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Abstract - In causal-effect relationship research, sim-
ilarity of groups being compared in terms of covariates
or patient/disease characteristics is critical to ensure
fairness of the comparison and unbiasedness of the find-
ings. When dissimilarity is suspected, one can either ad-
just for imbalance or match the groups according to cer-
tain important covariates or characteristics. Regression
analysis is commonly used to adjust the imbalance and
matching techniques are usually used to match subjects
between groups. Diamond and Sekhon [2] proposed a ge-
netic matching algorithm to maximize the covariate bal-
ance. We describe the theory and conduct a simulation
study to compare the relative performance of propensity
score matching, Mahalanobis matching, and Genetic
matching. Generally, Genetic matching achieves better
covariate balance and produces more stable and unbi-
ased treatment effect estimates. We also apply Genetic
matching to a clinical study to investigate the treatment
effects on rheumatoid arthritis.

Keywords: propensity score, Mahalanobis matching,
Genetic matching, Robbins-Munro stochastic approxi-
mation, randomized controlled clinical trials.

1 Introduction

In causal-effect relationship research, similarity of
groups being compared in terms of covariates or pa-
tient/disease characteristics is critical to ensure fair-
ness of the comparison and unbiasedness of the find-
ings. When dissimilarity is suspected, one can either ad-
just for imbalance or match according to certain impor-
tant covariates or characteristics. Regression analysis is
commonly used to adjust for imbalance and matching
techniques are usually used to match subjects between
comparison groups. Therefore, matching has become
an important method of causal-effect relationship infer-
ence in many fields including biomedicine, economics,
social science, and statistics, to name a few.

Several matching procedures have been proposed in the
literature by researchers since the early 1970s. Impor-
tant differences between these proposed methods are the

efficiency of the algorithms utilized and the effectiveness
of the methods to reduce imbalance prior to subsequent
inferences.

Propensity score matching based on logistic regression
and multivariate matching based on Mahalanobis dis-
tance are among the more commonly used methods for
this purpose. Several variations and combinations of
these methods are also used frequently by practition-
ers.

When covariates have spherical or ellipsoidal distribu-
tions, these methods generally perform quite well; how-
ever, these methods can perform poorly when the dis-
tributions deviate substantially from this family of dis-
tributions. Therefore, it is highly desirable to have al-
ternatives that can perform well even when the distri-
butions of the covariates deviate substantially from this
family of distributions.

Diamond and Sekhon [2] and Sekhon [15] proposed a ge-
netic matching algorithm that imposes additional prop-
erties and generalizations to propensity score and Ma-
halanobis matching methods and maximizes the balance
of observed covariates between the subject groups be-
ing compared. The method is nonparametric and does
not depend on knowing or estimating the propensity
score; however, when a propensity score is incorporated,
the method can sometimes be improved by taking ad-
vantage of the information embedded in the propensity
scores.

Genetic matching has been successfully utilized in social
sciences to investigate causal-effect relationships (Di-
amond and Sekhon [3], Hopkins [5]); however, it has
rarely been used in biomedical research to investigate
between treatment group differences with covariate im-
balance among subjects in the groups.

As stated by Peto, et al. [7], “There is simply no serious
scientific alternative to the generation of large-scale ran-
domized evidence.If trials can be vastly simplified, - - -,
and thereby made vastly larger, then they have a cen-
tral role to play in the development of rational criteria
for the planning of health care throughout the world.”
Recruitment of a large number of eligible patients from



a general population is both a major strength and weak-
ness of large pragmatic trials.

Deliberately broadening the entry criteria means that
the overall result can be difficult to apply to particular
groups. However, in modern medical practice, physi-
cians are often interested in individualized medicine
and how best to use results of randomized clinical tri-
als to maximize the wellbeing of each patient. There-
fore, proper analyses of targeted subgroups of patients
to investigate treatment efficacy has become increas-
ingly necessary if heterogeneity of treatment effects is
likely to occur.

Theoretically, the covariates of subjects should be well
balanced in randomized controlled trials. However, in
actual practice with small to moderate sample sizes, it
is not uncommon to find subgroups of patients under
study with covariate imbalance. This issue is a partic-
ular concern in many observational studies with long-
term follow-up due to subject attrition. Therefore, it is
critical to ensure similarity between subjects on impor-
tant covariates in order to make the efficacy comparison
of treatments meaningful and unbiased.

In section 2 of this article, we describe the theory of the
propensity score, Mahalanobis distance matching and
Genetic matching methods. In section 3, we describe a
simulation study we conducted to compare the relative
performance of these matching methods. In section 4,
we apply Genetic matching to a dataset from a clini-
cal study to investigate the relative effectiveness of two
treatments for rheumatoid. Discussion and conclusions
are presented in section 5.

2 Theory of Propensity Score,
Mahalanobis Distance, and
Genetic Matching

2.1 Propensity Score Matching

The concept of propensity scores is thoroughly discussed
by Rosenbaum and Rubin [10] as well as by other au-
thors. In the following, we describe a few key points for
analytical purposes. Let Y;; denote the response of the
active treatment of subject i, (1 < i < N), and Yy de-
note the response of the control treatment of subject 3.
Let X; denote the vector of covariates associated with
subject ¢ and T; = 1(0) if subject 7 receives active (con-
trol) treatment. The observed outcome for subject 4 is
then Y; = ;Y3 + (1 — T;)Yio.

If subjects were well randomized between treatment and

control groups, then

even though E(Yjo|T; = 1) of the treated group and
E(Y:i1|T; = 0) in the control group cannot be estimated
from the data since each subject can receive only either
control or active treatment, but not both.

Under the well-randomized situation, the average treat-
ment effect can be estimated using the observed data by

T=EYal|Tl; =1) - E(Yio|T; =0) = a1 + bi710, (2)
where a1 > 0,b1 > 0,a1 +b; =1, and

n = [EYal|li =1) - E(Y|T: =1)],

0 = [E(Yal|T; =0)— E(Yp|T; = 0)] (3)

are the (unobserved) treatment effects from the treated
and control groups, respectively.

When imbalance in covariates is suspected between the
patient groups under study, proper matching of covari-
ates is needed prior to subsequent inference in order to
obtain a fair estimate of treatment effect or difference.
Given covariate X;, and following the results of Rubin
[12, 14], one can show that

B(Yy| X0 Ti=1) = BV X0 T, =0). (&)

Therefore, the treatment effect of the treated group can
be estimated by

7 = Eix,n—{EYil X, T; = 1) — E(Yi|X,, T; = 0)}
(5)
where the expectation is taken over {X;|T; = 1}.

Define the propensity score as

e(X;) = P(T; = 11X;) = E(T3| Xy), (6)

namely, the probability of patient ¢ being assigned to ac-
tive treatment given the covariate. Assume, given the
subjects covariates, treatment assignments are not de-
terministic and are independent among study subjects,
Rosenbaum and Rubin [9] had shown that

1 = Epxyrn=1{EYile(X:),Ti =1)
- E(Yile(X;),Ti = 0)|T; = 1}, (7)
where the expectation is taken over {e(X;)|T; = 1},

and 79 can be estimated similarly. Therefore, the aver-
age treatment effect can be estimated by combining the
results of 7 and 79. More details about the propensity
score can be found in Rosenbaum [9] in addition to the
papers mentioned herein.

Let X; = (21,2, -, xi)" and m < k be the vector of
covariates. A common method to estimate e(X;) is via
the logit function, i.e.,

logit(e(X;)) = Bo + hi(n1i) + ha(n2i), (8)



where h; and hy are known functions and 7y; =
S fe(@in)s moi = E:fqzl Jr(wir) fq(2iq) Tepresent the
main effects and interactions, respectively. The param-
eters in Eq(1) can be estimated using MLE. Goodness-
of-fit can be checked graphically via Landwehr, et al [6]
or Tsai [16].

According to Rosenbaum & Rubin [10], it is advanta-
geous to sub-classify or match not only on e(z) but for
other functions of x as well. In particular, such a re-
fined procedure may be used to obtain estimates of the
average treatment effect in a subpopulation defined by
the components of X; for example, gender or different
disease classifications.

2.2 Mahalanobis Matching and Genetic
Matching

Given two covariates, X; and X, the Mahalanobis and
Genetic Matching are defined as following in terms of
the distance between the covariates

md(X“XJ) = {(Xz - X]')/S_l(Xi - Xj)}1/27 (9)

and

gmd(Xi, X;) = {(Xi = X;)'S™PWS ™2 (- X;)} /2,
(10)
respectively, where S'/2 is the Cholesky decomposition
of the covariance matrix of X, and W is a diagonal posi-
tive definite weight matrix. The elements of W are cho-
sen to simultaneously minimize the distributional differ-
ence and location difference of covariates between the
treatment and control groups based on the Kolmogorov-
Smirnov test and ¢-test, respectively (Sekhon [15]).

The conventional test of covariate balance based on
the t-test focuses only on location and can miss distri-
butional differences between covariates. On the other
hand, the Kolmogorov-Smirnov test compares distribu-
tional differences and can miss differences in locations.
By combining these two tests, the covariates can be bet-
ter matched in both location and other properties of the
distributions.

3 Comparison of  Matching
Methods - a Simulation Study

3.1 Design of a Simulation Study

To investigate the performance of various matching
methods, a simulation of 500 iterations was conducted
under various scenarios. Specifically, the simulation
plan was designed as follows:

1. Sample size: assume equal sample size (N =
20, 30,50,100) between treatment and control
groups.

2. Assume 3 covariates (z;1,%;2, and x;3) will be
matched between treatment and control groups.
The covariates were assumed to have somewhat
different distributions between treatment and
control. Four different distributions were assumed
and are shown in the following table. They consist
of standard normal distributions with possibly
different means and variances, or contaminated
normal distributions with either symmetric or
asymmetric contaminations from either tail. The
list of distributions is shown in the table below.

X; | Group F:#1 F:#3

Zi1 | treated | N(0,1) | 0.9N(L, 1) + 0.1N(L,3)
control | N(0,1) | 0.9N(0,1) + 0.1N(0,3)

x;1 | treated | N(0,1) 0.9N(0,2) + 0.1N(0, 3)
control | N(0,1) 0.9N(1,2) 4+ 0.1N(1,3)

z;1 | treated | N(0,1) 0.9N(1,3) 4+ 0.1N(1,4)
control | N(0,1) 0.9N(0,3) + 0.1N(0,4)

X; | Group F:#2 F:#4

x;1 | treated | N(1,1) ON(1,1) + .1|N(1, 3)]
control | N(0,1) | .9N(0,1) + .1|N(0,3)|(—1)

x;1 | treated | N(0,2) ION(0,2) +. 1N(0, 3)
control | N(1,2) ION(1,2) +.1N(1,3)

z;1 | treated | N(1,3) | .9N(1,3) + .1|N(1,4)|(-1)
control | N(0,3) ION(0,3) + .1|N(0,4)]

3. The response variable (Y) was assumed to follow
two different models. The first model is

3
Y; = treatment effect + Z x;; +error,  (11)
j=1
and the second model is
3 3
Y, = treatment eﬁ’ect—kz Ti+ Z TijTiterror.
j=1 k=1

(12)
The treatment effect difference between treatment
and control is assumed to be a constant, e.g., 1.
The purpose of assuming two different models is to
compare these methods when the model is incor-
rectly specified.

4. The statistical methods to be compared are:

(a) Empirical mean difference,

(b) Least squares (LS) fit (assuming the first
model is correct),

(c¢) LS fit (assuming the second model is correct),

(d) Matching on the propensity score,
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Figure 1: Estimation of treatment effect (=1): Main
effect only. (Labels 1-8 = a-h of item 4 in Sec. 3.1)

(e) Matching on z;1, x;2, and x;3 with all available
data,

(f) Matching on x;1, x;9, z;3, and the propensity
score with all available data,

(g) Matching on x;1,2;2, and ;3 but exclud-
ing data in either tail outside of 2 times
MAD (MAD is defined as 1.483 med;{|x;, —
med;(z;,)|}) from the median for each covari-
ate (to mimic Tukey’s robust trimmed esti-
mate),

(h) Matching on ;1, z;2, ;3, and the propensity
score but excluding data in either tail outside
of 2 times MAD from the median for each co-
variate.

5. Two criteria for comparisons are examined:

(a) The estimates of the true treatment effect and
the variation of the estimates,

(b) Balancing the covariates between treatment
and control groups. This will be as-
sessed by examining the minimum p-value of
the Kolmogorov-Smirnov test for equality of
treatment and control groups distributions for
each covariate, respectively, before and after
matching. Large p-values are consistent with
greater comparability of the treatment and
control groups in terms of the covariates, and
hence reflect better covariate balance among
treatment and control groups.
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Figure 2: Estimation of treatment effect (=1): With
interactions. (Labels 1-8 = a-h of item 4 in Sec. 3.1)

3.2 Summary Results of the Simulation
Study

By examining the median, the inter-quartile distance,
and the overall range of the box plots of the estimated
treatment effect, we make the following conclusions:

1. The simple observed treatment difference can be a
very poor estimate when the covariate distributions
are different and deviate from standard normal dis-
tributions as shown in panels 2 to 4 of Figures 1 and
2.

2. For the main effect model, the LS fit (when the
model is correctly specified or even over-fitted with
interaction terms) is generally better than other
methods in estimating the treatment effect. But
the LS fit with main effect only can perform poorly
if the true model includes interactions; however,
the LS fit with interactions (correct model) out-
performs other methods.

3. Matching purely based on propensity scores usually
performs worse than Genetic matching either with
all available data or with the trimmed dataset in
estimating the true treatment effect. The trimmed
estimate using Genetic matching to match both
covariates and propensity scores performs almost
uniformly better than any other method regardless
of model specification, except for the LS fit when
the model is correctly specified as discussed in (b)
above.
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Figure 3: Minimum p-value of K-S test of equality:
Main effect. (Labels 2-6 = d-h of item 4 in Sec. 3.1)

4. When the covariates of treatment and control
groups have identical normal distributions, the LS
method outperforms all other methods since there
is no need for matching. Any effort to match is
redundant. The propensity score matching seems
to make the covariate matching worse more often
than not. However, the Genetic matching seems to
perform reasonably well, especially when the out-
liers were trimmed away (Panel 1 of Figures 3 and
4).

5. However, when the covariate distributions are dif-
ferent between treatment and control groups and
deviate from the standard normal, the effect of
matching from all methods becomes very visible.
This can be seen in Panels 2-4 of Figures 3 and 4.
Genetic matching with trimmed outliers tends to
outperform all other methods either matched only
on all covariates or with propensity score included.
This is true for all distributions tested here.

As discussed above, when the model is correctly speci-
fied, the simple LS method outperforms other methods
as expected. However, generally when analyzing data,
one rarely knows the correct model or the distribution
from which the data was generated. Therefore, the per-
formance of LS method can be expected to diminish
in the analysis of real data. On the other hand, the
performance of Genetic Matching seems to be almost
always comparable to the LS method when the model
is correctly specified, and performs much better when
the model is mis-specified as shown in Panels 1, 2, and
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Figure 4: Minimum p-value of K-S test of equality: In-
teractions. (Labels 2-6 = d-h of item 4 in Sec. 3.1)

4 of Figure 2. Therefore, the Genetic Matching seems
to serve as a “model mis-specification proof” tool for
general data analysis.

It is interesting to note that Diamond, et al. [2] con-
cluded that Genetic Matching is preferred over other
matching methods because it is more efficient (smaller
MSE) and is less biased.

4 Example

A phase III, multi-national randomized, double blind,
placebo controlled clinical trial was conducted to com-
pare the treatment effect of drug A and drug B to
placebo in controlling disease activity in subjects with
rheumatoid arthritis having an inadequate clinical re-
sponse to methotrexate. The study was not originally
designed to compare drug A and drug B directly. How-
ever, a post hoc analysis to compare these two drugs in
a subgroup of countries of the original study is of clinical
interest and also to meet the regulatory request. A to-
tal of 156 and 165 patients were randomized to drugs A
and B in these countries, respectively. The primary end-
point of the study was the disease activity score based
on 28 joints (DAS28).

Comparisons of several baseline covariates using the t-
test did not show particular imbalance between the two
treatment groups. However, a more in-depth investi-
gation of the baseline distributions by quantile-quantile
plots showed some deviations between the two popu-



lations. The objective in this analysis is to properly
estimate the treatment difference under the situation of
baseline imbalance.

The first step in this analysis is to match the patients
from drugs A and B. Both the propensity score and the
Genetic matching methods were used so that we can
compare the relative performance of these two matching
methods.

Several covariates were examined to compare the perfor-
mance of propensity score and Genetic matching. The
baseline pain scores between the treatment groups are
compared and shown in Figure 5. The original Q-Q plot
of pain scores between drug A and drug B is shown in
Panel 1. The Q-Q plots of this covariate using propen-
sity score matching and Genetic matching are shown in
Panels 2 and 3, respectively. One can clearly see sub-
stantial improvement in covariate balance of Genetic
matching over the propensity score matching.

Empirical permutation distributions of the treatment
effect before and after Genetic matching were generated
to determine the level of significance of the observed
treatment effect among the randomly permutated sam-
ples. The observed treatment difference prior to match-
ing is about -0.19. However, the magnitude of the treat-
ment difference was reduced to -0.048 after matching.
The treatment effect estimated after matching indicates
the treatment difference is not as big as the original es-
timate. In other words, without this matching step, the
treatment difference may have potentially been over-
estimated and the medical practice may be misguided.
Even though the permutation test did not show a signif-
icant treatment difference in either pre or post match-
ing; however, the treatment effect distributions from
permutations seem to have some subtle difference and
the test prior to matching showed a higher significance
level than post matching. The 95% confidence inter-
val of the treatment effect difference was also estimated
using the stochastic approximation proposed by Rob-
bins and Munro [8] and implemented by Garthwaite
[4]. A total of 5000 randomized samples were generated
and analyzed. The estimates fluctuate substantially in
the beginning of the approximation process. The pro-
cess began to stabilize after about 2500 randomizations.
Figure 6 shows the stochastic approximation for the up-
per and lower limits of the confidence interval. The
resulting 95% confidence interval is (-0.110, 0.4858).

5 Discussion

Statistical modeling and data analysis are important
steps in advancing innovative scientific research in the
fields of medicine, economics, social sciences, etc. To
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Figure 5: Comparison of covariate adjustment before
and after propensity score and genetic matching, re-
spectively.
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Figure 6: Stochastic approximation of the 95% confi-
dence interval of treatment effect difference (based on
5000 simulated randomization)

translate data into useful unbiased information is a criti-
cal endeavor for scientists and researchers as well. When
data do not come from well-designed experiments, sta-
tistical modeling and data analysis to extract unbiased
information can become much more challenging.

In this paper, we described various matching techniques
to make the subjects under consideration more compa-
rable before statistical inference; we also conducted a
simulation study to further investigate the performance
of these methods under different scenarios in their rela-
tive ability to better balance the covariates between the
subjects groups, and in obtaining the unbiased estimate
of treatment effect. The methods we compared ranged
from the usual linear regression, conventional matching
techniques with all available data to more robust alter-



natives, which flexibly weights the outliers. Generally,
Genetic matching is preferred to other methods under
various covariate distributions in balancing the covari-
ates and obtaining the true treatment effect.

Given its longer history, the propensity score matching
has been the most well known and most commonly used
method in casual-effect relationship research; however,
the selection of variables to be incorporated into the
logistic regression model to derive the propensity score
is not a trivial matter.

Several authors have proposed various approaches to
incorporate covariates to estimate the propensity score
(e.g., Rubin & Thomas [11], Rubin [14], Brookhart et.
al. [1]). The general findings are to incorporate co-
variates which are thought to be related to outcomes
and are confounded with both treatment assignment
and outcomes. The model which incorporates as many
covariates as possible or the model which includes ob-
vious covariates such as age, gender, and race do not
seem to perform as well as one would expect. On the
other hand, the Genetic matching method has the ad-
ditional flexibility to allow the covariates to be assigned
unequal weight and also takes into account the covari-
ance of the variables incorporated into the distance cal-
culation which can eliminate some modeling difficulties
caused by co-linearity between covariates.

Estimation and comparison of treatment effects should
only be conducted after careful examination of balance
between the groups being compared. It is important
to note that the research findings should be regarded
as exploratory and be interpreted with care within the
context of biological or scientific plausibility and rele-
vance.
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