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Abstract—In electrical power systems preventing and regulat-
ing the loop flow phenomena is very important issue especially
after the de-regulation. The problem should be solved very
efficiently. We have formulated the loop flow problem in fuzzy
environment, as a multi-objective optimization problem using
fuzzy set theory and fuzzy decision making rules. Then the
resulted single objected optimization problem is solved using
differential evolution (DE). Then a sets of simulations are done
to figure out the most efficient parameter values of DE to fit
our problem. DE is one of the evolutionary search methods.
The parameter settings play an important role on reducing the
required time and getting better solution to the problem. We
applied our loop flow method to IEEE 30 bus test system and
presented the results.

Index Terms—Differential evolution, fuzzy set, fuzzy decision-
making, interconnected power systems, loop flows, unscheduled
flows.

I. INTRODUCTION

The high power losses, low efficiencies, or the long path
power travelling through (occupying transmission lines) before
arriving to the loads have not been problem in government
controlled power systems. Since rising costs of electrical
energy were directly adjusted to the customers’ bill or were
partly subsidized by the governments the loop flows inherited
in interconnected power systems (or the heat loses due to loop
flows) was not seen as a serious problem [1]. After the priva-
tization (de-regulation) the issues such as; how much power
flows on which transmission lines, which company uses the
other’s transmission lines and/or the amount and the time of
the transmission line usage have become important. If a system
runs into a problem due to a heavy transmission line usage it is
important to identify the responsible parties (systems causing
unscheduled power flows). The path electrical power takes
depends on the physical laws. That is, Kirchhoff’s current and
resistance laws determine the path for the electrical power to
flow. It takes the shortest path (in terms of resistivity) instead
of a contracted path.In this case a third party between a buyer
and a seller of electrical energy may come into the picture.
In such a case the question becomes who is to pay for the
transmission line usage between a seller and a buyer [2], [3].

Unscheduled flows that refer to the deviation of actual elec-
tric power flows in transmission circuits from the scheduled
(expected) power flows, may result in blackouts and affect
cross border trading in the electricity markets. Therefore, un-

scheduled flows which are also termed inadvertent interchange
or loop flows, should be managed/controlled to improve both
the operation conditions of the electric network and the market.
The effects of parallel paths in system network topology and
a survey to explore the present state of practices used to
determine transfer capability issues are well studied in [4],
[5]. Suryanarayanan et al, proposes an approach based on Lp-
norms to estimate the unscheduled flows occurring in a wide
area interconnected system [6], [7].

In recent years, there have been a lot of applications of fuzzy
set theory to various power system problems [8], [9], [10],
[11]. In the past power system optimization problems were
dealt with using non-linear and linear programming methods.
The optimization problems under an uncertain environment
can be reformulated using fuzzy sets. Many interesting appli-
cations of fuzzy sets in the optimization of the power system
operating and planning stages have been reported.

Differential evolution method was introduced by Price and
Storn [16] in 1995. It has gained popularity by years, and has
been applied to various scientific problems. Some examples of
power systems applications are reactive power optimization
[19], power systems planning [20], power system transfer
capability assessment [21], and power plant control [22], etc.

In this study, a multi-objective optimization approach based
on fuzzy decision making and differential evolution is pro-
posed to manage unscheduled flows. We handle the problem
in a fuzzy environment since in practice, the small variations
of power systems variables (bus voltages, line currents etc.,)
from their limit values can be tolerated, and this can help to
obtain one of the best solutions to the problem.

In the next section, a summary regarding unscheduled flows
is given. In Section III and IV, the basic principles of fuzzy de-
cision making and differential evolution are introduced briefly.
In Section V, the implementation of the proposed approach is
described in detail. The simulation results are provided and
discussed in the subsequent section. Finally conclusions are
provided.

II. LOOP FLOWS(UNSCHEDULED FLOWS)

In an interconnected transmission network, when some
amount of the scheduled power flows through an adjacently
connected system, a loop flow phenomenon occurs. That is,
the loop flow is the difference in between the actual flow and



the scheduled flow in a particular path. It is also referred to
as the parallel path flow, unscheduled flow or circulating flow.
The main reason of this phenomenon is that the Kirchhoff’s
laws that determine the path for the electrical power to flow.
Loop flow could exist in an interconnected power transmission
network depending on the system topology and operating
conditions.

It has been known that, without exceeding power trans-
fer limits of lines (not overloaded) and disturbing system
reliability, for the sake of efficient operation, neighbouring
systems can buy and sell power to and from each other
through the transmission system that exists between them. But
unscheduled flows affect the operation of the electric power
system and the market.

Unscheduled flows can play an important role in causing
blackouts and creating the cross-border bottlenecks, they need
to be managed.

III. FUZZY DECISION MAKING

This section summarizes the basic concepts of fuzzy sets
used for the fuzzy model, and offers brief information about
the multi-objective fuzzy model and the essentials of the
techniques for solving the multi-objective fuzzy model.

Fuzzy set theory is a generalization of traditional crisp set
theory. The idea is to replace the concept that each variable
has a precise value by the fuzzy concept that each variable is
assigned a degree of membership for each possible value of the
variable. A fuzzy set in the universal set U , is a generalization
of a classical set, and it can be characterized by a membership
function, µ(x) , that takes real values in the continuous interval
[0,1]. A fuzzy set A, in U can be represented by an ordered
pair composed by a generic element x and its membership
value, that is,

A = {(x, µA(x)) , x ∈ U} (1)

A fuzzy set can be characterized by a membership function
to map a parameter to membership grade between the scaled
intervals. For modelling the objectives and the constraints in
fuzzy environment, initial step is the fuzzification process,
are assigned membership values using fuzzy membership
functions. The closer the membership is to one the better the
solution is for that objective or constraint. Fuzzy sets repre-
senting the objectives and constrains may vary considerably.
The membership functions may be similar in the sense that
numbers outside the interval are excluded from the associated
fuzzy sets. Generally a triangular membership function is
selected for representing fuzzy sets. The other most common
shapes are trapezoidal, exponential, and Gaussian.

In fuzzy decision making fuzzy objective functions and
constraints can be characterized by the membership function
of the fuzzy objectives, µg(x) and the membership function
of the fuzzy constraints, µc(x) , respectively. The optimal
solution, which is the fuzzy decision µD, is given as an
intersection of the fuzzy sets describing the constraints and
the objectives. Using the membership functions, the overall

membership function value is obtained as

µD = min⌊µg(x), µc(x)⌋ (2)

The optimal solution is defined to be the one with the highest
degree of membership, and thus the optimization problem
becomes that of maximizing the satisfaction with the solution,
subject to the crisp and fuzzy constraints [12].

IV. DIFFERENTIAL EVOLUTION

Differential evolution (DE) is a population based, inherently
parallel, heuristic search method. It is powerful to handle non
linear and non differentiable functions.

DE procedure is similar to other evolutionary algorithms,
such as genetic algorithms, particle swarm optimization, tabu
search, simulated annealing, etc. Main parts of the algorithm
is shown below.

Algorithm 1 Main Parts of DE Algorithm
Initialization
Evaluation
repeat

Mutation
Crossover (Recombination)
Evaluation
Selection

until Stopping criterion is satisfied

Since, DE is a population based method, at every iteration,
it operates on a population of Np candidate solution vectors.
The first step of the algorithm generates a random solution
vector. A population can be represented as shown below.

P i = [Xi
1, · · · , Xi

Np
] (3)

where i represents the iteration number, and X is a candidate
solution vector. Each solution candidate vector consists of
n objective function parameters, where n is the number
of unknowns in the function to be optimized. The solution
candidates must be initialized within the lower and upper
bounds of the unknowns.

The second step of the algorithm creates mutant vectors,
by adding a weighted difference vector of two randomly
indexed vectors to the third one. There are several versions
for this process [18]. Famous scheme DE/rand/1 process can
be mathematically represented as shown below.

x
′i
j = xi

r3 + F (xi
r1 − xi

r2) (4)

where r1, r2, and r3 are randomly selected integers from 1 to
Np and j ̸= r1 ̸= r2 ̸= r3. The mutant vector is represented by
x

′i
j . F is the scaling factor, which has effect on the difference

vector, within the range of [0,2].
The third step creates trial vectors by mixing the parent

vectors, and the mutant vectors. Mathematical representation
for this process is given below.

x
trial(G)
j =

{
x

′(i)
kj if rand(0, 1) ≤ (CR) or k = q,

x
(i)
kj otherwise.

(5)



where, q is a random parameter chosen for each j, CR
represents crossover constant, within the range of [0,1], and
rand is a randomly generated number between 0 to 1.

Decision of inclusion of the trial vector in the next gener-
ation is made in the selection step, by comparing the fitness
values of the trial vectors with the associated target vectors.
This process can be represented as shown below.

x
(i+1)
j =

{
x

trial(i)
j iff(xtrial(i)

j ) ≤ f(x
(i)
j ),

x
(i)
j otherwise.

(6)

Finally if the stopping criterion is met the algorithm stops
otherwise it goes to the second step.

V. PROBLEM FORMULATION

A classical general optimization problem formulation is
given below.
Minimize

f(x, u)

Such that

g(x, u) = 0
h(x, u) ≤ 0

where x represents system variables, u represents control
variables for the objective function f(x, u) with the equal-
ity constraints g(x, u) = 0 and the inequality constraints
h(x, u) ≤ 0.

In our formulation, the objective function is the minimiza-
tion of fitness function

fitness =
1

1 + µD
(7)

which is the maximization of the minimum satisfaction value
of fuzzy memberships . In the fuzzy environment both the
objective functions (minimization of both total active losses
and total reactive losses and the scheduled line flow on a
contracted path) and the constraints (voltages remaining within
the limits, line flows remaining within the limits etc.,) are
modelled as fuzzy sets. The intersection of both membership
sets, µc and µg , is the overall satisfaction, µD needs to be
maximized.

We use control variables such as tap changing transformers
tap ratios, generation bus voltages, active power generations,
and if available reactance of series compensation with their
upper and lower limits to create candidate solutions to estab-
lished the initial population for DE. Each candidate solution in
the population is evaluated by load flow program. The results
of load flow (voltages, line flows, loses, etc.) are passed to
fuzzy decision making process, where a membership value is
assigned for all constraints and objectives. The minimum of
those membership values is then tried to be maximized by DE.
The process continues until all population is exhausted or a
pre-set number of iterations is reached.

The exponential membership function, see 2, has been
selected for the fuzzification of the unscheduled flows since
our earlier study showed that more satisfying results can be

Fig. 1. Flow chart of the problem.

obtained using this kind of membership function [13], [14],
[15]. A trapezoidal membership function could have also been
used.

The function in 2 can be described by four parameters
(a, b, c, d) with four breakpoints of the shape. The member-
ship function µg,ij(Pij) belongs to the MW flow (line flow)
through the line between bus i and bus j. The system operators
taking into account the amount of the scheduled power flowing
through the contracted paths can determine the four parameters
of the function. The membership function µg,ij(Pij) is defined
as



Fig. 2. The fuzzy memberships function for the loop MW flows (the
exponential form).

µg,ij(Pij) =


Pij−aij

bij−aij
aij < Pij < bij

1 bij < Pij < cij
1 +

dij−Pij

dij−cij
cij < Pij < dij

0 otherwise

(8)

where, aij < bij < cij < dij must hold.

VI. SIMULATION RESULTS

The chosen values of the parameters of DE is as follows.
F will be vary in between [0.0,1.0]
CR will be vary in between [0.0,1.0]
n = 14
Np = 100
ub = [1.1, 1.1, 1.1, 1.1, 1.06, 1.06, 1.06,

1.06, 1.06, 140, 100, 100, 100, 100];
lb = [0.9, 0.9, 0.9, 0.9, 0.94, 0.94, 0.94,

0.94, 0.94, 0.0, 0.0, 0.0, 0.0, 0.0];
ub is the upper bound of the unknowns (power system
parameters).
lb is the lower bound of the unknowns (power system
parameters).

The paths chosen to control power flows are given below:
• Path 1, branch between buses 2 and 6,
• Path 2, branch between buses 2 and 5,
• Path 3, branch between buses 6 and 7.

The fuzzy membership function parameters (a,b,c,d) are
chosen as 50,59,61,70 respectively for the path 1.
The fuzzy membership function parameters (a,b,c,d) are
chosen as 55,59,61,65 respectively for the path 2.
The fuzzy membership function parameters (a,b,c,d) are
chosen as 15,21,23,29 respectively for the path 3.

The averaged values are the results of twenty runs.
According to the table I and II we see that the solutions
reached from the 0.4 value of F is better. But the deviations
from the targeted values are high.
According to the table III and IV we see that the solutions
reached from the 0.4 value of F is the best one.

According to the table V and VI we see that the solutions
reached from the 0.2, 0.4 and 0.6 values of F are not really
different than each other. The iteration number for the case
0.4 of F is the lowest.
According to the table VII and VIII we see that the solutions
reached from the 0.2, 0.4 and 0.6 values of F are not really
different than each other. The iteration number for the case
0.6 of F is the lowest.
According to the table IX and X we see that the solutions
reached from the 0.4 and 0.6 values of F are fairly good.
Iteration number is lower for the 0.4 of F then the 0.6 of F .
The 0.4 value of F provides better fuzzy membership values
for the paths as well.
Overall conclusion is that we have obtained a value as 0.4
for the parameter F and two values as 0.6 and 1.0 for the
parameter CR. When the value of CR is high DE might
converge fast and arrive at a local minimum. That is why we
concluded the parameter settings for DE as 0.4 for the F and
0.6 for the CR.

After parameter analysis of DE our problem is solved using
the best case parameter to compare to base case solution of
the system. The results are given from the tables XI and XII.

TABLE I
AVERAGED OBJECTIVE VALUES.

CR=0.2 fitness generation path 1 path 2 path 3
(MW) (MW) (MW)

F=0.2 0.7099 344.2857 47.2075 51.2710 22.3625
F=0.4 0.7026 288.4286 53.6023 57.0964 22.0552
F=0.6 0.7437 224 44.5404 54.6725 27.1232
F=0.8 0.7679 203.7143 35.9105 43.1106 21.5093
F=1.0 0.7918 213.5714 12.7435 25.7443 25.3571

TABLE II
AVERAGED FUZZY MEMBERSHIP VALUES FOR OBJECTIVES AND

CONSTRAINTS.

CR=0.2 min path 1 path 2 path 3 Ploss Qloss

fitness
F=0.2 0.3122 0.3357 0.6508 0.6055 0.5152 0.4315
F=0.4 0.3528 0.4928 0.6643 0.6934 0.4450 0.3978
F=0.6 0.1040 0.3655 0.2415 0.1946 0.2663 0.2550
F=0.8 0.0022 0.0109 0.0252 0.0459 0.3156 0.2761
F=1.0 0 0 0 0.0664 0.3447 0.2429

TABLE III
AVERAGED OBJECTIVE VALUES.

CR=0.4 fitness generation path 1 path 2 path 3
(MW) (MW) (MW)

F=0.2 0.7372 299.2857 52.7136 54.1790 19.4998
F=0.4 0.6919 335.2857 58.2337 59.7074 20.3662
F=0.6 0.7315 230.4286 52.3205 53.2260 21.1080
F=0.8 0.8504 209 38.4646 44.9840 23.0930
F=1.0 0.8213 201.7143 20.1798 51.5315 48.4237

VII. CONCLUSION

Regulating or controlling loop flow is formulated as a
multi-objective problem subject to operational and electrical



TABLE IV
AVERAGED FUZZY MEMBERSHIP VALUES FOR OBJECTIVES AND

CONSTRAINTS.

CR=0.4 min path 1 path 2 path 3 Ploss Qloss

fitness
F=0.2 0.3779 0.3837 0.6998 0.4184 0.3780 0.3791
F=0.4 0.4420 0.4649 1.0000 0.5307 0.4426 0.4426
F=0.6 0.1540 0.2419 0.5065 0.4138 0.2603 0.2643
F=0.8 0.0133 0.0237 0.0970 0.1774 0.2110 0.1834
F=1.0 0 0 0 0.0870 0.1569 0.1306

TABLE V
AVERAGED OBJECTIVE VALUES.

CR=0.6 fitness generation path 1 path 2 path 3
(MW) (MW) (MW)

F=0.2 0.6963 367.4286 58.1737 58.9501 20.1867
F=0.4 0.6915 252 58.2259 59.3840 20.3931
F=0.6 0.6994 296.8571 58.3525 60.3773 21.3662
F=0.8 0.8072 231 47.6865 57.5251 28.1167
F=1.0 0.8375 201 36.3017 45.1145 28.8744

TABLE VI
AVERAGED FUZZY MEMBERSHIP VALUES FOR OBJECTIVES AND

CONSTRAINTS.

CR=0.6 min path 1 path 2 path 3 Ploss Qloss

fitness
F=0.2 0.4361 0.4377 0.9052 0.4411 0.4362 0.4363
F=0.4 0.4437 0.4611 1.0000 0.5553 0.4437 0.4451
F=0.6 0.4144 0.5245 0.9782 0.8188 0.4204 0.4150
F=0.8 0.1309 0.2873 0.3836 0.5651 0.2354 0.2366
F=1.0 0.0110 0.1313 0.3214 0.2840 0.2910 0.1686

TABLE VII
AVERAGES OBJECTIVE VALUES.

CR=0.8 fitness generation path 1 path 2 path 3
(MW) (MW) (MW)

F=0.2 0.6954 341.1429 58.1755 58.8678 20.2524
F=0.4 0.6904 314.2857 58.2037 59.116 20.2139
F=0.6 0.6996 260.2857 58.4694 60.2493 20.9606
F=0.8 0.7453 219.1429 55.7606 65.9365 27.9187
F=1.0 0.9104 203.8571 50.5513 51.8493 18.6307

TABLE VIII
AVERAGED FUZZY MEMBERSHIP VALUES FOR OBJECTIVES AND

CONSTRAINTS.

CR=0.8 min path 1 path 2 path 3 Ploss Qloss

fitness
F=0.2 0.4381 0.4384 0.7539 0.4776 0.4383 0.4382
F=0.4 0.4481 0.4509 0.9925 0.4532 0.4482 0.4483
F=0.6 0.4174 0.5795 0.9548 0.7241 0.4223 0.4179
F=0.8 0.1810 0.2343 0.5679 0.8239 0.2868 0.2607
F=1.0 0 0.1325 0.0692 0.1429 0.1927 0.0938

constraints in fuzzy environment. After fuzzy decision resulted
single objective optimization problem is solved by using
differential evolution. The primary goal of our problem is
to obtain the highest satisfaction level(maximizing the fuzzy
membership value) to reach the targeted flow levels. The
problem is tested for the many different cases of the parameters
of DE to obtained the best solution to our problem.

TABLE IX
AVERAGED OBJECTIVE VALUES.

CR=1.0 fitness generation path 1 path 2 path 3
(MW) (MW) (MW)

F=0.2 0.8440 211.1429 52.5332 57.8209 23.1920
F=0.4 0.7062 213.8571 58.2072 59.9108 20.6898
F=0.6 0.6904 362.2857 58.2042 59.1771 20.2409
F=0.8 0.7117 238.7143 58.4986 60.0911 21.5948
F=1.0 0.8257 218.4285 53.6428 63.4230 30.1184

TABLE X
AVERAGED FUZZY MEMBERSHIP VALUES FOR OBJECTIVES AND

CONSTRAINTS.

CR=1.0 min path 1 path 2 path 3 Ploss Qloss

fitness
F=0.2 0.1967 0.2104 0.4583 0.3823 0.3296 0.3036
F=0.4 0.4163 0.4537 1.000 0.7096 0.4208 0.4163
F=0.6 0.4479 0.4511 0.9860 0.4665 0.4480 0.4482
F=0.8 0.3568 0.6278 0.8173 0.9171 0.3899 0.3684
F=1.0 0.0773 0.2650 0.3486 0.4782 0.1585 0.1294

TABLE XI
AVERAGED OBJECTIVES AND CONSTRAINTS, (BEST FITNESS = 0.6915).

path 1 path 2 path 3 Ploss Qloss

(MW) (MW) (MW) (MW) (MVAr)
test 58.2259 59.3840 20.3931 8.0104 35.0194
target 60.00 60.00 20.00 1.8x7.999 1.8x35.06
base case 52.68 37.80 5.05 7.999 35.06

TABLE XII
AVERAGED FUZZY MEMBERSHIP VALUES FOR OBJECTIVES AND

CONSTRAINTS, 3 PATHS.

min path 1 path 2 path 3 Ploss Qloss

fitness
test 0.4437 0.4611 1.0000 0.5553 0.4437 0.4451
base case 0.00 0.0016 0.00 0.00 0.4444 0.4444
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