specific 

landing safety constraints.  Real-time, autonomous selection 

of such a site requires that the robotic lander is equipped with 

a system capable of a higher degree of autonomy. Such a 

system should (1) include software packages that enable fully 

automated and comprehensive identification, characterization, 

and quantification of features information within an 

operational region with subsequent target prioritization and 

selection for close-up reexamination (e.g. Automated Global 

Feature Analyzer, AGFA [5]); and (2) integrate existing 

information with acquired, “in transit” spatial and temporal 

sensor data to automatically perform intelligent planetary 

landing, which includes identification of sites with the highest 



potential to yield significant geological and astrobiological 

information ([6],[7]) . 

In this work, we design and simulate an advanced in

system capable of autonomously selecting landing site

data coming in real-time from the lander sensors.

Evolutionary Fuzzy Cognitive Maps (E-FCM

the cognitive reasoning of a planetary scientist that is 

presented with the same information available to the lander 

on-board computer and decides in real-time 

the spacecraft for safe landing. While a large numbers of 

techniques in the AI domain are available (e.g. fuzzy experts 

[9],[7]) , the E-FCM for real-time landing decision making 

was selected because of its ability to model

processes comprising a large number of interact

parameters. Importantly, available experience and knowledge 

accumulated by planetary scientists can be easily translated in 

a cognitive map that is expressed through the use of concepts 

connected via causal relationships. Moreove

the proposed algorithm to reach conclusions in a f

efficient way, make it ideal for real-time implementation

the spacecraft on-board microprocessor. 

To our knowledge, FCMs have been only recently employed 

to design algorithms for autonomous interpretation of 

planetary data (see [10]). The main goal of this work is to 

show how FCMs in general, and E-FCMs in particular, can be 

used to advance the state of the art of autonomy in planetary 

exploration by providing an effective inference 

can be easily understood by planetary scientists.

2 Autonomous Landing on Planetary 

Bodies 

2.1 Landing on Venus and Titan: 

Autonomous Systems 

 Landing on planetary bodies with dense atmosphere 

such as Titan and Venus is extremely challenging

future science-driven and unconstrained landing scenario

including soft precision landing (< 100 m) and pin

landing (<1 m), autonomy will play more and more a critical 

role to a) provide autonomous selection of the landing site 

based on real-time data, b) implement a targeting program that 

will generate a flyable trajectory to the selected target and c) 

execute real-time guidance algorithms to drive the system to 

the desired location.  Current flight-ready technology has been 

effective to land a spacecraft on a preselected region within a 

landing ellipse of 120x20 km (e.g. Phoenix Mission to Mars 

[11]). Future missions (e.g. MSL, [12]) have the potential

shrink the landing ellipse to less than 10 km. Clearly, 

autonomous, real-time landing site selection has never been 

implemented. The latter is extremely desirable

selection takes place in real-time by reasoning on data

collected during the descent to determine sites with

highest potential of scientific discoveries and avoid areas with 

high hazard potential.  
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In human history, only one landing probe has been delivered 

to the Titan surface, i.e. the Huygens probe

the Titan surface on January 14, 2005 [13]

completely preplanned and unguided due to scarce

information. The probe landed on what is now interpreted to 

be a methane-rich outflow channel

camera system collected a set of images showing

interesting geological features which may have constituted 

interesting landing sites. Landing on Venus has been 

attempted many times as documented by the results fro

Venera and Vega missions [14]. Venus surface has been 

mapped using the Magellan SAR which is the only mean to 

probe the surface beyond its dense atmosphere. Figu

shows the landing ellipse of the region s

which is also the region selected to test our design (see section 

4). The region presents 8 stratigraphic units ([15]

analysis, has been subdivided in three regions. Region #1 is 

mainly comprised of what is classified as “Tesserae Units”, 

i.e. ancient terrains comprising dislocated units of tectonic 

origin. Region #2 is mainly comprised of highly fractured 

plains that exhibit lobate flow field features. Region #3 

exhibits a smooth (radar-dark) behavior interpreted as 

volcanic planes comprising materials that resembles to 

terrestrial volcanic rocks ([16]). In all Venera and Vega 

missions, the landing site has been preselected
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Venera 10 Landing ellipse. The area has been 

divided in three regions with features (real and hypothesized) 

FCM algorithm  

Landing on Venus and Titan: The need for 

Evolutionary Fuzzy Cognitive Maps (E-FCM, [8],[17]) may 

be considered as an extension of FCMs specifically developed 

to model variable internal states as well as the dynamic, 



complex and causally related context variables (i.e. coming 

from data acquired during the landing descent). In its basic 

formulation, FCMs are digraphs designed to capture the 

cause/effect relationships exhibited by a system ([18]). Two 

basic elements form the backbone of the maps, i.e. nodes and 

arcs. Nodes are the concepts representing factors and 

attributes of the modeled system, e.g. inputs, outputs, states, 

variables, events, goals, as well as trends. Arcs are introduced 

to describe the causal relationships between concepts with a 

degree of causality. Extending this approach further, in E-

FCMs, the concept states evolve in real-time as function of the 

internal mental state, external inputs and possibly external 

causalities. 

 

Table 1: Concepts Description and Concepts Values 

 
Concepts Concept Description Value 

C1, C12, C23: 
Landing Region 

#1,#2,#3 

Index for Landing Site 

Selection 

Continuous Value 

[0,1] 

C2, C13, C24:  
Potential for 

Scientific Discoveries  

(PSD 1,2,3) 

This concept indicates the 
potential exhibited by the 

region to yield significant 

discoveries 

Five fuzzy values, 

{VL,L,M,H,VH} 

C3, C14, C25:  

Potential for Hazards 

(PHZ 1,2,3) 

This concept indicates the 

regional potential for 

landing hazards 

Five fuzzy values, 
{VL,L,M,H,VH} 

C4, C15, C26:  

Volcanic Plain 
Features (VPF 1,2,3) 

VPF indicates the level of 
presence for features 

associated to volcanic  

landforms 

Six fuzzy values, 

{A,VL,L,M,H,VH} 

C5, C16, C27:  Flow-

Like Features (FLF 

1,2,3) 

FLF indicates the level of 

presence for features 

volcanic flows 

Six fuzzy values, 
{A,VL,L,M,H,VH} 

C6, C17, C28:  

Ancient Terrain 
Features (ATF 1,2,3) 

ATF indicates the level of 
presence for features 

associated with ancient 

terrains 

Six fuzzy values, 

{A,VL,L,M,H,VH} 

C7, C18, C29:  

Smooth Terrain (ST 

1,2,3) 

ST indicates the level of 
smoothness of the region 

Five fuzzy values, 
{VL,L,M,H,VH} 

C8, C19, C30:  
Rough Terrain (RT 

1,2,3) 

RT indicates the level of 

roughness  of the region 

Five fuzzy values, 

{VL,L,M,H,VH} 

C9, C20, C31:  High 
Slope Terrain (HST 

1,2,3) 

HST indicates the high 

slope level of the region 

Five fuzzy values, 

{VL,L,M,H,VH} 

C10, C21, C32: Low 
Slope Terrain (LST 

1,2,3) 

LST  indicates the level of 
low slope level  of the 

region 

Five fuzzy values, 

{VL,L,M,H,VH} 

C11, C22, C33:  

Featureless Terrain 
(FT 1,2,3) 

FT indicates the level of 

featureless terrain of the 
region 

Six fuzzy values, 

{A,VL,L,M,H,VH} 

 

Indeed, each concept is equipped with its own update 

schedule as well as subjected to a small self-mutation 

probability. Moreover, the causal connection between 

concepts is fired according to a specified conditional 

probability. The evolutionary extension to FCMs has been 

chosen due to the nature of the landing selection process. 

During the Entry, Descent and Landing (EDL) phase, data are 

continuously streamed in real-time to the spacecraft computer 

and they are processed to determine the landing site using all 

available information. However, such data are remotely 

collected and subjected to uncertainty due to the limited 

resolution of the instrumentation. With the assumption that as 

the lander gets closer to the targeted region, more accurate 

information is available, the E-FCM must have the ability to 

adapt and dynamically update the connections strength to 

account for newly available data. In this case, differently than 

conventional FCMs, concepts are represented by tuples of 

properties, i.e. A = [AV, T, PS]. Here, AV denotes the fuzzy 

values of the concepts C (same as FCM). Concepts values 

generally range between [-1, 1] or [0,1]. For a system of N 

concepts, AV = [AV1, AV2,….,AVN] is an evolving vector that 

represents the time evolution of the each individual concept 

value Ci.  T = [T1,T2,….TN] is a Nx1 vector that represents the 

evolving time schedule of each concept. The latter accounts 

for the fact that various concepts may have a different real-

time update schedule. PS = [PS1,PS2,….,PSN] is the state 

mutation vector which account for the possibility that each 

concept may randomly alter its internal state in real time. 

According to Cai et. al. ([8]), the self-mutation probability 

must be modeled as small value to avoid system’s instability. 

 

 
Figure 2: E-FCM topological structure. The weights are 

defined using fuzzy linguistic values (VL = 0.1, L = 0.25, M = 

0.5, H = 0.75, VH = 0.9). P and N indicate respectively direct 

and inverse connection. Initial values of probabilities are 

indicated as well.  

 

The causal relationship between concepts is defined as the 

tuple R = [W, Pm] which extend the conventional FCM 

approach (which uses only the fuzzy connection matrix) to 

allow the incorporation of uncertainty via fuzziness and 

randomness. For a system of N concepts, W = {wij} is the 

NxN weight matrix that represents the causal relationship 

between two concepts in fuzzy terms (e.g. high, low, medium, 

absent, etc.). The connection can be either positive or 

negative. Pm = {pi,j} is the NxN matrix of causal probabilities 

between the interconnections. Causal probabilities may also 

be described in fuzzy terms. They represent the uncertainty of 

connections between concepts. For example, pi,j represent the 

probability that the concept Ai influences Aj with the strength 



defined by the correspondent wij. The value Ai of the concept 

Ci is computed by accounting for all possible influences 

deriving from interconnected concepts as well as the causal 

probabilities deriving from Pm. At each time interval and 

according to the predefined time schedule T, the concepts are 

updated using the following formula: 

 

���� � �� � 	 
����� � � �����
����������
�   (1) 

    

Here, f(·) is the activation function used to regulate the state 

variable (bivalent, trivalent or logistic). The weight matrix is 

evaluated according to the causal probability matrix and the 

value is randomly changed according to the self-mutating 

probability. 

 

The development and construction of the E-FCM is executed 

using knowledge accumulated by field experts who define the 

type and numbers of concepts, the strength of the connections 

and also the causal probability matrix. Various methodologies 

are available to define the connections strength. Papageorgiu 

et. al. ([19]) proposed to define the strength of the connection 

between concepts using fuzzy IF-THEN rules in the following 

fashion: 

 

IF value of concept Ci is B THEN value of concept Cj is C and 

the linguistic weight wij is E 

 

Here, B,C,E are linguistic fuzzy values determined via 

appropriate membership functions with values in the range 

[0,1] for direct connection and [-1,0] for inverse connection. 

Indeed, for any of the established concepts, the experts 

determine the negative or positive effect of one concept on the 

others with a fuzzy degree of causation. As shown by [19], 

experts’ opinions can be accounted individually via 

independent linguistic rules that are subsequently aggregated 

and de-fuzzified. Our group agreed on the structure of the map 

so that only one linguistic rule is defined to infer the fuzzy 

causal connection between concepts (i.e. fuzzy aggregation is 

not required). 

 

3 E-FCM Methodology for Landing 

Decisions Making: the case of Venus 

 The problem of autonomous selection of a landing 

region that integrates published knowledge and real-time 

acquired information on the journey toward the planetary 

surface is a complex process that requires interaction 

between large numbers of parameters. Moreover, for a given 

scenario, defining the criteria that allow a clear definition of 

what is the region that yields the maximum possible scientific 

information is a matter of debate within the planetary science 

community. Here, we consider the case of landing on Venus 

and we focus on designing an E-FCM that selects the landing 

region, among the observables, that exhibits the terrain with 

the most ancient features and hence has the potential of 

unfolding a large portion of the geologic history of the planet 

([17]). However, potential for scientific discoveries and 

geological understanding of any of the considered regions 

must be consistent with the ability of the spacecraft to safely 

land on the selected site. Because of the limited SAR 

resolution and the difficulty for its correct image 

interpretation, a-priori analysis of potential Venusian landing 

regions may not unfold critical features that may yield higher 

(or lower) potential for scientific discoveries and/or potential 

hazards. Thus, the overall goal is to construct an E-FCM that 

ingests data during portions of the EDL and, for the pre-

selected regions, it infers what is the potential for scientific 

discoveries (in the sense clarified above) and potential for 

hazards. Such indicators are then used by the map to 

autonomously select the best site for a safe soft landing. The 

proposed E-FCM evolves in time according to a prescribed 

schedule to a) account for data streamed into the system from 

the sensors and b) adapt for reasoning under uncertainty and 

ambiguity of the data available as function of time. Our team 

designed an E-FCM model that accounts for 33 

interconnected concepts (see table 1). The selected concepts, 

which have been linked to data that may be determined using 

real-time feature extraction software (e.g. AGFA, [5]) are 

divided in three major groups. Each group contains input 

concepts that have been selected to account for features that 

are required to infer both the potential for scientific 

discoveries and the potential for hazards for any of the three 

regions located within the selected landing area on the 

southern part of the Venusian Hyndla Regio (Figure 1). 

Indeed, the E-FCM is asked to select one landing site among 

the three pre-identified landing regions using hypothesized 

data acquired during a portion of the descent flight. For each 

of the three regions, a group of 4 variables are identified to 

influence the potential for scientific discoveries (e.g. C4, C5, 

C6, C11 for landing region #1) whereas a group of 5 variables 

are shown to influence the potential for hazards (e.g. C7, C8, 

C9, C10, C11 for landing region #1). Both potential for 

scientific discoveries and potential for hazards influence the 

landing site selection. The weight matrix is selected by our 

team’s planetary experts.  For example, the link between 

concept C6 (Ancient Terrain Features for Landing Site #1) 

and C2 (Potential for Scientific Discoveries on Landing Site 

#1) is established to be “Positive Very High (NVH)” or using 

an IF-THEN formalism: 

 

IF a small change in the value of concept C6 occurs THEN a 

very high change in the value of the concept C2 is caused. 

Inference: the influence of C6 on C2 is Positive Very High. 

 

Conversely, the influence between the value of the concept 

C7 (Smooth Terrain in landing Site #1) and C3 (Potential for 

Hazards on Landing Site #1) is “Negative High (NH)” or: 

 

IF a small change in the value of concept C7 occurs THEN a 

negative high change in the value of the concept C3 is 

caused. Inference: the influence of C7 on C3 is Negative Very 

High. 

 

In absolute terms, the influence of the potential for scientific 

discoveries and hazards on the landing region concepts has a 



value of PH and NH, respectively. However, the connection 

is selected to be time dependent in the following sense: 

During the descent toward the targeted area, the influence of 

the potential for scientific discovery is initially set to be PH 

and the potential for hazard is initially set to be Negative 

Low (NL). As the lander gets closer to the surface, the 

influence of the hazard on the landing site selection is 

increased (limit to NH when the final decision is made) 

whereas the influence of the potential for scientific 

discoveries is reduced (limit to PL when the final decision is 

taken).  

Table 2: Ground Truth for the Landing Scenario #1 

 

Scenario # 

1 

Landing 

Region #1 

Landing 

Region #2 

Landing 

Region #3 

VPF L L VH 

FLF L VH L 

ATF H A A 

ST H H H 

RT L L L 

HST L L L 

LST H H H 

FT VL VL VL 

 

 

Table 3: Ground Truth for the Landing Scenario #2 

 

Scenario 

#2 

Landing 

Region #1 

Landing 

Region #2 

Landing 

Region #3 

VPF L L VH 

FLF L VH L 

ATF H A A 

ST L H H 

RT H L L 

HST H L L 

LST L H H 

FT VL VL VL 

 

The goal is to ensure that priority is given to landing safety 

especially when less uncertain, higher resolution data are 

available. The probability matrix is also established by our 

field experts and, for certain connections, it is assumed to be 

time-dependent. As a general guide, the probability of 

connection between input data (e.g. concepts C4-C11) and 

derived concepts (e.g. C2, C3) is assumed to increase with the 

time of flight to account for the fact that uncertainty in data is 

less pronounced and therefore the connection is more 

probable. Figure 2 illustrates the designed E-FCM model for 

landing site selection with numerical values for weights and 

causal probability. Importantly, the map topology has been 

selected such that the there is an internal competition to 

select the winning landing site. 

 

4 Simulations and Results 

 After the construction of the E-FCM, a number of 

scenarios have been considered to simulate the behavior of 

the algorithm. It is assumed that the scientific team 

responsible for soft landing on Venus, selects the southern 

part of Hyndla Regio as landing area (see figure 1). The area 

is subdivided in three landing sites for which the “ground 

truth” is assumed to be known and established a-priori. The 

EDL trajectory has been designed such that the lander can 

autonomously select the landing site using the E-FCM before 

tF, time after which guidance constraints impose that the 

other two regions are outside the reachability domain. It is 

also assumed that the spacecraft is able to collect data for 120 

seconds before tF is achieved.  

 

 

Figure 3: Landing scenario #1 E-FCM time-dependent output 

for selected concepts. A) Landing selections values; B) PSD 

values; C) PHZ values. 

 

The information is updated each 5 seconds during which the 

lander acquires and processes images to extract the features 

that are input to the E-FCM. For any of the established 

scenarios, it is assumed that the spacecraft collects data with 

an uncertainty that is function of the flight time. More 

specifically, the “ground truth” is set to be the mean value of 

a data sampling Gaussian distribution with a standard 

deviation that decrease as tF is approached (i.e. as the lander 



gets closer to the surface, the improved instrument resolution 

yields more accurate data). With this setting, data are 

continuously updated and the E-FCM run to infer, at each 

given time interval, what is the best landing region. Finally, it 

is noted that all concepts are updated synchronously (same 

time schedule) and no self-mutation probability is 

implemented. The following two scenarios are considered. 

 

Scenario #1: For the first scenario, the “ground truth” is 

constructed using fuzzy linguistic values as reported in table 

2. In this case, the available hypothesized data show a region 

#1 that is the most attractive for landing. Indeed, the large 

presence of ancient terrain features makes the region more 

attractive from the prospective of unfolding the ancient 

geological history of Venus.  All regions are shown to be 

very safe safe for landing (plenty of smooth and low slopes 

terrains). Landing regions #2 and #3 have also flow-like 

features and volcanic terrains which may be of scientific 

interest but lower priority. It is therefore expected that the E-

FCM selects Landing Region #1 as landing scenario. The 

simulation is initiated by setting up an initial concept value 

vector whose input values are assigned using a normal 

(Gaussian) distribution. The E-FCM evolves both weights 

and concepts values with input values updated each five 

seconds. The simulation results are reported in figure 3 which 

shows the time evolution of landing values as well as PSD 

and PHZ for all regions. As evident from figure 3A, the 

highest value is reached by region #1 which wins the 

competition with the other two regions. As the acquired data 

increasingly indicate that all regions are safe for landing, the 

E-FCM chooses the region with the highest potential for 

scientific discoveries, consistently with our expert analysis 

based on ground truth data. 

 

Scenario #2: The second scenario is similar to the first one. 

As reported in the ground truth table (see table 3), landing 

region #2 and #3 are identical to the first scenario.  Landing 

region #1 still shows a high presence of ancient terrains 

which makes it attractive from a scientific discovery point of 

view. However, the region now indicates a very robust 

presence of rough terrain and high slope surface which is a 

strong indication of potential for hazards which should 

discourage the landing selection. Figure 4 shows that the E-

FCM reached the conclusion that region #1 has both highest 

PSD and PHZ and subsequently disregard it for landing 

selecting landing region #2 which ahs lowest scientific 

interest but exhibits safer landing terrains.  

 

5 Conclusions 

 The artificial intelligence approach used in this work 

focuses on developing evolutionary fuzzy cognitive 

techniques that mimics the planetary scientist selection 

process for landing site selection, with special emphasis on 

Venus and Titan. It is shown that the proposed E-FCM 

reaches the same conclusions as field experts and it is fast 

enough to be suitable for real-time, on-board implementation. 

The outlined methodology has the potential to be the 

premiere AI choice for cognitive reasoning on data for 

planetary exploration. 

 

 

Figure 4: Landing scenario #2 E-FCM time-dependent output 

for selected concepts. Top: Landing selections values; Middle: 

PSD values; Bottom: PHZ values. 
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