
Towards an Automated Composer Of Popular Country Music

Jim Suruda, Norman Carver
Department of Computer Science, Southern Illinois University, Carbondale IL, USA

Abstract— In the context of a software tool that can generate
novel melodies in the popular country genre, this article
describes the development of such a system. Algorithmic com-
position systems typically generate musical works and leave
the evaluation of the output as a task for a human listener.
This article describes an attempt to use machine learning
techniques to evaluate the quality of the generated melodies.
We describe the architecture of a prototype melody generation
and evaluation system, which uses extracted features from Mu-
sicXML to judge the quality of machine generated melodies.
Experimental results, including rankings of generated songs
compared to currently charting country songs, are reported.

Keywords: machine learning, composition, music, artificial neural
networks, genetic algorithms

1. Introduction
The first computer program ever written might be one that

calculates Bernoulli numbers, written by Ada Lovelace for
Charles Babbage’s computing engine. In her notes on the
computing engine, Lovelace speculated about what further
problems a more powerful computing engine might solve:

"[computers] ... might compose elaborate and scien-
tific pieces of music of any degree of complexity or
extent" [4]

So, interest in computer music composition music begins
with the first computer science research paper ever published
in English. Researchers continue to explore new algorithmic
composition techniques every year, from jazz solo construction
to real-time accompaniment systems to AI applications that
generate concertos. But researchers rarely conduct machine
evaluation of generated music. A recent and exhaustive book
on the subject of algorithmic composition makes only a brief
one-paragraph mention of the evaluation of generated material,
and cites no research in evaluation at all. [10] Despite the
lack of mention by Nierhaus, there has been some work on
the evaluation of generated work, [8] [13], and many more
avenues of exploration still beckon.

Music generation and evaluation is a naturally appealing
subject for research because even a prototype system can
produce novel and interesting compositions, giving an exciting
glimpse at the future of AI, when intelligent systems might
begin to emulate and expand beyond human’s creative abili-
ties. More practically, efforts that uncover generation rules or
aid in feature extraction from the highly structured but well-
defined data of music could have applications in related fields.

The areas of medical data, imaging, and natural language all
have dense and complex data sets in which important features
are not always obvious.

We chose music generation as the domain for our testbed
system because a working prototype of a generation and
evaluation system makes an excellent springboard for further
research in machine learning. Judgements about the quality
or catchiness of music are naturally imprecise and fuzzy, and
lend themselves well to soft computing and AI techniques.
Working within an existing genre simplifies compositional
complexity, and our geographic and cultural proximity to
Nashville Tennessee made popular country music a compelling
choice for genre.

This paper describes the initial implementation of ACME
(The Automated Country Music Engine), a testbed we have
developed to explore computer generation and evaluation of
popular country music. The initial implementation has demon-
strated the feasibility of using a simple stochastic context-
free grammar to generate a variety of novel melodies within a
genre, and the possibility of using extracted features rank the
fitness of the generated works.

2. Related Work
Researchers had been developing algorithms for generating

melodies and producing harmony accompaniment long before
computers existed. One of the earliest examples of melody
generation is the Musikalisches Wurfelspiel, published in book
form in 1792 and attributed to Mozart. The book contained
small sections of music that the user would select by rolling
dice. Users would play the concatenated sections as a single,
novel work of music. Algorithms for harmony accompaniment
date from 1725, when Johann Fux published a system of rules
for creating counterpoint accompaniment to existing melodies.
[5]

Within years of the development of the first electronic
computers, researchers were writing programs to generate
music. One of the first to do this was Henry F. Olson, who in
1950 extracted first and second order Markov models of note
transitions from the works of Stephen Foster and used them
to generate novel melodies in the style of Foster. [11] Also in
the 1950s, Noam Chomsky’s work on generative grammars
for natural language inspired music researchers to develop
generative grammars for music. Lerdahl and Jackendoff built
on Chomsky’s work in the 1980s to develop an ambitious
grammar designed to generate any type of tonal music [9]
Since then, researchers have applied techniques from nearly



every area of AI and machine learning to the creation of
music works: cellular automata, transition networks, genetic
algorithms, and rule-based systems. But few have attempted
to quantify the quality of the generated works.

Klinger and Rudolf [2006] used an artificial neural network
to rank the fitness of computer generated melodies. [8] They
extracted a small set of features from melodies and used those
along with user-supplied evaluations to train a feed forward
neural network to rate the melodies. They had difficulty
creating a large enough body of training data because they
relied on users to listen to and rank each training example,
which was time consuming.

3. Problem Definition
When country music songwriters write songs, they often

create and reject a number of melodies in the process of
writing one song. Writers repeatedly create and reject series
of notes until they find something "catchy" or interesting
to incorporate into a song. [3] Of all the songs they write
each month, writers only submit a few of the best to their
publishers. [7] Publishers select a few of the most promising
songs to pitch to artists, who may choose some of the songs to
record for an album. Of all the thousands of albums released
each year, only a few songs get airplay on radio stations. So
for each song that makes it to the radio, a huge number of
songs are created, and only a few of the "fittest" songs are
selected from the pool for recording and popular rotation.
This is the process we modelled for our prototype music
generation system: create a large population of songs, then
use an evaluation system to select the best compositions. It is
those songs that are undeniably excellent that are in demand,
not those that are reasonably good. Tom T. Hall once said,
on the subject of "pretty good" songs "... if we could make a
career out of writing pretty good songs there’d be a lot more
people in the business than there are." [7]

When a publisher chooses a song that they would like to
present to a performer, they create what is called a "demo"
of the song. The demo is a sample recoding of the song
usually performed by studio musicians and a vocalist, created
to showcase the song to a performer. The studio musicians
play from a lead sheet, which contains only the melody notes,
lyrics, and chord symbols. [3] During the demo session the stu-
dio musicians and producer create the song arrangement; the
harmony, bass parts, backup vocals, and other instrumentation.
Thus, the essential deliverable produced by the songwriter is
the lead sheet: melody, lyrics, and chord symbols. Since our
system does not attempt to create lyrics, the output will be
melody notes and chord symbols. Figure 1 shows an example
of a lead sheet for a popular country song.

MusicXML is a standard format for lead sheets and is
supported by a variety of scorewriting and music editing tools,
so we chose to have the project produce and evaluate songs in
MusicXML format. The system should be able to generate a
large number of unique and original songs and evaluate them

Fig. 1: Section of a Lead Sheet.

based on a heuristic that has some relation to the evaluation
that occurs when human-composed songs compete for radio
airtime. If our project is successful, the top-rated songs the
system generates should be of equal quality to those composed
by a human expert. This success is dependant on the ability
of the generation system to produce successful songs and on
the ability of the evaluative system to successfully recognize
the best compositions. The acme of success for our prototype
would be for an artist to record one of the computer-generated
songs, and for the song to garner radio airtime.

4. Project Goals
We implemented our system, called the Automated Country

Music Engine (ACME), to provide the following capabilities:
1) Generate melodies
2) Add chord accompaniment
3) Write MusicXML
4) Read existing MusicXML
5) Extract features from MusicXML
6) Train a neural network to rank songs
7) Evaluate generated songs

Our goal for this iteration of ACME was to create a complete,
working system. Breaking the project up into subcomponents
based on the capabilities listed above made it possible to attack
the problem in independent sections. We chose to implement
ACME in C#, because the ergonomic IDE facilitates rapid pro-
totyping, because of its strong XML and string manipulation
capabilities, and partly due to philosophical preference for a
statically-typed language.

5. Implementation
Figure 2 illustrates the high-level architecture of ACME. In

the following sections, we will briefly describe the implemen-
tation of each major capability.

Fig. 2: ACME System Overview.



5.1 Generating Melodies
If our composition system is capable of successfully eval-

uating melodies, the melody generator does not need to be
especially good on average, as long as it can generate a large
variety of unique melodies within the popular country genre.
The space of all possible musical compositions is obviously
enormous, but the characteristics of typical country music
compositions are relatively tightly constrained, so the subspace
of reasonable country songs is much smaller. It is worth
considering how large this subspace is to get a sense of the
difficulty of the problem of generating popular country music.

A representative country song might consist of only three
main sections (verse, chorus, and bridge) that are repeated.
Each section could be about 8 bars of music, with 8 notes
or rests possible per measure. Using a scale of eight notes
plus a rest, there are 9 possible tones available. So, the search
space of all possible country songs is roughly 93∗8∗8 unique
melodies. If a system could evaluate a million of the songs in
the search space per second it would take 1.7 ∗ 1055 years to
process all possible songs. Enumeration of all possible works
is not a practical generation strategy. Other, less constrained
genres would have even larger search spaces, so popular
country is still an attractive choice for an experimental domain.

For our initial implementation, we settled on a generative
grammar to produce melodies since this made it easy to
represent the types of rules found in songwriting books.
Instead of enumeration, we settled on a simple generative
grammar to produce melodies. Generative grammars were
introduced by Noam Chomsky in the 1950s [2] as a way
to describe the hierarchical structure of the human language.
They can also be used to model the meta-structure of music,
and to serve as a production guide for generating melodies.
This hierarchical deconstruction of music was actually first
proposed by Heinrich Schenker in the 1930s and was a basis
for the hierarchical system for the construction of music later
proposed by Lerdahl and Jackendoff. [9]

Although an implementation of Lerdahl and Jackendoff’s
grammar might produce a wide variety of novel melodies, they
would certainly not be limited to popular country melodies. At
the opposite end of the spectrum, popular country songwriting
books often provide no algorithmic or generative rules for pro-
ducing melodies. For instance, despite its title, Tom T. Hall’s
book "How I Write Songs", contains no description of methods
for creating melodies. [7] Rather than devise our production
rules a priori, we based ACME’s generative grammar on those
described by Stephen Citron in his book "Songwriting." [3]
Although written for the human songwriter, Citron’s melody
generation rules sketch the outlines a stochastic context-free
grammar that forms the core of ACME’s generation system.

The terminal symbols in our musical context-free grammar
are notes and rests. ACME limits itself to notes from a single
major or minor scale for each composition. Although the
conventions of popular country music allow accidentals and
modulation, for simplicity ACME does not currently use notes

outside the scale, and does not change the tonic of the within
the melody. Assembling a series of notes from the lead scale
into what we call a melodic cell is Citron’s first production
rule for melody construction.

To select a sequence of tones for the melodic cell, we use
the generating techniques for white, brown and 1/f melody
described by Gardner.[6] ACME composes brown melodies
by choosing notes that are at most two steps offset from
the previous note, and white melodies by choosing notes
randomly, without regard to preceding tones. We implement
Gardner’s algorithm for 1/f melodies, which produces tone
sequences that fall somewhere between white and brown. At
this point ACME also assigns durations to the notes, picking
lengths randomly from eighth to whole note.

Because the first note in a melodic cell can be important
in determining the successive notes, we had ACME search a
corpus of popular country music to determine the likelihood
of a phrase starting with each scale tone. Phrases tended to
begin on the tonic or dominant, and ACME uses its analysis of
starting note frequencies to stochastically pick the beginning
tones for melodic cells.

After assembling a melodic cell of 1-4 notes as described
above, ACME follows the rules described in [3] to combine
the melodic cells into motives:

• Repetition: Repeat the melodic cell exactly.
• Translation: Repeat the melodic cell at higher or lower

intervals.
• Division: Repeat a portion of the melodic cell.
• Modification: Repeat a portion of the cell with modified

intervals.
• Introduction: Begin a novel melodic cell.
ACME chooses a series these operations stochastically: for

this prototype the each rule has equal likelihood of being
applied when extending a melodic cell. Adjustment of these
probabilities could be one way to improve generation in future
prototypes, based on feedback from the melody evaluation.

The series of modified melodic cells forms a motive. The
same production rules are then applied to motives to form
a phrase. This simple method of modifying and repeating
the same or novel sections seems to follow the conventions
of popular country music. For example, the phrase shown in
Figure 3 from a popular country song written by Taylor Swift
suggests a similar construction pattern. Swift’s motive repeats
a two-note melodic cell twice, then repeats a portion of the
cell twice. This motive, M, is stated, then repeated twice again
slightly modified form, M’. The phrase finishes by introducing
a new motive, R, which resolves to the tonic.

After creating a phrase, ACME repeats and modifies the
phrase using the same production rules outlined in of [3], to
generate a period. ACME concatenates these periods together
to function as the verse, bridge or chorus of a song.

ACME’s system of melody generation is basic, and there
are many established songwriting rubrics that might improve
ACME’s compositions. From Fux’s rule that after a long jump



Fig. 3: Melodic Motives.

in one direction melodies ought to take a small step in the
other direction [5] to Paul Simon’s advice to construct the
bridge from notes used infrequently in the verse and chorus
[14], there are many heuristics we could incorporate into
ACME’s generation system. These rubrics suggest that context
is important in producing quality melodies, and so a weakness
of the context-free grammar is that it is unable to capture
interactions between song sections that determine in some way
the quality of the melody.

A context-sensitive grammar might produce better average
quality, especially when combined with other machine leaning
techniques, such as weight search. But it seems unlikely that
weights could be found that would generate only good songs.
Based on the model of human songwriters, it seems that even
a fine-tuned generator will still produce many low-quality
songs. For the purposes of providing input to our evaluative
system, ACME does the job of creating a large volume of
melodies for lead sheets. If the universal search space is the
set of all possible melodies, our generation system produces
a much smaller set of compositions, because the production
is limited to tonal music in a set melody scale, with a fixed
length and some repetition of phrases. Further fine-tuning of
the generation rules might reduce the search space, at the risk
of excluding some portion of the set of country melodies.

5.2 Chord Generation
ACME is able to generate melodies, which are one compo-

nent of a lead sheet. Lead sheets also have chord symbols for
rhythm guitar accompaniment that are used by the arranger to
guide creation of harmony parts. A chord is a set of notes that
sound at the same time, often strummed on guitar or played
on a keyboard. Each chord contains notes from a scale that
may be different from the melody scale. Generally a chord is
defined by three tones, the chord triad.

Chord changes usually occur at the beginning of measures
[12], and tend to draw from scales close to the melody scale
on the circle of fifths. [3] We used these two assumptions to
simplify ACME’s chord generation task: we only allow chord
changes on the first beat of a measure, and use only major and
minor keys adjacent to the melody scale on the circle of fifths.
So for a song in the key of C major, our palette of available
chords is C, F, and G major, along with their relative minors
A, D and E minor.

Although ACME is able to narrow down the set of possible
chords for a phrase and their potential positions, arranging
the chord changes in order is a more difficult problem. Texts
on harmonizing tend towards subjective evaluation, although

there are some common themes. The relation of chords of the
sequence of chords is important: Citron suggests beginning
with the tonic and ending with the dominant. [3] Piston
stresses that chords should change from measure to measure,
but not always, and that the distance between keys should be
a factor in choosing chords. [12]

The relation between notes in the measure and the associ-
ated chord is also important. Chord tones that are dissonant
with the notes of the melody are discouraged, and melody
notes that are part of the chord triad are encouraged. [12]
Agreement of chord tones with longer melody notes and notes
at the start of the measure also are considered significant. [1]

Although we lack an algorithm for harmonizing an existing
melody, we can describe features that might play a part in
determining the suitability of a particular chord accompani-
ment. The features describe both the relation of notes to their
accompanying chord change, and the relation of chord changes
to each other:

• Triad Ratio: The ratio of notes governed by the chord
change that are part of the chord triad.

• Scale Ratio: Ratio of notes played during the chord that
are tones in the chord scale.

• Nonharmonic Ratio: Fraction of notes that are passing
tones in the accompanying chord scale.

• Accidental Tones: Ratio of notes that are not members
of the chord scale.

• Key Centeredness: 1 if the phrase starts with the tonic
chord, 0 otherwise.

• Resolution: 1 if the phrase ends on the dominant chord,
0 otherwise.

• Freshness: Ratio of measures that contain change in
chord.

• Mode Freshness: Ratio of chord changes that are different
in mode from the previous chord.

• Harmonic Movement: Average distance in fifths between
successive chords.

Given a set of candidate chord changes for a melody, ACME
can calculate these features for each measure. If we could
determine a set of weights to assign to the features, ACME
could use that heuristic to rank its own chord changes.

We used a genetic algorithm (GA) to find weights for
our chord sequencing heuristic. As training data we used
a set of MusicXML lead sheets of contemporary country
songs obtained from Wikifonia. ACME created a population
of individuals initialized with randomized starting weights,
and calculated the fitness of each individual as the linear
combination of weights and features each generation. We
considered the chord accompaniment in the training set to
have an optimal chord fitness of 100, and defined the fitness
of individuals as the squared difference of their ranking of
the chord changes from 100. Using a population of 1000
individuals for 1000 generations the GA kept the fittest 2/3
each generation, and randomly picked 10% of the remaining
individuals for crossover and re-stocked the rest of the popu-



lation with mutation.
After 400 generations the GA produced individuals that had

a minimal error against the training data. Figure 4 is a chart
of the average and best fitness over 1000 generations.

Fig. 4: Chord Weight Population Fitness.

Using the weights of the most-fit individual from the GA
as a heuristic, ACME is able to score the fitness of a chord
accompaniment to a melody. Given a melodic phrase, ACME
generates a set of permutations of chords for the melody. Then,
ACME ranks the chord accompaniments and chooses the
chord progression with the highest score. Using this method
ACME generates chord accompaniments that sound pleasing,
while the lowest scoring accompaniments are jarring in their
dissonance. As part of the next iteration of ACME we plan
to play a selection of low and high scoring chord accompa-
niments to human listeners and see if their judgements agree
with the system’s heuristic.

5.3 Reading and Writing MusicXML
MusicXML is an XML-based music file format, introduced

in 2004. MusicXML was an attractive format compared to
MIDI or PDF because MusicXML is widely supported, can
be stored as human-readable text, and appeared to have a
reasonable set of examples available online. Free players to
edit and export MIDI from MusicXML are also available.
The main disadvantage of MusicXML for ACME is that
contemporary country songs are generally not available for
free. Creating MusicXML samples involved typing in songs
by hand from sheet music.

Coding a parser for MusicXML was not difficult, as it is
an XML format and C# contains robust classes for navigating
XML. We created packages to read and write MusicXML and
to allow ACME to save its generated lead sheets as MusicXML
files.

5.4 Basic Feature Extraction From MusicXML
Humans, even without formal training, have a strong innate

sensibility for music, and can make value judgements on the
quality and structure of music. Most people can recognize a

variety of musical features: repeated motives, song structure,
dissonance, and the ineffable "catchiness" of well-crafted
songs.

ACME is able to extract a set of features from a melody
stored as MusicXML, and uses those features to emulate a
human’s ability to make judgements about music. The feature
set uses 11 features described in [13] with additional features
based on [3], for a total of 80 features. The 11 features that
follow from [13] include melodic features, tonality features,
melodic contour features, and rhythmic features:

• Pitch Variety: Ratio of distinct pitches to notes.
• Pitch Range: The difference in half-steps between the

highest and lowest tones in the melody.
• Key Centeredness: Ratio of dominant or tonic notes

(important tones for asserting the melody’s key).
• Dissonant Intervals: Ratio of notes whose preceding note

is seven semitones distant (intervals of a seventh are
dissonant).

• Contour Direction: Overall trend of the melody to rise or
fall.

• Contour Stability: Tendency of the melody to continue
moving in the same direction.

• Brownian Steps: Ratio of intervals that are a single scale
step.

• Leap Restraint: Ratio of large steps that are followed be
a small step.

• Note Density: Average number of notes per beat.
• Rest Density: Proportion of beats that are silent.
• Repeated Duration: Proportion of notes that have the

same duration as the previous note.

5.4.1 Feature Extraction From Motives

The features described in the previous section all provide
aggregate information about the melody as a whole. But,
as illustrated in Figure 3, there can be motives in country
music that repeat and develop the theme of the melody.
The characteristic riff or hook of a song can be recognized
by a human listener, and ACME is also able to pick out
features from the prominent motive of the melody. ACME
finds the most commonly repeated series of notes that recur
in the melody: the main motive. By extracting the 11 features
described earlier separately for the notes of the motive, ACME
has information about the range, direction, variety, and other
features of the main motive. In addition, ACME also creates
features for the length and number of repetitions of the motive.

Songs can have different motives in different song sections,
and motives may not be repeated verbatim. The ability to ex-
tract multiple motives and be flexible in recognizing variations
would certainly produce a richer feature set. But at present the
system has at least some insight into some features of the most
reiterated motive.



5.4.2 Feature Extraction From Note Frequency
The base feature set contains one feature, Key Centeredness,

which describes the combined proportion of the I and V
tones in the melody. ACME extends this feature to provide
individual proportions for all 7 tones in the melody scale.
These 7 scaled values are added to the existing feature set.
Having calculated these values, the system is able to create
a visualization of the usage of scale tones in the melody. By
laying out a histogram of the frequency of note usage, ACME
can create human-readable data about the melody during its
feature extraction. Figure 5 is a tone frequency histogram
generated by ACME during feature extraction.

Fig. 5: Tone Frequency Histogram.

5.4.3 Feature Extraction From Note Transition Model
The likelihood of moving from any single scale tone to

another can be represented by a 1st-order Markov model.
Some of the earliest attempts at algorithmic composition relied
on solely Markov models to generate melodies in the style
of a corpus of music [11]. To make use of these features,
ACME creates a 1st-order Markov model of the scale tone
transitions in a melody. The generation system composes
using major and minor scales of seven tones, so a 1st-order
Markov model of the note transitions has 49 values, which
ACME adds to the existing feature set. When these features
are plotted graphically, they provide a visual representation of
likelihood of transitions from scale tones to other scale tones
in the melody. Figure 6 is an example image plotted by the
system of the Markov transition features of a generated song.
Darker squares represent more common transitions, while
lighter squares represent less frequent transitions. The most
common transition in the melody represented in Figure 6 is
the transition from F# to E.

5.5 Training The Evaluation Neural Network
ACME is capable of extracting features from training ex-

amples to use as input for a neural network. For training
data, we used a set of several dozen country music songs in
MusicXML format. Since the goal of the system is to create
songs that might be successful on the radio, ACME uses the

Fig. 6: Note Transition Visualization.

song’s Billboard chart ranking (1 being the best and 100 the
worst ranking) as the expected value of the examples. We had
some difficulty in obtaining contemporary country music lead
sheets. There is no shortage of lead sheets, but they are not
generally available for free. We were able to find some lead
sheets on Wikifonia.org, and entered more manually using a
score editor.

To provide negative examples, the system created duplicate,
degraded versions of the positive training examples. ACME
randomly nudged intervals, reordered notes in measures, split
and combined notes, and inserted and deleted rests to existing
melodies. These modified examples sound undeniably exe-
crable, and form our set of negative examples. The system
assigns a very poor expected value of 1000 to these negative
examples.

Given a set of labelled training examples and the ability
to extract a set of features, ACME is capable of training a
backpropagation neural network. After some experimentation,
we obtained satisfactory results from a fully-connected net-
work with 80 neurons in the input layer (one for each of the
the 80 features), two hidden layers of 40 neurons each, and
an output layer of one neuron. Figure 7 shows the reduction
in mean squared error over 300 iterations over the training
examples.

5.6 Evaluation of Generated Songs
ACME can generate a few thousand songs per hour, and

evaluation with the neural network can keep pace with gener-
ation. So ideally, we could sort through 100,000 original songs
in a few days and select the best-ranked melody. Given our
simple generation algorithm, we would expect that the major-
ity of generated lead sheets should rank poorly. As expected,
the neural network does classify the majority of the output
as poor. In one run ACME generated and evaluated 5000



Fig. 7: Mean Squared Error Over 300 Iterations.

lead sheets, with the classification representing the putative
chart position of the generated song: 0 being the best possible
ranking and 1 the poorest. Figure 8 shows the ranking for
the 5000 songs, grouped by ranking. Most of the generated
melodies fall into the poorest category, while only a small
number garner a high rating.

To our ears the poorly rated melodies do not sound pleasing,
and although the highly ranked melodies are noticeably better,
the best ranked melodies are not of exceptional quality. The
high ranked songs are not of equal quality to those produced
by a human expert, so the evaluation system could use im-
provement in discrimination. More features might be needed,
and it is also not clear that a neural network is the best choice
for evaluation of generated melodies. An alternate technique,
such as Bayesian learning, might produce better results and
could help illuminate which features or combination of fea-
tures are most critical for judging the popularity of country
music.

Fig. 8: Generated Song Rankings.

6. Conclusions and Future Work
ACME’s results demonstrate that it is possible to generate

a large volume of novel melodies and use existing machine

learning techniques to evaluate and select those that are
"better". From this proof of concept we plan to consider a
variety of techniques to improve our results. We will consider
adjusting the rules and learning weights for the stochastic
context-free grammar to increase the proportion of higher-
quality melodies. We plan to investigate alternative generation
techniques, such as Markov Models, Bayesian Networks, or
a context-sensitive grammar. Creation of such models will of
course require a larger database of popular country songs. A
larger database can also improve the reliability of training the
evaluation component.

Even with a feature set of size 80 the system still is lacking
insight into overall song structure (such as the location and
arrangement of the verse, chorus and bridge), motives other
than the single most common one, and information about the
variation and development of motives. So, there seems to be
room for improvement in feature extraction. It is likely that not
all existing features that are relevant to a song’s popularity are
known, so we will investigate the possibility of automatically
discovering new features.

As the system becomes more mature, we intend to assemble
a panel of human listeners to determine if their rankings of
generated melodies agree with those of alternative evaluation
architectures. We also intend to run the system for an extended
period to see if the generator is able to produce a work of
high quality. Although our work is at an early stage, we are
encouraged that ACME might be able to recognize a musical
gem inside a heap of low-scoring rubble.

References
[1] Musicarta.com, Songwriting Techniques,

http://www.musicarta.com/songwriting-techniques.html , 2011.
[2] Noam Chomsky, Three Models for the Description of Language, IRE

Transactions on Information Theory, 1956.
[3] Stephen Citron, Songwriting: A Complete Guide to the Craft, William

Morrow and Company, New York, 1985.
[4] Ada Lovelace, Sketch of the Analytical Engine Invented by Charles

Babbage, Esq, Scientific Memoirs, Vol 3 (1842)
[5] Johann Joseph Fux, The Study of Counterpoint, Translated and edited

by Alfred Mann, Norton, New York, 1971.
[6] Martin Gardner, White and Brown Music, Fractal Curves and 1/f

Fluctuations, Scientific American, 234(4): 16-32 April 1978.
[7] Tom T. Hall, How I Write Songs, Chappell Music Company, New York,

1976.
[8] Roman Klinger, Gunter Rudolf, Evolutionary Composition of Music with

Learned Melody Evaluation, Proceedings of the 5th WSEAS International
Conference on Computational Intelligence, Man-Machine Systems and
Cybernetics, 2006.

[9] Fred Lerdahl, Ray Jackendoff, A Generative Theory of Tonal Music, The
MIT Press, 1982.

[10] Gerhard Nierhaus, Algorithmic Composition, SpringerWein, New York,
2009.

[11] Henry F Olson, Music, Physics, and Engineering, Dover Publications,
New York, 1967.

[12] Walter Piston, Harmony, W. W. Norton & Company, New York, 1962.
[13] Micheal Towsey, Andrew Brown, Susan Wright, and Joachim Diederich

Towards Melodic Extension Using Genetic Algorithms, Educational
Technology and Society, 4(2) 2001.

[14] Paul Zollo, Songwriters on Songwriting, Writer’s Digest Books,
Cincinnati, 1991.


