
Adding Autonomy into Object
Jamil Ahmed

1
 and Sheng Yu

1

1
Department of Computer Science, University of Western Ontario, London, Ontario, Canada

Abstract - Real world objects can be classified into two kinds

according to their behavior (1)autonomous objects

(2)dependent objects. An object can behave both ways as

well. Dependent objects are those objects which are of no use

unless exploited by an external entity. Once they are created

or instantiated, they keep waiting for the driver class to invoke

theirs functions for their utilization. Example of dependent

objects include a car, a calculator, a word processing

application etc. Autonomous Objects are those objects which

when created or instantiate, then they know by their self what

they are supposed to do and then they readily start performing

their task (set of methods) with possibly no external

interaction or invocation. We emphasize that autonomy of

object intuitively needs to have these two properties (1)Object

runs its method(s) itself as soon as it is created. (2)More than

one copy of object can be running simultaneously. Example of

autonomous objects include a clock, a car set at cruise

control, an Operating system kernel that always keeps active,

a virus scan utility that always keeps active, Graphical

Actors(simulation of humans) in game programming, an

automatic robot, etc. We have established object calculus of

autonomous object definition & object creation which

incorporates the intuitive properties of autonomous objects as

well. Our proposed calculus is based on the same structures

as that of Abadi & Cardelli [1].

Keywords: Object Oriented Programming, Autonomy,

Concurrency, Multithreading, Object Calculus.

1 Introduction

 Contemporary object oriented programming languages

do not yet explicitly provide any feature of “autonomy” for

objects. We propose that an object in Object Oriented

Programming can be defined as autonomous object. Adding

the feature of autonomy to object has its own intuitive effects

and introduces new abstraction to some programming

languages contemporary features, while reducing the

complexity of those features. Autonomous objects provide

much more intuitive mechanism of programming for any

autonomous computing e.g autonomous vehicles and robots,

Graphical Actors(simulation of humans) in game

programming, a virus scan utility that remains active all the

time etc. In order to mechanize autonomous behavior as

natural and intuitive, we introduce two components: (1) A

compulsory run() method that will get invoked by default to

start the function of autonomous object as soon as object is

created. (2)When an autonomous object is created, it is by

default created in its own separate and new thread. All our

code examples in Figures are analogous to „java‟ syntax.

Autonomy of objects also provide an abstraction to an

important contemporary programming language feature,

making Object oriented programming closer to natural way of

programming and hiding much of the complexities of that

language features. We propose that following feature gets

new abstraction by virtue of the notion of “autonomy”.

 Concurrency (Multithreading)

 As we argue that Autonomous object provide

concurrency which is more intuitive and close to the

concurrency of real world objects because with autonomous

object we do not need to explicitly care about threads just like

real world objects.

1.1 Autonomous Object Definition

 We introduce a special method “run()” as a mandatory

method of object definition for the object which is supposed

to behave like autonomous object. This method is supposed to

be invoked by constructor method of autonomous object by

default. The purpose of “run()” method is to define in its body

that what operations this autonomous object must start

performing right after its creation. We give structure of

autonomous object definition code below.

Fig. (A)

1.2 Autonomous Object Creation

 We introduce the keyword “auto” to be used in

conjunction with autonomous object creation. This “auto”

keyword will force the object created as autonomous objects.

Whenever an object is created with “auto” keyword, the

compiler expects that the object must have special method

“run()” defined in its definition. An attempt to create

autonomous object using “auto” keyword will generate

compile time error if the object definition doesn‟t have

“run()” method defined. We give autonomous object creation

code below.

 This research is supported by Higher Education Commission, Pakistan
(www.hec.gov.pk) and NSERC (Natural Science and Engineering Research

Council of Canada) grant number 41630.

Class auto_class{

…..

Public void run()

{….. }

…..

public auto_class ()

{…..}//constructor is optional as

usual

…..

}

Fig (B)

 If the object definition have “run()” method defined

but the object is not created with “auto” keyword then there

will be no compiler error. Object creation without “auto”

keyword will lead to usual object i.e non-autonomous or

dependent object creation. The object created without “auto”

keyword will not invoke the “run()” method, if there is any.

2 Concurrency by Virtue of Autonomy

 Although the feature of concurrency is already

provided by contemporary programming languages but this

feature is provided by introducing additional and distinct

entity rather than a built-in feature of object which makes it

language based feature rather than a built counterpart of

object. Those distinct entity (e.g thread) are then applied on

objects and this is how objects can exploit the feature of

concurrency so far. Although concurrency with the help of

distinct entity like thread also gives a certain level of

autonomy to Objects but as we propose autonomy as a built in

feature of objects which cause concurrency to be a rather

naturally associated and inherent to autonomous objects.

Consequently the concurrency feature of programming

languages will be under the hood of autonomous objects.

Once we have autonomous objects, these independent

autonomous objects will be well suited to inherently have

concurrency capabilities.

Hence , notion of autonomous object provide new

abstraction to thread such that each new instance of

autonomous object will be created in its new and separate

thread. This notion helps us to get rid of explicitly thinking in

terms of thread and creating threads on our own. All we need

to think about is Autonomous object. We won‟t need to know

new language based ways (e.g thread libraries) and constructs

or syntax for implementing and exploiting concurrency as we

do by now in contemporary programming languages. With

autonomous object, creating new thread and its handling

won‟t be the responsibility of programmer any more.

This new abstraction will also be conducive in hiding

many contemporary issues of multithreading (explicitly

creating and destroying thread, races between the threads,

deadlocks etc). It means multithreading will then become an

inherent part of autonomous objects. All the principles and

practices of concurrent programming (such as races between

the threads, locks, deadlocks etc) will remain intact. The only

differences will come up is that the thread management will

be taken care of by autonomous object. Hence, the difference

will appear in the view point by achieving higher abstraction

to concurrent programming.

When an autonomous object is created, it is by default created

in its own separate and new thread. The keyword “auto”

instructs the compiler that the objects created will run in

separate thread. Hence, this reserve word causes the compiler

to create a new thread by default so that this object is run on

top of that thread.

The object created without auto keyword will not invoke the

“run()” method and a separate thread will not be created.

3 Architecture of Autonomous Object

and Concurrency

 We propose architecture of Autonomous object and

its concurrency in Fig (C). We introduce a new built in class

of object oriented system in the compiler called

“Autonomous” class. “Autonomous” class works in

collaboration with built in “thread” class. Whenever an object

is created with “auto” keyword, it gets inherited by the built in

“Autonomous” class by default. The “auto” keyword invokes

its “run()” method from within its constructor. It also enforces

to inherit the autonomous object from a special class

“Autonomous”. This “Autonomous” class in turn create a new

thread object within it, using “Has a” inheritance, on top of

which a newly created autonomous object will run. The

“run()” method of autonomous object will by default invoke

the “super.run()” instruction to override the “run()” method of

“Autonomous” class.

Each autonomous object, when created, by default

creates a “thread” object internally and hides thread level

details inside it, thus providing a single and higher abstract

level of concurrency. In other words we can say each

autonomous object is created on top of a thread object to

ensure autonomy. This thread is called primary thread of the

object. Figure (C) gives our porposed architecture for any

object definition say “auto_class” when an object of this class

is created as an autonomous object.

To exploit autonomous object we show a driver class

with “main()” function in which we can create one or more

object as autonomous object. Each of those objects when

created will get functional in separate threads synchronously.

Compiler will take care of thread creation responsibility. The

“driver” class and “auto_class” are user defined whereas the

“autonomous” class and “thread” class are built in class which

gets associated with the “auto_class” by the compiler.

By virtue of autonomy we have introduced a new abstraction

for multithreading. Now we can exploit more than one

autonomous objects to perform their operation concurrently.

When two instances of same autonomous object are created, it

is equivalent to two threads performing an operation

concurrently.

 In section 6 we show examples of contemporary code of

multithreading (Example2-code#1) and equivalent code

proposed by us (Example2-code#2) according to the notion of

concurrency by autonomous objects.

Class Driver

{

 main(){

 …..

auto_class auto objA =new auto_class ();

….. }

}

Fig (C)

4 Motivation of Concurrency by

Autonomous Objects

 Autonomous Objects will be the primary and base

entity for concurrency instead of thread. Autonomous object

notion provides higher abstraction to the widely varying

language constructs and libraries of thread. Since concurrency

is now represented by Objects at the higher abstract level, it

will be very intuitive to define the soundness of Object calculi

for autonomous object with built in concurrency feature. We

won‟t need to introduce a separate entity, within the calculus,

to represent threads unlike most of the alternate object

calculus which introduces new constructs within calculus to

incorporate thread and concurrency as in [3] , [4].

 Objects, as an abstract entity for concurrency,

represent more natural point of view for multithreading much

closer to the concurrency point of view of real world objects

as illustrated ahead by some multithreading scenario.

5 Single Threaded Autonomous Object

 Example 1 illustrates a single threaded autonomous

object. Main thread of driver class creates only one object

with “auto” keyword to get only one new thread for

autonomous object.

5.1 Example 1

 In this example we have given object definition of an

Autonomous “AutoPrinter” object. As soon as an autonomous

object is created, the autonomous printer object is supposed to

start printing autonomously without any external request.

Within run() method we have defined the startprinting()

method. When object is created using “auto” keyword then

AutoPrinter object gets implicitly inherited by built in class

“Autonomous”, a new thread is created on top of which this

object gets functional and “run()” method is invoked, by

default, implicitly and synchronously from within the

constructor of AutoPrinter. The implicit call to run() is taken

care of by the compiler.

Example 1

class AutoPrinter{

 String name;

 int i=0;

 AutoPrinter () {

 System.out.println("Auto. Thread started ");

 }

 public void run() {

 StartPrinting();

 }

 Public StartPrinting(){

 While(i<100){

 System.out.println("Print in progress");

 }

 }

}

class Driver{

 public static void main (String args[]){

 System.out.println("Main thread started");

 AutoPrinter auto objA =new AutoPrinter ();

 System.out.println("Main thread terminated");

 }

}

Fig (D)

6 Synchronization

 While exploiting multithreading, there are times, when

more than one thread share the same resource. More than one

thread can invoke the same method of that resource at the

same time. Obviously only one of them should be allowed to

Class Thread

{ ….

run(){….}

Synchronized(Object obj){….} //this

//method will lock the object‟s methods to

//be called by two threads at the same time

isAlive(){….} //determines whether a

//thread is still running

Join(){….}//causes the main thread //(from

where it is invoked) to wait until //the child

thread terminates and “joins” main thread.

….

}

Class Autonomous

{ …

Public Thread thread;

Autonomous()

{ thread=new Thread(); }

…

run()

{ thread.run(); …. }

…

}

Class auto_class

{ …

run() // super.run() is invoked by default

{ ….}

auto_class () // constructor

{ ….. }

…

}

Class driver

{ …

auto_class auto objA=new auto_class ();

//creating objA with “auto” keyword will

//force “auto_class” to get implicitly

//inherited from “Autonomous” class.

….

 }

access the resource/method at one time. In this case we need

to synchronize the threads.

 Example2, code#2 illustrates a multithreaded

autonomous object as two object are created with “auto”

keyword. In this Example, we show by comparison that how

autonomous object serves perfectly well in code#2 as an

alternate of contemporary multithreading technique in code#1.

Code#2 hides all thread level management code so that we

can best appreciate the simplicity of code#2 and realize the

abstraction of “concurrency by virtue of Autonomy”.

6.1 Example 2

Fig (E)

Fig (E) gives a scenario using contemporary techniques of

concurrency in java. The method “Printlist” of printer is

shared by two computer threads. We have explicitly

synchronized the call to this method so that both threads do

not intermingle their execution of this method.

Synchronization statement clocks the invocation of this

method by other thread as long as the execution of this

method by first thread is under process.

Fig (F) gives alternate solution of this problem by

exploiting the inherent power of autonomous object of our

proposal. In code#1 we have to explicitly care about creating

threads and using shared resource within the threads and then

synchronizing. Where as in code #2 we can simply define the

shared printer as an autonomous object and every time a new

autonomous object is created, compiler will itself take care of

the new thread creation issues.

This example best realizes the significance of

abstraction provided by the notion of Autonomy. We can see

that we gain same multithreading in code#2 as in code#1 but

we don‟t even need to explicitly think about thread creation in

code#2. All thread creation, for the sake of implementation, is

done internally under the abstraction of autonomous object.

Fig (F)

Example 2—Code#1

class Printer {

 void Printlist (String s) {

 System.out.print ("printing long list for”+s);

 try {

 Thread.sleep (1000);

 } catch (InterruptedException e) {

 System.out.println ("Interrupted");

 }

 System.out.print ("printing long list Ends for”+s);

 }

}

class CompThread implements Runnable {

 String s1;

 Printer p1;

 Thread t;

 public CompThread (Printer p2, String s2) {

 p1= p2;

 s1= s2;

 t = new Thread(this);

 t.start();

 }

 public void run() {

 synchronized(p1){

 p1.Printlist(s1);

 }

 }

}

class Driver{

 public static void main (String args[]) {

 Printer p3 = new Printer();

 CompThread name1 = new CompThread (p3, "Bob");

 CompThread name2 = new CompThread (p3,"Mary");

 try {

 name1.t.join();

 name2.t.join();

 } catch (InterruptedException e) {

 System.out.println("Interrupted");

 }

 }

}

Example 2—Code#2

class AutoPrinter {

 public string pname;

public void run() {

 thread.synchronized(){

 this.Printlist(pname);

 }

 }

public AutoPrinter (string nm){ pname=nm; }

public void Printlist (String s) {

 system.out.print ("printing long list”+s);

 try {

 Thread.sleep (1000);

 } catch (InterruptedException e) {

 System.out.println ("Interrupted");

 }

 System.out.print ("printing long list Ends”);

}

}

class Demo{

 public static void main (String args[]) {

 try {

 AutoPrinter auto p1 =new AutoPrinter("Bob");

 AutoPrinter auto p2 =new AutoPrinter("Mary");

 } catch (InterruptedException e) {

 System.out.println("Interrupted");

 }

 }

}

7 Calculus

 A class is an object definition used to generate object.

Pre-methods are the method definitions which becomes

methods once embedded into objects as mentioned in [1]. A

class is a collection of pre-methods together with a method

called “new” for generating new objects. Class in the

terminology of calculus is written as below:

c ∆ [new = б(z)[li = б(s)z. li(s)
iє 1…n

],

 li= λ(s)bi
iє 1…n

]

The method new = б(z)[li = б(s)z. li(s) iє 1…n] ,

applies the pre-methods of class to the self of the object,

thereby converting the pre-methods into methods.

Given any class “c”, the invocation c.new produces

an object “o” as below and given in [1].

o ∆ c.new = [li = б(xi)bi
iє 1…n

]

7.1 Calculus for Autonomous Object

In our setting, as we have defined in section 3, in order

to make a class behave as autonomous, it must be inherit from

a parent “Autonomous” class. In our calculus we call it

“c_super_auto” class and formally given as below

c_super_auto ∆ [new = б(z)[li = б(s)z.li(s)
iє 1…n

 ,

 б(s)z.run(s)], thread=b,

 run=λ(s)(s.thread:=s.thread.new),

 li = λ(s)bi
iє 1…n

]
 thread=b stands for thread= б(s)b, for an unused s

because thread=b is a field.

 run=λ(s)(s.thread:=s.thread.new), A new instance of

thread is created, so that each autonomous object

can run in this new and separate thread.

 (s.thread:=s.thread.new) is the body of run method.

 new method not only applies the pre-methods of

class to the self of the object but also invoke the run

method.

 run is also a special method similar to new method.

A new thread instance is created within run method.

Hence a new thread instance is created before new

method is returned.

 li= λ(s)bi
iє 1…n

 represents all pre-methods of

“c_super_auto” class.

In order to make a class behave as autonomous, it

must be inherit from a parent “c_super_auto” class.

As soon as object of a class is created with “auto” keyword,

the class by default gets inherited from “c_super_auto” class.

Compiler is supposed to enforce this by default inheritance.

In our calculus, we call the inherited class “c_auto” and

formally given as below:

c_ auto ∆ [new = б(z)[li = б(s)z. li(s)
iє 1…n+m

 ,

 б(s)z .run(s)],

 run= λ(s)c_super_auto.run(br)(s),

 li =c_super_auto.lj
jє 1…n

,

 lk= λ(s)bk
kє n+1…n+m

]

 “c_auto” as an inherited class can reuse all the pre-

methods of “c_super_auto”.

 (c_super_auto.lj
jє 1…n

) are the pre-methods of

“c_super_auto” inherited into “c_auto”.

 lk= λ(s)bk
kє n+1…n+m

 are more pre-methods peculiar to

“c_auto”.

 run= λ(s) c_super_auto.run(br) (s) shows that run is

the inherited but over ridden pre-method which also

invoke its parent‟s run pre-method.

 c_super_auto.run(br) (s) is the body of run pre-method

of “c_auto”.

 c_super_auto.run is the part of run pre-method body

which is invoking the run method of parent.

 (br) is the remaining body of run pre-method which

represent any custom user defined code.

 (s) is the self parameter of “c_auto” also passed on to

c_super_auto.run

In our calculus an autonomous object “ao” is created from

“c_auto” class is formally given as below:

ao ∆ c_auto.new = [br {{x<-ao}}, li = б(xi)bi
iє 1…n+m

]

 br {{x<-ao}} shows that run method is invoked from

within the c_auto.new i.e as soon as “ao” is created.

 li = б(xi)bi
iє 1…n+m

 shows the methods embedded

into “ao” corresponds to the pre-methods of

“c_auto” class. These methods include the „m‟ pre-

methods of c_ auto as well as „n‟ pre-methods of

c_super_auto.

8 Conclusion

Our proposed autonomous object notion is compatible

with all contemporary Object Oriented Programming

techniques. It is not new programming paradigm. According

to our proposed syntax when an Autonomous object is

defined, its object can still be created as a usual, as a non-

autonomous object, without any extra care. Autonomous

object provides better abstraction over thread and concurrency

and is also sound in Object calculus as we have shown.

9 References

[1] M.Abadi and L.Cardeli, “A Theory of Objects”,

Springer, New York, 1996. Chapter 6.

[2] Michael Papathomas, Dimitri Konstantas, “Integration

concurrency and Object Oriented Programming. An

Evaluation of Hybrid”

[3] Andrew D. Gordon, Paul D. Hankin, University of

Cambridge Computer Laboratory, Cambridge, UK, “A

Concurrent Object Calculus: Reduction and Typing”.

[4] Alan Jeffrey, DePaul University, “A Distributed object

calculus”, December 1999, Proc. FOOL 2000

[5] Suresh Jagannathan!, Jan Vitek, Adam Welc, Antony

Hosking, April 2005, Dept. of Comp. Sci., Purdue University,

USA “A transactional object calculus”.

[6] Jonathan Aldrich Joshua Sunshine Darpan Saini Zachary

Sparks, School of Comp. Sci., Carnegie Mellon University,

OOPSLA 2009, “Typestate-Oriented Programming”.

[7] Haitong Wu, Sheng Yu, Dept. of Comp. Sci, Univ. of

Western Ontario, “Adding states into Object Types”.

[8] Haitong Wu, Sheng Yu, Dept. of Comp. Sci, Univ. of

Western Ontario, 2006 Elsevier, “Type Theory and Language

Constructs for Objects with States”.

